
University of Magdeburg

Faculty of Computer Science

Bachelor Thesis

Classification of Refinement
Mechanisms in Formal Methods

Author:

Benjamin Radau

August 7, 2015

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake

Workgroup Databases and Software Engineering

M.Sc. Fabian Benduhn

Workgroup Databases and Software Engineering



Radau, Benjamin:
Classification of Refinement Mechanisms in Formal Methods
Bachelor Thesis, University of Magdeburg, 2015.



Abstract

Formal methods are a promising way to create software-models in a mathematically
rooted way to keep them formal and analyzable. Stepwise refinement adds the possibil-
ity to successively refine an abstract specification to a more concrete one and finally to
executable program code. A large amount of different formal methods make it difficult
to choose the right one for a given problem. In order to help with this problem and
to create a starting point in the selection process, this bachelor thesis is introducing a
taxonomy and applies three popular formal methods to it. This taxonomy classifies and
evaluates those in different aspects. Three selected formal methods are introduced and
a common example is presented to show each one in practical use. In the last step it is
evaluated and rated how well these formal methods and their refinement mechanisms
fit in the presented taxonomy.

Formale Methoden sind eine vielversprechende Möglichkeit Softwaremodelle zu erstellen,
die eine mathematische Grundlage haben und dadurch formal und analysierbar bleiben.
Schrittweise Verfeinerung gibt die Möglichkeit, eine abstrakte Spezifikation nach und
nach zu konkretisieren und letztendlich ausführbaren Programmcode zu erzeugen. Eine
große Anzahl an verschiedenen formalen Methoden kann es schwierig machen, eine zu
einem Problem passende auszuwählen. Um bei diesem Problem zu helfen und um
einen Einstiegspunkt bei diesem Auswahlprozess zu geben, stellt diese Bachelorarbeit
eine Taxonomie vor, welche auf drei populäre formale Methoden angewandt wird. Diese
Taxonomie klassifiziert und bewertet diese anhand mehrerer Aspekte. Drei ausgewählte
formale Methoden werden vorgestellt und ein gemeinsames Beispiel zeigt die praktische
Anwendung dieser. Es wird untersucht und bewertet, wie gut die vorgestellten formalen
Methoden und ihre Verfeinerungsmechanismen in die vorgestellte Taxonomie passen.
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1. Introduction

Computer software affects almost every aspect in our daily life and thus software engi-
neering has become a more and more prominent exercise. As Foster states, “Software
engineering is the process by which software systems are investigated, planned, mod-
eled, developed, implemented and managed [...]. The ultimate objective is the provision
or improvement of desirable conveniences and the enhancement of productivity within
the related problem domain” [2].
Software engineering has been considered an explicit theoretical process by many, while
a rather technical exercise to others. The former point of view focuses on mathemat-
ical semantics and provability, while the latter develops informal models like Unified
Modeling Language diagrams or workflow diagrams to describe their software. Both
have their benefits and drawbacks. Informal models can generally not be proven on
correctness and some software problems cannot be described in purely mathematical
terms.
One approach to close this gap between the two views is the usage of formal meth-
ods. Those try to give provability to their models as well as a good readability for
everybody involved in the software engineering process. According to Alagar, “Formal
specification methods use languages with mathematically defined syntax and semantics
and offer methods to describe systems and their properties” [3].
Even as early as 1971, Wirth stated that program construction would consist of a se-
quence of refinement steps and that the degree of modularity obtained in this way would
determine the ease or difficulty with which a program can be adapted to changes or
extensions [4]. Model refinement allows to build a software model gradually by making
the next model more detailed and more precise than its predecessor.
Trying to combine the refinement with formal methods, several model-based refine-
ment methods have been proposed in the literature. These methods apply the idea of
(stepwise) refinement to formal specifications: an abstract specification is successively
refined to a more concrete specification and finally to executable program code. On
each refinement level, the system can be analyzed and potential errors can be found.
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The different formal methods differ in many aspects such as their underlying formalism,
their notion of refinement and their support for different analysis techniques.
There are also several refinement supporting formal methods out there, which often use
different approaches on how the refinement mechanisms work in each corresponding
modeling language. Therefore it is not easy to decide which formal method is the most
appropriate for a given problem.

The major goal of this thesis is to create a starting point for potential users to choose
the right refinement supporting formal method. This thesis makes the following contri-
butions:

• A taxonomy is proposed in which existing formal-based refinement methods can
be evaluated into.

• Three selected formal methods and their refinement mechanisms are introduced.

• A common example is provided to give an advanced overview of differences be-
tween notions and notations of the formal methods.

• The applicability of the taxonomy on the presented formal methods is evaluated.

Structure of the Thesis

The following Chapter 2 explains the basics required to understand this work. The
common concepts for all formal methods will be introduced and the term refinement
will be explained. Chapter 3 describes the previously mentioned taxonomy of refinement
mechanisms and the formal methods Event-B, ASM and Z will be introduced as well.
There will be a brief insight into the history of each method, followed by a summary
of their key elements and distinguishing features. Furthermore it will be surveyed,
whether tool support is available and to what extend it assists the user in practical use.
Also parts of the common example will be described in the respective formal method.
This chapter finishes with the results and evaluation of the introduced formal methods,
regarding their applicability on the proposed taxonomy. Chapter 4 gives an overview
of related work, which may have different approaches to compare formal methods or
extend the results of this thesis. The last chapter concludes this work.



2. Background

Stepwise refinement in formal methods can be used to create software in a formal and
structured manner. To understand this thesis, it is important to understand the idea
and the purpose of formal methods and the notion of refinement. Any software project
goes through the software life-cycle to distinguish the individual tasks necessary to
complete the development process. This life-cycle contains the following steps: Re-
quirements analysis, system specification, design, implementation, test and integration
and support and enhancement [5]. The requirements analysis and system specification
define the customer needs and requirements of the system such as performance, relia-
bility and most important what the system does. The design phase explores ways to
fulfill all those previously defined requirements and needs and is the crucial bridge be-
tween the first two phases and the implementation phase, which is less focused on what
to accomplish rather than how to accomplish the requirements in executable program
code. The importance in all of this lies in the monetary aspect. A big bulk of the costs
of a software project lies in fixing the errors during the implementation and test phases.
However, it has been investigated that a very large percentage of these errors have their
origin in false or insufficient specifications, often due to economies in the specification
phase [6, 7]. To reduce these cost-inefficient implementation and testing phases it is all
the more important to have an error free specification.

2.1 Formal methods

“Formal specifications use mathematical notation to describe in a precise way the prop-
erties which an [...] system must have, without unduly constraining the way in which
these properties are achieved” [8]. Formal methods can describe exactly what a sys-
tem does without having someone to interpret some program code or naturally written
description. A formal specification can be used for all following tasks of the software
development. It can be used as a reference for programmers or the program documen-
tation and it gives the advantage of testing the products results with formal proven test
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scenarios. Not being dependent on the program code, the formal specification can be
created in an early stage and it can be used as a central medium of communication for
all people involved in the development process. Formal methods use formal notations
which distinguish them from less formal models such as data flow or activity diagrams.
Formal semantics add an undoubted meaning to a given model with little to none scope
for interpretation.

2.2 Refinement

Development often proceeds from an abstract specification to a detailed design. This
process is called refinement. Both the specification and the design are models, but the
specification is closer to the users’ view, while the design is closer to an executable
program [9]. If both models are expressed in mathematics, formal reasoning can be
used to check that the design faithfully expresses the intent of the specification. It
can be mathematically proven that the specification and the design are two models
of the same thing. This ability to check the correctness of design steps is one of the
distinguishing features of a formal method. A design is correct if it has all the properties
of the specification, however it usually has additional properties as well. This relation
is expressed precisely by logical implication. The predicate that describes the design
must imply the predicate that describes the specification.

Example: The specification requires an increase of a variable x (x ′ > x ). The increase
is proposed by adding 1 (x ′ = x + 1). This design should imply the specification:
x ′ = x + 1 => x ′ > x This implication is obviously true and so the refinement is
correct. x ′ = x + 1 refines x ′ > x .
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2.3 Common Example

To provide a further insight into each formal method, a common example will be used to
describe the individual formal methods whenever it is possible. Their general semantics
and syntax as well as chosen refinement steps will be explained by using this example.
This basic example will contain a simple traffic light with two states as seen in Figure 2.1.
In the first state the red light is turned on, while the green light is turned off. The
second state is the other way. The states shall be changed by some mechanics. The
state changing mechanics may be a simple timer alternating the states but the exact
mechanics may be different from method to method.

state changing mechanism

Figure 2.1: Simple traffic light

The refinement on this example will also differ between different formal methods in order
to focus on their specific features. The example can be extended or refined by adding
another set of lights for an intersection or adding multiple state changing mechanics
(e.g. dependency on other lights, emergency vehicles or buses).



6 2. Background



3. Survey of Model-Based
Refinement Methods

3.1 Taxonomy of refinement mechanisms in formal

methods

There are many formal methods that support the possibility of refinement, but not all
of them are equally qualified to suffice the practical use in every aspect. In order to
choose a formal method which meets the requirements of the desired features, several
selection criteria can be taken into account. The factor in learning the notation and the
semantics of a language as well as the availability of computer aided tools for a specific
language may be critical for the selection process. This issue will be taken care of in
the following chapter for each described method. The taxonomy presented here focuses
more on the underlying features of the formal methods. Figure 3.1 shows the three
main columns expressiveness, strictness and correctness. All formal methods have this
three aspects in common yet there are differences in specific characteristics.
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Expressiveness

Formal methods

Strictness Correctness

arbitrary restricted defined alterable by constructionby validation

manual automatic

Figure 3.1: A taxonomy for refinement mechanisms in formal methods

3.1.1 Expressiveness

Probably the majority of formal methods have the possibility to design a sequential
program, but may not be able to handle concurrent or reactive software. It has to be
examined whether some methods have the potential to adapt to unexpected situations,
or whether they are restricted to specific software types. In this context, a formal
method can be arbitrary or restricted regarding their refinement methods.

3.1.1.1 Restricted

Restricted refinement in formal methods can be described as the inability to express
certain model extending intentions, either restricted by possible refinement schemes
or the formal methods language by itself. Taking the traffic light as example, there
is one simple light alternating between a red and a green state in a given interval t
(see Figure 3.2a). The extension or the refinement of the model shall add a button
which immediately switches to the red state through an interrupt i when pressed (see
Figure 3.2b). Some formal methods may not allow or support this refinement, e.g.
because external interrupts are not included in that specific formal method. Other
reasons could be, that the model requires certain prerequisites or even alteration in its
system in order to make the refinement possible.
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a) a simple traffic light

b) refined by adding a button

red state

green state

wait for t wait for t

yes ⇒ interrupt i

red state

green state

Button

pressed

Button

pressed

no ⇒ wait for i

no ⇒ wait for i

Figure 3.2: Example of a possible refinement of the traffic light

3.1.1.2 Arbitrary

In contrast to the restricted refinement, the arbitrary refinement does not need special
prerequisites. A model can be refined whenever it is required to do, so no special
sequence has to be taken into account. The example from Figure 3.2 could be extended
by an extra set of traffic lights, managing a crossroad. In doing so, the arbitrary
refinement would allow to add the second set of lights first and then the button or vice
versa.

3.1.2 Strictness

While not directly linked to the classical refinement term, the possibility to adapt to
specific needs or circumstances of a specification, which may require altering or ex-
tending the given foundation of a formal method, can be seen as a kind of refinement.
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Something that previously was not possible to model can be modeled after the expan-
sion. Most formal methods however do not support an alteration of its syntax and
semantics. The option to add non-specified elements to a language comes with difficul-
ties. An analogy to this is the usage of a dialect. To some people it is natural to use
certain words or phrases in a dialect, whereas other people are not necessarily able to
understand them. Same goes for the language of formal methods. The strictness of the
usage can be classified in the two simple characteristics: They allow alteration or they
do not.

3.1.3 Correctness

A crucial part of using formal methods is the possibility to prove the correctness of
a given design. Whereas most formal models can be proven by validation, stepwise
refinement adds another possible way of assuring correctness of a design. The refinement
can be restricted to a certain amount of pre-validated operations which ensure the
correctness of the outcome. The formal methods can establish correctness by validation
or correctness by construction.

3.1.3.1 Correctness by validation

Each step of refinement may represent a different level of abstraction or a different view
on the design. Therefore it is not always possible to see whether a refined model is truly a
representation of the original behavior. There a several approaches to validate a refined
model. Validating a refined model can be done manually or (semi-)automatically. Man-
ual validation however has a few drawbacks. It is usually error-prone, time-consuming
and expensive. One error in a refinement step can affect all other sequential steps [10].

3.1.3.2 Correctness by construction

Stepwise refinement can be restricted, as mentioned in Section 3.1.1.1. One restriction
might be, that only certain specific refinement mechanisms can be applied to a model.
This mechanisms may already be proven to be valid after being applied to the more
abstract model. If a model is already validated, this mechanisms ensure the consistency
for the refined model. For example, there exists a set of colors for the traffic light model,
which contains the colors red and green. Adding new colors, which may be needed later
(e.g. yellow), is a simple predefined action of set-extension with items of the same type
and thus a re-validation can be omitted.

3.1.4 Tool support

The tool support is not directly part of this taxonomy as it overlaps with all previous
sections. However, for a potential user of a formal method, tool support is one of the
first things that comes to mind whether to choose the formal method or not. There can
be tool support helping the user with the construction of the model (e.g. via graphical
user interface). It is also possible to ensure strictness with built-in syntax and semantics
checks. There are also tools, which help to validate the model or there can be no tool
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support at all. Since the tool support can be very crucial for the user, the following
evaluation of the different formal methods will also take this aspect into consideration
wherever it is possible.

3.2 Event-B

Event-B is a formal method for modeling discrete systems explicitly based on the
premise of refinement [1]. Both, Event-B and its predecessor, the B Method, have
been used to model large scale industrial projects e.g. the VAL shuttle for Roissy
Charles de Gaulle airport in France [11]. The main purpose of an Event-B model is
reasoning, as this is the key to understand complex models. “Reasoning about com-
plex models should not happen accidentally but needs systematic support within the
modelling method. [...] Proof obligations serve to reason about a model and to provide
meaning” [12]. This chapter explains the basic formal notation and the fundamental
concepts of the Event-B modeling language, its refinement and its place in the proposed
taxonomy.

3.2.1 Overview

The B method is a state-based method, which combines set theory, predicate logic and
substitution [13]. Models in Event-B are described with two basic constructs: contexts
and machines. Contexts describe the static part of a model like sets, axioms and con-
stants, whereas machines describe the dynamic part of an Event-B model. Machines
may contain events, variables, theorems, variants and invariants. A context in the ex-
ample is the set of possible colors the traffic light can show: {red , green, yellow}. An
example of a corresponding machine for the traffic lights can be found below.

Variables v = v1, ..., va define the state of a machine and are constrained by invariants
I (v). State changes are described by Events E (v). Each event is composed of a guard
G(t , v) and an action x := S (t , v), where t = t1, ..., tb are parameters the event may
contain and x = x1, ..., xc are the variables it may change. The guard states the necessary
condition under which the event may occur and the action describes how the state
variables evolve when the event occurs. The basic event notion E (v) is one of the
following:
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E (v) =̂ any t when
G(t , v)

then
x := S (t , v)

end

or

E (v) =̂ begin
x := S (v)

end

The short form can be used when the event does not have parameters. It is important
to note, that all assignments of an action x := S (t , v) occur simultaneously. In order
to keep consistency, whenever a variable value changes, invariants are supposed to hold
and should be proven for each event - invariant combination.

To be more concrete, the traffic light example, which is similar to the one in the Event-
B handbook [14], adds a descriptive view on the theoretical notation. This specific
example adds a pedestrian crossing in addition to a simple traffic light. There are two
simple Boolean variables: tra�c �ow and pedestrians �ow .

set pedestrians �ow =̂ when
pedestrians �ow = FALSE

then
tra�c �ow = TRUE

end

A more common notation using the Rodin tool is seen below. The excerpt from a possi-
ble traffic light controller in Event-B has two variables tra�c �ow and pedestrians �ow ,
which each describe whether the cars or the pedestrians are allowed to move. The in-
variant inv1 and inv2 restrict these variables to the Boolean type. There is an event
called set pedestrians �ow that changes the value of pedestrians �ow to true in ac-
tion act1 when the guard grd1 is TRUE thus when the flow of cars has stopped
(tra�c �ow = FALSE ).
This machine will be refined in the next section.
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MACHINE
tra�cLights0

VARIABLES
tra�c �ow

pedestrians �ow

INVARIANTS
inv1:
tra�c �ow ∈ BOOL

inv2:
pedestrians �ow ∈ BOOL

EVENTS
Event
set pedestrians �ow =̂
when
grd1:
tra�c �ow = FALSE

then
act1:
pedestrians �ow = TRUE

3.2.2 Refinement in Event-B

A machine M ∗ can refine a machine M . M is called an abstract machine and M ∗ is
called the concrete machine. The refinement strengthens invariants and can add details
to a model (see Figure 3.3). The state of the abstract machine is linked to the state
of the concrete machine by a gluing invariant J (v , v ∗) where v are the variables of the
abstract machine and v ∗ are the variables of the concrete machine. This gluing invariant
helps to verify the refinement between models [15]. Each abstract event E (v) is refined
by a concrete event E ∗(v ∗).
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Abstract machine M

Concrete machine M*

Abstract context C

Concrete context C*

Events

Variables

Invariants

Events

Variables

Invariants

Sets

Constants

Axioms

Sets

Constants

Axioms

sees

sees

refines extends

Figure 3.3: Relationship between machines and contexts in Event-B refinement [1]

Refining a machine by adding new events is technically possible as it is seen as refinement
of a skip event which does nothing and can occur at any given time. Assuming the first
abstract machine tra�cLights0 manages to set a variable tra�c �ow to TRUE when
the traffic can flow and to FALSE if it has to stop. A refinement could be that the light
can be set to green or red corresponding to tra�c �ow . The gluing invariant gluing inv

connects both machines.

MACHINE
tra�cLights1

REFINES
tra�cLights0

SEES
context0

VARIABLES
lights color

INVARIANTS
inv new ∈ {red , green}
gluing inv = tra�c �ow = TRUE ⇔ lights color = green

As seen above, this refined machine can access the old, more abstract machine. All
previously declared variables, invariants, events etc. are still active and functionally.

3.2.3 Tool support

There are two major tools to support modeling in Event-B. The Atelier B [16] envi-
ronment and the Rodin platform [17] provide facilities for editing machines, contexts,
refinements and for proving proof obligations. As seen in Figure 3.4, it has an assis-
tant helping to create new events including variables, invariants etc. As Event-B is



3.2. Event-B 15

developed with refinement in mind, the Rodin tool supports refinement natively, sim-
ply by right-clicking an existing machine. The framework for the refinement is then
automatically created. The proof obligation is shared by both environments and can
be automatic and/or interactive. As the refinement is a progressive procedure, the goal
is to distribute the complexity of proofs through the proof-based refinement [13].

Figure 3.4: Overview of the basic Rodin Tool assistants

3.2.4 Summary

Event-B has a strict scheme that has to be followed in order to refine a model as it is
intended by the method. The refinement process also is also strictly defined and has to
be followed to construct a correct refinement of a machine. This developed syntax and
semantics can be used to create a fully provable model. Alterations and addition to the
modeling language is not supported in Event-B. As for tool support, the RODIN Tool
assists the user with all steps of the modeling process including proof obligations.
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3.3 ASM

This chapter describes the definitions of the basic Abstract State Machines (ASM), its
refinement and tool support. Börger states in his book, that “the ASM Method [...]
is a system engineering technique which supports the integration of problem-domain-
oriented modeling and analysis into the development cycle. Its goal is to improve indus-
trial system development by accurate high-level modeling which is linked to seamlessly,
in a way the practitioner can verify and validate, to executable code” [18].

3.3.1 Overview

An ASM is a finite set of transition rules of the following form:

if Guard then Updates

which can transform abstract states. The Guard uses a predicate logic formula, whose
output can either be TRUE or FALSE. Updates is a set of (multiple) functions. Its
general form is:

f (t1, ..., tn) := t

Applied to the traffic lights example, there can be a transition rule CHANGELIGHT
which changes the activated lights when the guard change is TRUE and one of the
lights red (L) or green (L) is on.

CHANGELIGHT (L) =
if change and green (L) = on then {green (L) := o� , red (L) := on, change (L) := false}
if change and red (L) = on then {red (L) := o� , green (L) := on, change (L) := false}

The notion of states in ASMs is the notion of mathematical structures. Like in Event-B, an
ASM computation step executes all updates simultaneously. Simultaneous execution of a rule
R for each x -satisfying a given condition C can be expressed in the following notation:

forall x with C

R

Non-determinism can also be expressed by rules of the form:

choose x with C

R

The meaning of such an ASM-rule is to execute rule R with an arbitrary x chosen among
those for which C is true. Common notations like where, let, if-then-else can also be used.

The language of ASM has a predefined syntax and semantics but does not force the user
to use it as proposed. Own notations are being encouraged often adds a more understand-
able meaning to a model. A term like Light (L1) = {( ,#,#)} or Light (L2) = {(#,#, )}
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can be perfectly fine as substitution for a Boolean assignment like the one in CHANGELIGHT.

The traffic light L has the variables green (L) and red (L) for indicating the lights state,
change (L) which is TRUE whenever the lights shall be changed and an external event
BUTTONPRESSED (L) which is TRUE whenever an button is pressed. The two simple
transition rules define a traffic light with two colors changing its state whenever the button
is pressed.

INIT (L) =
red (L) := true

green (L) := false

PRESSBUTTON (L) =
if BUTTONPRESSED (L) thenchange (L) := true

CHANGELIGHT (L) =
if changeandgreen (L) = truethen {green (L) := false, red (L) := true, change (L) := false}
if change and red (L) = true then {red (L) := false, green (L) := true, change (L) := false}

3.3.2 Refinement of ASM

As stated in the de facto standard from Börger, “The guiding principle of the ASM refinement
method is the problem orientation” [18]. There is no direct rule or principle that has to
be followed in order to refine an ASM. There are several mathematical and formalized logic
elements that can be used, but as mentioned, an own notation can be created in order to
achieve a concrete goal or to adapt the needs of a specific system [19].

The are several steps a designer has to define in order to refine an ASM M to an ASM M ∗

where the most important ones are the notion of a refined state and the notion of equivalence
of data in corresponding states of interest[19].

A refinement of this model could be the addition of a time-based switch of light states. A
new variable lastchange is needed, which stores the time information about the last change
of states. Also the INIT and PRESSBUTTON transitions have to be expanded in order to
adapt to the new timing transition. To do this, a global variable DELTA is predefined which
stores information about the transition interval.

INIT (L) =
lastchange (L) := CURRENTTIME

red (L) := true

green (L) := false

TIMER (L) =
if lastchange + DELTA = CURRENTTIME then change (L) := true

PRESSBUTTON (L) =
if BUTTONPRESSED (L) then {change (L) := true, lastchange := CURRENTTIME}
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3.3.3 Tool support

There are several tools that support ASM. The Karlsruhe Interactive Verifier (KIV), available
as Scala version and as Eclipse plugin [20], has been modified to support the specific needs
the ASM method requires [21]. The usage of stepwise refinement allows that problems can be
split into smaller, more comprehensible problems. Another approach has been made with the
Prototype Verification System, which is especially oriented towards automatic proof checking
and mechanized proving of properties [22]. The generic theorem prover Isabelle has also been
successfully adapted for ASM [18]. There have been some advances for validation checking [21],
but those limit the open extensibility that ASM offers in order to permit certain expressions.

3.3.4 Summary

ASM is a formal method focusing on problem orientation. It supports the usage of own
notions and possible corresponding notations. Therefore, the refinement process is less strict
than other formal methods, but nevertheless has to be well defined by the user. Since complex
proof obligations can be split into smaller ones, the KIV tool is able to verify ASM models.

3.4 Z

Z is a formal method, which relies heavily on the usage of mathematical notation to describe
computer systems. Z has been around since the late 1970s and was developed by Jean-
Raymond Abrial and the Oxford University. Later, several industrial partners, like IBM,
supported further development. The first Z reference manual, published in 1989, has been
considered standard by the American National Standards Institute, the British Standard
Institute and the International Standards Institute. The last and final standardization for Z
was completed in 2002 and is publicly available from the ISO website. The Z notation uses
structured, mathematical text. The main construct is called paragraph. The most conspicuous
kind of Z paragraph is a macro-like abbreviation and naming construct called the schema. Z
defines a schema calculus that can be used to build big schemas from smaller ones. The schema
is the feature that most distinguishes Z from other formal notations. The mathematical
notation of Z consists of a small core, supplemented by a larger collection of useful objects
and operators called the Z mathematical tool-kit [7].

3.4.1 Overview

This chapter introduces the basic constructs of the Z notation.

Displaying sets
Often software systems contain different types of things. In Z similar objects are gathered
into collections which are treated as an object on its own. These collections are called sets
and are a central feature of Z.

{red , yellow , green}

Sets can have names to avoid writing them every single time. Some often used sets have
already an assigned standard name (e.g. Z is the set of integers and N is the set of natural
numbers).
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Types
In Z sets must contain objects of the same type. Types and sets are closely related. Every
type has a carrier set, which includes all objects of that specific type. Every type is a set, but
not every set is a type.

{red , green, yellow , blue, orange, ...} is a set
{red , green} is a type (and also a set)

Variables and declaration
In order to talk about any object in Z, its name has to be introduced in a declaration.
Declarations introduce variables and define which set each variable belongs to.

i : Z [ i is an integer ]
color : COLORS [ color is one of the values in the COLORS set ]

The declarations in Z can usually express more than the declaration used in programming
languages, which usually declare objects as a type. Z declarations can be more restricted
because they use sets, not just types.

e : EVEN [ e is an even number ]
o : ODD [ o is an odd number ]

In most programming languages e and o would normally be declared the same way because
they share the same integer type.

Constraining variables, axiomatic definitions
A variable is constrained when it is defined which values it can take. Declarations can constrain
a variable. In Z variables are defined in a construct called an axiomatic definition, which can
include more constraints. Its general form is:

declarations

predicates

Predicates are optional and can further constrain variables introduced in the declaration.

l1, l2 : red , green

An axiomatic definition with a predicate constrains the variables l1 and l1 even further by not
allowing them to take the same value.

l1, l2 : red , green

a1 6= a2

Variables declared in an axiomatic definitions can be used anywhere in a Z model after their
definition and always have the same value. This differs from many programming languages
in which you can have multiple variables of the same name but each one can have a different
value.
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Sometimes it is necessary to distinguish between sets and types. The type is defined in the
declaration above the line and additional information about the membership is provided in
the predicate below. A definition where types are explicitly spelled out this way is said to be
normalized. A signature is a declaration, which names the type and so is normalized.

Writing in the normalized definition is making clear which variables have the same type. This
can be important to know, because variables from different sets can still be used in the same
expression as long as they have the same type.

As Z is the only predefined type in Z, it is necessary to provide the possibility to add new
types. There are two possible ways to introduce these. The first is the free type definition.
A free type can be defined when a finite number of objects is given and all the elements are
known. To define a free type, the following syntax is used:

COLORS ::= red | green

The second method is the basic type definition, which can be used when not all the elements
it might contain are known. A basic type can be defined by its name contained in brackets.

[NAME ]

The basic type NAME can contain names of persons with a growing number of individuals.

Z allows great freedom in choosing names. Z identifiers can also include symbols beside the
alphanumeric alphabet.

Schemas
Z is also known for so called schemas. “The schema language is used to structure and compose
descriptions: collating pieces of information, encapsulating them, and naming them for re-use”
[9]. The schema is using the previously defined declarations and predicates.

A possible schema for the traffic light example could be

LightControl

lights : Tra�c → Light

lastchanged : Tra�c → Time

∀ t1, t2 : Tra�c | t1 6= t2 • lights(t1) = red ∨ lights(t2) = red

where a color and a time is assigned to a direction of traffic. The predicate ensures, that two
directions t1 and t2 are not assigned the same color and that at least one of them has to be red.

Operations
Operations can be applied to schemas and can use all elements of the related schema. LightChanger
changes the value of lastchanged to the current time whenever any Tra�c element is changed.

LightChanger

∆LightControl

t? : Tra�c

lastchanged ′ = lastchanged ⊕ t?→ CurrentTime
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Example
This particular form of the traffic light example has a traffic flow, which can have the states
Direction1 and Direction2, a traffic light which can be either red or green and a time based
state changing mechanism.

Light == {red , green}
Tra�c == {Direction1,Direction2}

LightControl

lights : Tra�c → Light

∀ t1, t2 : Tra�c | t1 6= t2 • lights(t1) = red ∨ lights(t2) = red

The LightControl schema restricts the traffic light in a way that one direction always has
to get a red signal, while the other direction does not necessarily needs to be red , but this
predicate assures that as soon as a direction has a green signal, the light of other direction
always has to be red .

LightControlInit

LightControl ′

∀ t : Tra�c • lights(t) = red

This LightControlInit schema sets all directions to red as it ensures a safe way to start the
traffic light control. This however requires an other schema that controls the following start
sequence and initialization, but due to simplicity, this is not implemented here.

LightChanger

∆Tra�cControl

t? : Tra�c

ToGreen

LightChanger

lights(t?) = red

lights ′ = lights ⊕ t?→ green

ToRed

LightChanger

lights(t?) = green

lights ′ = lights ⊕ t?→ red

The schemas ToGreen and ToRed , each initiated by LightChanger , change the color of the
traffic light corresponding to a direction. The problem that this description holds is that
there is no state changing mechanism implemented yet and the color of the traffic light is
alternating continuously.
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3.4.2 Refinement of Z

There are a few rules, which must be followed by refining in Z. When a concrete operation
O2 refines an abstract operation O1, this is noted by O1 ⊆ O2. The refinement has to show
applicability and correctness:

• When O2 is applicable, so is O1.

• When O1 is applicable, but O2 is applied, the result is consistent with O1.

While in Z the observable behavior of a specification is preserved, the internal representation,
however, can be changed by refinement. The whole addition of timing to change the traffic
lights color can be seen as refinement of the example.

Light == {red , green}
Tra�c == {Direction1,Direction2}
[Time]
CurrentTime : TIME

In addition to Light and Tra�c an open type called Time is introduced to describe the
CurrentTime.

LightControl

lights : Tra�c → Light

lastchanged : Tra�c → Time

∀ t1, t2 : Tra�c | t1 6= t2 • lights(t1) = red ∨ lights(t2) = red

A new declaration has been added to assign a time to the last color change to one of the
directions.

LightControlInit

Tra�cControl ′

∀ t1, t2 : Tra�c • lights(t1) 6= lights(t2)

The LightControlInit is changed in a way, that the light of one direction has to be red and
the other directions light is forced to be green.

LightChanger

∆Tra�cControl

t? : Tra�c

lastchanged ′ = lastchanged ⊕ t?→ CurrentTime
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ToGreen

LightChanger

lights(t?) = red

CurrentTime − lastchanged(t?) ≥ 20
lights ′ = lights ⊕ t?→ green

ToRed

LightChanger

lights(t?) = green

CurrentTime − lastchanged(t?) ≥ 20
lights ′ = lights ⊕ t?→ red

After a predicted amount of time (here 20 units of whatever Time measuring unit TIME is
having) the assigned color is switched. This method obviously only works with two directions
since more than two directions would create an error in the predicate of LightControl where
red has to be assigned at least to one direction.

3.4.3 Tool support

There are several Z tools available, which offer parsing and type checking facilities and some
also offer proof facilities [23][24][25]. Most of these tools, however, do not support the Z
ISO standard, established in 2002. The Community Z Tools is an open-source community
project, initiated in 2001 by Andrew Martin [26]. One of its primary objectives is to encourage
interchange between existing Z tools [27]. Recently, even a prototype for refinement checking
has been in development [28], but in general, due to the change and variations in Z till 2002,
there has been no practicable tool for validating a Z model.

3.4.4 Summary

Z has a scheme which needs to be followed in order to refine a model intended by the method.
The refinement process also is strictly defined and is to be followed to construct a correct
refinement of a machine. This developed syntax and semantics can be used to create a fully
provable model. Like Event-B, alterations and addition to the modeling language are not
supported by Z.

3.5 Discussion

The previously introduced formal methods Event-B, ASM and Z are discussed and evaluated
in this chapter. Further, it will be discussed how they fit in the taxonomy from Section 3.1.
Based on the individual formal methods’ refinement mechanisms, they will be rated and
classified regarding correctness, strictness and expressiveness.

As Table 3.1 shows, both ASM and Z require manual validation due to lacking tool support.
Event-B with its strict construction rules, particularly the usage of gluing invariants, ensure a
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safe and correct refinement and the strong Rodin-Tool, as all-round development kit, allows the
user to automatically validate a model and its refinement as the modeling-process progresses.
ASM has several tools with approaches for automated validation. Recently, the possibility for
automatic validation for Z refinements is in development. This is particularly interesting due
to the fact, that only Z is officially standardized for more than a decade.

Formal method
Correctness by

manual validation automatic validation construction
Event-B + ++
ASM + (+)
Z + (+)

Table 3.1: Evaluation of Event-B, ASM and Z regarding their correctness of refinement

From the three exemplary chosen formal methods, solely ASM supports language alteration
(see Table 3.2). Event-B and Z do not support own syntax changes. Taking the correctness
aspect into account, there seems to be a direct relation between strictness and correctness.
As soon as the language of a formal method allows alteration and addition to it, the ability of
an automatic validation is much more complex and therefore aggravated. New elements are
to be fully defined, which may be easily feasible by construction and visualization tools, but
validating an unknown, new format is hardly possible for computer programs. In contrast to
ASM, Event-B and Z are predefined languages, which can not be changed and have a fixed set
of formalities. Therefore tool support is available for at least constructing, syntax and type
checking.

Formal method fixed rules alterable rules
Event-B +
ASM +
Z +

Table 3.2: Evaluation Event-B, ASM and Z regarding their strictness

While conducting research on the different formal methods and their refinement mechanisms
there was no sign of restriction in the refinement mechanisms to certain aspects (see Table 3.3)
of the example presented here. All formal methods introduced could express the traffic light
example without problems and even different refinements like the addition of a second set of
traffic lights was possible. Any form of state changing mechanics could be expressed in all
three examined formal methods. Due to the fact, that these formal methods are quite popular,
it is reasonable that they support a wide variety of software and partly even hardware systems
[18]. It seems unlikely that all formal methods can express every kind of software systems.
Further research is necessary to analyze possible restrictions in the expression of refinement
of specific software systems.
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Formal method arbitrary restricted
Event-B +
ASM +
Z +

Table 3.3: Event-B, ASM and Z regarding their expressiveness

Summarizing, the three formal methods each have a specific property showing a prominent
feature. ASM has the most flexibility and freedom regarding depiction of desired needs.
Theoretically it can model almost everything; the developer just has to define the meaning of
his or hers notion. Event-B has a mostly predefined syntax, fixed structures and refinement
mechanisms. This may restrict the modeling process at some point, but it has the advantage,
that the tool support is at an advanced state, which does not only allow assisted construction
of a model, but validation on the fly as well. Z is one of the few officially standardized formal
methods, but the tool support is still very limited. Most tools were commercial products,
but are now freely available. Since the support for this tools has already been stopped, the
available tools do not support the normed version of Z anymore and are therefore outdated.

3.6 Conclusion

Formal methods are a promising way to model system specifications with the intend to refine
them gradually and to make them unambiguously and mathematically provable. Due to a
wide variety of different formal methods, each development team has the responsibility to find
a formal method suitable for their needs and willingness to get involved with a new and maybe
complex modeling language. In an approach to characterize and classify refinement supported
formal methods, it turned out, there are different kinds of refinement mechanisms. Those can
be taken into consideration to help to support the process of finding a suitable formal method.
The three pillars of refinement mechanisms presented here are expressiveness, strictness and
correctness and its breakdowns respectively. Exemplary, Event-B, ASM and Z have shown
that this taxonomy can be applied to different existing formal methods. For further research,
other formal methods like VDM or Alloy can be taken into consideration and it can be tried
to apply presented taxonomy to them.
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4. Related Work

Banach takes a similar approach to investigate several formal methods [29]. The focus lies
even more on the notion of formal methods than this thesis. Also differences and similarities
are examined in order to discuss the relation between different approaches. This is used to
discuss which methodologies could be applied from one language to another. In addition to
this, an overview of the possible tool support is presented. With the relation of different
formal methods in mind, it is discussed how tool support can be improved and how a greater
tool flexibility can be achieved. This paper is a good addition to this thesis as it takes a closer
look at the tool support and the general methodologies of refinement.

This thesis focuses on refinement mechanisms of a selected number of formal methods and how
applicable they are in practice. The survey by Woodcock et al. [30] summarizes the general
use of formal methods in industrial projects. It revisits several older surveys and compares
them with their own survey and thus creates an overview of the change of usage of formal
methods in the industry over the years. In contrast to this mainly theoretical work with
practical approaches, the survey analyzes the effect of the practical use of formal methods on
time, cost and quality improvement or worsening. Whereas here, with the traffic light exam-
ple, one single application is presented, the Woodcock et al. survey shows different domains
of application as well as different types of application (e.g. real-time, parallel, graphics etc.).

In 1986 Mili et al. also compared models of stepwise refinement [31], but they followed
an other approach than this thesis. They did not restrict stepwise refinement to formal meth-
ods, but to programming in general. Instead of surveying different programming languages
or paradigms and then evaluating possible different refinement mechanics or models, it was
assumed that there are three different models of stepwise refinement: Program refinement
by assertion decomposition, functional decomposition and relational decomposition. These
three models are introduced by a common set of notations and assumptions and are later
compared, especially regarding their common features. In addition to that, three different
examples showed how those can be used in practice.
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A fairly recent publication from the 4th International Conference ABZ 2014 introduced a case
study called “ABZ 2014: The Landing Gear Case Study” [32]. This case study was developed
specifically as representation of industrial needs. That in mind, it is obviously more detailed
and more complex than the extract of a traffic light controller. It also includes the modeling
of external systems like mechanical or hydraulic parts. The most interesting part is, that this
publications contains 11 papers, which each suggest another approach on how this case study
can be implemented. They use different formal methods to develop a model including ASM,
Event-B and Z. They also propose different kinds of refinement and verification techniques,
like model checking and simulation. This collection of papers is a good opportunity to gain
an insight of the use of formal methods in an actual fully specified industrial project.



5. Conclusion

This thesis proposed a taxonomy that can be applied to existing refinement supporting formal
methods. This taxonomy consists of three main aspects with possible sub-categories. These
main aspects have been:

• Expressiveness has evaluated, whether the refinement is restricted so specific software
systems or arbitrary modeling is possible

• Strictness has evaluated, whether the formal method is well defined or modifiable to
express own refinement notions

• Correctness has evaluated how the correctness of a refinement can either be achieved
by validation or by construction mechanics

With Event-B, ASM and Z, three different formal methods have been introduced by explaining
the basic notations and by using a common example to see possible differences on the same
model (with slightly changes). The proposed taxonomy has shown, that it can be applied on
the introduced formal methods. Further, it is shown, that this three formal methods differ in
selected aspects. The notion of how correctness from one refinement step to another can be
achieved may be by manual or automatic validation or the construction itself can imply the
correctness by the use of a pre-validated set of possible operations.
With this overview and the proposed taxonomy a starting point has been created, which
allows interested users to gain an first insight into specific features and the basic notion of
these formal methods. Since not all formal methods have been examined, possible future work
has a few possibilities to complement this thesis and further research is necessary to spot and
evaluate possible limitations to specific software systems for any of these formal methods. The
traffic light example can be seen as first step of a case-study to approach that task.



30 5. Conclusion



Bibliography

[1] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and instan-
tiation of discrete models: Application to event-b. Fundam. Inf., 77(1-2):1–28, 2007.
(cited on Page vii, 11, and 14)

[2] Elvis C. Foster. Software Engineering A Methodical Approach. Apress, 2014. (cited on

Page 1)

[3] V. S. Alagar. Specification of Software Systems. Springer-Verlag London Limited, 2011.
(cited on Page 1)

[4] Niklaus Wirth. Program development by stepwise refinement. Commun. ACM,
14(4):221–227, 1971. (cited on Page 1)

[5] Leszek Maciaszek. Requirements analysis and system design. Pearson Education, 2007.
(cited on Page 3)

[6] Haneen Hijazi, Shihadeh Alqrainy, Hasan Muaidi, and Thair Khdour. Risk factors in
software development phases. European Scientific Journal, 10(3):213–232, 2014. (cited

on Page 3)

[7] Jonathan Jacky. The way of Z: practical programming with formal methods. Press Syn-
dicate of the University of Cambridge, 1997. (cited on Page 3 and 18)

[8] John Michael Spivey. The Z notation a reference manual. Prentice-Hall, Inc., c 1992.
(cited on Page 3)

[9] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc., 1996. (cited on Page 4 and 20)
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