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Abstract

In recent years, computational network science has become an active area. It offers
a wealth of tools to help us gain insight into the interconnected systems around us.
Graph databases are non-relational database systems which have been developed to
support such network-oriented workloads. Graph databases build a data model based on
graph abstractions (i.e. nodes/vertexes and edges) and can use different optimizations
to speed up the basic graph processing tasks, such as traversals. In spite of such
benefits, some tasks remain challenging in graph databases, such as the task of loading
the complete dataset. The loading process has been considered to be a performance
bottleneck, specifically a scalability bottleneck, and application developers need to
conduct performance tuning to improve it.

In this study, we study some optimization alternatives that developers have for load
data into a graph databases. With this goal, we propose simple microbenchmarks of
application-level load optimizations and evaluate these optimizations experimentally for
loading real world graph datasets. We run our tests using JanusGraphLab, a JanusGraph
prototype.

Specifically, we compared the basic loading process with bulk/batch transactions and
client vs. server side loading. Furthermore, we considered partitioning the data and
loading it using different clients. Additionally, we evaluate the potential benefits of
different partitioning strategies. For these optimizations, we report performance gains
changing hours-long loading processes into minutes-long. As a result we provide a novel
tool for data loading in a scalable manner using different configurations, and a simple to
use configuration for loading data with different schemas, into the JanusGraph database.

Finally, we summarize best practices for loading data into graph databases. We expect
that this work can help readers to understand better how to optimize loading processes
in a graph database and inspire them to contribute to this research.
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1. Introduction

In this chapter, we will present the motivation behind the thesis, describe goals and
outline its organization.

Our Big Data era can be defined by two key issues: the ever-expanding dataset size and
an increase in data complexity. In order to solve these problems, new database models,
such as graph databases and, in general, NoSQL systems, have been put into use
more and more. Naturally, graphs can be used to simulate many interesting problems.
For example, they can represent social networks, biological networks and road networks.
Apart from the ” blackboard-friendly” representation that graphs can provide, they can
be used for different kind of data analysis, namely network analysis. In recent years these
have been fundamental for some developments (e.g. the investigation of the Panama
papers1). There has also been a growing interest in heterogeneous network analysis, a
field that seeks to extract more information across diverse graph sources that model
different kinds of relations in one dataset [YS12]. Based on these aspects, the interest in
graph databases has been growing in recent years. Paired with this development there is
a large amount of work related to benchmarking and standardizing graph technologies,
such as research from LDBC ([LDBa]).

As an illustration, we include data from a recent survey ([SMS+17]). The paper is a
survey from a team from the the University of Waterloo, conducted using almost 90
participants that represented developers of graph applications from different domains.
They listed several popular software products for processing graphs (see Table 1.1). And
they provided a list of work fields which people work in for graph processing tasks (see
Table 1.2).

1https://neo4j.com/blog/icij-neo4j-unravel-panama-papers/

https://neo4j.com/blog/icij-neo4j-unravel-panama-papers/
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Technology Software # Users

Graph Database
System

ArrangoDB 40

233

Caley 14
DGraph 33
JanusGraph 32
Neo4j 69
OrientDB 45

RDF Engine
Apache Jena 87

115Sparksee 5
Virtuoso 23

Distributed Graph
Processing Engine

Apache Flink (Gelly) 24
39Apache Giraph 8

Apache Spark (GiraphX) 7
QueryLanguage Gremlin 82 82

GraphLibrary

Graph for Scala 4

97

GraphStream 8
Graphtool 28
NetworkKit 10
NetworkX 27
SNAP 20

Graph
Visualization

Cytoscape 93
116Elasticsearch

23
(X-Pack Graph)

Graph
Representation

Conceptual Graphs 6 6

Table 1.1: Graph-related Software Products

Figure 1.1: Graph ETL and Data Analysis Pipeline
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Field Total R P
Information
& Technology

48 12 36

Research in
Academia

31 31 0

Finance 12 2 10
Research in
Industry Lab

11 11 0

Government 7 3 4
Healthcare 5 3 2
Defense &
Space

4 3 1

Pharmaceutical 3 0 3
Retail &
E-Commerce

3 0 3

Transportation 2 0 2
Telecommunications 1 1 0
Insurance 0 0 0
Other 5 2 3

Table 1.2: Work Fields for Graph Applications

An aspect mentioned in this survey as the biggest challenge faced by developers is
scalability, and from this the most important problem is data loading. With the rate at
which data is produced and gathered, the data loading process becomes more complex
and requires careful engineering so as not to become a bottleneck in the whole graph
ETL and data analysis pipeline. From Figure 1.1 we can observe a generic graph ETL
and data analysis pipeline. In fact, optimizing the loading, such that it could be so fast
as instant loading ([Mue13]), is essential for enabling analysis on more fresh data, a
factor which could have potential valuable business impact in several domains.

In traditional disk-based relational database systems, loading performance depends on
different factors. Here we list several factors and challenges we faced for good loading
performance.

1) Studies ([ADHW99]) have experimentally shown that, at a low level, the CPU,
memory and I/O system are the fundamental performance factor.

2) The exploitation of task and data parallelism (i.e., exploiting more cores, SIMD
instructions or, in the case of clustered databases, more nodes) for speeding up the
loading process.

3) Internal data representation (vectors or chunks) of the database and input file formats,
which can influence the parsing process and the granularity of the parallelism possible.
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4) Reasonably other factors could include the scope of the transactions (i.e. how many
inserts per transaction) or domain-specific input data characteristics (e.g. compressed
formats, access patterns for checking dependencies).

To our knowledge, though a significant body of work has considered graph query lan-
guages and general query execution, there seems to be a limited number of studies
addressing the graph data loading process.

The work ([TKKN16]), focuses on optimizations at the level of DBMS design for loading
a graph into an in-memory database. They propose to decompose the process into 1)
Parsing (in which the vertex data and identifiers are loaded into memory). 2) Dense
vertex identification (in which, for improving memory use, vertex identifiers are sorted
based on their density or number of edges connected). 3) Relabeling, which is a form of
in-memory dictionary encoding such that dense vertexes have smaller identifiers than
large ones. 4) Finally writing the in-memory data structures that represent the graph
(e.g. the authors consider compressed sparse rows and a map of neighbor lists). There is
also existing offerings by major graph database vendors in terms of tools that automate
the loading process (e.g. Neo4j’s importer).

We believe that important research work is needed to establish and experimentally
characterize the design space for the database application-level choices for performing
the data loading. Among these choices we can highlight some like the effects of graph
partitioning strategies, batching of transactions for the insertions, the overhead from
combining loading with indexing, and others. Perhaps such a study is missing, not
because of any specific complexity, but because of the recency of the technologies and
the slow standardization process. In this Master thesis we aim to address this research
gap.

In this study we propose the goal of optimizing the loading process from an applica-
tion perspective (i.e., without changing the database internals). Based on previous
research we establish several optimization choices and we study their impact using a
commercial graph database JanusGraph, a distributed message bus service: Apache
Kafka, and real world datasets, which are representative of diverse graph topologies.
We designed several microbenchmarks carefully for the evaluation. In pursuing this
study, our goal is to give developers a reliable list of best practices about application-
level load optimizations for a given database. From our work we offer a novel, readily
available server-side tool for scale-out loading of graphs into a graph database. To
our knowledge this is a first-of-its-kind tool for the JanusGraph database, offering
configurable options and support for ad-hoc graph schemas. In using and developing
this tool we have found that a server-side implementation is necessary, and batching
the loading process and parallelizing it can improve the performance notably. We also
find that partitioning strategies can lead to differently balanced loads, and that EE
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(i.e., distributing the edges in a round robin fashion) is a good match for a base case
when not using batching. In addition we find that combining these optimizations is
challenging, and not due to imbalances, but to causes which need further study and con-
sideration. As a result we show that these loading alternatives have different influences
on different real-world datasets, and have a practical importance for everyday usage of
these databases. We can’t give the reader a “one-size-fits-all” optimization for diverse
application scenarios, but we provide several best practices to guide the search for the
best strategy. With this work we aim to improve the understanding on the optimization
alternatives for general loading tasks in a mainstream graph database, contributing
to the goal of instant loading for graph databases and to foster more research in this field.

Our work is organized in the following way:

• Introduction:
We present the motivation behind the thesis, describe goals and outline its organi-
zation. (Chapter 1)

• Background:
We present an overview of the theoretical background and state of the art relevant
to the current research work. (Chapter 2)

• Microbenchmarking:
We define a set of core questions to evaluate our optimized graph loading alterna-
tives and use these questions to structure our experiments. Then we introduce
JanusGraphLab(Section 3.3) - our experimental prototype for microbenchmarking
application-level graph loading optimizations. (Chapter 3)

• Case Study: Client vs. Server Side and Batching:
We evaluate client vs. server side loading, and batched approaches to the loading
process. (Chapter 4)

• Case Study: Partitioning and Parallel Loading:
We present our evaluation on the performance of loading using partitioning and
parallel strategies in JanusGraph. (Chapter 5)

• Case Study: Combination of Batching, Partitioning and Parallelizing:
We document the experimental results of a simple microbenchmark to evaluate
the combination of loading optimization alternatives: batching, partitioning and
parallelization. (Chapter 6)

• Conclusion and Future Work:
We conclude our studies in this chapter. (Chapter 7)
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2. Background

In this chapter, we present an overview of the theoretical background and state of
the art relevant to the current research work. Since our work is on loading data into
graph databases, and the area of graph data management is still in development, in this
chapter we do not attempt to provide a comprehensive survey on graph data management.
Instead we aim to provide sufficient information for understanding the context of our
research, and to present with care the main ideas necessary for understanding our
research questions and focus. We outline the whole chapter as follows:

• Models:
We begin by introducing the field of graph models in Section 2.1. This is necessary
since these models form the backbone for graph databases.

• Solutions for Graph Data Management:
Next we present the context in which graph technologies are being developed, in
Section 2.2. Graph applications are generally managed in three ways: 1. with
relational databases (Section 2.2.1), 2. with graph databases (Section 2.2.2) and 3.
with Large Scale Graph Processing Systems (Section 2.2.3).

• Loading Task:
An introduction to the loading tasks inside graph management systems. (Sec-
tion 2.4)

• Optimizations:
Based on the previous sections where we introduce graph data management and
loading tasks, we present our main research focus: loading tasks optimization for
graph databases. (Section 2.5)

• Summary:
We conclude this chapter by summarizing our studies in Section 2.6.
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2.1 Models

2.1.1 Graph Model

Why graph data?
Large graph datasets are everywhere. In fact a recent survey on the current uses of
graph technologies ([SMS+17]) has found that the majority of practitioners use graphs
composed of billions of nodes. Such scale of datasets is no longer only an issue of a few
big Internet companies, but it is becoming the common use case of everyday practitioners.
Today there are a lot of companies and research institutes which are finding benefits
from using graph data, related to different real-world networks. Among them:

• social networks (e.g., LinkedIn, Facebook)

• scientific networks (e.g., Uniprot, PubChem)

• scholarly networks (e.g., MS Academic Graph)

• knowledge graphs (e.g., DBPedia)

• Others ([SMS+17])

Mathematically, a graph is a pair (N,E) where N is a finite set of nodes (also called
vertexes) and

E ⊆ N × L×N

is a set of edges between nodes, with labels drawn from some domain L. The labels
represent different relationships between nodes. For example in a social network the
label could represent the friendship connection between two given users. Depending on
the application, we can also extend graphs with node labels

λ : N− > L

In turn these node labels can represent types of nodes or identifiers of specific nodes. For
example in a social network node types could be users or institutions to which groups of
users might belong; on the other hand identifiers could be any single if assigned to a node.
We can further extend graphs such that E is a finite multi-set and nodes/edges carry
complex structured information. This information are called attributes or properties.
The kind of information within a graph entity can be thought of as the schema of that
specific entity. For example, we have a property graph if we extend graphs with node
and edge properties

λ : N
⋃

E × P− > V al

for P a set of property names and Val a domain of atomic values1 ([FVY17]). Continuing
with the example of the social network, node properties could be the name and email

1In more formal definition property graphs also need to be directed and multi-graphs, as explained
in the next sub-section.
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addresses of users; edge properties could include the date in which a given friendship
relationship was created in the system.

A model is a representation of some aspect of reality. Graphically, an object in a network
can be denoted by a dot (i.e. a node/vertex) and a relationship can be denoted by
a line (i.e. an edge). A structure formed by dots and lines is known as a graph–the
mathematical term for a network ([RN10]).

Models are important for discussing graphs, specifically graph database models, because
a clear model provides a way to standardize the features that can be expected from
using a given graph.

In addition, the discussion of graph data management usually needs to be decomposed
into two aspects (as suggested by [AG17]), the first is graph database models, which
refers to principles that ideally should guide the design and specific implementation
of systems; the second are the graph management systems themselves, which process
queries and need to develop solutions for data management challenges. In this section
we focus on the models.

Data models for databases can be characterized by three basic components, data struc-
tures, query and transformation languages, and integrity constraints. Based on this,
graph database models present a structure where data and the operations follow graph
models and integrity constraints can be defined. These characteristics make graph
database models easy to apply for representing unstructured data. An important aspect
of these models is that in databases built on them the separation between schema and
data (i.e., the specific instances to store) is less strict or evident than in the classical
relational model ([AG17]).

Regarding the operations, we explain a bit more: when we discuss operations that
follow graph models we refer to path queries, adjacency queries, neighborhood searches,
subgraph extraction, pattern matching, connectivity/reachability queries, and analytical
queries (such as community detection). Regarding integrity constraints, some examples
are schema-instance consistency, identity (e.g., the same edge or the same id cannot be
used twice) and referential integrity (e.g., every edge needs to have two connected ver-
texes), and functional and inclusion dependencies. Since neither operations nor integrity
constraints are necessarily tied to a theoretical graph model (unlike the join operation
which is tied to the relational model), it is very database-specific what operations and
constraints will be supported.

In the next subsection we discuss one popular graph database model: the property graph
model. We should note that neither operations nor integrity constraints form part of
the following discussion.
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2.1.2 Property Graph Model

In practice, a graph is rarely composed of only vertexes and edges. For instance,
sometimes it’s useful to have a name associated with a vertex, a weight and direction
associated with an edge, etc. From primitive dots and lines various bits and pieces can
be added to expose a more flexible, more expressive graph. Figure 2.1 shows a collection
of different graph types ([RN10]).
And here we list some commonly used graph types:

• directed graph: orders the vertexes of an edge to present edge orientation. The
line connecting vertexes has an arrow at the end.

• multi graph: there are multiple edges between the same two vertexes.

• weighted graph: used to represent strength of ties or transition probabilities.

• Vertex/Edge labeled graph: Vertexes can be labeled (e.g. identifier) or the
edges can be labeled to represent the way in which two vertexes are related (e.g.
friendships).

• Vertex/Edge attributed graph: 1. Attributes as non-relational meta data
appended to vertexes. 2. Non-relational meta data to an edge.

• Semantic graph: It models cognitive structures such as the relationship between
concepts and the instances of those concepts. Unlike the other definitions given
in this list, this type of graph can be generalized to constitute a graph database
model.

• Half-edge graph: A unary edge (i.e. an edge that “connects” one vertex)

• Pseudo graph: It’s used to denote a reflexive relationship.

• Hyper graph: An edge could connect an arbitrary number of vertexes. This
type of graph can also be used as a basis for a graph database model.

• RDF graph: A Resource Description Framework (RDF) graph restrict the
vertex/edge labels to Uniform Resource Identifiers (URIs). RDF graphs can be
semantic graphs. Through its use of URIs for referring to real-world entities, this
model is connected to the semantic Web.

Another concept related to this classification is that of homogeneous or heterogeneous
networks. Those with a single type of relationship and modeling conventions are called
homogeneous. Heterogeneous networks, on the other hand, express more than one
relationship and can have differing conventions for defining node types and properties.

For our study we focus on the property graph model, which is supported by most
graph systems. The property graph model, also known as“property graph”, is a directed,
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Figure 2.1: There are numerous types of graphs. Many of the formalisms described
can be mixed and matched in order to provide the modeler with more expressiveness
([RN10]).

labeled, attributed, multi-graph. Graphs of this form allow for the representation
of labeled vertexes, labeled edges, and attribute meta data (i.e. properties) for both
vertexes and edges. Figure 2.2 gives an example of property graph. The high expressive-
ness of the property graph, which can express also RDF, makes the property graph one
of the most popular graph data type.

Related to our experimental datasets. Here we give two more property graph examples
in the form of the Wiki-RfA dataset (Figure 2.3) and Google-web dataset (Figure 2.4).
Wiki-RfA dataset describes votes information for administrator in Wikipedia. Nodes
represent Wikipedia members and edges represent votes to grant a member administrator
rights. Nodes and edges both have attributes. Google-Web dataset describes google web
graph. Nodes represent web pages and directed edges represent hyperlinks between them.

With this we conclude our presentation on graph models, which are necessary to introduce
the fundamentals for graph data management. Next we overview existing solutions for
graph data management.

2.2 Solutions for Graph Management

The volume and diversity of graph data are growing these days. So the management and
analysis of huge graphs force developers to build powerful and highly parallel systems.
The flexible and efficient management and analysis of “big graph data” not only holds
promise, but also faces numerous challenges for suitable implementations in order to
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Figure 2.2: A property graph is a directed, labeled, attributed, multi-graph. The edges
are directed, vertexes/edges are labeled, vertexes/edges have associated key/value pairs
meta data (i.e. properties), and there can be multiple edges between any two vertexes.

Figure 2.3: A property graph, abstract from Wiki-RfA dataset.
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Figure 2.4: A property graph, abstract from Google-Web dataset.

meet the requirements for efficient analytics and storage, such as powerful graph data
models, powerful query and analysis capabilities, high performance and scalability,
persistent graph storage and transaction support, ease of use and so on. In this section,
we will introduce graph management solutions from different systems ([JPNR17]). Our
presentation is generally structured after the work of Angles and Gutierrez ([AG17]).

2.2.1 Relational Databases

The main idea of the relational data model is to provide database users with a logical
model where real world entities can be modeled either as a row of attributes in a table
with a predefined schema, or in a more complex way, as a set of relations between tables.
A key aspect of this model is the use of set-based logic. Each row represents an entity
(or part of it) of the real world within a table. Each columns inside table represents
attributes (or properties) of these entities ([Wie15]). Join operations, ACID guarantees
with transactional consistency and SQL form some of the key ingredients of working
with relational databases. Through this data model and efficient developments, rela-
tional databases have become the most popular commercial databases in the last decades.

With the interest in graph management and in consideration of the maturity of relational
technologies, research has naturally been devoted to employing relational databases
for managing graph data. Research in this topic generally attempts to argue that
specialized graph databases and engines for graph analytics may not be necessary, and
that RDBMSs constitute a reasonably good alternative ([XD17]).
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Figure 2.5: Evaluation of database models. Rectangles represent models, arrows represent
influences, and circles represent theoretical developments. On the left hand side. there
is a time-line in years[AG08].
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In terms of data models, the relationship between the relational model and graph models
has an interesting history, as described in the following Figure 2.5. Namely, database
models influenced by graph theory appeared in close proximity to the relational model.
In fact, the E/R model (as discussed in [Che76]) is considered to be a semantic model
influenced by graph theory. Some early graph database models appeared in the 1980s,
in parallel with Object-Oriented models, both motivated by observed difficulties in
modeling complex objects with the relational model. In turn, both of these models had
an influence on the emergence of semi-structured and XML models. More recent models
used in document databases like JSON or in key-column value stores like the column
family model stem from this evolutionary branch.

The approach of using RDBMS to manage graphs has advantages and challenges. On
the one hand, various real scenarios depend on RDBMS. Relational data has latent
graph structures and the latent graph structures are amiable for graph analysis. In
addition, graph-relational queries are everywhere and an RDBMS is useful to process
the relational constructs of these queries. On the other hand, the main challenge to
leverage relational databases in processing graph queries is the mismatch between the
relational and the graph models ([HKJ+17]).

In a recent paper ([HKJ+17]) authors classify the existing approaches into two large
groups, by focusing on how the query engine manages the graph. Specifically the propose
to divide systems as: a) Native-Relational core (NRC), where the graph is encoded
as a relational table and graph queries are translated to SQL queries and the results
are translated to a graph model; and b) Native-Graph core (NGC), where graph
queries are not translated, instead a graph is extracted from the relational database
(with SQL graph extraction queries) and the query is processed with a native graph
query engine either in memory or in a separate graph database. Some limitations of the
first approach are:

• It is limited, per design, to the subset of supported graph queries.

• Since graph queries are supported by SQL steps (for example, using self-joins),
the operations might be less efficient than when running over a native graph
representation.

• In the cases of automated graph-to-relational schema mappings, the generated
schema might be difficult to comprehend.

Among the limitations of the second approach are:

• Schema changes on the relational database might involve re-extraction of the
graph.
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NRC NGC
Vertexica(2014,2015) Ringo(2015)
SAP HANA Graph Story/Graphite G-SQL(2016)
SQLGraph(2015) GraphGen(2015)
EmptyHeaded (2017) GQ-Fast(2016)
GRFusion (2017) GRFusion (2017)

Table 2.1: Classification of the Existing System Studies Based on NRC and NGC

• Difficulties for integrating results of queries that move across both models.

In this section we provide a brief overview on studies to support graph analysis within
RDBMSs. We structure our discussion by following the aforementioned classification
suggested in recent work ([HKJ+17]). Since the comparison of relational and graph
technologies is not the core of our work, we limit our study to presenting summarily this
small selection of systems. For more information we refer the reader to the cited papers.
To the extent of our knowledge, there is currently no comprehensive survey covering
this topic. Table 2.1 organizes the work we review in this section based on the discussed
classification:

Vertexica[JRW+14][JMCH15], Emptyheaded[ALT+17], Graphite and SQLGraph[SFS+15]
are useful tools to map graph vertex-centric queries into SQL queries in an RDBMS, using
VoltDB, SAP HANA and a non-disclosed RDBMS. To support this, in all systems except
Emptyheaded, the graph has to be stored in specific ways inside the database schema.
SQLGraph uses a JSON extension of the database to store the data for each entity and
the relational storage for the adjacency information. SQLGraph can be specially noted
because it also supports TinkerPop Gremlin, a graph native query language. Graphite
uses a format called the universal table, wherein one table is assigned to vertexes and
other to edges. Since Graphite uses the in-memory database SAP HANA, the system
is optimized with dictionary compression, special indexes and tuned algorithms for
traversals. Vertexica employs the same universal table mapping of Graphite, but adds
another table to manage the message passing involved in vertex-centric graph processing.

After mapping the queries to SQL these systems perform several optimizations, with
the authors of SQLGraph reporting better results for using their system with relational
databases, against using native graph databases like Neo4j and Apache Titan (now
JanusGraph).

In the case of EmptyHeaded the data representation is based on separate columns
instead of a table. The optimizations in EmptyHeaded are in query processing to find
optimal plans and exploit SIMD, making it the first worst-case-join system to be able to
run graph queries without index-free-adajacency, in a competitive manner.

In contrast to these systems Ringo[PSB+15] use graph processing engines to execute
graph queries efficiently after mapping data from a relational database for this en-
gine. They also map the data back to a relational model. G-SQL[MSX+16] and
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GQ-Fast[LMPS16] are concerned with the problem of using graph frameworks to ac-
celerate SQL queries, like multi-way joins. GRFusion[HKJ+17] offers the possibility to
combine the approaches by building on the ideas of Vertexica and adding more concepts
for cross-model queries and optimizations.

2.2.2 Graph Databases

Why graph databases? Graphs can model objects and their relationships intuitively.
Road, biological and social networks have high-connected data structures. To analyze
these kind of data, graph models are a valuable choice. Also, to extract business value
from the network perspective, analytics on big graphs become increasingly important.
We could discover the role of actors in social networks, to identify interesting patterns
in biological networks and to find important publications in a citation network. Further
common uses include: Master data management, fraud detection, cyber-security, recom-
mendation systems and identity and access management. In response to these trends,
graph data management solutions have recently sparked significant interest.

A graph database management system (henceforth, a graph database) is an online
database management system with Create, Read, Update, and Delete (CRUD) methods
that expose a graph data model. Graph databases are generally built for use with transac-
tional systems. Accordingly, they are normally optimized for transactional performance,
and take transactional integrity and operational availability into account ([RWE13]).
Graph database systems are based on a graph data model. And they represent data
in graph structures and provide graph-based operators like neighborhood traversal and
pattern matching. Table 2.2 provides us a overview of recent graph database systems
([JPNR17]).
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Supported data models

There are two major data models that are supported by recent graph databases: property
graph model (PGM) and the resource description framework (RDF). RDF and the
related query language SPARQL are standardized. But for PGM , its query language is
Apache TinkerPop or Cypher, to date this is only industry driven. Some examples of
databases supporting RDF are AllegroGraph and RDF3x. Some examples of databases
for the PGM are Sparksee (formerly DEX), Neo4j, JanusGraph, and Trinity. For our
experimental system we focus on PGM and a detailed property graph model, as has
been introduced in Section 2.1.2.

In paper ([AAF+17]) authors provide a more recent list of commercial systems, most
offered as cloud storage or analytical services, supporting the property graph model. Here
we include this list, to give more context and examples: AgensGraph, AmazonNeptune,
ArangoDB, IBM’s BlazeGraph, Microsoft’s CosmosDB, DataStax EnterpriseGraph,
Oracle PGX, SAP HANA Graph, OrientDB, Stardog and Tigergraph.

There are also several graph databases that support generic graph models. “General
graph model“ means the graph databases support arbitrary user-defined data structures
(from simple scalar values or tuples to nested documents). And most graph processing
systems support the generic graph data models. But the usage of generic graph data
models could be advantages and disadvantages. On the one hand, generic graph models
are most flexible . On the other hand, such generic graph data models supported systems
cannot provide built-in operators related to vertex or edge data. Because the existence
of certain features like type labels or attributes are not part of the data model ([JPNR17]).

Application Scope:

There are two major areas for graph data management: OLTP (online transactional
processing) and OLAP (online analytical processing). OLTP are focusing on processing
data transactions. OLAP are focusing on graph analytics, such as data mining. Both
of them are used for different business applications. Most graph databases focus on
OLTP workload, i.e., CRUD operations for vertexes and edges and transactions and
query processing. Graph databases such as JanusGraph, Neo4j, ArangoDB and
OrientDB specialize in OLTP area. Graph analytics systems like Pregel,Giraph, and
PowerGraph specialize in OLAP area, in spite of the capabilities to have distributed
storage using memory grids, they are not considered to be graph databases but processing
frameworks ([PZLz17]), which we discuss in a subsequent section. In recent year a
new application scope called HTAP (Hybrid Transacion/Analytical Processing) is being
considered for graph data management, according to authors[PV17]. This combines
OLAP with OLTP uses. Graph processing systems like LLAMA, SAP HANA Graph
and PGXISO server this case. To date there is no native HTAP graph database, with
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SAP HANA Graph being the closest thanks to it’s native graph engine and non-native
storage.

Some of considered graph databases already show build-in support for graph analytics
such as the execution of graph algorithms that may involve processing the whole graph,
i.e.,to calculate the pagerank of vertexes or to detect frequent substructures. IBM
System G and Oracle Big Data support build-in algorithms for graph analytics, such as
pagerank, connected components or k-neighborhood. The current version of TinkerPop
provides the virtual integration of graph processing systems in graph databases. For
example, from the user perspective graph processing is part of the database system but
data is actually moved to an external system ([JPNR17]).

Storage Techniques

The graph database world is populated with both technology designed to be “graph
first,” known as native, and technology where graphs are an afterthought, classified
as non-native. Graph databases with native graph storage have storage designed
specifically for the storage and management of graphs. They are designed to maximize
the speed of traversals during arbitrary graph algorithms. Non-native graph storage
uses a relational database, a columnar database or some other general-purpose data
store rather than being specifically engineered for the uniqueness of graph data. Most of
graph databases we listed in the table are using native storage approach. Adjacency
lists are a typical technique of graph-optimized approach,i.e., storing edges redundantly
attached to their vertexes.

Some systems implement the graph database based on the data models such as relational
and document stores. IBM System G and Titan (now is JanusGraph) provide multiple
storage options. About half of the listed systems has some support for partitioned
storage and distributed query processing. Systems with non-native storage provide
no specific partitioning strategies for graphs, e.g. OrientDB treats vertexes as typed
documents and implements partitioning by type-wise sharding.

Query Language supported

In paper ([Ang12]), four operators specific to graph databases query languages: adjacency,
reachability, pattern matching and aggregation queries, have been introduced. Adjacency
queries mean to determine the neighborhood of a vertex. Reachability means to identify
if and how two vertexes are connected. Pattern matching need no specific starting point
and can be applied to the whole graph. They enable very expressive kinds of queries.
This characteristic makes pattern matching an important operator. Also, there are
combinations of reachability and pattern matching queries in the form of Regular Path
Queries, these use regular expressions to indicate the pattern of a path that should



2.2. Solutions for Graph Management 21

be matched. Finally, aggregation is used to find aggregated, scalar values from graph
structures.

Either SPARQL for RDF, and TinkerPop Gremlin and OpenCypher (previously Neo4j’s
Cypher) for the property graph model, are being supported by most of the recent graph
databases ([JPNR17]). Also it is fairly common for these databases to have query
languages of their own, without too much formalizations.

In paper ([PV17]), existing languages are divided in pattern-matching based and traversal-
based. From the first case examples are Gradoop, OpenCypher, Socialite and PGQL.
From the second class examples are GEM and GraphScript, graph query languages of
SAP HANA [RPBL13], Gremlin, GreenMarl and GraphiQL.

A new type of graph query language, called path property graph model has recently
been proposed by the LDBC council [AAF+17] for capturing the core of traversal and
pattern-matching languages, adding more composability and the concept of having paths
as first-class citizens.

2.2.2.1 Graph Databases with Native Storage

Databases with native graph storage have storage designed for the storage and man-
agement of graphs. The way in which graphs are stored is one key aspect of the design
of a graph database. And a native graph storage format supports rapid traversals for
arbitrary graph algorithms. Below we will give an example to show how data is natively
stored in Neo4j.

Neo4j

Neo4j stores graph data in different store files, which contains the data for a specific
part of the graph (e.g. there are separate stores for nodes, relationships, labels and
properties). The division of storage responsibilities facilities high performing graph
traversals. Particularly the topological structure is separated from property data. For
example, the node store file stores node records and each node store is a fixed-size
record (each record has nine bytes in length). Correspondingly, relationships are stored
in he relationship store file. Like the node store, the relationship store also consists
of fixed-sized records. Fixed-sized records facilitate the computation of any individual
record’s location by knowing its ID ([IR15]). The division of storage responsibilities,
particularly the separation of graph structure from property data facilitates performant
graph traversals. We can observe the structure of nodes and relationships physically
stored on disk as shown in Figure 2.6.

2.2.2.2 Graph Databases with Non-Native Storage

Non-native graph storage use a relational database, a column database or some other
general-purpose data store rather than being specifically engineered for the uniqueness if
graph data. In previous sections we already discussed some forms of non-native storages
when using relational databases, below we introduce two popular and general non-
native storage choices, and then we introduce one non-native graph database example,
JanusGraph.
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Figure 2.6: Neo4j Node and Relationship Store File Record Structure ([IR15])

Figure 2.7: The Four Building Blocks of Column Family Storage ([IR15])
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Non-Native Storage Choices: Column Family Stores

Column family stores are modeled on Google’s Big Table. The data model is based on a
sparsely populated table whose rows can contain any columns where the keys provide
natural indexing, and the names of columns according to family groups are also used
to partition the data. There are four building blocks of family storage (see Figure 2.7).
Storage unit Column consists of a key-name-value pair. Storage unit Super Column
consists of any number of columns, which gives a name to a stored set of columns.
Columns are stored in rows, by keys. A group of columns that, for distribution reasons,
is considered to be a single entity, is called a column family. When a group contains
super columns, it is known as a super column family. The way in which data is stored,
makes column family databases distinguished from document and key-value stores.
Column family databases consist also of its own operational characteristics. Apache
Cassandra, for example, which is based on a Dynamo-like infrastructure, is architected
for distribution, scale, and failover and is a column family stored database.

Non-Native Storage Choices: Key Value Stores

Key-value stores constitute one of the most basic and primitive storage systems. Items
are stored as key, value pairs, just like in a common map structure or hash table from
programming languages. Values can usually have any type. Not many operations are
supported, save from basic CRUD ones.

Some examples of KVSs include Redis, Voldemort, etcd and Memcached.

JanusGraph

JanusGraph is a non-native scalable graph database optimized for storing and querying
graphs. It’s also a transactional database that can support thousands of concurrent users
executing complex graph traversals in real time2. Not like Neo4j, which has a specific
storage model for storing graph data, JanusGraph’s data storage layer is pluggable.
Implementations of the pluggable storage layer are called storage backends. JanusGraph
supports for various storage backends: Apache Cassandra, Apache HBase, Google Cloud
Bigtable and Oracle BerkeleyDB3.

In our prototypical implementation we employ Apache Cassandra as a storage backend
to support a non-native graph database, JanusGraph.

2.2.3 Large Scale Graph Processing Systems

Compared to graph databases, large scale graph processing systems are less concerned
with storage and transactions, instead they focus on analytical tasks at scale. They
are also different from databases because they do not take requests and short-lived
queries, they rather take some amount of input data, process it (using user defined
functions or jobs) and return an output. In this section we present an overview of such
systems. For this we start with general large scale processing systems and then we
discuss graph-specific systems.

2http://janusgraph.org/
3http://docs.janusgraph.org/latest/storage-backends.html



24 2. Background

2.2.3.1 General Large Scale Processing Systems

Large scale processing systems aid researchers by providing support for distributed
and parallel computation, using a simple set of abstractions such as Map and Reduce
concepts, or Spark’s Dataframes. These frameworks undertake the tasks of managing
communication, resource management, job-to-node placement and fault-tolerance keep-
ing the developer unaware of these complex tasks.

The granularity of processing (either if it happens on small batches, or on large ones)
and how synchronization happens between jobs are two factors that allow to distinguish
large-scale processing frameworks. In this small section we discuss 3 types of large scale
processing (i.e., traditional batch processing, bulk synchronous processing and stream-
ing), and then we give two examples of systems. Our presentation is based on [Kle17].
We hope that with this presentation we provide readers with a clear understanding of
frameworks for scaling out the computation, helping our further discussion on large
scale graph processing systems.

Map Reduce is one example of a system that uses traditional batch processing. In this
framework jobs can be scheduled as either Map or Reduce jobs. Map jobs run indepen-
dently in parallel, while reduce jobs require synchronization and introduce dependencies.
Map jobs and Reduce jobs are alternated, finally forming a computation graph that
branches out and collects the branches in iterations. An aspect of this style of processing
is that jobs end after an iteration, and they must either store their data or send it to
the next job in the data flow.

An extension and a more general approach than Map Reduce is called bulk synchronous
processing ([Val90]). In this approach the same ideas of the traditional case remain and
it is still a batch processing approach, but jobs keep alive, retain their data, and can
even be invoked after their first execution. Some large scale graph processing systems
such as Pregel and Apache Giraph also utilize this approach. Spark is originally a bulk
synchronous processing system, using mini-batches rather than large ones, now it also
supports streaming.

Streaming is the third approach that we discuss. Unlike batch processing, where the
analysis is expected to be done offline, the design for stream processing is somewhere
between online and offline, so it is sometimes called near-real-time or rearline processing
([Kle17]). While in traditional batches, data needs to enter the job before it begins
and the jobs need some coordination, in streaming the whole logic is moved to message
passing. Stresm jobs keep alive and become message processors, operating on events
shortly after they happen: they send and receive messages, acting according to them.
Process synchronization is not implicit in the model, instead it is managed by how the
user designs the flow of messages. Furthermore, to ease the communication, there are
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no specific client-to-client calls. Messages are sent to a distributed message bus, and all
clients can read them according to their configurations. As a result of this design, clients
of the message bus can be classified as publishers (who send message to a given mailbox)
and subscribers (who subscribe to a given mailbox), hence these systems are often
called publish-subscribe frameworks. Apache Kafka and Twitter’s Storm are examples
of streaming large scale processing systems.

Another aspect of streaming that has to be mentioned is time: the clients can be imple-
mented with a logic that includes window operations. These are operations that instead
of happening over all the data, happen over a window of the data in the most recent
time intervals. As a result a novel kind of analysis is provided. Systems like Flink and
Spark Streaming are examples of streaming systems that focus on windowed/streaming
analytics.

A further distinction in how large scale processing happens is related to how the complete
process is represented for the the system. Here there are dataflow systems, like Spark,
Tez and Flink that see the process as a complete workflow, instead of systems like
Map Reduce that break it into independent sub jobs. This different perspective allows
these systems to consider more optimizations than non-dataflow systems, like reducing
intermediate variables and network costs.

Further approaches exist to support large scale processing, like timely dataflow, but we
will not discuss them in this section.

Spark

Apache Spark is a system that employs bulk synchronous processing and streaming, it
is optimized by storing all the data in memory.

One of the central abstractions of Spark are Resilient Distributed Datasets (RDDs),
which provide for fault tolerance. Spark runs as a cluster.

Apache Kafka

Apache Kafka is a scalable publish-subscribe messaging system with its core architecture
as a distributed commit log (i.e., the message bus). It runs as a cluster on one or more
server. Kafka maintains streams of messages in “topics”. Each record of message consists
of a key, a value, and a timestamp. These messages can be used to store any object and
get passed around in byte arrays (Apache Software Foundation 2017). Kafka includes
8 APIs (see Figure 2.8) and is used in building real-time streaming data applications
that collect data between systems or transform the streams of data. In Kafka, a stream
processor takes continual streams of data from input topics, performs processing on the
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Figure 2.8: Kafka APIs
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data, and produces continual streams of data to output topics. Zookeeper is always
needed together with Kafka. It’s a product also developed by Apache, specialized in
managing configuration for distributed synchronization.

In our work we will use Apache Kafka for creating a scalable message passing solution,
to distribute edge partitions during graph data loading. In the next subsection we move
our discussion from general large scale processing to specialized systems for large scale
graph processing.

2.2.3.2 Graph-Specific Systems

For example, many algorithms for graph analytics such as page-rank, triangle count-
ing or connected components, need to iteratively process the whole graph, when the
dataset is large the computational efficiency might be improved by scaling out the
computation. Graph databases support querying graphs but usually cannot process a
large graph in a scalable and iterative way. Also, when storage is not needed graph
databases might not be the best tool for this task. As a solution the use of large scale
processing systems, and the specialization of them for graphs, becomes a good alternative.

There is a general architecture of a distributed graph processing framework. The ar-
chitecture uses a master node for coordination and a series of worker nodes for the
actual distributed processing. A graph is given as input and partitioned among all
worker nodes, typically using hash or range-based partitioning on vertex labels.

Vertex-centric approach has been recommended by Google Pregel in 2010 ([MAB+10]).
Since then many frameworks have adopted or extended it. To realize such Pregel-like
systems, a vertex compute function has to be written. This function include three
steps: 1. read all incoming messages, 2. update the internal vertex state (i.e. its value),
3. send information to its neighbors, along the edges of the graph (i.e., the edges are
only for communication and they do not participate actively in the computation). This
is supported in an iterative manner with bulk synchronous processing, as discussed
before. As a result a vertex remembers it’s state in memory from one iteration to the
next, so the function only needs to process new incoming messages. If no message
is sent in some parts of the graph then no work needs to be done. In this approach
there is also fault-tolerance and communication happens in fixed iterations with the
synchronization guarantee that on each iteration all messages from previous iterations
were delivered. For performance messages are batched and optimizations are introduced
to better use locality. Systems like Pregel and Giraph also have the optimization of
running in memory only.

In terms of the parallel execution, the partitioning happens on vertexes and it is
responsibility of the framework to decide on it. A vertex does not need to know on
which partition or physical machine it is executing, it only sends messages to other
vertexes by their ids, and it s up to the framework to partition the vertexes and manage
the communication. Ideally the partitioning such happen such that vertexes that
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communicate frequently are colocated in the same partition. Given that this is complex,
in practice the common approach is to distribute the vertexes arbitrarily through a
random hash partition [Kle17]. Edge cuts are also a possibility for partitioning.

Some examples of these systems are Apache Giraph (the open source implementation of
Pregel), Flink’s Gelly and Spark’s GraphX API.

Graph/partition-centric model doesn’t let the compute functions execute on each
vertex. A compute function in a Graph/partition-centric model takes all vertexes
managed by a single worker node as input. These functions are then executed using the
BSP (Bulk Synchronous parallel) model. In real-world scenario, graph processing is often
a single step inside the whole data transformation pipeline. Recent graph processing
frameworks like Apache Spark and Apache Flink provide graph processing libraries to
make this task more easily. Apache Giraph is an example of iterative graph processing
system, built for high scalability4.

With the presentation of large scale graph processing systems we conclude our pre-
sentation of graph data management solutions. Next we discuss challenges in graph
processing and focus on the task of loading data into graph databases.

2.3 Challenges in Graph Processing

From the survey ([SMS+17]), we present these top three challenges user faced when
processing graphs. These problems do not only refer to large scale graph processing,
but to working with graphs in general:

• Scalability: Scalability becomes the most pressing challenge. The specific scalability
challenges has been mentioned include inefficiencies in loading, updating, and
performing computations, such as traversals, on large graphs. Among them we
choose loading of scalable graphs as our study topic.

• Visualization: Perhaps even more surprising is the visualization of graphics becomes
one of the top 3 graph processing challenges. visualization is the most popular
non-query task. And user perform on their graphs. For these users visualization is
really a challenge.

• Query Languages and APIs: Query languages and APIs is another common
graph processing challenge. The specific challenges include expressibility of query
languages, compliance with standards, and integration of APIs with existing
systems. And we have found, there are a lot of existing researches dedicated to
this area.

4http://giraph.apache.org/
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Today user faces a lot of challenges when processing graphs as introduced before. We are
inspired by this and want to focus our study on optimizing the scalable graph loading
process. Below we present some researches on loading tasks for scalable data. And we
choose JanusGraph database instead Neo4j, because it’s a scalable graph database and
Neo4j is not.

2.4 Loading Tasks for Big Data

Traditional data loading has been thought of as a “one time deal”. Loading can be
processed off-line and out of the critical path of query execution[DKA+17]. Nowadays
the rate in which data is produced and gathered breaks out the assumption of “one
time deal“ and “off-line”. Before using the powerful functions from Traditional database
management systems (DBMS), the user must do several tedious steps and answer several
questions by databases. Should the database use a column-store, a row-store or some
hybrid format? What indexes should be created? All of these make data loading process
time-consuming and create high cost. Loading data into databases has been considered
as a performance bottleneck.

In this paper we aim to optimize the process of loading big data into graph
databases. A shortly introduction about loading loading tasks for big data has been
presented below. Next we discuss on loading for graph databases, covering the limited
number of studies we could find on the topic.

2.4.1 Traditional Databases

Data from science and scientific worlds increase rapidly. The recent advances of cost-
effective storage hardware enable storing huge amount of data. But the ability to analyze
and process them is behind. Extracting value out of gathered data is a traditional
requirement of loading it into a operational database. In data warehouse scenarios, ETL
involves: 1. Extracting data from outside sources. 2. Transforming it to fit operational
needs. 3. Loading it into the target databases ([IC03]). With the advent of big data
age, new needs have followed. The requirement of reduce of the “query time“ force data
loading to be a fast operation. The requirements of high availability ask to minimize
batch loading windows. And with the ever-increasing growth of data needs data loading
to be a scalable operation, which can enable a parallel loading. Parallel loading means a
massive amounts of data could be in a single or different machines in parallel in a short
amount of time loaded. But traditional data loading methods can’t meet the demands
completely. Then we need new contributives in this area.
Over the past few years, most of the researches is about finding innovative techniques
to avoid or accelerate data loading.([Mue13] [CR14]) The big data community realize
the importance of parallel loading process through multi-core processors and modern
hardware storages. They consider the time spent to load data into the system as a part
of the benchmark metric and make it as the “Big Data Top 100” benchmark ([Bar13]).
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2.4.2 Loading Large Scale Data

Commercial analytical database systems suffer from a high “time-to-first-analysis”: be-
fore data can be processed, it must be modeled and schematized (a human effort),
transformed into the database’s storage layer and optionally clustered and in-
dexed (a computational effort [AAS]). Loading process for large scale graph is more
complicated as traditional DBMS. Following I’ll give some descriptions about loading
process in recent large scale data analysis systems.

Hadoop
The hadoop system is the most popular open-source software framework. It’s a dis-
tributed file system used for distributed storage and processing of dataset of big data
using the MapReduce programming model.

We can use two ways to load data into Hadoop’s distributed file system (HDFS). 1. Use
Hadoop’s command-line file utility. We use this method to upload files stored in the
local file system into HDFS. 2. Create a custom data loader program using Hadoop’s
internal I/O API. Then use this data loader to upload local data ([PPR+09]).

DBMS-X
DBMS-X is a parallel SQL DBMS from a major relational database vendor. It stores
data in a row-based format.

There are two steps for lading data into DBMS-X. 1. Execute the LOAD SQL Command
in parallel in each node in the cluster. This command reads data from local file system
and insert its content into a particular table in the database. 2. After the complement
of first step, execute an administrative command to reorganize the data on each node.
In this step, data is compressed on each node in parallel. Index of each table has been
built and so on ([PPR+09]).

2.4.3 Loading in Graph Workloads

The initial loading and construction of the graph data structures has been seen as a
performance bottleneck for many graph workloads. However this topic is difficult to
analyze in the literature and, according to researchers, is usually neglected in system
evaluations ([TKKN16]).

The graph loading process has been characterized as divided into several steps. Namely,
previous work on in-memory graphs has divided the process in: parsing vertex data
and loading vertexes (when available), parsing edge data and then relabeling vertex
identifiers for an improved memory footprint ([TKKN16]).
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Figure 2.9: Source File Examples: Edge Lists, from SNAP Astro-Physics Collaboration
Dataset

Figure 2.10: Source File Examples: One Vertex And All Edges Configuration, from
SNAP Wiki-Top Categories Dataset

For our study we observe that the loading process can be more complex than this previous
study suggests, depending on the characteristics of the source data. For example, if the
data is given as a simple edge list Figure 2.9, then one pass could be needed to collect
the vertex ids and insert them, keeping a mapping between the database provided id
and the id in the dataset. Finally a second pass could be performed to read the edges
and load them. We assume this to be the standard load, and we see that it leaves some
space for optimizations, namely in how the edges might be loaded. If, alternatively, the
loading proceeds sequentially, then perhaps less optimizations are possible.

We further observe that for the standard load, a large number of files can be given, with
all following the same format, this gives some changes to the process. Partitions of the
files are also possible when the data is large.

On occasions the dataset might already make assumptions on how data is to be loaded,
by specifically organizing each vertex with the collection of vertex ids to which it has
connected edges Figure 2.10. This can also be changed into a standard load, but requires
special considerations.

On other configurations, there might be no explicit edge relations and the user can
model how the data should be loaded for analysis Figure 2.11. Once more this could be
changed into a standard load, but the case requires consideration and support from a
data loading tool.

In other instances more processing might be needed to add to entities their properties,
as the properties are given encoded and further files have to be consulted to fill the
missing data. Figure 2.12 gives an example on how these properties might be encoded
when a vertex is given. This extra steps could be scheduled after the standard load,
however they should be considered by loading tools and for optimization purposes.

Based on these observations we propose that the loading process can be more generally
described as follows:
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Figure 2.11: Source File Examples: Implicit Entities, from SNAP Amazon Movie
Reviews Dataset

Figure 2.12: Source File Examples: Encoded Properties, from SNAP Ego-Twitter
Dataset

1. (Optional) Schema and index definition: Though most graph databases are schema-
less, it is often good practice to define the graphs with a specific schema and
indexes. This, in turn, can enable optimizations from the database. Headers from
csv files, or alternative text files, can be used to convey this information on data
load time.

2. Parsing for key data: First, graph datasets are normally not in a system-specific
binary format. They have their own format, like JSON, CSV or TXT. These
datasets must be parsed to extract the actual graph data, i.e. vertexes, edges and
their related properties. However on a first stage not all data needs to be loaded,
and just the ids might be sufficient to arrange the process.

3. (Optional) Dictionary encoding and relabeling of vertex identifiers: Then, the
properties can be dictionary encoded, so as to reduce their memory footprint.
Furthermore, original vertex identifiers from the dataset can be relabeled to
numbers in a dense range. This means that the ids of vertexes with many edges
can be encoded with less bits than the ids of vertexes with few edges, leading
to less memory footprint than when the encoding is done the other way around,
or when all vertexes are assigned the same number of bits. This relabeled graph
data can then used to construct the final in-memory representation of the graph.
([TKKN16])

4. Loading of key vertex data and creation of mappings: In this step the vertexes can
be loaded, and the mapping from the id given in the dataset and the id given by
the database (which enables faster access) can be stored.
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5. Optimizations over edges, including partitioning, and loading: At this stage
optimizations can be decided, such as partitioning the edge list, and then the
loading can happen.

6. Loading of additional data: Here encoded properties could be loaded.

These steps can be repeated for different node or relationship types, if necessary.

In each phase of the data loading process and in the organization of the complete
process, there are several possible improvements. There might be also several trade-offs
for different scenarios. This motivates our work, as we seek to help developers by
improving the data loading into graph databases, and developing a tool to support this.

To our knowledge there are limited tools developed for loading data efficiently into
graph databases. Neo4j importer is one such tool that enables batch imports of CSV
files into Neo4j5. This tool is offered as a bash script that is packaged with Neo4j. The
tool consumes files for nodes and relationships, each separately. The files must follow
a specific format with header names and other characteristics. Among the options
that this tool offers are configurations for allowing duplicates or missing data. To our
knowledge, as of the date of this publication, optimization choices save for memory
sizes, are not made available to end users. Options to load encoded data or to load data
without standard source file characteristics (e.g. implicit entities) are not considered.

Some optimization alternatives that we consider in this work will be introduced in the
next section.

2.5 Optimization Alternatives for Loading Data into

Graph Databases

There might be many ways to speed up data loading. In this section we introduce the
optimization approaches that we selected for loading data into graph databases. These
approaches are inspired from different data systems, not limited to graph databases.

2.5.1 Batch/Bulk Loading

With the growing of collected information data loading has been turned into a bottleneck
analysis tasks. To improve the data loading performance numerous approaches has been
researched. Bulk/Batch loading techniques are typically used during the load phase
of the Extract, Transform and Load (ETL) process. They can process massive data
volumes at regular time-intervals. “Right-Time ETL (RiTE)” ([GK10]) is a middle-ware
system, which provides ETL processes with INSERT-like data availability, but with
bulk-load speeds. Instead of loading entire input data directly into the target table on a
server. A so called “server-side”, in-memory buffer is used to hold partial rows of this

5https://neo4j.com/docs/operations-manual/current/tools/import/

https://neo4j.com/docs/operations-manual/current/tools/import/
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table before they are materialized on disk.

Inspired with the related work from other data process systems. We create bulk/batch
loader for graph databases. For graph database JanusGraph We implemented a bulk/-
batch loading class in order to optimize the process of data loading. Bulk/batch loading
class has been created to load more data in each transaction. In contrast to loading
small amounts of data per transaction, bulk loading is able to add more data through
individual transactions. JanusGraph provides us a lot of configuration options and
tools to acquire massive graph data. To make loading process more efficient. “In many
bulk loading scenarios it is significantly cheaper to ensure data consistency prior to
loading the data then ensuring data consistency while loading it into the database.” The
storage.batch-loading configuration option exists because of this observation. This conclu-
sion is from JanusGraph team. According with this they create storage.bath-loading
configuration option specific for JanusGraph to improve the time performance.

2.5.2 Parallel and Partitioning

Parallel loading could be a means to improve the utilization of CPU resources available
([DKA+17]) and hence reduce the whole loading time.

Traditionally, to distribute graph computation over multiple machines in a cluster, the
input graph should be partitioned before computations start. The vertexes and edges
need to be assigned to individual machines at first. This is, in fact a key process for
distributed graph computations, requiring methods such as random hash partitioning
or algorithms to find the minimum edge cut[SK12]. One commonly used algorithm
and system for partitioning is Metis[KK95]. Good graph partitioning algorithms are
useful for many reasons. First, real world networks are not random. Edges have a
great deal of locality which could be exploited to reduce inter-machine communication.
Second, partitioning is related to distributing the computation time. Hence, when the
distribution is skewed, the uneven partitions could lead to a longer computation time
and waste in resource usage.

A survey on graph partitioning is presented by Bulucc et. al.[BMS+16].

For the task of loading there is a significant difference with respect to traditional
partitioning approaches. Namely that the complete graph is not available in such a
way that it could enable computing a large algorithm over the graph. Instead the
loading process must partition the graph with incomplete information, deciding for the
location of a vertex or an edge, or a group of them, as it processes them. In spite of the
limited information there is still the goal of finding a balanced partition that can also
reduce communication costs during the loading process. Hence this can be defined as a
streaming graph partitioning problem[SK12].

2.5.2.1 Partitioning Strategies

By parallelizing the batch loading across multiple ports, the load time can be reduced.
But how should we decide for a large graph on how to load sub-sections of it separately?
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To address these issues we implemented a parallel loading class in order to load the
partitioned data in parallel. First we use some conventional strategies to partition the
graph into several subgraphs. Second we load the subgraphs in parallel. This process is
referred to as Partitioning in this paper.

Partitioning Strategy selection becomes increasingly important for variety domains.
There is no one-size-fits-all partitioning strategy. In [VLSG17], the author demonstrates
that the choice of partitioning strategies depends on several items, such as the degree of
the distribution, the type and duration of the application and the cluster size.

Authors have proposed[SK12] the use of different heuristics for streaming graph parti-
tioning, such as balanced (assigning a vertex to a partition with minimal size), chunking
(assuming some order in the stream, divide the stream into chunks and distribute them
in a round-robin fashion), hashing items, deterministic greedy (assigning an entity to the
partition where it has more items, e.g. a vertex to where it has more edges, this can be
further parametrized to include penalties to large partitions), next to buffer-based ones.
Authors find that these simple heuristics can bring important benefits over random cases
and also reduce the edge-cuts, improving distributed graph processing[SK12]. The best
performing variant is the parametrized deterministic greedy[SK12].

For our study it is not clear if the partitioning strategies will bring a benefit to the
loading task.

Since our research aims to consider the impact of partitioning on the time of data loading,
we have picked in a reasonable manner 4 different partition strategies to arrange our
experiments in order to find the influence of these partitioning strategies ([KKH+17]).
These strategies were selected due to their suitability for specifically distributing the
edges, since it is not clear to us if reducing edge cuts will be important or not for loading.

• E/E Strategy
This strategy uses round-robin (RR) algorithm. It distributes edges to partitions
in a lightweight way. It allocates many or all outgoing edges of one vertex to
multiple partitions.

• V/V Strategy
A graph can be partitioned by vertexes. V/V strategy uses vertexes and balances
the amount of vertexes for each partition. This strategy distributes all outgoing
edges of a vertex to a single partition. It uses also round-robin algorithm.

• BE Strategy
This strategy partition the graph by vertexes and meanwhile balances the amount
of edges per partition. This strategy requires to sort the vertexes according with
the number of outgoing edges in a descending order. And then iterates over this
sorted list and allocate all outgoing edges from one vertex to the currently smallest
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partition. It balances the edges across the partitions. Thereby all outgoing edges
of a vertex belong to the same partition.

• DS Strategy
DS Strategy basically extends BE Strategy. It’s a approximation for handling
skewed data. To ease the pressure of highly connected vertexes DS strategy allocate
the edges equally to the partitions. For the vertexes that have significantly more
edges, this strategy separate the edges and distribute them in different partitions.

• 80/20 Rules
This rule can be summarized as: for many events, roughly 80 percent of the effects
come from 20 percent of the causes. Mathematically, the 80/20 rule is roughly
followed by a power law distribution for a particular set of parameters. Many
natural phenomena show this distribution empirically. We are inspired to this rule
and combine DS Strategy with it together. After we sort the vertexes according
with the number of outgoing edges in a descending order. Then we find out the
first 20 percent vertexes and distribute the outgoing edges from these vertexes to
different partitions. And for the rest 80 percent vertexes, the outgoing edges from
a vertex should be allocated to the same partition.

2.6 Summary

In this section we presented the relevant related work which is the basis of our work
in optimizing of data loading into graph database process. We introduced graph data
models and solutions for graph data management, then we gave a brief overview on the
limited state-of-the art regarding the loading task, for more insights we discussed some
practical aspects on how the process might be affected by source file characteristics, we
presented our proposal for steps to understand the loading process and we presented
two optimizations that could be considered for the loading task.

In the next chapter we introduce our evaluation questions, the prototype that we develop
to study them and the experimental settings.



3. Microbenchmarking
Application-Level Optimizations
for Loading Graph Data

In this chapter, we introduce the precise evaluation methods that we seek to use in our
research. The outline for this chapter is as follows:

• Evaluation Questions:
First we provide several evaluation questions that we aim to address in our study.
(Section 3.1)

• JanusGraph:
We introduce JanusGraph, a distributed graph database, which we selected for
our experiments. (Section 3.2)

• JanusGraphLab:
We introduce JanusGraphLab, a prototype that we developed for microbenchmark-
ing optimizations in loading graph data. (Section 3.3)

• Measurement Process:
We introduce our measurement methodology. (Section 3.4)

• Testing Framework:
A description of our testing framework is provided in (Section 3.5).

• Evaluation Environment:
A quick listing of the defining characteristics from the execution environment of
our tests are discussed in (Section 3.6).
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• Datasets:
We describe the real-world datasets we used for the tests in (Section 3.7).

• Summary:
We conclude the whole chapter in (Section 3.8).

3.1 Evaluation Questions

Graph databases are used in various fields for a diverse number of tasks, with graph
computations and machine learning tasks being some of the most used ([SMS+17]). Some
examples of the former tasks are finding connected components, neighborhood queries
and discovering shortest paths. Some examples of machine learning tasks done in graph
databases are clustering and graphical model inference; these support analysis cases like
community detection, recommendations, link prediction and influence maximization.

In a recent survey of practitioners, scalability is identified as the biggest problem when
working with graph databases, followed by the need to accelerate graph visualization
and limitations in query languages, among others ([SMS+17]). The specific scalability
challenges that practitioners mention in the survey are inefficiencies in loading and
updating graph data, next to some computations like traversals, on large graphs.

In our study we aim to improve the scalability challenge of loading data into graph
databases. The loading process is a crucial aspect in working with graphs. In fact,
according to the kind of analysis being performed on the graph, it might be possible
that the time for loading and building the graph exceeds the time of computation.

Concretely, in our study we propose to answer the following set of research questions,
by utilizing a state of the art graph database, JanusGraph, and investigating basic
application-level loading optimization alternatives made available by the database:

1. Which is the best place to put the loading logic, at client or at server side?

2. What is the effect of batching when loading graphs of different topologies?

3. What are the opportunities and limitations in parallelizing and distributing the
data loading?

4. What is the influence of partitioning strategies for loading a dataset in parallel
loading?

5. What are the best practices for integrating publisher/subscriber framework into
the data loading process?
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6. In deciding for batching, parallelization, which factors can be determined statically
and which are dependent on changing topologies? For the topology dependent
factors: what is the tipping point for making other decisions? Can these optimiza-
tions be implemented in an adaptive manner; If so, how to model the optimization
function for real-world cases (where network latency and different replication
strategies could also affect the performance)?

To address these questions, we carry out experimental research with JanusGraphLab, a
prototype that we develop based on JanusGraph. We implement both data loading and
microbenchmarking functionalities into JanusGraphLab, to test the possible optimization
methods of the data loading tasks under evaluation. We conduct our experiments with
real-world public datasets/benchmark data. At the end, we collect the performance data
of the loading tasks and analyze the experimental results. According to the analysis
of the experimental observations, we give some suggestions for improving data loading
tasks, encapsulated in the form of best practices.

3.2 JanusGraph

JanusGraph is a scalable graph database with non-native storage1. Graphs, which
contain billions of vertexes and edges distributed across multi-machine clusters, can
be stored and queried with JanusGraph. This is also supported with transactional
consistency and failure stability. We can also use JanusGraph as a traditional database
to execute complex graph traversals in real time.

It supports Apache Cassandra, Apache HBase and Oracle Berkeley DB Java Edition
as its storage backends. In order to speed up and enable more complex queries, it uses
ElasticSearch, Apache Solr and Apache Lucene as its indexing backends. These are
specifically useful for full-text queries.

We chose JanusGraph Version 0.1.1 (May,11,2017) for our tests.

JanusGraph contributes to compact graph serialization, rich data modeling, and efficient
query execution. Here we present several concepts pertinent to JanusGraph.

We selected JanusGraph as it represents a non-commercial open-source graph database,
with ongoing development work. Another reason was that we did not found a similar
loading tool in this database, and thus we were motivated to contribute to this community.

An alternative could’ve the open-source commercial database Neo4j and adding our
work to the specific Neo4j csv importer. We would’ve liked to select this, but we found
it easier and more impacting, at least for this current project, to work from scratch on
JanusGraph than to add our contributions to an existing tool, with the involved effort

1http://janusgraph.org/
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of understanding a pre-existing codebase. We also made the choice in the observation
that the codebase of the tool has had limited developments in the last 2 years2.

• Storage Backends
JanusGraph stores graphs in an adjacency list format3, also called index-free
adjacency. This means, JanusGraph stores each graph as a collection of vertexes,
each containing its adjacency list. All of the incident edges (incoming and outgoing)
and the edge properties are stored inside the adjacency list of the connected edges.
Each edge has to be stored twice - once for each end vertex of the edge. The
storage requirements are, thus, doubled ([KG14]).

In JanusGraph, each adjacency list is stored as a sparse row in the underlying
storage backend. A vertex id (64 bit) is assigned uniquely to every vertex by
JanusGraph. The vertex id is the key which points to the row containing the
vertex’s adjacency list. JanusGraph stores each vertex property, edge and edge
property as an individual cell in the row. (See Figure 3.1) If the storage backend
supports key-order, the adjacency list will be ordered by vertex id. JanusGraph
can improve its performance through properly assigning of the vertex id. For
example, vertexes, which are frequently co-accessed, are given ids with a small
absolute difference. In this way the vertexes will be co-located by the underlying
storage4.

The adjacency list format speeds up traversals inside JanusGraph, since the fil-
tering criteria of a traversal can be applied in the storage space of each vertex,
without accessing another one.

In our experiment we picked Cassandra as our storage backend, which supports
column-stores. The understanding of the data model inside JanusGraph and Cas-
sandra, with the related transactional behaviour, inspire us to create a batch/bulk
loading method.

Apache Cassandra5

is a distributed database with scalability and high availability. In our application
we use the remote server mode to let JanusGraph and Cassandra work together.
Logically, Cassandra and JanusGraph are separated into different machines. The
Cassandra cluster contains the primary graph data itself, and any number of
JanusGraph instances maintain socket-based read/write access to the cluster, in

2For reference, the GitHub repository of the Neo4j importer tool: https://github.com/jexp/
batch-import

3http://docs.janusgraph.org/latest/data-model.html
4http://docs.janusgraph.org/latest/data-model.html
5Janhttp://docs.janusgraph.org/latest/cassandra.html

https://github.com/jexp/batch-import
https://github.com/jexp/batch-import
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Figure 3.1: JanusGraph Data Model

Column Name Column Type Value
Name String Tom

Table 3.1: “Author” Vertex Resource Represented in Cassandra Data Model

addition to specific client-level caches.

To run JanusGraph over Cassandra there are two steps we should set up: 1. Down-
load Cassandra, unpack it and set filesystem paths in conf/cassandra.yaml and
in conf/log4j-server.properties . 2. Start Cassandra by running bin/cas-

sandra -f on the command line in the directory where Cassandra was unpacked.

Apache Cassandra Data Model
At first we introduce the Cassandra physical data model. Figure 3.2 represents
the Cassandra physical data model used in our experiments for wiki-RfA dataset.
Wiki-RfA is a physical structure, which holds a set of column families. Each
Column family (CF) stores a specific resource. For example, “Author” contains all
user names. “Rfa” contains all vote information. Each vote has two names, the
voter and the user running for the elections. And each vote has vote, result, data,
year and is typically accompanied by a short comment. (See Figure 3.2) Each row
of a column family consists of a unique row key and columns of data of the same
resource type (See Table 3.1 and Table 3.2).

For our tests we selected Apache Cassandra 2.1.1 as a storage backend.

• Indexing Backends6

JanusGraph uses indexing to improve its performance. There are two types of

6http://docs.janusgraph.org/latest/indexes.html
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Figure 3.2: Cassandra Physical Data Model

Column Name Column Type Value
Source Name String Maria
Target Name String Tom
Vote int -1
Result int 1
Year String 2008
Date String 19:53, 25 January 2008
Txt String hello

Table 3.2: “RfA” Edge Resource Represented in Cassandra Data Model
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indexing to speed up query process: graph indexes and vertex-centric indexes.

Graph indexes are global index structures over the whole graph. After providing
the selective conditions, graph indexes allow user to retrieve vertexes or edges by
their properties efficiently. Inside graph/global indexes, JanusGraph distinguishes
two types of indexing: composite and mixed indexes. Composite indexes allow
the retrieval of vertexes or edges by one or a (fixed) composition of multiple keys.
Mixed indexes allow the retrieval of vertexes or edges by any combination of
property keys. Composite indexes are fast and efficient but limited to equality
lookups. Mixed indexes give us more flexibility and support additional condition
predicates beyond equality. It supports multiple condition predicates in addition
to equality. In [Dur17], the authors evaluate how different indexing types influence
the query performance. Each indexing type has its strengths and weaknesses.
JanusGraph supports multiple index backends, such as ElasticSearch, Apache Solr
and Apache Lucene. We configured ElasticSearch inside our experimental system,
though it was not used in our evaluation.

Apache ElasticSearch7 is a distributed, RESTful search and analytics engine
capable of solving a growing number of use cases. JanusGraph uses ElasticSearch
as an index backend to enable several ElasticSearch features. For example, feature
Full-Text supports all Text predicates to search for text properties that matches
a given word, prefix or regular expression.

We picked ElasticSearch 1.5.2 as our full-text indexing backend.

3.3 JanusGraphLab

In order to evaluate our application-level optimizations for loading data into graph
databases, such as batching, parallel loading and to address our evaluation questions
(Section 3.1) we implemented JanusGraphLab.

Given the characteristics of the implementation, JanusGraphLab is not simply a proto-
typical implementation, but instead it is a functional tool that enables developers to
configure efficiently, in a scalable manner the loading process, such as to accelerate it.
We aim to make JanusGraphLab publicly available.

3.3.1 Architecture of JanusGraphLab

JanusGraphLab processes different microbenchmarks, which represent various aspects of
a JanusGraph application. It explains the options for configurations. It guides us how
JanusGraph connects and uses the backends. The connection details are hidden from

7http://docs.janusgraph.org/latest/elasticsearch.html
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Figure 3.3: An Architectural Overview of the JanusGraphLab
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the users to make this connection work more easy to use. It implements the creation
of a JanusGraph schema, the loading of data and other required functionality with
JanusGraph embedded into the application.

We sketch a high-level structure diagram to help us better to understand the components
inside JanusGraphLab, in Figure 3.3. From Figure 3.3 we can see the core components
and interactions between them. Firstly, look at this “JanusGraph” section. As a
graph database JanusGraph supports us to use it as an embedded API for the
graph functionality. Going to the JanusGraphLab section, it provides the following
functionalities, based on its use of JanusGraph:

• Schema Management8:
To define a JanusGraph graph schema we need edge labels, property keys and
vertex labels used therein. A JanusGraph schema can either be explicitly or
implicitly defined. We prefer an explicit way to make our application more robust
and to improve collaborative software development. And for each real-world
dataset referred to our experiments we need to adapt them with a specific data
schema. Schema Management Module helps the schema definition process. It also
helps the query process by supporting REST APIs that need information about
the current schema. In our prototype we pass the schema as a configuration file.

• Data Load
Before loading the data to server we should extract them from source data.
According with our needs we can sort and partition them with several strategies.
After that we can upload the transformed data into JanusGraph clusters. We
specifically implemented two kinds of functionalities, on the one side some functions
for individual item creation (used for client side tests), on the other functions that
for generic loading as a complete process (used for the server side tests). The
latter included Kafka distribution of partitions and the partitioning strategies
themselves.

• RESTful Functionality for Micro-benchmarks:
JanusGraphLab was developed to provide central RESTful services based on
JanusGraph, ElasticSearch and Data Load and Schema Management Modules.
We use these functionalities to accomplish our tests defined in Micro-benchmarks
module.

• ElasticSearch Client and Queries Management:
We could also create a stand-alone ElasticSearch project for querying the full-text
backend, using a fixed pool of ElasticSearch clients to reduce connection overheads,
though implemented and ported within the context of our thesis, this component
was not used in our evaluation.

8http://docs.janusgraph.org/latest/schema.html
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• Documentation:
We use this functionality to document our prototype and make it easy to understand
and contribute to.

• Micro-benchmark Applications:
We start our tests from this module, an alternative to this could be the use of
scripts (which we also use). The different micro benchmarks will be introduced
in detail in the following chapters. At their essence the microbenchmarks only
perform the loading requests with different parameters, number of repetitions and
datasets, collecting the results and saving them to a file for further analysis. The
core optimizations for the loading process are included in the Data Load Module
and made available via REST APIs.

3.3.2 Data Loading in JanusGraphLab

Finally for the purpose of our presentation, JanusGraphLab provides several alternatives
for loading graph data. Here are some points we want to mention for the loading process.

• Default Transactional Loading Process9:
1. Open a JanusGraph graph instance to load one dataset. JanusGraphFactory
gives a set of static open methods. These open methods take configurations as
their arguments and return a graph instance. This is the same process on client or
server side.
2. Write a helper class to load a specific graph. Inside the helper class graph.newManagement()
helps to create schema, graph.newTransaction() helps to open a transaction.
These two methods can do the following steps to the newly created graph before
returning it.

– Create a collection of global and vertex-centric indexes on the graph.

– Add all vertexes to the graph with their properties

– Add all edges to the graph with their properties. Notice that edges are loaded
after loading vertexes.

• Bulk/Batch Loading 10

As one of our optimization strategies, we developed bulk/batch loading features.
Compared with the default transactional loading approach mentioned: one edge
one transaction, bulk loading adds much more graph data into each JanusGraph
transaction: more edges one transaction. It reduces the numbers of opening
and closing of the transactions, which saves the time of the whole loading process.

9http://docs.janusgraph.org/latest/getting-started.html
10http://docs.janusgraph.org/latest/bulk-loading.html
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• Parallel Loading
Our approach for loading a graph in parallel, starts by decomposing the data
from one graph into multiple subgraphs using one of our partitioning strategies
(Section 2.5.2.1). Then these subgraphs can be loaded independently in parallel
across multiple machines. Apache Kafka helps us to accomplish these tasks
by acting as a message passing layer sending the parallel chunks. The stream
processing work mode from Kafka helps these parallel sub loading processes to
work together and collect information about each other.

• Working Flow
Figure 3.4 gives us an overview of the data loading process in JanusGraphLab.
From this flow chart we can observe the whole working flow for loading data into
JanusGraph using JanusGraphLab.

Apache Kafka11

Apache Kafka is a distributed streaming platform. It provides publish-subscribe frame-
work and has been considered as a distributed commit log. It lets you publish and
subscribe to streams of records, and enable to store streams of records in a fault-tolerant
way. It also allows you to process the streams of records as they occur. It has a dis-
tributed publisher/subscriber architecture where the information is classified by topics.
Kafka helps to process off-line and online tasks by providing a mechanism for parallel
loading and it is able to partition real-time consumption over a cluster of machines
([CY15]).

In our experimental prototype JanusGraphLab we use Kafka to build a real-time stream-
ing data pipeline, which helps us to load data in parallel.

3.4 Measurement Process

In our evaluation we focus on the response time of loading functionality for each request
(i.e. the time for parsing the file and other, implementation-specific features, are not in
consideration). Our decision of focusing in measuring the core tasks, is based on the obser-
vation that these are less likely to be affected by implementation subtleties as other tasks.

We use the Java system timer to record the transaction time inside the central applica-
tion in the RESTService for the Microbenchmarking Module. And we output the time
measurement for analyzing our optimization methods.

We use the Java System timers System.nanoTime() because of their sufficient precision.
System.nanoTime() is designed to measure elapsed time, and unaffected by any of

11https://kafka.apache.org/
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Figure 3.4: Working Flow for Loading Data into JanusGraph using JanusGraphLab
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small system clock corrections. And it’s simple and efficient to use for our experiments.
Although it’s very convenient to use system timer. It has also limitations. We record the
time at the moment using nanosecond for the whole transaction. But for recording more
sub processes or detailed time intervals, it’s difficult to realize. In future work we might
consider double-checking our results by using more advanced benchmarking solutions.

We focus on recording the time for loading edges. Compared to the data size of edges,
vertexes in our experiment datasets are relative much smaller and, commonly, with
less properties. That’s why we focus on loading edges and on optimization strategies
for edges. Before loading edges we start one transaction to load all vertexes and
necessary informations. We only accumulate the partitioning time of edges, batching
process (communicating and waiting through Apache Kafka) and opening/closing
transactions time as the edge loading duration.

3.5 Testing Framework
For automated testing we wrote down Linux-based scripts. For each test configuration
we repeat 10 times of the loading process and output the test results in several files for
our use. Using the collected test results we evaluate each optimization method. Below
is an outline of the test script.

1.Start ElasticSearch
2.Start Zookeeper
3.Start Kafka
4.Start a 10 times Loop here

******Loop Begin******
5.Start Cassandra
6.Run Application in the Background. And we set the arguments here: such as number
of partitions, partition strategies and batch size...
7.Run Data Loader and we redirect the output to the specific file.
8.After data loaded, we kill the application based on the process number.
9.Delete ElasticSearch Data
10.Delete Cassandra Data
******End Loop******

3.6 Experiment Environment
Here we introduce our experiment set-ups for the real datasets. Our experiments were
executed on a commodity multi-core machine composed of 2 processors(8 cores in total)
with 251 GB of memory. The application was running on Ubuntu 16.04 and java-1.8.0-
openjdk-amd64.
Detailed information of these processors is listed below.
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• Product name: Intel(R) Xeon(R) CPU E5-2609 v2 @ 2.50GHz

• Number of Cores: 4

• Number of Threads: 4

• Processor Base Frequency: 2.50 GHz

• Cache: 10 MB SmartCache

• Bus Speed: 6.4 GT/s QPI

And the operation system information:

• LSB Version: core-9.20160110ubuntu0.2-amd64:core-9.20160110ubuntu0.2-noarch:security-
9.20160110ubuntu0.2-amd64:security-9.20160110ubuntu0.2-noarch

• Distributor ID: Ubuntu

• Description: Ubuntu 16.04.2 LTS

• Release: 16.04

• Codename: xenial

Most of small business companies that use JanusGraph, Cassandra and ElasticSearch,
do so on commodity hardware or cloud-based offerings. We arranged our experiments
on commodity hardware to represent this specific scenario.

3.6.1 Backend Configuration

On JanusGraph User Guide page there are pages of configuration introductions for
different use cases. We decided on the following configurations which are suitable for
our experiments:

• JanusGraph
We left most configurations with their default values. We only changed two
configurations:
1. cache.db-cache, we set this value to false to disable JanusGraph’s database-
level cache, which is shared across all transactions.
2. query.fast-property, we set it to false to disable pre-fetching all properties
on first singular vertex property access. It can reduce backend calls on subsequent
property access for the same vertex at the expense of retrieving all properties
at once. But the alternative approach can be expensive for vertexes with many
properties.
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Dataset Type Nodes Edges Data Format

wiki-RfA
directed,
labeled

10,835 159,388

SRC:Guettarda
TGT:Lord Roem
VOT:1
RES:1
YEA:2013
DAT:19:53, 25 January 2013
TXT:”’Support”’ per [[WP:DEAL]]:
clueful, and unlikely to break Wikipedia.

web-Google directed 875,713 5,105,039
23434362345 3452346234645
9809809750986 34583748

Table 3.3: Summary of Datasets used in our Experiments

• Cassandra
We run Cassandra with the default properties for the 2.1.11 version. Among
these properties,Cassandra defines a maximum heap usage of 1/4 of the available
memory.

• Apache Kafka
We used Apache Kafka 2.11-1.0.0

• Zookeeper
1. the directory where the snapshot is stored. dataDir=/tmp/zookeeper
2. the port at which the clients will connect clientPort=2181
3. disable the per-ip limit on the number of connections since this is a non-
production config
maxClientCnxns=0

3.7 Datasets

We tackle our evaluation questions by running the data loading process on real-world
datasets. We have selected two datasets from different areas, with different sizes, in
order to make our tests more diverse.

3.7.1 Wikipedia Requests for Adminship (with text)

To become a Wikipedia administrator, contributors should submit a request for adminship
(RfA). Then any Wikipedia member can cast a supporting, neutral,or opposing vote.
This dataset collects the complete set of votes from 2003 (when the Wiki-RfA practice
started) until 2013. It contains 11,402 users (voters and votes), which form 189,004
distinct voter/votee pairs. And if the same user ran for election several times, the same
voter/votee pair may contribute several votes.This dataset is a directed, signed network.
Nodes represent Wikipedia members and edges represent votes. There is also a rich
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Figure 3.5: Topology for the Wiki-Vote Dataset (An Earlier Version of Wiki-RfA)
12

textual component in RfAs since each vote is combined with a short comment. For
example, a typical positive comment reads, “I’ve no concerns, will make an excellent
addition to the admin corps” ([wik]).

Wiki-RfA is an example of a real-world temporal signed network, since edges represent
either positive, negative or neutral votes, and the network presents a time dimension
that specifies the order in which votes are cast. In terms of topology, Wiki-RfA can be
classified as a social media network, this is a kind of network similar to a social network
(i.e., it can also be considered to be based on a social network), with the same scale-free
properties and short paths, but that can be shaped by the affordances of the interaction
platform [KALB12]. Figure 3.5 represents a view of the network with voters and votees
acting as hubs. We can expect this network to follow the topology of a social network,
with short paths between all nodes.

3.7.2 Google Web Graph

We choose the Google-Web graph as a representative of information networks. In this
graph, nodes represent web pages and directed edges represent hyperlinks between them.
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Figure 3.6: Topology for the Google Web Dataset
13

The expected topology for this graph is to find a strongly connected central component
with expanding incoming and outgoing groups of vertexes, with links to and fro this
central component, and finally with a large amount of weakly connected components at
the edges. This structure should resemble a bow-tie ([CF12]). Figure 3.6 displays the
topology of the provided dataset. The strongly connected component remains but the
bow-tie structure (with longer paths for some groups of nodes) is not entirely visible.
This could be due to the small scale of the dataset.

Google released this dataset in 2002 as part of its programming contest[goo].

Table 3.3 gives us more size and type details for each dataset.
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3.8 Summary

In summary, in this chapter we proposed a list of evaluation questions to guide or
research. These questions cover part of the design space for graph data loading, starting
with the basic concern of client vs. server side loading, covering as well the effect of
batching and parallelizing the process.

In this chapter we also discussed the basic characteristics of the technologies we used
for our work (JanusGraph, Kafka, Cassandra), and we presented JanusGraphLab, our
prototypical implementation for evaluating the impact of loading optimizations. Apart
from it’s role as an evaluation framework, JanusGraphLab can, de facto, be used as a
tool to support developers in scaling out and accelerating their graph loading tasks.

To conclude the chapter we disclosed our measurement process, the testing framework and
environment, next to the datasets that we selected. In terms of topological characteristics
we observed that the Google Web Graph should present longer paths when compared to
the Wiki-RfA, since the latter can be considered to be based on a social network.

In the next chapter we present the tests and results for evaluating the first of our research
questions.



4. Case Study: Client vs. Server
Side and Batching

In this chapter we ask, what is the right place for loading graph data, considering first
if there are fundamental performance differences between carrying out the load process
from client vs. server side. This evaluation aims to guide our research, in determining
whether it is worthwhile to have optimizations being considered at the server side
(i.e., closer to the database) or more simply at the client side. Then we introduce our
evaluation on the performance impact of batching for loading tasks. This is a strategy
for reducing the number of transactions, and resulting requests to the database. We
start by researching a basic load process, which we will call the ’baseline’. This process
loads all the vertexes, and opens one transaction per vertex where all JanusGraph
performance enhancements (background optimizations, etc.) are left enabled. Next we
propose a targeted microbenchmark that studies exclusively the batch/bulk loading
process. We first load all vertexes and subsequently the edges in a batched manner. In
this study we compare 4 loading processes with different batch size for each: a) Batch 1:
1 edge per transaction, b)Batch 10: 10 edges per transaction, c)Batch 100: 100 edges
per transaction and e)Batch 1000: 1000 edges per transaction.

This chapter is organized as follows:

• Evaluation Questions:
We list evaluation questions in this section. (Section 4.1)

• Load from Client vs. Server Side:
We introduce and evaluate two options for loading graph data into JanusGraph
classified by the location of the loading logic. The results of this evaluation
motivate our later work. (Section 4.2)
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• Batch/Bulk Loading in JanusGraph:
We describe how batch loading works in our JanusGraphLab experimental proto-
type. (Section 4.3)

• Microbenchmarks:
We present our design and implementation of the microbenchmarks for our evalua-
tion, the results from our tests, and a discussion (Section 4.4). This section covers
specifically the tests for batch/bulk loading.

• Best Practices:
We provide a short list of the best practices that can be learned from the evaluations
discussed in this chapter. (Section 4.5)

• Summary:
We conclude with a brief summary of the chapter. (Section 4.6)

4.1 Evaluation Questions

1. Which is the best place to put the loading logic, at client or at server side?

2. What is the effect of batching when loading graphs of different topologies?

These are the first two of the evaluation questions we defined for our study (Section 3.1).

4.2 Loading Process from Client/Server Side

As discussed in Section 2.4.3, the loading process involves several steps according to the
source files. The main steps we proposed where loading of vertexes and loading of edges;
each of these involved parsing the files, creating in-memory mappings for ids, ordering
the input items, determining the load granule (i.e., transaction size or batch size) and
distributing/parallelizing the process itself.

Considering that database operations can be performed as client or server codes (with
the first one being passed to the systems as a series of http, websocket, language client
or CLI requests, and the latter being passed as a single script to be executed on the
server side), the first question in designing a loading tool for a graph database is to
determine which of these options is the best for launching the process.

In this section we introduce the key ideas of loading from client/server side, then we
present test results that allowed us to decide on the best location for our tool design.
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• Loading process from Client Side

For loading graph data into an online graph database like JanusGraph, we need
transactions. These help ensure an amount of consistency between reads and
writes in the management of the database. The specific consistency promises that
transactions can deliver depend, in the end, on the underlying non-native storage
used by JanusGraph. Thus, in the case of Cassandra transactions are configured by
default to ensure BASE consistency (i.e., Basically Available, Soft State, Eventual
Consistency)1. For providing transactions, interactions with the database need to
be managed via a client (which takes a transaction at a time) or a server (which
can take a script with a series of transactions to perform).

At the beginning of our experimental work, we asked to open the transactions
from an HTTP client in the Micro-benchmarking Module. Each time we needed
to load something we ran the Micro-benchmarking Module, which in turn carried
out all the process and created individual REST requests (for creating elements)
to send the client (i.e., JanusGraphLab, with the embedded JanusGraph process).
We call this mode of processing as a loading process from client side, since all
logic was performed on the Micro-benchmarking Module, and the JanusGraphLab
only received individual request to insert specific items, without having access to
temporary data structures used in the loading or other parts of the process. In
this mode, all steps of the loading process are undertaken on the application side
(Micro-benchmarking Module) and only the individual write operations are sent
as individual requests to the database client (JanusGraphLab).

• Loading process from Server Side

A second mode of processing was found after refactoring our code, placing the
loading process inside a single REST endpoint made available in JanusGraphLab to
the Micro-Benchmarking Module. Specifically we redesigned the implementation
to provide a single endpoint to input a file, or set of files, in addition to a list
of parameters (such as batch size or partitioning strategy), to JanusGraphLab.
On receiving this, JanusGraphLab was provided with functionality to create a
complete representation of the transactions in the request (either as a groovy script,
or simply interacting with the embedded JanusGraph client, who also creates a
groovy scripts from the requests), finally the request was executed by JanusGraph
both in the embedded client and resourcing to the backends. We call this second

1JanusGraph offers options to enforce higher consistency levels through the use of locks. We did not
use this in our evaluations, instead relying on the eventual consistency of the storage. Some issues are
reported by the database developer team, such as the possible appearance of ghost vertexes, however
these do not affect our study since we consider only loading and not updates. More information in:
http://docs.janusgraph.org/latest/eventual-consistency.html

http://docs.janusgraph.org/latest/eventual-consistency.html
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Figure 4.1: Client vs. Server-side Management of the Data Loading

mode of execution, server side loading.

A noteworthy aspect is our use of scripting which might reduce overheads from
interpretation. In our current implementation we only employ scripting for creating
the items in the graph. This covers the batching optimizations we discuss later,
but it does not cover partitioning.

Here we give some test results from our evaluation in distinguishing both modes of
loading. Figure 4.1 represents the average time performance over 10 runs of loading
data from Client/server side. We used Wiki-Rfa dataset. The average loading time from
client side is 339283.2ms (5.65 minutes). The average loading time from server side is
245320.4265ms (4.08 minutes). And the average speed up is 1.38x.

From this evaluation we observe that even for a relatively small dataset, and without
adopting any optimization, there is an evident distinction between loading in client side
vs. server side, leading at least moderate speedups. Thus we answer experimentally to
the first of the evaluation questions we assigned to this chapter.

As a result from our experiment, we decided for the rest of our studies to develop the
loading functionality in the server side, as much as possible.
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4.3 Batch Loading in JanusGraph

JanusGraph provides several configuration options to make ingesting large amounts of
graph data more efficient. As mentioned in Section 2.5.1, we aim to contribute to these
alternatives by developing a bulk/Batch loading process.

JanusGraph provides transactional loading by default, where small amounts of data are
loaded per transaction. Bulk/Batch loading enables us to add large amounts of data to
individual transactions.

In our JanusGraphLab experimental prototype we develop batch loading functionality.
Below are the steps we follow.

1. Set batch-loading=true. We run JanusGraph with beneficial configurations for
bulk loading. Enabling batch loading disables JanusGraph internal consistency
checks in a number of places and disables locking to improve the performance. We
leave other related configurations as default.

2. Before loading edges we upload all of the vertexes with their properties to the graph
(i.e., we create the vertexes with their properties). We also create a map between
the vertex ids used in the dataset (i.e. provided unique identifiers) and the internal
vertex ids assigned by JanusGraph (i.e. vertex.getId()) which are 64 bit long
ids. Keeping such a map is done building upon the insight from previous research
on Apache Titan (i.e. the database product on which JanusGraph is based), that
retrieval of data is better when performed using the database identifiers than
when performed using individual indexed identifiers. In fact this was observed for
random access of different number of vertexes rather than for individual access,
with authors reporting 45 to 59x speedups from accessing items by their identifiers
([Dur17]).

3. The last step adds all the edges using the vertex map. The edge loading process
uses the JanusGraph internal vertex id for retrieval of vertexes from JanusGraph.

From these steps both the vertex creation and edge creation can be performed in batches
of configurable sizes. This is basically achieved by adding more statements to create
items within a transactional scope (i.e. between tx.start() and tx.commit()).

4.4 Microbenchmark

To answer the second evaluation question assigned to this chapter (i.e., What is the effect
of batching when loading graphs of different topologies?), we designed a set of tests and
named them as “Batching without Partitioning”. In this section we focus on the
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influence of batch approaches, and ignore parallelization and partitioning optimizations.

Here we compare the loading performance with vs. without batching strategies. The
core idea of the batch/bulk loading is that for each transaction we load more objects
instead of a single object. In our experiments we only considered batching strategies
for loading all edges. This was first because the size of edges is bigger than the size
of vertexes, secondly because in our observation this process took more time than the
loading of vertexes (which, compared to loading edges which need to re-load the vertexes
to which they will attach the edges, can be done without retrieving items).

In our tests we evaluated the response time of a) batch size = 1, b) batch size = 10, c)
batch size = 100, d) batch size = 1000. For these tests we used the Wiki-RfA dataset
and the Web-Google dataset, as defined in Section 3.7. Batch sizes describe the number
of edges in each loading transaction. Here we want to evaluate the influence of batch
size on the total load time. Batch size of 1 means that the loading task doesn’t use
any batching strategy (baseline). The results we report are the average for 10 repetitions.

Figure 4.2 shows the time taken to load all edges with different batch sizes. Each sub
chart shows the test results from one dataset. It can be seen among the two charts that
batching approaches reduce the loading time significantly. The bigger the batch size, the
faster the loading process is observed to be. However, when batch sizes are increased
exponentially, the loading time does not decrease in the same scale. There seems to be
diminishing returns from the increases in batch sizes. In fact, beyond a certain extent,
the time improvement of performance from increased batch sizes becomes smaller. If the
batch size is very big, it might even increase the overall time of the loading task. From
our test results, the threshold of batch size where the best performance is achieved is 100.

We speculate that a possible explanation for the decreasing gains from batching could
be that more data per transaction deteriorates the use of transaction caches, breaking
temporal and spatial locality that appear on small transactions. A further aspect that
should be considered is that large transactions could also lead to more costly distributed
transactions. This was not studied here, since we did not employ multi-node backends.

Figure 4.3 shows the speedups for loading tasks with batching strategies. The speedups
are calculated based on the time of loading process without the batching strategy(baseline).

Speedup = T1/Tn (4.1)

T1 is the baseline. –Loading without batching.
Tn is the loading time with batch size equals n.
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Figure 4.2: Effect of Batch-Loading the Edges

The effect of batching, which was seen to yield a performance improvement of 10x over
the non-batched approach, is clearly visible from Figure 4.3. Batching improves the
performance by a large margin, but the benefits were not equal over all datasets. For
example, the ‘Web-Google’ dataset shows a reduced speedup. The one interesting thing
to note is that in dataset “Web-Google” the speedup is reduced, when batch size equals
1000, while the same is not evident in Wiki-RFA. From this we can speculate that the
batch size is not the only factor that affects loading performance and that topology
characteristics, affecting in turn transaction cache usage, might also have an impact.
Specifically, Wiki-RFA represents a more connected network than Web-Google, thus
there might be more chances of reusing data already in the transaction cache, reducing
loading costs. Further studies would be needed to verify these possible cases.

4.5 Best Practices

Following the test results in this chapter we define some best practices regarding batching
approaches and the server vs. client side question. These best practices are a direct
answer to the questions mentioned in Section 4.1.
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Figure 4.3: Speedups from Batch-Loading the Edges

1. Observed from the test results we should load graph data from server side because
of its better performance. It is a best practice for developers to write the load logic
directly from server side. Temporal structures, such as the mapping between unique
identifiers and JanusGraph identifiers, can be more useful when managed from server
than from client side. Also, reducing the number of requests can bring performance
gain by lessening the communication and interpretation costs of individual requests. In
our work we aim to offer a graph loading tool that works on server side and supports
developers in their different data loading scenarios.

2. For developers it’s a best choice to load graph data using a batching approach. Com-
pared with the traditional loading process (one object, one transaction), a batch loading
process loads several objects (vertexes and edges) inside a single transaction leading to
decreased transaction overheads. The performance improvement is evident, however it
decreases with large batch sizes. In our study we report a case where by moving from a
batch size of 1 to 100, the loading process moves from 100 minutes to close to 1.5 minutes.

3. The data size is relevant for the performance improvement to be expected from
batching. When the loading time is relatively long, the impact of batch on load-
ing time is even more noticeable. Thus developers that expect substantial loading
times should consider batching as a useful optimization. Our experiments support this
observation for non-distributed cases. Further tests are needed to cover distributed cases.
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4. For different topology of graphs, the efficiency of the batching approach seems to
work the same for the cases when the gains from larger batch sizes do not decrease. For
our two test datasets, loading time is reduced close to linearly.

5. When the gains from larger batch sizes decrease, topology characteristics might have
an impact on the transaction cache use, with more connected topologies performing
better. Further studies are needed to assess the latter assumption.

6. The limitation is, larger batches do not always guarantee better performance. We
could intuitively observe from Figure 4.3(b), when batch size equals 1000, the speedup
is reduced. In summary, finding a suitable batch size is the key to improve load
performance. From the test results we recommend choosing batch size between 100
and 1000, or on the same order of magnitude. Before choosing a batch size, we advice
developers to test how the batch size influences their own data load, perhaps on a sample
load, before proceeding on the complete dataset.

4.6 Summary

In this chapter we evaluated client vs. server side loading, and batched approaches to
the loading process. First we introduced the motivation for our load optimization work
by considering client vs. server side loading. We have found that the different places to
put the load logic can influence the loading performance. In the limited context of our
evaluation we found that server side loading achieves better results. Then we introduced
batch loading implementation details: loading several objects inside a transaction. Next
we described the microbenchmarks that we designed to compare the loading time with
different batch sizes. Next we discussed our test results. Stemming from these we were
able to propose some best practices for application developers to adopt batch loading
approaches for loading tasks with JanusGraph.

The following chapter proposes other microbenchmarks we created. Specially we consider
partitioning and parallel loading.
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5. Case Study: Partitioning and
Parallel Loading

In our studies so far we have considered batching, which consisted on fitting more data
inside a single transaction, in order to reduce the number of transactions employed in the
loading process. In this chapter we consider how to organize the process with parallel
transactions by partitioning the data into parallel chunks and running the loading for
each chunk in separate requests to the backend. Contrasted to the previous experiments,
with this approach we do not seek to reduce the number of transactions but to schedule
them in such a way that some of them can be performed simultaneously, thus possibly
reducing the overall runtime.

This chapter is outlined as follows:

• Evaluation Questions:
We start by recapitulating the evaluation questions that guide this chapter. (Sec-
tion 5.1)

• Partitioning and Parallel Loading:
We describe the basic concepts for our implementation of partitioned and parallel
loading (Section 5.2), discussing too how we included a publisher/subscriber
framework into the data loading process (Section 5.3).

• Microbenchmarks:
We answer the evaluation questions regarding experimental analysis and results.
(Section 5.4)

• Best Practices:
For clarity, we collect the findings of this chapter in a list of best practices.
(Section 5.5
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• Summary:
To conclude we summarize the work in this chapter. (Section 5.6)

5.1 Evaluation Questions
Considering the partitioning and parallel loading steps that we mentioned in Section 5.2,
we recapitulate the evaluation questions which motivate this chapter.

3. What are the opportunities and limitations in parallelizing and distributing the
data loading?

4. What is the influence of partitioning strategies for loading a dataset in parallel
loading?

5. What are the best practices for integrating publisher/subscriber framework into
the data loading process?

5.2 Partitioning and Parallel Loading
As mentioned in (Section 2.5.2), parallelization might accelerate the loading process. To
achieve this it is necessary to determine a strategy to partition the loading task. One
straightforward possibility is to partition the dataset into groups of items that can be
inserted separately.

We have selected several partitioning strategies among those discussed in Section 2.5.2.1.
The partitioning strategies are mainly applied to the edges, since the datasets chosen
in this study have a larger number of edges than vertexes, i.e., the partition strategies
will have more impact on the edges. We focus on partitioning edges, after inserting all
vertexes in a sequential manner. We followed the steps below to load our graph data in
parallel:

1. Add all vertexes with their properties to the stored graph, and create a map. This
map has the mapping information to translate dataset-specific vertex ids to the
JanusGraph-assigned internal vertex ids.

2. Partition all edges into several small edge lists using one partitioning strategy.

3. Insert each of these these edge lists/partitions in parallel. Each edge list loading
process runs as a separate script in a separate JanusGraph client. When one
partition finishes its task, it will send a message acknowledging the completion
of the task. When all partitions are inserted, the received the original loading
request returns. We use Apache Kafka to arrange the cooperation. When we add
these edges, it’s necessary to send each client the map from JanusGraph internal
ids. Currently we serialize and send this map as a Kafka message (since even for
large graphs, this is kept under 1 MB), for future versions of our loader we will
consider to distribute this map using a clustered key value store, like Redis.
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5.3 Partitioning and Parallel Loading, from the Pub-

lisher/Subscriber Perspective
In this section we briefly discuss how we introduce a streaming publish/subscribe
framework (Apache Kafka) into the data loading process.

In order to support parallel loading the first task is to start a set of JanusGraph instances,
all of which are connected to the same clustered backend. For our work, we assign an
environmental variable that acts as a unique identifier of each instance.

Instances play 2 roles in our framework, on the one hand they can take general API
requests (e.g. for searching through the graph), on the other hand they can perform
background collaborative tasks, such as parallel graph loading.

In order to support the dual roles, we divide each JanusGraph into 2 threads, one in
the background who is subscribed to a Kafka topic, waiting to receive messages and
programmed to perform certain background/collaborative actions upon the reception
of given messages. The main thread, in the foreground, is capable of receiving and
processing the REST requests from our microbenchmarks.

In our experiments we start several instances, yet it is only one who takes the initial
loading request and manages the process, as described in Section 5.2 and Section 5.3.

First of all the thread in the foreground of this instance loads the vertexes and then
partitions all edges in smaller edge lists, in order to schedule for the load to happen in
parallel. Then, by having a pre-programmed list of ids, the thread sends the requests
for loading the edges into the separate Kafka topics that correspond to the background
threads of the selected instances (both the topics and the instances are identified by
their environmental variables).

Upon reception of a request/message, the background thread in each of the instances will
insert the edges, according to provided parameters, and return a message acknowledging
the the load task was completed.

On the other side, at the site of the original request, once the main thread has sent all
the messages, this same thread can load one partition (such that parallelism is not lost).
Subsequently this thread waits to collect the acknowledgements from all the instances
(also via a dedicated Kafka topic). To conclude, the main thread returns a message
indicating the success in the loading process.

As we can see from the diagram Figure 5.1, each partition is assigned to a thread. For
the first Partition, it produces all edges, total number of edge partitions to specific
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Figure 5.1: Loading Data with Apache Kafka

topic. And it consumes status information (like “finished”) from other partitions. From
the second partition, they consume small partitioned edge list and load the edges to
JanusGraph. They also produce their own status information to specific topics. The
diagram gives us an overview of loading process with Apache Kafka.

Though our evaluation reports results for a single multi-core processor. The use of Kafka
enables our prototype to scale out to a clustered architecture.

Since we do not perform tests on alternative implementations for including the Publish/-
Subscribe framework into the loading process, this design constitutes our answer to the
last evaluation question in this chapter. We judge our design to be reasonable and to
encompass good practices like allowing for a scalable design, with a single master process
managing the load. Some limitations of our design include the overheads introduced by
network usage in Kafka (specifically considering the large messages for sending the edge
partitions and the maps), the always alive nature of the background thread (with an
approach like server-less computing, this thread could only be created when needed).
Future work could consider improving these limitations through exploring server-less
computing, better network usage (e.g. exploiting RDMA), compression of the messages,
and a distributed setting for sharing the map across the processes.

5.4 Microbenchmarks

The parallel and partitioned loader uploads each partitioned edge list on its own loading
thread. In order to gain clearer insights into the specific benefits from scaling out the
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parallel load, we designed tests for evaluating our parallel and partitioned approaches
without including batching (Section 5.4.1). We also compared loading processes with 4
different partitioning strategies as mentioned in Section 2.5.2.1.

In our tests we evaluate the response time of: a) baseline, load without any partitioning
strategy, b) partition 2, we separate all edges to two smaller edge lists, c) partition 4, we
separate all edges into four edge lists, d) partition 8, we separate all edges to eight small
edge lists. For these tests we used the Wiki-RfA dataset and the Web-Google dataset
(introduced in Section 3.7). And we select 4 basic partitioning strategies: a)VV, b)EE,
c)BE and d)DS.

In what follows we recapitulate the key ideas from the strategies Section 2.5.2.1.

• E/E Strategy
Using a round-robin (RR) algorithm to distribute the large edge list into small
edge lists. This strategy separates many or all outgoing edges from one vertex to
multiple partitions. It spreads the edges completely, balancing the load evenly.

• V/V Strategy
In contrast to the E/E strategy, this one assigns edges from one vertex to a single
partition. This can lead to imbalances. It uses a round robin strategy.

• BE Strategy
It’s a balanced E/E strategy. It balances the amount of edges per partition and
attempts to keep all outgoing edges from one vertex in the same partition.

• DS Strategy
It’s a combination of BE strategies and the 80/20 rules introduced in chapter
2. It extends the BE strategy for handling highly skewed data Section 2.5.2.1,
easing the pressure introduced to the system by the existence of highly connected
vertexes. In this situation, for specific vertexes, a large number of connected edges
may exist (this would create large imbalances for the V/V strategy). The DS
strategy sorts each vertex by the number of edges it contains. Then edges from the
top 20% vertexes (we call it popular vertexes) are assigned to different partitions
using a round-robin strategy. Edges from the rest 80% vertexes are assigned using
the V/V strategy.

5.4.1 Parallel and Partitioning Loading without Batching

In this section we present the results of our studies on the influence of partitioning
and parallel approaches, without considering batch loading. We present the results of
parallel loading with different partition strategies. These studies are our response to the
three evaluation questions that guide this chapter.

Figure 5.2 shows the average duration time through several runs of loading all edges of
a graph dataset. The response times, when considering partitioning are also the average
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from the different strategies. It can be seen from the chart that partitioning and parallel
approaches consistently reduce the loading time. The more partitions are processed
in parallel at the same time, the shorter is the overall loading time. However, the
loading time does not decrease proportionally to the growth in the number of partitions.
When the number of partitions increases to a certain extent, the improvement of time
performance becomes smaller.

Figure 5.3 records speedups for parallel and partitioning loading without any batching.

Speedup = T (baseline)/T (parallelloading) (5.1)

The number of partitions represents the number of work threads. Our choices of number
of the working threads are related to the CPU inside. Multiples of 2 are better for full
usage of the eight core CPU. But, reinstating our observations, even if the the partition
number increases exponentially, the speedups don’t grow with this trend. Although the
parallel processing improves the performance of the loading tasks, the overheads added
due to threading and communication (i.e., more Kafka clients) limit the speedups for
relatively short loading tasks. For this reason, when the loading time is relatively short,
the rate of increase of the speedup is declining. Thus, a careful balance is required for
determining the best number of partitions according to the size of the loading task.

Regarding the evaluation of the specific strategies, we picked up 4 partitioning strategies:
VV, EE, BE, DS. And the baseline is the loading time without partition strategies.

Figure 5.4 records loading time for these partitioning strategies. We can observe from
5.4(a) that loading processes using Strategy VV spent more time than using other strate-
gies. Strategy VV is not balanced and in some situation it can lead to lower performance.

In spite of the small difference for VV, we found that, overall, these basic partitioning
strategies have little impact on loading time. Loading time using different strategies
doesn’t translate to large differences in performance.

However we speculate that for different topologies of graph datasets, and for scaled-out
architectures (where the loading is distributed but coordinated) the influence of these
strategies might be different. We believe that there is no “one-size-fits-all” partitioning
strategy for all scenarios.

The specific speedups from the strategies are presented in Figure 5.5. We can observe once
again that speedups almost doubled with the growing number of partitions. However,
when the loading time is quite short (i.e., for smaller datasets), the impact of partitioning
and parallel loading approach on the performance of the entire loading process becomes
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Figure 5.3: Speedups from Loading Time using Partitioning and Parallel Approaches

smaller, leading to smaller speedups. For the different partitioning strategies, the
conclusion is the same: the distinctions of partitioning strategies have little performance
impact.

5.4.2 A Closer Look into Load Balancing with the Partitioning
Strategies

In this section we provide a bit more insights into the results that we observed, namely,
the lack of distinctive behaviors from the partitioning strategies (apart from VV).

In the literature there is already an awareness that the performance of load balancing
(i.e., the same problem that partitioning strategies need to consider when distributing
the edges), and specially dynamic load balancing, cannot be adequately modeled through
statistical measures alone ([PGDS+12]). Instead, advanced cost models are needed.

Some measures proposed, but deemed insufficient, include the Percent Imbalance Metric
(PIM), λ, as defined below:

λ = (
Lmax

L̄
− 1) ∗ 100% (5.2)

Here Lmax is the maximum load, and L̄ is the average load.
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Figure 5.6: Measures to Compare Load distributions [PGDS+12].

Other more general measures include the statistical moments, as defined below:

σ =

√√√√ 1

n

n∑
i=0

(Li − L̄)2 (5.3)

g1 =

1

n

∑n
i=0(Li − L̄)3

(
1

n

∑n
i=0(Li − L̄)2)(3/2)

(5.4)

g2 =

1

n

∑n
i=0(Li − L̄)4

(
1

n

∑n
i=0(Li − L̄)2)2

− 3 (5.5)

The last two moments are the skewness and kurtosis, respectively.

Figure 5.6 gives some examples of the limitations of these measures ([PGDS+12]), mainly
that they alone are not enough to characterize some cases. For example cases c and d
(should order and locality of partitions be distinguishing factors) might not be considered
to be the same. In spite of these observed limitations for tasks roughly similar to ours,
we judged that these measures were adequate to provide a simple representation of the
distribution. In Table 5.1 and Table 5.2 we show how the edges are partitioned for the
experiments that we report, corresponding to the Wiki-RfA and Google-Web datasets,
respectively.

To interpret these measures, it is necessary to remember the following:
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Table 5.1: Number of Edges per Partition and Statistical Measures for Different Parti-
tioning Strategies, Wiki-RfA

Partition Id VV EE BE DS
2 Partitions

1 101896 99138 99138 99138
2 96379 99137 99137 99137

Absolute Difference 5517 1 1 1
4 Partitions

1 48835 49569 49569 49569
2 45775 49569 49569 49569
3 53061 49569 49569 49569
4 50604 49568 49568 49568

PIM 7.04 0 0 0
Skewness -0.26 -2 -2 -2
Kurtosis -0.02 4 4 4

8 Partitions
1 24945 24785 24785 24785
2 23729 24785 24785 24785
3 25566 24785 24785 24785
4 22952 24784 24784 24784
5 23890 24784 24784 24784
6 22046 24784 24784 24784
7 27495 24784 24784 24784
8 27652 24784 24784 24784

PIM 11.57 0 0 0
Skewness 0.35 0.64 0.64 0.64
Kurtosis -1.07 -2.24 -2.24 -2.24
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Table 5.2: Number of Edges per Partition and Statistical Measures for Different Parti-
tioning Strategies (Google-Web)

Partition Id VV EE BE DS
2 Partitions

1 2552753 2552520 2552520 2552520
2 2552286 2552519 2552519 2552519

Absolute Difference 467 1 1 1
4 Partitions

1 1274053 1276260 1276260 1276260
2 1277953 1276260 1276260 1276260
3 1278700 1276260 1276260 1276260
4 1274333 1276259 1276259 1276259

PIM 0.2 0 0 0
Skewness 0.07 -2 -2 -2
Kurtosis -5.4 4 4 4

8 Partitions
1 638983 638130 638130 638130
2 637731 638130 638130 638130
3 640390 638130 638130 638130
4 637399 638130 638130 638130
5 635070 638130 638130 638130
6 640222 638130 638130 638130
7 638310 638130 638130 638130
8 636934 638129 638129 638129

PIM 0.35 0 0 0
Skewness -0.33 -2.83 -2.83 -2.83
Kurtosis -0.07 8 8 8
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• PIM represents the severity of the load imbalance.

• Regarding skewness, positive skewness means that a relatively low number of
partitions has a higher than average load, negative skew means that a relatively
low number of partitions has a lower than average load. A normal distribution
would have a skew of 0.

• Regarding kurtosis, high values indicate that more of the variance is originated
from outlier values (i.e., partitions with very different numbers than average),
while lower kurtosis values correspond to relatively frequent but modestly-sized
variations.

The first observation that we can make is that, for all the cases that we evaluate, the
performance of EE, BE and DS, at least in terms of the generated partitions (and not
considering the time to calculate the partition itself) is the same. This explains the
similar speedups observed for these strategies. It also highlights that small differences in
behavior, like for DS, are most likely due to measurement errors or overheads, but not
due to algorithmic differences. In general these strategies achieve a better performance,
with a consistent PIM value of zero indicating no imbalance, relatively high kurtosis
signaling that the variance observed is due to a small number of outliers, and finally
negative skewness meaning that some few partitions has a lower number than average.
We expect that with increasing number of partitions, on similar datasets, we should see
more negative skewness, larger kurtosis and a zero PIM value for these strategies. Given
the equivalence of them over the selected datasets, we would suggest that EE would be
the best choice among them, due to it’s simplicity.

VV consistently displays some imbalance. This is most notable when using 2 partitions
and the Wiki-RfA dataset (with an imbalance that accounts for roughly 5% of the largest
partition). For other cases the effect is not that large, and is reduced with increasing
number of partitions. This explains the effect that we saw in the average response time:
with increasing number of partitions, the gap between VV and the other strategies
decreased, and it was more marked for 2 partitions than for any other case.

With this we conclude our study on partitioning without batching. In the next section
we summarize the best practices we can infer from our observations.

5.5 Best Practices

Following our evaluations, we can propose a list of best practices regarding the use
of partitioning and parallel loading. These are the direct answer that we give to the
evaluation questions in this chapter Section 5.1.
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1. Using partitioning and parallel loading approaches bring beneficial improvements
to the response times. Parallelizing the loading processes becomes a consistently good
choice to load graph data into JanusGraph.

2. When we want to load data concurrently by partitioning, it is not always the case
that duplicating the number of partitions in a single processor will provide double times
acceleration. Finding a suitable number of partitions becomes the first step. This should
be adequate, first, to the computing framework. From our observation the number of
working treads between 4 and 8 is a good choice for datasets with comparable sizes to
the datasets tested in this work. The performance impact of the number or working
treads is related to the whole loading time. The shorter the loading time, the less the
performance impact.

3. Basic Partitioning strategies seem to have little impact on time performance. In our
evaluation we find that load imbalance does not play a large role in the resulting runtime.
This, of course, is a consequence of the datasets that we used in our evaluation, which
did not give occasion to large imbalances. Based on this we cannot rule out that some
special strategies will significantly reduce loading time for datasets with very different
characteristics (i.e., a group of outliers with very highly-connected vertexes). We sug-
gest developers to put partitioning strategies on the second position when considering
optimizations, and to use the EE strategy by default. Many alternative partitioning
strategies exist than the ones we studied. There might not be a “one-size-fits-all” strategy,
but at least developers should mind that strategies should come second to finding the
right number of partitions, which depends on the compute resources. It takes time to
find a “perfect” match.

4. Adding a publisher/subscriber framework eases the parallel working process and can
make the complete loading task scale to more compute power. Using such frameworks
help developer to care less about the network interactions. In our prototypical imple-
mentation we show an example of how this could be done. In our evaluation we only
show gains for local executions, distributed cases are possible with our implementations,
but we decided not to test them.

5.6 Summary

This chapter presented our evaluation on the performance of loading using partitioning
and parallel strategies in JanusGraph. Instead of loading sequentially object by object
(edge by edge), this chapter aimed to provide experimental insights on parallelizing
the loading process, such that different processes could load in parallel several data
partitions, using a publisher/subscriber framework (from Apache Kafka).
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The next chapter is concerned with combined optimization alternatives: using batching,
partitioning and parallel loading approaches together. The following chapter will conclude
our evaluations in this study.



6. Case Study: Combination of
Batching, Partitioning and
Parallelizing

In this chapter we survey some opportunities that arise from the combination of batching,
partitioning and parallelizing the loading process. In previous chapters we’ve evaluated
some benefits and limitations of these approaches individually, here we expand the
functionality under consideration, by combining them. We implement a mixed data
loader in our experiment prototype JanusGraphLab. In this data loader we use both
batching and partitioning-parallel loading.

We outline this chapter as follows:

• Evaluation Questions:
We establish the evaluation questions that motivate this chapter. (Section 6.1)

• Microbenchmarks:
We answer the evaluation questions regarding experimental analysis and results.
(Section 6.2)

• Best Practices:
We collect the findings of this chapter in a list of best practices. (Section 6.3)

• Summary:
To conclude we summarize the work in this chapter. (Section 6.4)

6.1 Evaluation Questions
6. In deciding for batching, parallelization, which factors can be determined statically

and which are dependent on changing topologies? For the topology dependent
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factors: what is the tipping point for making other decisions? Can these optimiza-
tions be implemented in an adaptive manner; If so, how to model the optimization
function for real-world cases (where network latency and different replication
strategies could also affect the performance)?

6.2 Microbenchmarks

For our evaluation, we compare the impact of partitioning strategies and parallelization
on loading performance under different batch sizes (10,100,1000). As baseline we use a
local execution with the same batch size. We do not report results for 8 partitions with
Google-Web since we found large variations in the measurements, which we believe were
produced by congestion from sending a large amount of heavy messages with Kafka.

6.2.1 Batch size = 10

Figure 6.1 records the loading time using partitioning strategies when the batch size
equals 10. We can observe that, parallelization reduces the loading time in general, when
compared to the baseline. But when the number of working treads (partitions) increase
to some degree, it stops to reduce the loading time, even increasing it. We can see from
6.1(a) that when the number of partitions grows to 8, the loading time is longer than the
loading time when the partitions were 4. The working principle of parallelization in a
single processor, is that different processes share resources, introducing overheads, from
scheduling and context switching, apart from communication costs. When the loading
time is short enough (as occurs when batch sizes grow, which we proved experimentally
for Wiki-RfA in Chapter 4), more partitions could lead to degraded performance, making
the process more affected by overheads than benefiting from the parallelization.

The small performance gains for VV with two partitions is unexpected, since this could
have had a slightly worse performance due to imbalances. One explanation might be
that transaction commits for distributed transactions could have an effect, thus this
strategy, which keeps edges close to the connected vertexes, could fare better. However
to validate this claim more careful profiles are necessary.

Using Google-Web we also observe that partitioning consistently introduces improvements
over the baseline. For different strategies we observe that each of them has a different
impact on the loading performance. For example 6.1(b) we can observe that the loading
time using VV strategy when the number of partitions equals 2 is the lowest. In fact,
this is one of the most interesting observations from our study here. This case is not
due to imbalances, since, as discussed in Section 5.4.2, the only significant imbalance
appears for VV with the Wiki-RfA dataset. We speculate once again that the difference
observed (specifically between VV and the others) is related to transaction processing
and lock management, but we did not evaluate these aspects. As for the differences
between EE, DS and BE, since they produce the same partitions we can only propose
that these could be explained by system aspects, such as communication overheads.
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(b) Loading Time Using Different Partitioning Strate-
gies When Batch Size Equals 10 (Web-Google)

Figure 6.1: Loading Time Using Different Partitioning Strategies with Batch size = 10
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gies When Batch Size Equals 100 (Web-Google)

Figure 6.2: Loading Time Using Different Partitioning Strategies with Batch Size = 100

To summarize the results for this batch size, we observe that for small batch sizes
partitioning still brings gains and, given the smaller task and the fact that it introduces
distributed commits over more items, it appears to blur a bit the imbalance differences
between VV and the rest of the strategies, making VV a better choice on some cases.

6.2.2 Batch size = 100

Figure 6.2 records the loading time using partitioning strategies and parallelization
approach when batch size equals 100. In all of our previous tests, partitioning and
parallelization had a good impact on the loading performance. But in 6.2(a) we observe
that all results are worst than the baseline. Also for the Wiki-RfA dataset, with the
reduced size of the task, with the increase of partition numbers, the loading time
increases. This strengthens our previous conjecture, that overheads rule out gains when
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(a) Loading Time Using Different Partitioning Strategies
When Batch Size Equals 1000 (Wiki-RfA)
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(b) Loading Time Using Different Partitioning Strate-
gies When Batch Size Equals 1000 (Web-Google)

Figure 6.3: Loading Time Using Different Partitioning Strategies with Batch Size =
1000

the loading time is short. When the general loading time is short enough, more partitions
can lead to degraded performance.

In this case some small differences in the strategies appeared, but since VV did not
behave particularly different and the rest are equal in partitions, we did not consider
these differences to be specially informative of underlying problems and we deem that
they might be due to overheads external to the strategies themselves.

For the Google-Web dataset, we observe that more partitions can still lower the time.
Unfortunately this still does not outperform the baseline.

6.2.3 Batch size = 1000

Figure 6.3 presents the times of partitioning and parallel loading with batch size equals
1000. As expected, from the trend that we report in this chapter, when the loading time
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is much shorter, partitioning and parallelization degrade the performance rather than
improve it. We see this for the Wiki-RfA dataset. Furthermore, the loading performance
remains different with different partitioning strategies, which we speculate is due to
either transaction commit or communication costs and not to imbalances.

Finally, there is a performance gain for Google-Web, when we move the partitioning
strategies from 2 to 4 partitions.

To summarize the results: The combination of partitioning and batching was only better
than the baseline for a batch size of 10, with maximum performance gains of 2x and 1.5x
over all strategies for both datasets in 4 and 8 partitions respectively. Thus, the gains
are sublinear. For other batch sizes, there were no improvements over the baseline. We
believe that the core factor leading to this situation is that the overheads for message
passing dominate the performance when the batch sizes are larger (i.e., when the tasks
to perform are few). This argument is also sustained with the observation that, when not
comparing against the baseline, more partitions consistently improve the performance
for Google-Web, no matter the batch size, as opposed to Wiki-RfA (where the task is
shorter).

Regarding the differences in strategies we report one interesting case: VV for Google-Web
with 2 partitions, which outperforms all cases. From our studies we know that this
gain does not come from a better load balance, instead we speculate that it might be
due to a good reduction in transaction commit overheads for distributed transactions,
produced by the fact that the strategy assigns to a partition with a given vertex all the
edges that connect to it. However further studies are needed to understand better if
this is the case.

For all other cases we observe mixed results regarding the strategies, and there is no
clear sense of one being better than others.

With these observations we conclude the discussion of the experiments in this chapter.
Next we summarize our findings in a series of best practices.

6.3 Best Practices

Following the tests in this chapter we are prepared to define some best practices regarding
the combination of batching, partitioning and parallelization. These best practices are a
direct answer to the questions that spawned our evaluations for this chapter.

1. Batch loading is the best choice for loading graph data into JanusGraph. The
combination of batching, partitioning and parallelization can actually lead to degraded
performance, when the loading time is relative short (as happens with batch sizes
larger than 10). Subtle transaction commit overheads might also be at play, at least in
distinguishing VV from the other strategies, but we did not measure this. In any case,
developers should select batching first, and then consider if adding partitioning can help
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or not. Further studies considering distributed cases could be of interest to see if our
insights need to be revised for that different setting.

2. When combining batching and partitioning, there is no clear winner for a strategy
to pick. Without using batching we can recommend to start with EE, but when using
batching there is no clear starting point and studies would be needed. Nonetheless the
consideration should be with VV against others, with distinctions between EE, BE and
DS only being considered if they produce different partitions.

3. We performed our study using datasets from 2 different domains, in the expectation
to evaluate if the differences in topology (i.e., in how nodes are connected) have an
impact in loading optimizations. In our limited study we found that topologies do not
seem to play the biggest role, and issues like the amount of data to be loaded are more
impactful. An adaptive process (or at least a process that adapts to data characteristics)
might still be needed due to subtle differences in performance when combining the
optimizations. For selecting among them, batch sizes would be the foremost choice,
followed by a careful combination with partitioning, with a partition number fit to the
computing resources and then partitioning strategies adapted to the use case. More
specifically, we advice developers to choose batch loading approaches at first and then
create several performance tests using samples from the dataset. By evaluating the
loading time generated in these performance tests they could made informed choices on
batch sizes, number of partitions and partitioning strategies (also the choice would be
VV against others, unless the others generate different partitions).

6.4 Summary

In this chapter we document the experimental results of a simple microbenchmark to
evaluate the combination of loading optimization alternatives: batching, partitioning and
parallelization, unlike other chapters in this study where we have focused on previous
mentioned optimizations in isolation. With this chapter we conclude our evaluation
on some core issues that programmers must tackle for developing graph applications
with JanusGraph. In the next chapter we wrap-up our study by summarizing the best
practices derived from our findings in Chapter 4, Chapter 5 and Chapter 6. We also
propose future work to advance the research program we conducted in this project.

In the next chapter we conclude our work by summarizing the best practices that we
found, giving threats to validity to our evaluations and proposing future work.
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7. Conclusion and Future Work

The goal for this study was to evaluate several optimizations and design choices for
scalable data loading into graph databases. With the aim to evaluate the optimized
loading alternatives we developed an experimental prototype that can already be used to
load data in a scalable and configurable manner into a graph database. In fact, research
([DJP+18]).

For our implementation we selected an open-source distributed graph database: Janus-
Graph. To carry out our evaluations we developed JanusGraphLab, a prototypical
application that uses JanusGraph as an embedded graph database. Among the opti-
mized application design choices we mainly researched traditional and a batch/bulk
loading process in JanusGraph. Furthermore we considered adding a Provider/Consumer
framework to implement a parallel loading process with small partitioned edge lists.
Lastly, we researched (included as an Appendix), how edge ordering influences the
loading performance. What are the strength and limitations? In order to complete
our evaluations, we use JanusGraphLab to collect experimental confirmation on the
influence of JanusGraph clusters on the loading process. All of our experiments use
real-world datasets with different topologies.

In this chapter we conclude our study, as follows:

• Summary: Best Practices for Loading Scalable Data into Graph Databases
We summarize the best practices that we infer from our experimental studies.
(Section 7.1)

• Threats to Validity
We disclose some threats that may influence the validity of our evaluations. (Sec-
tion 7.2)
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• Concluding Remarks
Briefly explain this research. (Section 7.3)

• Future Work
We complete this project by proposing future work to expand our learning experi-
ence. (Section 7.4)

7.1 Summary: Best Practices for Loading Scalable

Data into Graph Databases

1. Server-side loading is required: Writing the loading logic in server side is much more
efficient and performs better than writing the logic on the client side. Through
this, less requests are sent and temporary data structures can be managed better.
Using groovy scripts to send to JanusGraph is one useful alternative for doing
batch requests to create items, however similar functionality can be achieved using
a native language client.

2. Batch/Bulk loading is the best choice for loading graph data into JanusGraph: In
contrast to loading objects (vertexes and edges) one by one, uploading a group
of objects (vertexes or edges) per transaction saves the overall loading time. The
choice of batch size depends on the size of the dataset. In our evaluation the best
performance improvement is 64.05x faster (100 minutes to close to 1.5 minutes)
when batch size equals 100. Furthermore we suggest that batching should be a
choice considered before others, due to it’s simplicity. However there are limits
to this approach (too big batches might not have the failure tolerance we expect
from database interactions), and performance gain do not grow in proportion to
batch sizes.

3. Parallelization approaches are useful and are the key for scalable loading: For this
use case, we implement concurrent loading processes using the publisher/subscriber
framework Apache Kafka, which makes several uploading threads work on its own
port in parallel. Though this made our prototype scalable, we did not evaluate
in a distributed setting. From our study, the benefits of parallelization grow
with increasing number of partitions. Concurrency can reach an upper limit for
increased loading performance, which is also reasonably related with the amount of
processing resources available. In our evaluation we observed that parallelization,
when not combined with batching, can lead to best speedups of 5.96 when the
partition number equals 8.

4. Usage of Publisher/Subscriber framework can ease the concurrent loading process:
We used a Publisher/Subscriber framework from Apache Kafka to adopt our
parallelization approach for concurrent loading processes. Experimental results
shows the performance improvement from the parallelization approach. During
our experiments we encountered some unknown problems from Apache Kafka.
These need more studies.
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5. It might be possible to decide on one size fits all partitioning strategy without
batching: Apart from VV, which leads to imbalance, specially visible on small
datasets and small number of partitions, there is no clear evidence for partitioning
strategies leading to markedly different performance when not using batching over
the datasets that we evaluated. Therefore we suggest that EE could be used by
default, because of it’s simplicity and the fact that it produces balanced partitions.
However we cannot rule out that some special strategies will significantly reduce
loading time for datasets with very different characteristics (i.e., a group of outliers
with very highly-connected vertexes). We suggest developers to put partitioning
strategies on the second position when considering optimizations, and to use the
EE strategy by default.

6. The combination of optimization alternatives: batching, partitioning, parallelization
should be chosen properly, after loading tests:
We have observed that using more optimization technologies does not necessarily
translate into more performance improvements. On several cases, the combination
can worsen the performance, on others, it can bring benefits.In our evaluation
tests, when batch size equals 1000, more use of partitioning and parallelization
strategies can only reduce the loading efficiency. Taken together, batching becomes
the best optimization factor. It’s easy to use for loading graph data in a sequential
and local manner, but for distributed loading scenarios parallelization is needed
and then it has to be combined in the best way possible with batching. In our
tests we haven’t covered a distributed scenario. We will describe it in the future
work section. Apart from selecting batch sizes, parallelization always depends on
partitioning strategies.
The combination of the best partitioning strategy and batch sizes is challenging and
requires consideration from the developer. In our studies we did not find a clear
winner, and we also find that load imbalance is not the single factor determining
performance (in fact, EE, BE, DS all produce the same number of partitions in our
study). We speculate that communication and transaction commit costs might be
a part of the performance determining factors which we saw made the strategies
lead to different results, specifically VV vs. the others. Therefore we strongly
recommend that a best practice is to test different strategies and batch sizes over
small data samples in order to determine the best configuration. A careful look
at the partition sizes, to determine if the strategies lead to the same results is
useful in this step. Once the best configuration is found, it could be used for the
complete dataset.

7.2 Threats to Validity
In this section we disclose some items that we believe may threaten the validity of our
evaluations.

• External threats:
Datasets, technologies, hardware, configuration and implementation choices might
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have affected in some ways the capacity of our results to be replicated in other
cases. The loading time of graph data we recorded in our experiments is also
related to the network status to some extent, specifically with port connections
to the backends and processes. To limit this threat we report tests for extensive
repetitions. Future studies should also consider other datasets, and specifically
more synthetic datasets such as to create challenges that evaluate the effect of
partitioning strategies.

• High-level optimization only:
Our optimization approaches are basically inspired from application-level aspects.
From the point of view of developers, we propose some effective strategies for opti-
mization. We haven’t considered much about the low-level implementation details,
such as choices of optimized in-memory data structures, memory management
or SIMD acceleration. We ignore impact from low-level factors, such as network
speed, CPU, virtualization overheads and I/O performance.

• Real-world dataset only:
Researchers usually provide experiments both using real-world datasets and specific
system-generated datasets, such as LDBC[ldbb]. Real world data is more authentic,
but sometimes system-generated datasets are needed to verify the effectiveness of
certain features. As mentioned already in this list, arguably synthetic datasets
might be more useful for the optimization choices we study.

• Limitation in product versions:
The version of JanusGraph we used in our experiments may not be representative
of the database in general. Some functionality may still be improved by the
community. Furthermore, we used Version 2.1.11 of Cassandra, which doesn’t
include some newest storage improvement solutions.

• Problem caused by using Apache Kafka: In our studies we found some cases
when Apache Kafka would randomly stay in an infinite loop, or take a long time
to pass messages. We made sure that in the tests that we report, this phenomena
did not occur.

7.3 Concluding Remarks

Usually loading the data is only considered as a first step before analysis can proceed. In
this thesis we considered that loading in itself was an interesting area for analysis, and
as a result we focused our work in considering several choices available to developers for
improving the loading performance of graph database applications. Instead of comparing
with optimization alternatives for different graph databases (such as Neo4j etc.), we
narrowed down our scope to a specific graph database: JanusGraph and aimed to
study the impact of optimizations.
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In order to study these alternatives, we propose a series of research questions about the
process of optimized graph data loading. While this may be a very limited focus and
few people have studied it, the graph data loading process is considered a performance
bottleneck for interacting with graph databases, so we think that improving this process
can have a significant impact on the performance of applications. There are mainly three
optimization alternatives we researched: batching, Partitioning, and parallelization.

To address the evaluation questions, we created JanusGraphLab, a prototype of
a graph database application that uses JanusGraph as an embedded database and
supports Elastic-search and Cassandra as its indexing and storage backends. Within
JanusGraphLab, we implemented different functionalities to execute carefully designed
microbenchmarks to answer our evaluation questions.

The findings of our experiments using these microbenchmarks are included in Chapter 4,
Chapter 5 and Chapter 6. From these findings we concluded a set of best practices for
developers, summarized in Section 7.1.

The results of our work may have practical direct relevance to the application developers
who use JanusGraph. The recommended best practices for other graph databases
may not be directly transferred. However, our proposed core evaluation questions and
microbenchmarks can be an effective study approach to determine best practices for
other graph databases.

Regarding our experiment results, we have found that our optimization approaches
can reduce loading time from hours to minutes. Our study provides developers some
suggestions for improving the performance of the loading process, we also offer a tool
developed for JanusGraph, which seems to be the first of its kind in enabling scalable
data loading with configurable options for speeding up the process and for having ad-hoc
schemas. We seek to make our tool publicly available.

In some futuristic movies the loading of large and complex data is portrayed as an
instantaneous and effortless task. With our current study and the first version of our
tool we aim to contribute towards making such visions a reality for graph databases,
helping the end users.

7.4 Future Work

Ours was an early study into graph data loading, carried out within the limited time-
frame of a Thesis project. Future work could cover several areas that we consider are
interesting:
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• Evaluation of further functionality and configuration:
In our experiments we only considered the basic data loading function. We suggest
that in future work, research on data loading in more complex scenarios, such as
data loading in distributed systems or loading datasets with tightly controlled
conditions. Other desirable tasks in the microbenchmarks may be the data
integration process and to combine loading with query processing. In addition,
our research significantly lacks aspects of database configuration (such as the
use of database caching in transactions). In fact, during the time of this project
we also performed evaluations on the impact of configuration parameters like
late materialization and database cache usage, on the loading process. Since
exploring this configuration space did produce performance gains comparable to
the optimizations we cover in this work, we left these tasks for future work.

• Microbenchmarking other databases:
JanusGraphLab can be extended to be a more platform-agnostic prototype. In this
way, it can be used for other graph databases to find application-level optimizations.

• Research on loading scenarios with more nodes/clusters: In our mi-
crobenchmarks we researched only basic loading processes on a single machine. In
future work we could consider more complicated loading scenarios, such as data
loading on multi-clusters/nodes, or with implicit entities in the source data. We
can take more factors into consideration to find other optimization alternatives.

• Further research on partitioning strategies:
Our studies on partitioning strategies might’ve been limited in the end by our
choice of datasets. We believe that using synthetically generated data we might be
able to understand better the features of the strategies. In addition, more profiling
for understanding the sources for performance difference between strategies when
using batching could be considered. A study could consider if edge cuts are
correlated or not to performance differences. Finally, other strategies could be
studied. Among them stream orders and parametrized heuristics.

• Research on low-level optimization using modern hardware:
In the future work it might be worthy to research hardware-level optimization
alternatives with modern hardware, for example the use of GPUs. We specifically
envision to use GPUs to aid in the creation of batches, carrying out the mapping
between ids.



A. The Impact of Edge-Ordering on
Load Times with JanusGraph

In this section we study if the sorting of edges, or their arrival order, has an impact on
the overall performance. We believed that this could be the case due to how memory is
managed. Specifically, since in the internals of most graph databases (incl. JanusGraph),
edges are stored as part of the vertexes (supporting the so-called index-free adjacency),
it might be possible that their arrival order might have an influence on the vertexes that
are kept in the cache, and, as a consequence we speculated that certain orders might
have a better cache usage and thus be faster than others. In this chapter we include
some of our studies regarding this aspect.

A.1 Edge Loading with Different Sort Strategies

In this section we study how edge order might influence the edge loading performance.
We begin by introducing several sort strategies we researched, next we present our test
results.

A.1.0.1 Sort Strategies

Basic Sort Strategies

We tested response time for loading wiki-RfA data using different basic sort strategies.
We also created comparative test (load without sort strategies) and call it “Baseline”.
Now we list some very basic sort strategies that we used in the tests here:

• Random: The entire edge list was shuffled randomly.

• SrcName: The edge list was alphabetically sorted by source name of the edge.
This meant that all edges with a given vertex SrcName will be loaded sequentially.
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Baseline Random SrcName
SrcName+Alt
Tgt Name

Reverse
SrcName

Reverse SrcName
+Alt Tgt Name

Average Load
Time (ms)

508165.74 498857.28 498119 496592 498152.76 499681.04

Speedups 1.02 1.02 1.02 1.02 1.02

Table A.1: Average Response Time for Loading Edge Data with Different Sorts (Wiki-
RfA)
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Figure A.1: Average Response Time for Loading Edge Data with Different Sorts (Wiki-
RfA)

• SrcName+Alt Tgt Name: The edge list was alphabetically sorted by source
name of the edge. And then sorted by target name of the edge. Through this, we
speculated that some cache efficiency might be achieved for the non-source edges.

• Reverse SrcName: The edge list was alphabetically sorted by source name of
the edge and reversed. This was done for comparing with the second strategy.

• Reverse SrcName+Alt Tgt Name: The edge list was alphabetically sorted
by source name of the edge. And sorted by target name of the edge. At last the
edge list is reversed. This was done for comparing with the third strategy.

Table A.1 shows the experiment results. We repeated load process with each sort strate-
gies 10 times to ensure the accuracy of experimental results. Clearly we can observe from
Figure A.1 that, there is no significant improvement of load performance using differ-
ent sorts. The speedup of using different sort strategies compared with“Baseline” is 1.02x.

Furthermore we considered that the basic sort strategies are not targeted and not specific
for graph usage and we did some work on a slightly more complicated fair-sorting method.

To evaluate the possible impact of sorts on a cache we developed an analytical model.
Next we will introduce the LRU Cache Model below, which we created to evaluate
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Figure A.2: LRU Cache Model Used to Estimate the Cost of A Sorted Load

the sorting of edges.

LRU Cache Model

Beyond the basic sort strategies, our goal is to find a model to evaluate analytically a
sort strategy in order to determine if it could improve the performance, and then to
assess experimentally if the model is valid. Normally the data loading process works
under limited main memory. Since memory is generally not large enough to hold the
whole data, approaches like LRU caching are used to manage the memory. For our
model on sorts, we proposed a cost model to simulate the usage of the cache. Following
an LRU cache model (See Figure A.2) we calculated the costs of a sorted load by simply
counting the number of cache misses.

Surprisingly, we have found that the response time used for loading the edges with
different sorts did not match the predictions for LRU cache models with different cache
sizes and configurations; thus we concluded that the LRU model was not a proper model
to explain the observations when using JanusGraph.

Future work using the same database could repeat these studies, perhaps in more
memory restricted environments and with more profiling information. However, based
on the simple results that we report, we do not believe that edge arrival order has an
influence on the overall performance when using JanusGraph. Instead we believe, and
show experimentally, that other factors (such as batching and partitioning) might play
larger roles in determining the run time. The same statements cannot be mapped by
default to other databases, thus we suggest that tests like the ones described in this
chapter could be useful.
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