
Otto-von-Guericke-Universität Magdeburg

Fakultät für Informatik
Institut für Technische und Betriebliche Informationssysteme

Master Thesis

Modeling and Implementation of Dependent

Software Product Lines

Author:

Tao Wei

2nd June 2009

Advisor:

Prof. Dr. rer. nat. habil. Gunter Saake,
Dipl.-Inform. Marko Rosenmüller,
Dipl.-Inform. Norbert Siegmund

Universität Magdeburg
Fakultät für Informatik

Postfach 4120, D–39016 Magdeburg
Germany

Wei, Tao:
Modeling and Implementation of Dependent
Software Product Lines
Masterarbeit Otto-von-Guericke-Universität
Magdeburg, 2009.

i

Acknowledgements

I would like to thank my master thesis advisors for their support and assistance. I
would like to thank Prof. Dr. Gunter Saake for his support and confidence in me and
allowing me to work on master thesis in his group Institut für Technische und Betriebliche
Informationssysteme. This paper is completed under the guidance of Marko Rosenmüller
and Norbert Siegmund. I would like to thank Marko Rosenmüller, Norbert Siegmund
and Martin Kuhlemann for their helpful reviews and suggestions. I would like especially
thank Marko Rosenmüller and Norbert Siegmund, they were specifically assigned to me
for the thesis and without our lengthy discussions about various related topics, this
thesis would not have been possible. Marko Rosenmüller gave me many suggestions
on the topic of dependent Software Product Lines and tried to answer my innumerable
questions orally or through emails. I would like also to thank my friend Luo Lei, Cao
Shuai, and Syed Saif ur Rahman who gave me some good suggestions for this paper.
Finally I would like to thank my family because of whom this education is made possible
for me, and my girlfriend Ying, when I was in need of help, she always encourage me.

ii

Contents

Contents ii

List of Figures iv

List of Tables vi

List of Abbreviations vii

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Structure of the Thesis . 4

2 Background 5

2.1 Software Product Line Engineering . 5

2.1.1 Feature-Oriented Domain Analysis 8

2.1.2 Staged Configuration Using Feature Models 10

2.1.3 Feature-Oriented Programing . 12

2.2 Dependent Software Product Lines . 15

2.3 Sensor Networks . 18

2.4 Summary . 21

3 Modeling Dependent Software Product Lines 23

3.1 Case Study: Sensor Network Product Line 23

3.1.1 Product Lines for a Sensor Network 24

3.1.2 Integrating Multiple Product Lines 30

3.2 Using FM-References for Modeling Dependent Product Lines 31

CONTENTS iii

3.3 Modeling Software Product Line Instances 34

3.4 Discussion . 38

4 Implementation 39

4.1 Sensor Networks . 39

4.1.1 Dependent Software Product Lines 40

4.1.2 Implementation of Communication Product Line 41

4.1.3 Implementation of Dependent Software Product Lines 43

4.2 Configuring Dependent Software Product Lines 48

4.3 Summary . 49

5 Evaluation 50

5.1 Evaluation of Modeling Approaches . 50

5.2 Evaluation of Implementation Approaches 53

6 Conclusion 55

6.1 Further Work . 56

Bibliography 58

Appendix 61

iv

List of Figures

1.1 Sensor Network . 2

2.1 Software development based on Domain Engineering [CE00] 6

2.2 Structure of the SEI Framework for Product Line Practice [CE00] 7

2.3 Types of feature realtions . 8

2.4 Example of feature diagram . 9

2.5 Cardinality-Based feature diagram . 10

2.6 Staged Configuration by eliminating features 11

2.7 Unfolding a feature diagram reference [CHE04] 12

2.8 Implementing refinements by mixin inheritance [BSR04] 14

2.9 Expression and refinement chains . 15

2.10 A Sensor Network SPL using a Communication SPL and Client Applica-

tion SPL . 16

2.11 Dependent SPLs . 17

2.12 A Sensor Network SPL using different instances of Communication SPL

and Client Application SPL . 17

2.13 Sensor Network Node Architecture [SMZ07] 19

2.14 Three types of messages of SPIN routing protocol 20

3.1 Feature Diagram for Sensor Network Nodes 24

3.2 Feature Diagram for Client Applications 26

3.3 Feature Diagram for Communication . 28

3.4 Feature diagram for FAME-DBMS [RSS+08] 29

3.5 SPL for a Sensor Network . 30

3.6 Dependent Software Product Lines . 31

LIST OF FIGURES v

3.7 Using FM-References to model Dependencies between SensorNetwork

Product Line and the underlying SensorNetworkNode, FAME-DBMS, and

Communication Product Lines, adopt from [CHE04] 32

3.8 Using FM-References to model Dependencies between SensorNetwork

Product Line and the underlying ClientApplication and Communication

Product Lines, adopt from [CHE04] . 33

3.9 Dependencies between SPLs and instances [RSKuR08] 35

4.1 Dependencies between different Product Lines 41

4.2 Class Diagrams of Communication Product Line 42

4.3 Classes and Refinements (Layers) . 43

4.4 The Equation File for Communication Product Line 43

4.5 Unfolding Feature Model References . 45

4.6 Staged Configuration of Communication Product Line by removing Fea-

ture Compression . 46

vi

List of Tables

3.1 Domain Constraints . 37

3.2 Instance Constraints . 37

3.3 Conditional Dependencies . 38

5.1 Comparison of Feature Model References and Modeling SPL Instances . . 52

vii

List of Abbreviations

FODA Feature-Oriented Domain Analysis

FOP Feature-Oriented Programing

OOP Object-Oriented Programing

SPL Software Product Line

SPLE Software Product Line Engineering

CM Configuration Management

DSL Domain Specific Languages

PDA Personal Digital Assistants

UML Unified Modeling Language

AHEAD Algebraic Hierarchical Equations for Application Design

FC++ Feature-Oriented C++

SIG Special Interest Group

Wi-Fi Wireless Fidelity

SPIN Sensor Protocol for Information via Negotiation

MCIC Multi-node Cooperative Image Compression

viii

TCP/IP Transmission Control Protocol/Internet Protocol

UDP User Datagram Protocol

AES Advanced Encryption Standard

DES Data Encryption Standard

DSA Digital Signature Algorithm

RSA Rivest Shamir Adleman

ECC Elliptic Curves Cryptography

LRU Least Recently Used

LFU Least Frequently Used

FOSA Feature-Oriented Software Development

OCL Object Constraint Language

PLM Product Line Model

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Motivation

Car Product Lines are used to produce cars which have different functionalities for

different customers. For example, the transmission of a car can be manual or automatic.

If a customer needs the functionality of manual, we can choose this functionality, if a

customer needs the functionality of automatic, then we can choose this functionality.

Similarly, Software Product Lines (SPLs) are used to develop software which can be

customized to different use cases [CE00]. A member of SPL is built from a common set

of reusable assets, and to satisfy special requirement of a customer. Software Product

Line Engineering (SPLE) has to be explained in two parallel parts: Domain Engineering

and Application Engineering. Domain Engineering consists of Domain Analysis, Domain

Design and Domain Implementation [PBvdL05]. The first step of Domain Engineering is

Domain Analysis, which means we will analyze all possible features and create a model

of a specific domain or real system. The common and variable properties of product

families can be recognized as features, e.g., transmission, manual and automatic are

features of a car. The method of Feature-Oriented Domain Analysis (FODA) is explained

by Czarnecki et al. in Generative Programming [CE00]. Feature modeling is proposed

as part of the FODA and consists of several feature diagrams. Feature modeling is well

suited for capturing the commonalities and variability in program families. New user

requirements will be discovered in Application Engineering and we have to extend our

feature diagrams according to the new user requirements.

As an explanation for the domain, we will use a case study sensor network sce-

nario. Figure 1.1 depicts a simple sensor network which includes sensor nodes, PDA

and Laptop. The type of sensor nodes can be divided into sensor node, data storage

node and access node. In the Domain Analysis, sensor network node can be considered

as a product line, which develops programs for different types of network nodes. The

client application can also be considered as a product line, which develops programs for

2 1.1. Motivation

different hardware interfacing with sensor network nodes, e.g., Laptop or PDA. We can

use different protocols to implement the communication between sensor nodes and client

applications, e.g., Bluetooth, Wi-Fi, etc. That is why we need Domain Analysis, and

use feature models to capture all possible commonalities and variability. With respect of

assets reuse, communication has to be considered as a product line to provide different

communication functionalities.

Bluetooth

Bluetooth

Sensor Network

Sensor Node

Access Node

Figure 1.1: Sensor Network

We can derive a concrete software program using configuration. Variants are created

in order to support different sets of requirements in program families. In the context

of variant configuration, each product can be seen as an individual system variant. A

feature-based configuration tool allows us to load the feature model of a program family

and specify a system variant by selecting needed features from the feature model [CW04].

Sometimes multiple product lines are integrated into one product line, which needs func-

tionalities or components from those involving SPLs. In this case, we can have imagi-

nation that between the constituent SPLs will have many dependencies and constraints.

If we want to configure one SPL which needs functionalities provided by other prod-

uct lines, we have to consider about constraints and dependencies between them. For

example, if the encryption method between sensor node and a client application like

PDA is DES, feature DES has to be selected in communication product line. So product

lines for sensor network nodes and client applications may depend on the communication

product line. That means, in such compositions of SPLs, all involved product lines may

be dependent on each other. When creating products from these dependent product

lines all created products (SPL instances) have to be compatible. So the configuration

of each concrete SPL instance has to be defined [RSKuR08]. Furthermore, product lines

Chapter 1. Introduction 3

may have dependencies and constraints with other SPL instances. We have to use the

feature modeling and new approaches of modeling diagrams, e.g., staged configuration,

to describe SPL instances and modeling dependencies between them.

Development of similar programs using SPLs provides a high degree of reuse. Some-

times, an SPL may need functionalities provided by other product lines, so there are

constraints and dependencies between involved product lines. In Domain Analysis we

have to find out the constraints and dependencies between dependent product lines. Fea-

ture diagrams are used to capture features in a problem domain (e.g., sensor network).

Feature model references can be used to describe dependencies between different product

lines. However, using feature model references we can only describe dependencies and

constraints on a domain model level. An SPL may depend on a concrete product of other

product line (SPL instance), so we will meet some problems when using feature model

references to describe dependencies and constraints between them. In this thesis we will

explore new approaches which are based on the feature diagrams to clearly describe the

constraints and dependencies between dependent SPLs.

1.2 Goals

In this thesis, we first review the SPLE and FODA. In FODA, feature diagram can be

used for modeling commonalities and variability of the problem domain. However, usu-

ally multiple small SPLs have to be integrated into one larger SPL. We will use a sensor

network scenario to describe the dependencies and constraints between dependent SPLs.

For example, an SPL for sensor node software should be integrated into a larger SPL

for a whole sensor network. In order to provide the functionality of communication in

sensor networks, a Communication product line has to be considered in this thesis, and

all possible features of Communication product line will be analyzed. The Communica-

tion product line can be integrated into an SPL for sensor node software to fulfill the

functionality of communication between sensor nodes. In order to avoid manual configu-

ration of each of the smaller SPL instances, the configuration of the smaller SPLs should

depend on the configuration of surrounding larger SPLs.

• Development and analysis of approaches for composition of multiple SPLs.

• Analysis of possible features of a communication SPL that is used for evaluation

of the approach.

• Development of small SPLs to simulate or implement a sensor network for evalua-

tion.

4 1.3. Structure of the Thesis

• Evaluation of different composition scenarios considering multiple instances of the

same SPL.

We will use Staged Configuration and Stepwise Refinement to analyze the Sensor Net-

work Scenario. We will find out the constraints between dependent SPLs and describe

that using FM-References cannot clearly describe the constraints between dependent

SPLs, and then we will present an extension of current feature diagrams to describe the

dependencies and constraints between concrete SPL instances. We will describe depen-

dencies between all SPLs and also between concrete SPL instances of sensor networks.

1.3 Structure of the Thesis

Chapter 2 This chapter is about the background of SPLE. We review the Feature-

Oriented Domain Analysis (FODA), Feature-Oriented Programming (FOP), and Staged

Configuration using Feature Modeling. This section is also about the background of

Dependent Software Product Lines and Sensor Networks. We will review the communi-

cation protocol, e.g., Bluetooth.

Chapter 3 In this chapter we will bring a Sensor Network scenario, and modeling

the feature diagrams for this scenario. The references and constraints between different

product lines will be explained in this chapter.

Chapter 4 This chapter is focus on the Implementation of the sensor network scenario.

We will use the Ehtenet to realize the communications between sensor network nodes and

client applications. A real sensor network will be implemented for the further evaluation.

Chapter 5 This chapter is about evaluation which based on the existing FAME-DBMS

SPL and additionally smaller SPLs. Dependencies between SPL instances have to be

analyzed and represented in a model, and different composition scenarios have to be

evaluated.

Chapter 6 we will present the conclusions of this thesis and discuss the further Work

about the dependent Software Product Lines.

Chapter 2. Background 5

Chapter 2

Background

In this chapter we explore various topics required as background for understanding

Software Product Line Engineering and dependent Software Product Lines. We review

Feature-Oriented Domain Analysis (FODA) and Feature-Oriented Programming (FOP).

We explore the staged configuration using feature models. Finally we provide foundations

of Sensor Networks and communication protocols, e.g., Bluetooth.

2.1 Software Product Line Engineering

In [PBvdL05] Klaus Pohl et al. define the term software product line engineering

like: “Software product line engineering is a paradigm to develop software applications

(software-intensive systems and software products) using platforms and mass customiza-

tion.” They have defined that the mass customization is the large-scale production of

goods tailored to individual customers’ needs. This definition comes from a car product

line, at which different customers may need different cars. The same as the car pro-

duction, SPL is used for development of different software products. An SPL is a set

of software systems, which share common features, and management of specific need

to meet a particular task. Software Engineering Institute Carnegie Mellon University

defines SPL as: “A software product line (SPL) is a set of software-intensive systems

that share a common, managed set of features satisfying the specific needs of a particular

market segment or mission and that are developed from a common set of core assets in

a prescribed way.”

Domain Engineering and Application Engineering are two parallel parts of SPLE. If

we want to build a new system, we can use Domain Engineering to collect, organize,

and store past experiences in developing of systems in a particular domain in form

of reusable assets, e.g., in our sensor network scenario, communication product line is

useful for the communication among sensor nodes, so we consider it as a SPL, and if

we want to develop a concrete sensor network system, we can use it as reusable asset.

6 2.1. Software Product Line Engineering

Domain Engineering has three parts: Domain Analysis, Domain Design, and Domain

Implementation. Application Engineering reuses the results of Domain Engineering.

Application Engineering is the process of producing concrete systems using the reusable

assets developed during Domain Engineering [CE00]. We will use a figure to describe

the relationship between Domain Engineering and Application Engineering.

Domain Engineering

Application Engineering

Requirement
Analysis

Product
Configuration

Integration and
Test

Domain Analysis Domain Design Domain
Implementation

Domain
Knowledge

Domain
Model

System Family
Architecture

Customer
Needs

New
Requirements

Product
Configuration

Custom
Design

Custom
Develop-

ment

Product

New
Requirments Domain-

specific
languages
Components
Generators

Figure 2.1: Software development based on Domain Engineering [CE00]

Domain Engineering and Application Engineering are two parallel processes in soft-

ware development. Domain Analysis is the first step of Domain Engineering. Czarnecki

et al. describe that Domain Analysis is a process, which analyze and create a model of

a special domain [CE00]. We have to analyze all possible features in a special domain,

e.g., sensor networks. Then we have to create a model for sensor network using feature

diagrams. Generally one feature model may consist of multiple feature diagrams. One

feature diagram represents an SPL. In our sensor network scenario, we also have more

than one feature diagrams, e.g., communication SPL, sensor network SPL and so on. The

domain model has to describe the common and variable properties of all systems of the

domain, and describe the dependencies among these properties. In Domain Engineering

all possibilities have to be considered, but customer may have new requirement for the

Chapter 2. Background 7

system. In this case, we don’t have the assets, if a customer needs a new functionality,

then we have to take the new requirement to the Domain Engineering, and modify our

feature diagrams. For example, in our sensor network, if a customer needs the function-

ality of encryption, and we don’t have the feature of encryption in our feature diagrams,

so we have to modify our feature diagrams in this case. Figure 2.1 shows relationships

between Domain Engineering and Application Engineering.

Domain Engineering Application Engineering

Reusable Asset
Development Product Line

Development

Product
Development

Figure 2.2: Structure of the SEI Framework for Product Line Practice [CE00]

After we have a review of the Domain Engineering, let us have a review of the Ap-

plication Engineering, Application Engineering is the process of building systems, which

based on the results of Domain Engineering. On the requirement analysis of a new kind

of concrete application, we use existing domain model and customer requirements. We

have to describe customer needs using features, which represent the reusable require-

ments from the domain model. Of course if the customer requirements are not found in

the domain model, then it requires for the new custom development. The new require-

ments should also be fed back to Domain Engineering, we use this step to refine and

extend the reusable assets [CE00]. Domain Engineering is used for reusable asset devel-

opment, and Application Engineering is used for product development. The process of

Domain Engineering and Application Engineering are useful for the SPL development,

as shown in Figure 2.2.

In Domain Engineering, domain is as the real world and a set of systems. It encapsu-

lates the knowledge of a problem area, such as in a bank accounting domain, it includes

concepts of accounts, customers, withdraws and deposits. In the Unified Modeling Lan-

guage (UML), domain means an area of knowledge or activity characterized by a set of

concepts and terminology understood by practitioners in that area.

8 2.1. Software Product Line Engineering

2.1.1 Feature-Oriented Domain Analysis

Feature-Oriented Domain Analysis (FODA) is a Domain Analysis method which focuses

on the features of domain, e.g., sensor networks. We will explain FODA in two parts:

definition of domain analysis which is the first step of Domain Engineering, and explana-

tion of the feature-oriented part of FODA. In Domain Analysis we will identify and define

the domain and the scope of the domain, then we will create the domain model which

describes the common and variable properties of all systems of the domain, finally, we

will define and find out the dependencies and constraints between these properties. We

have made a brief review of Domain Analysis in the section of SPLE, Domain Analysis

contains the finding of common and variable features of all systems, which belong to the

domain. According to FODA, a feature means an aspect of a system, and is visible to the

end-user of the systems of the domain. For example, transmission of a car is a feature of

the domain, automatic and manual are two sub-features of feature transmission, which

are visible to end-users [CE00].

In FODA, feature model consists of feature diagrams, feature definitions, compo-

sition rules and rationale for features. Feature diagram describes the decomposition

of features into sub-features. For example, automatic and manual are sub-features of

feature transmission. For each sub-feature it can be defined as mandatory, or, alterna-

tive, and optional. Feature definitions describe all features of all systems of the domain

and their types. We have two types of composition rules at FODA: requires rules and

mutually-exclusive-with rules [CE00]. The definition of requires rules is that one feature

requires another feature as condition. The definition of mutually-exclusive-with rules

is that one feature cannot exist if the other feature exists. For example, the feature

of automatic is mutually exclusive with the feature of manual. Rationales for features

describe the reason for choosing a feature or not. In a feature diagram, we can add the

rationales for feature as annotations to the features [CE00].

Optional Mandatory Alternative Or

Figure 2.3: Types of feature realtions

Context analysis and domain modeling are two phases of analysis process at FODA.

Context analysis defines the context of the domain, e.g., the scoping of all systems of

the domain, requires between features, the constraints and dependencies. In the phase

of domain modeling, a domain model should be produced. Domain modeling consists of

Chapter 2. Background 9

information analysis, feature analysis and operational analysis. In the step of information

analysis, we will create of a information model, which consists of the domain entities and

the relationship between them. In the step of feature analysis, we will create a feature

model, which will be described below. In the step of operational analysis, we will create

an operational model which describes the data flow and control in the application domain

and the relationships between the objects and the features of the feature model [CE00].

Feature Models Czarnecki et al. described feature models in Generative Program-

ming [CE00]. Feature models will be used in the section of staged configuration, so we

make a brief review of feature models in this section. Firstly, a feature diagram is a tree

with the root and its descendent nodes. The root represents a concept, e.g., a concrete

sensor network system. Its descendent nodes are features which belong to this software

system. Features in FODA can be mandatory, optional, or, and alternative. As shown

in Figure 2.3.

The root of a feature diagram represents a concept, so in Figure 2.4, we refer to C

as the concept node. The remaining nodes represent features in feature diagram. A

mandatory feature must be selected if its parent is selected in a software system. For

example, if we want to implement the functionality of C, feature f1 must be selected,

because it is mandatory. The optional feature means that, in the description of a concept,

it may be included or not, it is not necessary, it depends on the use case. If the user

needs the functionality, then select it. In this feature diagram, f2, f3 and f6 are optional

features. Alternative features mean that, among all of the descendent features only one

feature can be selected. For example, f1 is mandatory, so it must be selected, f4 and f5

are sub-features of feature f1, so one feature of f4 and f5 must be selected. Or features

mean that, one or more than one features can be selected, if we want to configure an

SPL or a software system. In Figure 2.4, f3 is an optional feature of C, f7, f8, f9 are

sub-features of f3, so, if f3 is selected, one or more than one features of f7, f8 and f9 must

be selected.

C

f1

f4

f2

f5 f6 f9f8f7

f3

Figure 2.4: Example of feature diagram

10 2.1. Software Product Line Engineering

Figure 2.5 shows the cardinality-based feature modeling, this feature diagram de-

scribes that at least two and at most four features have to be selected when we want

to implement the functionality of the software system. The cardinality-based feature

modeling is useful for staged configuration, which will be explained in the next section.

C

f1 f3f2 f4

<2-4>

Figure 2.5: Cardinality-Based feature diagram

FODA divides all features in three types according to their binding time: compile-

time features, activation-time features and runtime features. Compile-time features are

bound to an application at compile time. Activation-time features are bound each time

the application starts, but activation-time features are stable during execution time.

Runtime features are bound dynamically during the execution of applications. The

process of FODA consists of two phases: context analysis and domain modeling. The

scoping of the domain and the constraints are defined in the context analysis. We have

to produce a feature model in domain modeling after domain analysis [CE00].

2.1.2 Staged Configuration Using Feature Models

Generally, the relationship between feature models and configuration is just the same as

the relationship between the class and the instance in the Object-Oriented programming

(OOP) [CE00]. In this section we will describe staged configuration based on feature

models. The process of specifying a family member can be performed in stages, where

each stage eliminates some configuration choices, as shown in Figure 2.6. This process

can be referred as staged configuration. Each stage takes a feature model, and produces a

specialized feature model. We can obtain various systems by selecting the desired features

from feature models. Then we will describe the relationship between specialization and

configuration, specialization is useful if configuration needs to be performed in stages.

Czarnecki et al. define the definition of staged configuration in [CHE04] as: “The

process of specifying a family member may also be performed in stages, where each stage

eliminates some configuration choices. We refer to this process as staged configuration.”

Each stage configures a new feature diagram, and eliminates features which we don’t need

for the special software system. Then we also have to know the idea of specialization.

Chapter 2. Background 11

C

f1 f3f2 f4

<2-4>

C

f1 f2

Figure 2.6: Staged Configuration by eliminating features

Czarnecki et al. define the definition of specialization in [CHE04] as: “ The specializa-

tion process is a transformation process that takes a feature diagram and yields another

feature diagram, such that the set of the configurations denoted by the latter diagram

is a subset of the configuration denoted by the former diagram.” After a review of the

definitions of configuration and specialization, we may have a question, what is the differ-

ence between the configuration and the specialization? A brief explanation of differences

between specialization and configuration is that, a full specialization of feature diagrams

denotes only for one configuration. Staged configuration is a form of configuration from

the most specialized feature diagram in the specialization sequence [CHE04].

When we want to perform the configuration of SPL, we have the following meth-

ods: directly deriving a configuration from a feature diagram, staged configuration

from specialized feature diagram in the specialization sequence, deriving of the con-

figuration after the specializing a feature diagram to a fully specialized feature dia-

gram [CHE05a, CHE04, CHE05b]. The methods of directly deriving a configuration

from a feature diagram and configuration after the specializing a feature diagram to a

fully specialized feature diagram are two extreme methods in staged configuration.

The steps of specialization are folliwing [CHE04]:

• Refining a feature cardinality

• refining a group cardinality

• Removing a grouped feature from a group

• Selecting a grouped feature from a group

• Assigning a value to an attribute which only has been given a type

• Cloning a solitary subfeature

• Unfolding a feature diagram reference

12 2.1. Software Product Line Engineering

Unfold feature diagram reference

Figure 2.7: Unfolding a feature diagram reference [CHE04]

Figure 2.7 shows the unfolding of a feature diagram reference. Feature C references

feature E and feature D references feature F. So if we want to select feature C, we also

has to select feature E and G. If we want to select the feature D, feature F also has

to be selected. That means C and D depend on feature E, F and G. So we can draw

the feature diagram like the right feature diagram shown in Figure 2.7. That is the

dependent SPLs, SPL A uses the functionality supported by SPL B. SPL is well suited

for the similar programs, but if we have many SPLs, the dependencies between SPLs

will occur, so we have to develop an approach to model dependencies between SPLs. In

this thesis our main task is using a case study to modeling and implementation of the

dependent SPLs.

2.1.3 Feature-Oriented Programing

Feature-Oriented Programming (FOP) encapsulates features in feature fragments and

groups of fragments. We can easy reuse feature fragments and develop feature fragments

in a process of stepwise refinement. Fragments are composed at compile time in order

to form the classes and hierarchies of a final application. An FOP approach is useful for

the development of SPL1.

In this section we will have a review of two models of the FOP: GenVoca and Algebraic

Hierarchical Equations for Application Design (AHEAD). And then we will have a review

of a technique of FOP which called MiXin layers. For the implementation we have the

Feature-Oriented C++ (FC++). And we will also have a brief review of Feature IDE

and feature-Oriented Programming in Java.

1http://www.cse.fau.edu/ mike/fop.html

Chapter 2. Background 13

GenVoca GenVoca is a FOP model which describes how the code representation is

expressed by an equation, e.g., an individual program can be expressed by incrementally

adding details [BSR04]. Like our sensor network, we can incrementally adding encryption

methods, e.g., DES and AES, in order to satisfy the requirement of users. As mentioned

in the section of motivation that dependencies and constraints exist among dependent

SPLs. Although the constants and functions of GenVoca is un-typed, the constrains of

typing exist as design rules [BSR04]. Design rules are helpful for the compositions, which

capture syntactic and semantic constraints among dependent SPLs.

• Constant of GenVoca is a set of classes which represents a base individual program,

e.g., the constant b, which means the program with feature b.

• Function of GenVoca is a set of classes and refinements of those classes. A refine-

ment is a function which takes a program as input, then produce a feature-oriented

program as output, e.g., the function k(x), which means that we add feature k to

the program.

We can introduce new details, e.g., data members, methods and constructors, to a

base class, and we also extend and override the methods and constructors which are

existing of that base classes [BSR04]. Different equations define a family of applications.

If an application has many features, then we will use the equation to express the multiple

features, we can select the features or functionalities that we need from the equation.

Such as: app1 = i(j(f)), that means the application app1 has features i, j and f. Then

we can determine the features from the equation, and a feature model is a set of con-

stants and functions, and we can use the constants and functions to build our product

lines [BSR04].

Mixins Mixins provide an easy way to add new data members, methods and construc-

tors of an existing class. Minxins extend the methods and constructors which existing

of its super class. The super class is specified by a parameter normally. Mixin do not

inherit the constructors of its super class and a mixin does not assume the name of its

super class, so Mixins are just like the class refinement [BSR04].

Figure 2.8 shows the linear refinement chains, which are common in this method of

implementation. As shown in the Figure 2.8, the first layer is constant or base program

which encapsulates three classes. The second layer is the function j which refines two

classes and adds a new class. That means, function j refines classes ai and ci. The

application of function k to j(i) results in the refinement of one class cj. The composition

k(j(i)) produces four classes a, b, c, d. Each class is refined by the feature i, j, k.

We can express the refinement like: class a extends aj(ai) . We represent the class

refinement of mixins as functions, such as in the Figure 2.8, minxin aj() is a function,

14 2.1. Software Product Line Engineering

ai

aj

ck

bi

dj

ci

cj

Figure 2.8: Implementing refinements by mixin inheritance [BSR04]

we apply this function to the base class ai. We use the expression of aj(ai) to describe

the linear refinement chain of the classes. In this example only the classes aj, bi, ck, ej

are instantiated, the other class are never instantiated. In the linear refinement we can

find out that only the classes of terminal are instantiated, the classes of non terminal

are not instantiated of the refinement chains [BSR04].

AHEAD We have known that GenVoca expressed the code representation of an indi-

vidual or base program as an equation. The other model of FOP, which we will present

here, is Algebraic Hierarchical Equations for Application Design, shortly we called it as

AHEAD. We will have a brief review of the constants and functions and discuss how the

constants, functions and compositions of AHEAD are represented. An arbitrary num-

ber of programs are expressed by AHEAD, and the representations are nested sets of

equations [BSR04]. The definitions of constants and functions are the same as GenVoca,

the base artifacts or programs are constants, and the refinements of those artifacts are

functions. We model the refinement of the artifacts or constants as a series of functions

or refinement. We can use the Minxin layer to model this refinement chains, and we can

clearly have a look at the constants and functions. The Figure 2.12 shows our graphical

notation for a GenVoca constant which encapsulates from base artifacts. We can use a

set of constants to express the constant mathematically. For the composition, we write

h(f) to express the composition of the artifacts h and f. Instead of this way to denote

the composition, we can write the h(f) as h • f .

Figure 2.9 shows the graphical notation and we will show here its AHEAD expression

here: h • f = {ah • af , bf , ch • cf , dh}
In comparable with the graphical denotation like Figure 2.9, the AHEAD expression

is: ah•af is the refinement chain for artifact a, bf and dh are not refined in the refinement

chains, so they are not changed from their original definitions, and the ch • cf is the

Chapter 2. Background 15

af

dhchah

cfbff

Wednesday, February 25,
2009

ednesday, February 25,
2009

h

Figure 2.9: Expression and refinement chains

refinement chain for the artifact b [BSR04].

In this section, we discussed the two models of the FOP (i.e., GenVoca and AHEAD),

and one popular technique of FOP called Mixins, one minxin layer express one feature

which shows the refined classes and the added classes. The FC++ is a programming

language which is the extension of the C++. We can also use the FOP in java, but the

code files which composed by AHEAD tools, e.g., jampack or mixin, are not the pure

java, but the Jak files. Then we can use the jak2java as the second step to make a Jak

file into the java file. For the FeatureIDE, it is just a plug-in for an Eclipse [LAM05].

We can use this plug-in to model the feature diagrams in Eclipse, and the expression

of the diagrams will be generated dynamically, and we can choose the features that we

need from the equation, and produce the real system for the customer who has special

requirements.

2.2 Dependent Software Product Lines

SPLs are used to develop software which can be customized to different use cases [CE00].

Sometimes multiple SPLs are integrated into one larger SPL to fulfill a special

task [Omm02]. One SPL may use functionalities or components provided by other SPLs,

the involved SPLs are dependent on each other. If we want to configure one SPL which

depends on other SPLs, the configuration of other SPLs is also needed. When creating

products from these SPLs all created SPL instances have to be compatible. In SPLE

an SPL instance is a concrete product which derived from SPL. A concrete product can

be derived by selecting the needed features from an SPL based on the implementation

of SPL. The created SPL instance might be a component, a program or a collection of

programs. So the configuration of each concrete SPL instance has to be defined. Staged

configuration corresponds to specialization of feature models. We can remove unneeded

functionalities using staged configuration. A user who configures an SPL which depends

16 2.2. Dependent Software Product Lines

on other SPLs is usually interested in configuration decisions of the domain, e.g., in

sensor network, users are only interested in configuration of communication protocols

they use, they are not interested in the configuration of the product line which provide

the functionality of communication protocols. So the underlying SPLs should be auto-

matically configured to match requirements of enclosing SPL. Only functionality which

users are interested has to be configured manually. We can define constraints in order to

show the dependencies between dependent SPLs. Constraints can be defined not only

on the domain level, but also on the instance level, if multiple products of one SPL are

used, this is instance constraints [RSKuR08]. The concrete composition mechanism is

dependent on the implementation technique.

SensorNetwork

ClientApplication

´´uses´´

Communication´´uses´´

Figure 2.10: A Sensor Network SPL using a Communication SPL and Client Application

SPL

An example is shown in Figure 2.10. A sensor network is developed as an SPL

SensorNetwork and uses communication protocols provided by Communication SPL.

Using Bluetooth communication protocol in sensor networks requires the Communication

SPL to provide this functionality of Bluetooth. If the user needs the functionality of Wi-

Fi in sensor networks, then the Communication SPL has to provide this functionality

of Wi-Fi. Users are only interested in the configuration of SensorNetwork SPL, and

the underlying SPLs should be automatically configured, like Communication SPL and

Client Application SPL in sensor network systems. In Figure 2.10 constraints are defined

on the domain level. Using domain constraints, all dependencies within an SPL and

between dependent SPLs can be modeled.

We will use an example to explain dependent SPLs. A, B and C are three SPLs. A

is the underlying SPL of B and C. That means, B and C need functionalities supported

by A to fulfill special tasks. B needs the functionality of encryption method AES, and C

needs the functionality of encryption method DES, we need to configure A by selecting

features AES and DES. As shown in Figure 2.11.

SPL instance is a concrete product which derived from SPL. In Figure 2.12, PDA and

Laptop are instances of ClientApplication SPL, Bluetooth and Wi-Fi are two instances

of Communication SPL. If multiple products of one SPL are used, then the constraints

between SPL and instances are needed. In this example, if a sensor network software

system implements the communication protocol among sensor nodes using Bluetooth,

Chapter 2. Background 17

C B

A

DES AES

DES & AES

´´uses´´ ´´uses´´

Figure 2.11: Dependent SPLs

and another sensor network software system implements the communication protocol

among sensor nodes using Wi-Fi, then constraints between SensorNetwork SPL and in-

stances of Communication SPL have to be considered. PDA and Laptop are instances of

ClientApplication SPL, constraints between SPL SensorNetwork and instances of Clien-

tApplication SPL have to be defined. Constraints between SensorNetwork SPL and

clientApplication SPL cannot describe those dependencies. In Figure 2.12 constraints

are defined on the instance level.

SensorNetwork

PDA

´´uses´´
´´uses´´

Laptop

Bluetooth WiFi

´´uses´´ ´´uses´´

Figure 2.12: A Sensor Network SPL using different instances of Communication SPL

and Client Application SPL

We explained the definition of dependent SPLs. Feature models cannot describe

the constraints and dependencies between dependent SPLs and concrete SPL instances,

Marko Rosenmueller et al. presented an extension to current SPL modeling based on class

diagrams that allows us to describe SPL instances and dependencies between dependent

SPLs and concrete SPL instances [RSKuR08]. We will use this approach to model our

sensor network scenarios in the next chapter.

18 2.3. Sensor Networks

2.3 Sensor Networks

A sensor network consists of a large number of sensor nodes which are capable of sensing

the environment. Nearby sensor nodes can communicate with each other using commu-

nication protocols. Sensors are generally equipped with data processing and communi-

cation capabilities, e.g., BTnode is a sensor node which supports autonomous wireless

communication and computing platform based on a Bluetooth radio. BTnode consists of

Microcontroller, Memories and Bluetooth subsystem2. A sensor network usually includes

sensor nodes, sink nodes and the management node. A large number of sensor nodes

randomly deployed in the field of the monitoring, through self-organization can consti-

tute a network. Sensor node can monitor the data from the field and down to the other

sensor node by the hop-by-hop transmission. During transmission monitoring data may

be handled by multiple nodes, and will be sent to a sink node after multi-hop routing,

finally arrive via the Internet or satellite to the management node. Users through the

management node of the sensor network configuration and management, release monitor-

ing tasks and the collection of monitoring data. Sensor node is usually a tiny embedded

system, and his ability to deal with, storage capacity and communications capability

is relatively weak, and the adoption of portable battery-powered energy limited. Func-

tional point of view from sensor networks, each sensor node has the traditional terminals

and routers dual function, apart from local information collection and data processing,

but also to other nodes to forward the data storage, management and integration. The

processing capability, storage capacity and communication capacity of sink node is rel-

ative strength of sensor nodes, and it has ability to connect with sensor networks and

other external networks, such as Internet. Sink node can implement communication

protocol conversion between the two types of protocol stacks, and release management

node monitoring tasks, and receive forward data to the external network. Sink node

can be both an enhancement of the sensor nodes, there is sufficient energy supply and

more memory and computing resources may also be a function not only to monitor the

wireless communication interface with the particular gateway device [Mah07].

In sensor networks, communications are usually trigged by queries or events [SMZ07].

Sensor nodes can communicate with each other using broadcast or point-to-point. All

nodes in sensor network do not have a global ID such as IP number. The security

of sensor networks is more limited than conventional wireless networks, So we should

use encryption methods to guarantee the security of sensor networks. On the Internet,

the network equipment uses network IP address as the unique ID. Resource Locator

and information transmission depends on the terminals, routers and servers, network

equipment, such as the IP address. Sensor networks are task-based network, talk about

from the sensor network sensor node does not have any meaning. Sensor network node

2http://www.btnode.ethz.ch/

Chapter 2. Background 19

uses the node ID as a logo. Node ID is required or not in the whole sensor network is

dependent on the network communication protocol unique design. Users query the event

of sensor networks, concern directly to the event notification to the network, rather than

a notice to determine the number of nodes. Network access to the information designated

after the case passed to the user. So sensor network is a data-centric network.

Power Service Module

Sensor module Information Processing Communication Module

Sensor AC/DC

Memory

CPU
NET MAC Send/

Receive

Figure 2.13: Sensor Network Node Architecture [SMZ07]

Sensor node consists of sensor module, information processing, communication mod-

ule and power service module as shown in Figure 2.13. Sensor module is responsible

for monitoring area information collection and conversion. Information processing is re-

sponsible for the management of the whole sensor node, storage and handling their data

gathering or any other node of data. Communication module is responsible for commu-

nication with other sensor nodes. Power service module is responsible for the operation

of the whole sensor network energy supplies [SMZ07].

Now we have many types of sensor network routing protocol, such as Flooding, Gos-

siping and SPIN (Sensor Protocol for Information via Negotiation) [SMZ07].

Flooding is a tradition of wireless communication routing protocol. In this routing

protocol, each node has to accept the information from other nodes, and to send the

information to neighbor node using broadcast. And so it went on, finally will send

data destination node. But this protocol easy to cause the implosion and overlap of

information, and wasting of resources. So in this routing protocol is put forward, based

on Gossiping routing protocol [SMZ07].

Gossiping protocol spread information is by the way of random choice a neighbor

node, the information in the same way the neighbor node random selection next neighbor

node for the transmitting of information. The way to avoid the spread of forms of

broadcast energy consumption. But its price is to extend the time of information transfer.

Although this protocol on the solution to a certain extent the implosion of information,

but still exists the phenomenon of overlapping information [SMZ07].

SPIN is a center with data of adaptive routing protocol. The purpose of this protocol

is: through consultation between nodes, to solve the implosion phenomenon of Flooding

20 2.3. Sensor Networks

ADV

REQ

DATA

Figure 2.14: Three types of messages of SPIN routing protocol

and Gossiping protocols, but still exists the phenomenon of overlapping information.

There are three types of messages of SPIN protocol, namely ADV, REQ and DATA as

shown in Figure 2.14. ADV is used for data broadcast, when a node has data can be

Share, we can use it for information broadcast. REQ is used for requesting to send data,

when a node hope to accept data packets, then it will send REQ. DATA is the collected

packets of sensors [SMZ07].

Bluetooth Bluetooth is a short-range wireless communications technology norms de-

veloped by the Bluetooth Special Interest Group (SIG) in 1998. It is a kind of wireless

data and voice communications open standards, and the purpose is the way of wire-

less replacing cable interface. It has strong portability and can be applied to various

communication occasions. Low power consumption and the harm to human body are

the advantages of Bluetooth. Bluetooth uses spectrum frequency hopping technique.

As a representative of the frequency hopping spread spectrum radios, it is alternative

to broadcast radios in sensor networks. The strong anti-jamming capability of Blue-

tooth can increase the safety of information transmission. Bluetooth systems support

peer-to-peer and point-to-multipoint communication. Each network of Bluetooth device

called Piconet. In Piconet Bluetooth devices use the Way of master-slave to realize com-

munication. Because of the physical addressing a Bluetooth device, at the same time,

Piconet only activate eight equipments, i.e., one master and seven slaves in a Piconet.

But different time, more the Piconets could constitute a scattering of overlapping net-

work structure. Bluetooth communication and the radius of the effective output power:

when the output power is 2 class (2.5 mW / 4dB), communication range is 15m; if the

power to increase 1 class, 4mW / 20dB can make communication range to 100m. We

can use Bluetooth to realize the communication of sensor nodes in sensor networks3.

Bluetooth sensor network model is based on the principle of the neighboring network.

Two near each other to a certain degree of Bluetooth sensors can spontaneously by the

Bluetooth module to establish communication links. Bluetooth group network can have

up to 256 Bluetooth devices to connect modules together to form Piconet. Among them,

3http://article.ednchina.com/Communinet/20071113082906.htm

Chapter 2. Background 21

a master node and 7 slave nodes in working condition, while the other nodes are in

idle mode. Master node is responsible for control of asynchronous connectionless link

(ACL) bandwidth. The slave nodes can only send data when being selected. Bluetooth

specification allows connecting more Piconets together to form a Scatternet. In this

case some devices acting as a bridge by playing the master role and the slave role in

one Piconet at the same time. Bluetooth communication protocol has C/S architecture.

The client is the device which initiates the connection. The server is the device who

receives the connection. In Bluetooth sensor networks, if an event from a sensor occurs,

the sensor has only to send this event to its master. And its master has to send this

event to its master till the event reached the base station [Zen07].

In this section, we made a brief description of sensor networks. Wireless sensor

network usually consists of thousands of sensor nodes. Therefore, the wireless sensor

network routing is particularly important. Flooding is a tradition of wireless communi-

cation routing protocol. Gossiping protocol spread information is by the way of random

choice a neighbor node. SPIN is a center with data of adaptive routing protocol. Finally,

we made a review of Bluetooth. Bluetooth is the communication protocol in our sensor

network scenarios.

2.4 Summary

In this chapter, we introduced Software Product Line Engineering. Domain Engineering

and Application Engineering are two parallel parts of SPLE. Next, we introduced FODA

and feature models. We explained FODA in two parts: definition of domain analysis

which is the first step of Domain Engineering, and explanation of the feature-oriented

part of FODA. Then, we introduced staged configuration using feature models. The

process of specifying a family member can be performed in stages, where each stage

eliminates some configuration choices. Then, we made a brief review of FOP and the

two models of FOP, i.e., GenVoca and AHEAD, and made a review of a technique of FOP

called MiXin layers. For the implementation we have FeatureC++ and Jak. FeatureIDE

is a plug-in of Eclipse. Furthermore, we introduced dependent SPLs. Sometimes multiple

smaller SPLs are integrated into one larger SPL to fulfill special tasks [Omm02]. One SPL

may reuse functionalities or components provided by other SPLs, the involved SPLs are

dependent on each other. If we want to configure one SPL which depends on other SPLs,

the configuration of other SPLs is also needed. We can use feature models to describe

the dependencies and constraints between dependent SPLs on a domain model level. An

SPL instance is a concrete product which derived from SPL. If there are dependencies

between concrete SPL instances and SPLs, we cannot describe this dependencies and

constraints using feature models, so we have to extend the feature models to describe the

dependencies and constraints between concrete instances of SPL. In the next chapter, we

22 2.4. Summary

will use sensor network scenario to describe modeling and implementation approaches

of dependent SPLs. Finally, we made a brief description of sensor networks and the

communication protocols in sensor networks.

Chapter 3. Modeling Dependent Software Product Lines 23

Chapter 3

Modeling Dependent Software

Product Lines

In this chapter we use a sensor network scenario to describe dependent SPLs. FODA is

used to analyze possible features in sensor network systems. The SPLs for a sensor net-

work will be modeled using feature diagrams. Afterwards, two approaches for modeling

dependencies between dependent SPLs will be described, i.e., feature model references

(FM-References) and modeling instances of SPLs. FM-References can describe depen-

dencies between dependent SPLs without taking instances into account. The approach of

modeling instances for SPLs is an extension to current SPL modeling based on class dia-

grams [RSKuR08], which allows us to describe SPL instances, and describe dependencies

between them. Finally, we will compare the two approaches for modeling dependencies

between dependent SPLs.

3.1 Case Study: Sensor Network Product Line

In this section we use the concept of Domain Engineering and Domain Analysis to de-

scribe a sensor network product line. A sensor network consists of different sensor nodes

and clients. There are two kinds of devices in sensor network scenarios, e.g., BTnode

and Laptop. First, we need a product line for sensor nodes (SensorNetworkNode SPL),

implementation of sensor functions, wireless communications and data storage capabil-

ities. All possible features for sensor nodes are analyzed and described in a feature

diagram (SensorNetworkNode). Second, we need a product line for client applications

(ClientApplication SPL), which implements the communication between different clients

and sensor nodes, and send queries to sensor networks. All possible features for different

clients which access sensor networks are analyzed and described in a feature diagram

(ClientApplication). It is easy to see that, both in SensorNetworkNode SPL and Clien-

tApplication SPL we have to implement the functionality of communication. So we

24 3.1. Case Study: Sensor Network Product Line

need a product line for communication (Communication SPL), which provides the func-

tionality of communication for SensorNetworkNode SPL and ClientAplication SPL. A

Communication SPL can provide the reuse of code. The code can be reused in different

SPLs (SensorNetworkNode SPL and ClientApplication SPL). We can achieve functional-

ities of network communication. We will use the existing FAME-DBMS SPL to support

the functionality of data storage1. Then, we will explain all SPLs in sensor network

software systems.

3.1.1 Product Lines for a Sensor Network

In this section we describe needed product lines for a sensor network.

Sensor
NetworkNode

Sensor

Communication

OS

C/S

Authen
tication

Compression

Encryption

Protocols

Hardware

TinyOS

NutOS

Client

Server

WAPI

CODST

UDP

TCP/IP

Bluetooth

Wi-Fi

DataStorage

µTESLA

MCIC

AES

DES

RC5

SNEP

Radio

UWB

ZigBee

Figure 3.1: Feature Diagram for Sensor Network Nodes

SensorNetworkNode SPL In Domain Analysis the software of a sensor network

node can be considered as an SPL, which might have four features, i.e., OS, Sensor,

DataStorage and Communication as shown in Figure 3.1. A mandatory feature of every

1http://fame-dbms.org/

Chapter 3. Modeling Dependent Software Product Lines 25

wireless sensor network node is that it communicates with other nodes through its com-

munication capabilities. The optional features of every wireless sensor network node are

sensor and data storage capabilities. So we have two optional features, i.e., Sensor and

DataStorage, and two mandatory features, i.e., Communication and OS. If the optional

feature Sensor is selected, then the nodes will sense data in the monitoring field. If the

optional feature of DataStorage is selected, then the nodes will store the sensed data,

in this case we will use the functionalities provided by FAME-DBMS SPL. In Sensor-

NetworkNode SPL the feature Communication is mandatory, and it has sub-features as

shown in Figure 3.1. The functionalities of communication are provided by the Commu-

nication SPL. The operating system of sensor network nodes can be TinyOS or NutOS.

The storage capacity of Wireless sensor network node is limited and general operating

system cannot be used for sensor nodes, e.g., Windows and Linux, so we have to use

the embedded operating system on sensor nodes. For example NutOS can be used on

BTnode2.

The mandatory features of Communication in SensorNetworkNode SPL are C/S

(Client/Server), Protocols and Hardware. Each node independently collects data, and

sends it to the client. When communication occurs, a client connects with a sensor

network, and sensor network node waits for connection. The communication protocols

in SensorNetworkNode SPL is mandatory, we have two alternative features UDP and

TCP/IP. The Hardware feature is also mandatory. We have Bluetooth, Wi-Fi, Radio,

UWB and ZigBee. We will describe these features in Communication SPL.

In sensor networks, adversaries can listen to data, intercept data, inject data and

alter transmitted data. Sensor networks have security risks, so we can use the Encryption

technologies to protect sensor networks, e.g., packets are encrypted by the sender and

decrypted by the receiver. In SPL SensorNetworkNode, we have an optional feature

Encryption, which provides encryption methods, such as AES, DES, RC5 and SNEP

that can be used in sensor networks. SNEP is sensor network protocol provides data

authentication, encryption and refresh between the sender and receiver.

Data in sensor networks might be compressed, because of sensor node’s storage ca-

pacity constraints and high power consumption for transmitting data. In SensorNetwor-

kNode SPL, we have an optional feature Compression, which provides the compression

functionalities in sensor networks. We have two alternative sub-features of Compres-

sion feature, i.e., MCIC and CODST. MCIC (Multi-node Cooperative Image Compres-

sion) uses low complexity and high compression performance of LBT image compression.

CODST is a compression technique based on curve simulation and is proposed to com-

press streaming data collected by each sensor node. The compressed streaming data are

recovered in the base station.

2http://www.btnode.ethz.ch/

26 3.1. Case Study: Sensor Network Product Line

Broadcast authentication is a critical security service in sensor networks. In Sen-

sorNetworkNode SPL, we have an optional feature Authentication, which provides the

functionality of authentication. It allows a sender to broadcast messages to multiple

nodes in an authenticated way. We have two alternative features in Authentication, i.e.,

µTESLA and WAPI.

ClientApplication SPL We need a product line for client applications, which imple-

ments the communication between users and sensor networks. So we develop a client

application accessing the sensor network as an SPL ClientApplication, which supports

different client hardware, such as Laptop and PDA, to communicate with sensor net-

work nodes. The software is running on sensor nodes, and the client software access

the network. So we have three features in ClienApplication SPL: OS, Types and Com-

munication. The feature Types is an optional feature, which consists of two alternative

sub-features, i.e., Laptop and PDA. The operating system of clients can be Windows or

Linux, so we have a feature OS in ClientApplication SPL. We also have a mandatory fea-

ture Communication, which consists of different communication protocols and encryption

methods etc. The Communication feature supports the communication between clients

and sensor network nodes.

Client
Application

Communication

OS

Authen
tication

Compression

Encryption

Protocols

Hardware

Windows

Linux

User
Catalogue

Huffman

UDP

TCP/IP

Bluetooth

Wi-Fi

Types

AES

DES

RC5

Symmetric

Asymmetric

RSA

DSA

ECC

PDA

Laptop

Figure 3.2: Feature Diagram for Client Applications

As shown in Figure 3.2 the mandatory features of Communication in ClientApplica-

Chapter 3. Modeling Dependent Software Product Lines 27

tion SPL are: Protocols and Hardware. Communication protocol between a client and

access node can be TCP/IP (Transmission Control Protocol/Internet Protocol) or UDP

(User Datagram Protocol). Feature Hardware consists of two sub-features: Bluetooth

and Wi-Fi.

The optional features of Communication in ClientApplication are: Authentication,

Compression and Encryption. The feature of Authentication has an optional feature

UserCatalogue, we can use the user ID and password to implement the functionality of

authentication in client application system. The feature Compression has an optional

feature Huffman, which is a compression method. Data in a client application might

be compressed, because of the storage capacity constraints of sensor node and high

power consumption for transmitting data. The feature Encryption has two sub-features:

Symmetric and Asymmetric. Encryption can protect the security of transmitting data

between client and sensor node.

Data encryption technology is divided into two categories, namely, symmetric en-

cryption(Private key encryption) and asymmetric encryption(Public key encryption).

Advanced Encryption Standard (AES), Data Encryption Standard (DES) and RC5

are typical encryption methods of symmetric encryption. Digital Signature Algorithm

(DSA), Rivest Shamir Adleman (RSA) and Elliptic Curves Cryptography (ECC) are

typical encryption methods of asymmetric encryption.

Dependencies between nodes of sensor network and client applications may exist to

ensure a valid sensor network as a whole. Communication among sensor nodes requires

the same communication hardware, for example Bluetooth. But the communication

between the access node and client application may need Bluetooth or Wi-Fi to commu-

nicate with each other.

In ClientApplication product line, we can select the optional features shown in Fig-

ure 3.2 to configure different client applications which have different communication

protocols. For example, one client may use AES as encryption method to interface with

sensor networks, another client may use DES. So in this case, the ClientApplication and

SensorNetworkNode SPLs have to provide AES and DES encryption method to fulfill

the communication between both client applications and sensor nodes. So constraints

may exist between ClientApplication SPL and the underlying SPL, e.g, a communication

product line.

Communication SPL As mentioned above, we have multiple SPLs in our sensor net-

work scenario. Because we have two kinds of devices in the sensor network scenario, we

need the SensorNetworkNode SPL to develop software for the sensor node, and the Clien-

tApplication SPL to develop software for the client which accesses sensor networks. The

Communication feature is used in SensorNetworkNode SPL as well as in the ClientAppli-

cation SPL. Thus, we need a Communication product line to provide the communication

28 3.1. Case Study: Sensor Network Product Line

functionality, taking into account the issue of code reuse.

The Communication SPL has a mandatory feature Operating System, which not only

provides TinyOS and NutOS used by sensor nodes, but also provides Windows and Linux

used by client applications. The mandatory feature Hardware provides all hardware used

in sensor nodes and client applications. All features in Communication SPL are extracted

features from SensorNetworkNode SPL and ClientApplication SPL. As shown in Figure

3.3, we have three optional features, i.e., Encryption, Compression and Authentication.

The feature Encryption implements the functionality of encryption, not only for sensor

nodes, but also for clients. So communication functionalities used in SensorNetworkNode

SPL and ClientApplication SPL have to be provided by the Communication product line.

Communication

OS

C/S

Encryption

Compression

Authen
tication

Protocols

Hardware

Client

Server

Symmetric

SNEP

DES

RC5

AES

RSA

DSA

ECCCODST

Huffman

MCIC

WAPI

User
Catalogue

UDP

TCP/IP

Bluetooth

Radio

Wi-Fi

ZigBee

Windows

TinyOS

Linux

UWB

Broadcast

Asymmetric

NutOS

µTESLA

Figure 3.3: Feature Diagram for Communication

Chapter 3. Modeling Dependent Software Product Lines 29

FAME-DBMS SPL As mentioned above, in SensorNetworkNode SPL, we use a

FAME-DBMS SPL for data storage. SensorNetworkNode SPL is dependent on FAME-

DBMS SPL. If we need a sensor node to store the sensing data, the functionality of data

storage has to be provided by FAME-DBMS SPL.

In FAME-DBMS SPL, we have four mandatory features: OS-Abstraction, Buffer-

Manager, Access and Storage. The OS-Abstraction feature hides platform dependent

implementation. The OS-Abstraction feature has three alternative sub-features: NutOS,

Win32 and Linux. The FAME-DBMS cannot only be used on embedded systems, such

as NutOS, but also on the platform of windows and Linux. The BufferManager feature is

used for page buffering and management of used and free pages. The memory allocation

for page buffering in FAME-DBMS can be static or dynamic. The page-replacement

algorithms of LRU (Least Recently Used) and LFU (Least Frequently Used) are used

in FAME-DBMS for the management of used and free pages. The access feature pro-

vides API based access, e.g., put, get, remove and update data. The Storage feature

of FAME-DBMS provides the functionalities to store and retrieve data. The B+Tree

indexing are implemented for quickly search and add data, as shown in Figure 3.4. Gray

features have further sub-features that are not displayed [RSS+08].

FAME-DBMS

OS-Abstraction

Buffer Manager

Storage

NutOS

Linux

Memory Alloc

Replacement

Static

Dynamic

LRU

LFU

Win32

Access

Index

Data Types

B+-Tree

List
add

Search

Remove

Update

Transaction

API

Optimizer

SQL Engine

Update

Remove

Get

Put

Figure 3.4: Feature diagram for FAME-DBMS [RSS+08]

30 3.1. Case Study: Sensor Network Product Line

3.1.2 Integrating Multiple Product Lines

As mentioned in background, SPLs can be reused as part of other SPL, and sometimes

multiple product lines have to be integrated into one SPL to fulfill special functionalities.

In our sensor network scenario, sensor networks are complex and distributed systems.

So we can develop sensor networks as a product line which built from a number of het-

erogeneous SPL instances, i.e., SensorNetworkNode SPL instance and ClientApplication

SPL instance. For example, a SensorNetwork SPL may consist of different sensor nodes,

access nodes, and data storage nodes, each of them may be the instance of the Sen-

sorNetworkNode SPL. In sensor networks, we may have different access hardware, for

example Laptops and PDAs, so each of them may be the instance of the ClientAppli-

cation SPL. The SensorNetwork SPL is not only an SPL from which we can create a

program, but also a number of interacting programs. We can develop the software run-

ning on sensor nodes from SensorNetworkNode SPL, and the software of client accessing

sensor networks from ClientApplication SPL. There might be no source code needed for

SensorNetwork SPL, only the underlying SPLs contain program code. SensorNetworkN-

ode SPL and ClientApplication SPL are the underlying product lines of SensorNetwork

SPL.

SensorNetwork

Datastorage Access

PDA Laptop

Communication
Encryption

Compression

AES DES Hufman MCIC

Figure 3.5: SPL for a Sensor Network

Figure 3.5 shows a sensor network product line, which consists of features Encryption,

Compression, DataStorage and Access. The client applications in this sensor network

can be PDA or Laptop. The DataStorage feature is an optional feature. Sensor network

consists of many sensor nodes, access nodes and data storage nodes. The functionality

of data storage is needed when we want to store data in sensor nodes. The sensor nodes

are used for sensing, collecting and transmitting data. The access nodes are used for

communicating with sensor nodes or client applications. These features in Figure 3.5

are visible to the end users. Users can select needed features to derive a sensor network

system. All features in SensorNetwork SPL must be functionalities which end users

are concerned. When creating a configuration, the user starts with an empty feature

selection of the top level SPL, for example from SensorNetwork SPL. The underlying

Chapter 3. Modeling Dependent Software Product Lines 31

SPLs of SensorNetwork SPL only added when they are needed. In the next section, we

will describe the dependencies and constraints between dependent SPLs.

The SensorNetwork product line uses the functionalities provided by SensorNetwor-

kNode product line and ClientApplication product line. SensorNetwork product line uses

specialized SPLs ClientApplication and SensorNetworkNode to realize a real valid sensor

network. In ClientApplication and SensorNetworkNode SPLs, we have many optional

features. The selection of these optional features in such underlying SPLs depends on

the other SPL, e.g., if a sensor network implements the functionality of data storage,

then the DataStorage feature in the SensorNetworkNode SPL has to be selected. As

shown in Figure 3.6, The SensorNetworkNode again uses the FAME-DBMS product line

and Communication product line. DataNode uses FAME-DBMS product line to store

data. If a sensor network has to implement the functionality of data storage, then the

configuration of FAME-DBMS SPL is required. All nodes use the Communication prod-

uct line to communicate with each other. The Communication product line is also the

underlying product line of ClientApplication SPL, and provides special functionality for

client applications. Figure 3.6 shows the dependencies between dependent SPLs in our

case study sensor network scenario.

SensorNetwork

SensorNetwork
Node Client

Application

DBMS Communication

usesuses

uses uses uses

Figure 3.6: Dependent Software Product Lines

3.2 Using FM-References for Modeling Dependent

Product Lines

In this section, we introduce an approach for modeling dependent SPLs. The involved

SPLs may have dependencies and constraints. We will use FM-References to model the

dependencies between dependent SPLs.

32 3.2. Using FM-References for Modeling Dependent Product Lines

SensorNetworkNode

Sensor Communication DataStorage

Hardware Encryption

Communication

FAME-DBMS

Storage Buffer
Manager

OS-
AbstractionAccess

OS

OS C/S Compression Authentication Protocols

SensorNetwork

DataStorageAccess Compression
Communication

Encryption

Figure 3.7: Using FM-References to model Dependencies between SensorNetwork Prod-

uct Line and the underlying SensorNetworkNode, FAME-DBMS, and Communication

Product Lines, adopt from [CHE04]

We have different types of composition rules, e.g., requires rules. When one feature

requires another feature as condition, we use requires rules to show dependencies be-

tween features in multiple SPLs. SensorNetworkNode product line uses FAME-DBMS

product line to fulfill the data storage functionality, and uses Communication product

line to fulfill the communication functionality. If feature DataStorage is used in our

SensorNetworkNode product line, FAME-DBMS product line is also required to provide

the functionality of data storage. A sensor network consists of different sensor nodes,

access nodes and data storage nodes, so if we don’t want to store data in our sensor

network, the whole FAME-DBMS SPL is not needed. We have an optional feature En-

cryption in our SensorNetworkNode product line. We can use encryption technology to

form a secure wireless sensor networks. If feature Encryption is used in our SensorNet-

workNode product line, also the feature Encryption of Communication product line is

required. If feature AES is selected in our SensorNetworkNode product line, also the

selection of feature AES in Communication product line is required. We have different

communication hardware in sensor networks, such as Bluetooth, Wi-Fi, Radio. Depend-

ing on the used hardware, for example Bluetooth, the Communication product line has

to provide the functionality of Bluetooth communication. Similarly, if feature Wi-Fi is

Chapter 3. Modeling Dependent Software Product Lines 33

used in our SensorNetworkNode product line, also the feature Wi-Fi of Communication

product line is required. Figure 3.7 shows the dependencies between SensorNetworkNode

and Communication product lines, and dependencies between SensorNetworkNode and

FAME-DBMS product lines.

ClientApplication

Communication Types

Hardware Encryption

Communication

OS

OS C/S Compression Authentication Protocols

SensorNetwork

DataStorage AccessCompressionCommunication
Encryption

Figure 3.8: Using FM-References to model Dependencies between SensorNetwork Prod-

uct Line and the underlying ClientApplication and Communication Product Lines, adopt

from [CHE04]

Using FM-Reference we can also model the dependencies between ClientApplication

product line and Communication product line, as shown in Figure 3.8. Communication

product line is the underlying product line of ClientApplication product line. If we want

to select one feature in ClientApplication product line, which requires the feature of

Communication product line, we have to make sure that, the feature in Communication

has to be selected. For example, we a client application use the TCP/IP communication

protocols, the feature TCP/IP has to be selected in Communication product line.

Users of sensor networks only want to configure the SensorNetwork product line, so

the references between dependent SPLs have to be defined. We cannot describe the

dependencies and references between sensor nodes and data storage nodes, because in

FM-Reference sensor nodes and data storage nodes are one SPL. Another example, a

sensor node need the functionality of Radio to communicate with other sensor nodes, so

34 3.3. Modeling Software Product Line Instances

the Communication product line has to provide the functionality of Radio to the sensor

node, and an access node need the functionality of Bluetooth to communicate with

a client application, e.g., PDA, so the Communication product line has to provide the

functionality of Bluetooth to the access node. But in this case the sensor node and access

node are one product line SensorNetworkNode, we cannot to describe the dependencies

between the Communication product line and sensor node, we also cannot describe the

dependencies between the Communication product line and access node. If we have

another client application, for example Laptop, also want to access the sensor network,

but this client application need the functionality of Wi-Fi to communicate with the

sensor network, so in this case we cannot describe the references between Communication

product line and PDA, and between Communication product line and Laptop, because

PDA and Laptop is one product line ClientApplication. So we have to extend the feature

diagram and to describe the dependencies on an instance level. In SPLE, creating an

SPL instance means to derive a concrete product of a product line. We can use staged

configuration to derive a concrete product line of an SPL step by step.

3.3 Modeling Software Product Line Instances

Using FM-Reference we cannot describe dependencies and constraints which only effect

concrete instances of a product line. In SPLE, creating an SPL instance means to derive

a concrete product of an SPL. We can derive different instances from SensorNetworkN-

ode product line and ClientApplication SPL by selecting needed features. We can use

Staged configuration to result in specialized SPLs, e.g., SensorNode SPL, AccessNode

SPL, and DataStorageNode SPL. We can still create different sensor nodes from the spe-

cialized SensroNode SPL, similarly for specialized AccessNode SPL and DataStorageN-

ode SPL. We can also derive different specialized SPL from ClientApplication product

line using staged configuration, i.e., Laptop SPL and PDA SPL which needs different

functionalities provided by Communication product line. As shown in figure 3.9, we have

FAME-DBMS product line, SensorNetworkNode product line, Communication product

line and ClientApplication product line in sensor network system. In this model SPL

configuration is represented by inheritance and the relationship of uses is represented

by aggregation [RSKuR08]. Czarnecki et al. compared SPLs to classes of Object Ori-

ented Programming, and SPL configuration to class instances [CHE05b]. So based on

the corresponding of Object Oriented Programming classes and SPLs, we can use class

diagrams to model SPL compositions [RSKuR08]. Using a class diagram, our sensor net-

work example can be modeled as shown in Figure 3.9. SPLs are represented by classes

SensorNetwork, ClientApplication, Communication, SensorNetworkNode, and FAME-

DBMS. Classes PDA and Laptop are specialized variants of the ClientApplication SPL

that provide the functionalities of PDA and Laptop. Classes SensorNode, AccessNode

Chapter 3. Modeling Dependent Software Product Lines 35

and DataNode are specialized variants of SensorNetworkNode SPL that provide sensor

nodes, access nodes and the functionality of data storage. Instances of SPLs which

can be used by other SPLs are described using aggregation, e.g., members sensornode,

accessnode, and datanode of class SensorNetwork represent instances of different spe-

cialized SensorNetworkNode SPLs. Members pda and laptop of class SensorNetwork

represent instances of different specialized ClientApplication SPLs.

<<SPL>>
FAME-DBMS

<<SPL>>
SensorNetworkNode

<<SPL>>
Communication

<<SPL>>
SensorNetwork

<<SPL>>
ClientApplication

<<SPL>>
SensorNode

<<SPL>>
AccessNode

<<SPL>>
DataNode

<<SPL>>
PDAComm

<<SPL>>
LaptopComm

<<SPL>>
SensorNode

Comm

<<SPL>>
AccessNode

Comm

<<SPL>>
DataNode

Comm

<<SPL>>
PDA

<<SPL>>
Laptop

- db

- pdacom

- laptopcom- accesscom

- datacom

- sensorcom

- datanode

- laptop

- pda

- sensornode

- accessnode

Figure 3.9: Dependencies between SPLs and instances [RSKuR08]

SensorNode SensorNode is a specialized SPL of SensorNetworkNode product line.

For example, we select the optional feature Sensor of SensorNetworkNode product line,

because in sensor network we need sensor nodes to sense and collect data from moni-

toring fields. The SensorNode instance also needs the functionality of communication

to communicate with other sensor nodes to transfer data and monitoring tasks. In this

case, we also derive an instance from Communication product line to provide only the

communication functionality of sensor node, i.e., sensorcom. For example, sensor nodes

need the hardware of Radio to communicate with other sensor nodes, so we have the

select this feature from Communication product line.

AccessNode AccessNode is a specialized SPL of SensorNetworkNode product line.

The optional features, e.g., DataStorage and Sensor, are not needed in this case. In

sensor network Access node are used to communicate with client application, and collect

the sensed data from sensor nodes. So we need the feature of Communication. The access

node has to communicate with client application, and also have to communicate with

sensor nodes. So the functionality of Communication is not the same as sensor nodes.

For example, we need the functionality of Radio to communicate with sensor nodes,

36 3.3. Modeling Software Product Line Instances

and we also need the functionality of Bluetooth to communicate with a PDA. We have

to derive an instance from Communication product line to provide the communication

functionality of access node, i.e., accesscom.

DataStorageNode DataStorageNode is a specialized SPL of SensorNetworkNode

product line. We need the feature of DataStorage in DataStorageNode instance. We

use the functionality of data storage to store data in sensor networks. FAME-DBMS

product line provides the functionality of data storage, e.g., put and get data. Data

storage nodes also need the functionality of communication to communicate with other

nodes, for example sensor nodes and access nodes. So we have to derive an instance

from Communication product line to provide the communication functionality of data

storage node, i.e., datacom.

Laptop Laptop is a specialized SPL of ClientApplication product line. Laptop may

need the hardware of Wi-Fi to access sensor networks, so the Communication prod-

uct line has to provide this functionality. But we cannot describe constraints between

ClientApplication product line and Communication product line, so we have to derive a

concrete product and to describe the constraints. So we have to derive an instance from

Communication product line to provide the communication functionality of Laptop, i.e.,

laptopcom.

PDA PDA is a specialized SPL of ClientApplication product line. We select the fea-

ture of PDA in this case. PDA also needs the functionality of communication to access

sensor networks. For example, PDA need the functionality of Bluetooth to communicate

with access nodes, so the underlying SPL Communication has to provide this function-

ality. A PDA can also need the functionality of Wi-Fi to communicate with PC. So we

have to derive an instance from Communication product line to provide communication

functionality of PDA, i.e., pdacom.

We can avoid constraints between SensorNetwork SPL and ClientApplication SPL

which needed to define the different variants PDA and Laptop by using specialized

variants. We only have to refer to the specialized variants, e.g., PDA and Laptop, and can

reuse the configuration of the specialized SPLs in other SPL compositions. For example,

SensorNetwork SPL can reuse the configuration of the specialized PDA SPL. We can also

avoid constraints between SensorNetwork SPL and SensorNetworkNode SPL that needed

to define the different variants SensorNode, AccessNode, and DataNode. SensorNetwork

SPL can reuse the configuration of the specialized SensorNode SPL. We have defined

different variants of Communication SPL, i.e., SensorNodeComm, AccessNodeComm,

DataNodeComm, PDAComm, and LaptopComm. The configuration of these specialized

Chapter 3. Modeling Dependent Software Product Lines 37

SPLs can be reused in SensorNetworkNode SPL and ClientApplication SPL, as shown

in Figure 3.9.

Table 3.1: Domain Constraints

domain constraints

(1) SensorNetwork.MCIC ⇒ SensorNode.MCIC

(2) SensorNetwork.AES ⇒ AccessNode.AES

(3) SensorNetwork.DES ⇒ SensorNode.DES

(4) SensorNetowrk.Huffman ⇒ AccessNode.Huffman

(5) SensorNetwork.PDA ⇒ AccessNode.Bluetooth

(6) SensorNetwork.Laptop ⇒ AccessNode.Wi-Fi

Table 3.2: Instance Constraints

instance constraints

(1) SensorNetwork.DataStorage ⇒ SensorNetwork.pda.Queries

(2) SensorNetwork.CommunicationEncryption ⇒ SensorNetwork.pda.AES

(3) SensorNetwork.Compression ⇒ SensorNetwork.dataNode.CODST

(4) SensorNetwork.Compression ⇒ SensorNetwork.pda.Huffman

(5) SensorNetwork.CommunicationEncryption ⇒ SensorNetwork.datanode.SNEP

We have defined domain constraints in the domain model to describe constraints

between dependent SPLs. Domain constraints can also be used to define constraints

that apply for all instances of a product line. Table 3.1 describes the domain con-

straints in our sensor network scenario. We provide additional constraints for describing

constraints between specialized SPLs. For example, constraint SensorNetwork.PDA ⇒
AccessNode.Bluetooth means that feature PDA implies feature Bluetooth only in spe-

cialized variant AccessNode of SensorNetworkNode product line. Constraints are also

needed for concrete SPL instances. Specialized variants client applications and sensor

nodes are used by SensorNetwork SPL. Specialized variants of Communication SPL are

used by specialized variants of SensorNetworkNode SPL and ClientApplication SPL to

provide communication functionalities. Table 3.2 describes the instance constraints in

our sensor network scenario. For example, constraints SensorNetwork.DataStorage ⇒
SensorNetwork.pda.Queries means that, if feature DataStorage is selected in Sensor-

Network SPL, we enable feature Queries in instance pda of SensorNetwork SPL.

Conditional dependencies are also needed in the composition of multiple dependent

SPLs. Table 3.3 describes the conditional dependencies in our sensor network scenario.

For example, dependence SensorNetwork.PDA ⇒ SensorNetwork.pda means that, if

38 3.4. Discussion

Table 3.3: Conditional Dependencies

conditional dependencies

(1) SensorNetwork.Laptop ⇒ SensorNetwork.laptop

(2) SensorNetwork.PDA ⇒ SensorNetwork.pda

(3) SensorNetwork.DataStorage ⇒ SensorNetwork.dataNode

(4) DataNode.DataStorage ⇒ DataNode.datacom

(5) DataNode.DataStorage ⇒ DataNode.db

(6) SensorNode.MCIC ⇒ SensorNode.sensorcom

(7) SensorNode.DES ⇒ SensorNode.sensorcom

(8) AccessNode.AES ⇒ AccessNode.accesscom

(9) AccessNode.Huffman ⇒ AccessNode.accesscom

(10) AccessNode.Bluetooth ⇒ AccessNode.accesscom

(11) AccessNode.Wi-Fi ⇒ AccessNode.accesscom

we select feature PDA in SensorNetwork product line, then the feature PDA in Clien-

tApplication product line also has to be selected. Dependence SensorNetwork.Laptop

⇒ SensorNetwork.laptop means that, if we select feature Laptop in SensorNetwork

product line, then the feature Laptop in ClientApplication product line also has to

be selected. Dependence SensorNetwork.DataStorage ⇒ SensorNetwork.datanode

means that, if feature DataStorage is not selected, there will be no instance of DataN-

ode product line. Other SPLs that DataNode depends on are not needed to add to the

configuration. In our example, this applies to FAME-DBMS SPL and DataNodeComm

SPL which don’t need to be configured.

3.4 Discussion

In contrast to specialization, it is simpler to define instance constraints, but specialization

provides better reuse. As mentioned above, specialized SPLs can also be used in other

SPLs. The constraints which we presented are requires or implies constraints. We

can use Object Constraint Language to specify constraints. In our model all constraints

have to define the concrete SPL name and SPL instance name. We want to configure the

underlying SPL automatically, but it cannot be achieved so simple, this can be done using

a configuration generator in further work. The new approach for modeling SPL instances

is only used when we cannot describe constraints and dependencies between different

SPLs. By modeling dependent SPLs we will use the combination of both approaches to

describe dependencies and constraints between different SPLs.

Chapter 4. Implementation 39

Chapter 4

Implementation

AHEAD Tool Suite includes the Jak language which implements AHEAD for Java, and

FeatureC++ which implements AHEAD model for C++. In this chapter we will use

the Jak language to implement our case study sensor network scenario on Eclipse with

FeatureIDE Plug-in.

We made a review of dependent SPLs in the background chapter, sometimes multi-

ple SPLs are integrated into one larger SPL and dependencies between the constituent

SPLs occur. When one SPL uses another SPL to implement a special functionality, the

configuration of the involved SPL is needed, so we will describe that, how these depen-

dent SPLs can be automatically configured according to existing constraints between

different product lines. We have described the approaches of modeling dependent SPLs

using sensor network in the previous chapter, and in this chapter we will describe the

implementation approaches for dependent SPLs. We will develop small SPLs to simulate

a sensor network for evaluation.

4.1 Sensor Networks

In this section, we describe the implementation of SPLs, e.g., Communication product

line, and the implementation of SPLs which use other SPLs, e.g., SensorNetworkNode

product line and ClientApplication product line which use the Communication product

line to realize the communication functionality. As mentioned in the previous chapter,

all features in our sensor networks have been analyzed and described using feature mod-

els. We have SensorNetworkNode SPL, ClientApplication SPL, Communication SPL,

FAME-DBMS SPL, and an integrated SensorNetwork SPL. Sensor network program is

an complex and distributed software system. SensorNetworkNode SPL is used to develop

the program for different sensor nodes in sensor networks. ClientApplication SPL is used

to develop different client applications interfacing with network nodes. Communication

SPL provides communication functionalities for sensor networks, e.g., encryption, com-

40 4.1. Sensor Networks

pression. FAME-DBMS provide data storage functionalities, when we want to store data

in sensor networks. We implement SensorNetworkNode SPL, ClientApplication SPL, and

Communication SPL. This chapter does not relate to FAME-DBMS SPL, data storage

functionalities are not implemented in our sensor network systems. We implement part

of features from SensorNetworkNode SPL, ClientApplication SPL, and Communication

SPL, and describe the approach of implementing multiple dependent SPLs.

4.1.1 Dependent Software Product Lines

As described in background chapter, dependent SPLs mean that, SPLs can be reused

as part of other SPLs and sometimes functionalities or components of multiple product

lines have to be integrated into one product line. In our case study, Communication

product line is reused in SensorNetworkNode SPL and Clietapplication SPL. Figure 4.1

shows a simplified version of the feature diagrams described in the previous chapter

which we used for implementation. Both in SensorNetworkNode SPL and ClientAppli-

cation SPL we have a Communication feature, which references with the Communication

SPL. We implemented three features in Communication SPL, i.e., UDP, Compression,

and Encryption. That means, Communication SPL can provide functionalities of UDP,

compression, and encryption for SensorNetworkNode SPL and ClientApplication SPL.

We can derive different variants of Communication SPL, e.g., UDP, which realizes the

communication between sensor nodes and client applications using UDP communication

protocol. The code of Communication product line can be reused in SensorNetworkNode

SPL and ClientApplication SPL.

Except Communication feature we also have two alternative features in SensorNet-

workNode SPL, i.e., NutOS and TinyOS. In our implementation, Communication fea-

ture implements the communication functionality over Ethenet between sensor nodes

and client applications. We can develop a complex software program using step-wise

refinement from a simple software program by adding features incrementally. So, we can

add features Compression and Encryption incrementally to develop a complex system

which has the compression and encryption functionalities. We also have two alterna-

tive features in ClientApplication SPL (i.e., PDA and Laptop). Those features such as

NutOS, TinyOS, PDA, and Laptop don’t have special functionalities in our implemen-

tation, only screen output. We just want to use these implementations as an example to

describe how to implement an SPL and multiple dependent SPLs. First, we will describe

the implementation of Communication SPL. Feature refinement will be described in this

section. Then we will describe the implementation of SensorNetworkNode SPL and

ClientApplication SPL which use Communication SPL to realize special functionalities.

Chapter 4. Implementation 41

SensorNetworkNode
SPL

OS Communication

TinyOS NutOS
Communication

SPL

ClientApplication
SPL

Type Communication

PDA Laptop

UDP Compression Encryption

Figure 4.1: Dependencies between different Product Lines

4.1.2 Implementation of Communication Product Line

As introduced in the previous chapter, we analyzed all features of communication that

can be used not only for SensorNetworkNode SPL, but also for ClientApplication SPL.

We implement part of those features, e.g., UDP, Encryption, and Compression. Fea-

ture UDP provides the functionality of communication between sensor nodes and client

applications using UDP communication protocol over Ethenet. Feature Compression

provides the data compression functionality in sensor network systems. Feature Encryp-

tion is used for encrypted data storage and encryption of communication. The class

diagram of Communication SPL is shown in Figure 4.2. We defined two different classes

in Communication SPL, i.e., Comm and Listen. Class Listen is refined in other features

by adding or removing functions. For example, we add a new function rot13 (a simple

encryption method) in feature Encryption to implement the encryption functionality.

A feature refinement can encapsulate fragments of multiple classes. In Communica-

tion SPL, Communication feature encapsulates two classes, i.e., Class Comm and Class

42 4.1. Sensor Networks

+verhaltung(InetAddress ip,String msg)() : void
+l : Listen

Comm

+send(InetAddress ip, int port, String msg)() : void

+port : int
+comm : Comm
+time : long
+msg : string

Listen

<<refines>>

+public Listen(int p, Comm comm)()
+run()() : void
+send(InetAddress ip, int port, String msg)() : void
+verhaltung(InetAddress ip,String msg)() : void

+port : int
+comm : Comm
+time : long
+msg : string

Listen

+send(InetAddress ip, int port, String msg)() : void
+rot13(String pf)() : void
+verhaltung(InetAddress ip,String msg)() : void

+port : int
+comm : Comm
+time : long
+msg : string

Listen

<<refines>>

+send(InetAddress ip, int port, String msg)() : void
+verhaltung(InetAddress ip,String msg)() : void
+Compressionmethod()() : void

+port : int
+comm : Comm
+time : long
+msg : string

Listen

<<refines>>

<<uses>>

Figure 4.2: Class Diagrams of Communication Product Line

Listen. Figure 4.3 depicts a package of two classes, Comm and Listen. Refinement Com-

munication encapsulates fragments of Comm and Listen. Refinement UDP cross-cut

Class Listen. The same holds for refinement Encryption and Compression. Composing

refinements Communication, UDP, Compression, and Encryption yields a package of

fully-formed classes of Comm and Listen. Feature refinements are often called layers.

For implementation we used Jak, a superset of Java for feature-oriented program-

ming. The tool chain we used is based on Eclipse as a tool platform and FeatureIDE.

FeatureIDE is a plug-in for Eclipse IDE and used to support the complete product line

development process based on FOP. Figure 4.4 shows our equation file for Communica-

tion SPL. We can select features from the list and generate needed programs. UDP is a

mandatory feature, so all programs generated from this product line have the communi-

cation functionality using UDP protocol over Ethenet. Encryption and Compression are

optional features, we can select feature Encryption to generate a program which provides

Chapter 4. Implementation 43

Communication

UDP

Compression

ListenComm

Encryption

Figure 4.3: Classes and Refinements (Layers)

the encryption functionality during communication or encrypted data storage. We can

also select feature Compression to generate a program which provides compression func-

tionality or data storage. Furthermore, Encryption and Compression can be selected at

the same time.

Figure 4.4: The Equation File for Communication Product Line

4.1.3 Implementation of Dependent Software Product Lines

SensorNetworkNode SPL is used for developing software programs for sensor network

nodes, and ClientApplication SPL is used to develop programs for different client hard-

ware interfacing with sensor network nodes (e.g., Laptops and PDAs). We described the

44 4.1. Sensor Networks

implementation of Communication SPL in the previous section. Then we will focus on

the implementation of SensorNetworkNode and ClientApplication SPLs using Commu-

nication SPL to fulfill special functionalities. SensorNetworkNode product line may also

use FAME-DBMS product line to implement data storage functionality.

Step-wise refinement is used to develop a complex and distributed software system

from a simple software program by adding features incrementally. We implemented fea-

tures NutOS, TinyOS, and Communication in SensorNetworkNode product line. We de-

fined a Main Class in the SensorNetworkNode layer, then refinement NutOS and TinyOS

refine this Main Class and modify this Main Class to realize special functionalities. All

possible features for different client applications have been analyzed in domain analysis

and described in a feature diagram. PDA and Laptop implement the functionality of

screen output, whether the hardware interfacing with sensor network nodes is PDA or

Laptop. We also defined a Main Class in ClientApplication layer. Then this Class is

refined in PDA layer and Laptop layer to achieve their respective functions. The equa-

tion files for SensorNetworkNode and ClientApplication product lines are similar as the

Communication SPL. Features can be arbitrary selected in the equation file to generate

customized programs for different sensor nodes and clients.

Unfolding Feature Model References We can use the approach of unfolding feature

model references to implement dependent SPLs. Specialization step allows us to unfold

a feature model reference [CHE04]. We substitute the reference for the entire feature

diagram it refers to by means of its root feature. This operation never removes variability.

Feature Communication in SensorNetworkNode SPL and ClientApplication SPL requires

functionalities provided by the Communication SPL. We unfold these feature model

references as shown in Figure 4.5.

As described in the implementation of Communication SPL, Basic implementation is

located in module Communication which is extended by feature modules UDP, Encryp-

tion and Compression that implement communication using UDP protocol over Ethenet,

encryption and compression communication. If we want to implement the functional-

ity of communication using special functionalities provided by Communication SPL, we

need a variant of the Communication SPL. The idea is to define the concrete instance

at deployment time and develop the SensorNetworkNode product line without creating

a concrete instance. We can generate a specialized variant using staged configuration by

removing features that should not be used. A concrete instance of the Communication

product line has to be created when creating an instance of the SensorNetworkNode

product line because the configuration is not known before.

Figure 4.6 depicts a specialized variant of Communication SPL by removing Feature

Compression. This variant implements the functionality of encryption during communi-

cation using UDP protocol over Ethenet, and can be reused in SensorNetworkNode SPL.

Chapter 4. Implementation 45

SensorNetworkNode
SPL

OS Communication

TinyOS NutOS

ClientApplication
SPL

Type Communication

PDA Laptop UDP

UDP Compression

Compression

Encryption

Encryption

SensorNetworkNode
SPL

OS Communication

TinyOS NutOS

ClientApplication
SPL

Type Communication

PDA Laptop

Communication

UDP CompressionEncryption

Unfolding Feature Model References

Figure 4.5: Unfolding Feature Model References

Similarly, if we want to implement the compression functionality, we have to generate a

Compression variant at deployment time using staged configuration by removing Feature

Encryption. In this example, we can generate four specialized variants of Communication

product line:

• Communication using UDP protocol over Ethenet.

• Encrypted communication using UDP protocol over Ethenet.

• Compressed communication using UDP protocol over Ethenet.

• Encrypted and compressed communication using UDP protocol over Ethenet.

We implemented code reuse in dependent SPLs manually, but the source code copied

from Communication SPL to SensorNetworkNode SPL must be composed Jak code.

That means, we have to use the Communication SPL to produce the needed program,

and reuse this program in SensorNetworkNode SPL. Furthermore, if we want to imple-

ment the functionality of data storage in sensor nodes, we have to generate concrete

product from FAME-DBMS SPL and reuse it in SensorNetworkNode SPL. For example,

a specialized variant of FAME-DBMS product line SPL is needed when storing data in

46 4.1. Sensor Networks

Communication

EncryptionCompressionUDP

Communication

EncryptionUDP

Eliminate Feature Compression

Figure 4.6: Staged Configuration of Communication Product Line by removing Feature

Compression

sensor networks. We should define the concrete instance of FAME-DBMS which pro-

vides the functionality of data storage at deployment time. The approach of generating

specialized variant of FAME-DBMS is similar as described above, using staged config-

uration by removing unneeded features. A concrete instance of the FAME-DBMS SPL

has to be created when creating a SensorNetworkNode SPL instance.

Instances Constraints We can reference different instances of the same SPL in source

code. This means that we want to instantiate different products from same SPL with

differing functionalities. For example, a sensor node uses two different instances of an

Encryption SPL, one used for encrypted data storage and another one for encryption

communication. Or two different instances of Communication product line can be in-

stantiated, one instance with encryption functionality, and the other without this func-

tionality. The idea is to instantiate them separately at deployment time. Same as in

Object-Oriented Programming we can have two different derived calls from same base

class. Then we have to make two separate instances of derived classes. At instance level

there are no dependencies of implementation if both are instances of same SPL. Depen-

dencies arise when we instantiate products from two dependent SPLs. So if we want

to reuse different products provided by the underlying SPL, we can reuse one instance

of the underlying SPL which includes all required features. For example, we can reuse

one instance of Communication product line which includes all required feature, such as

UDP, Encryption, and Compression. But if one sensor node uses AES and the other uses

DES, which cannot be configured in one instance. In this case, we need two different

instances to provide different requirements for same SPL.

Interactions between multiple Features Crosscutting concerns are aspects of a

program which affect other concerns and can be modularized using language like Fea-

tureC++. However, interactions between multiple crosscutting features have to be con-

sidered [RSSA08]. For example, if we enable Encryption in FAME-DBMS we need a

Chapter 4. Implementation 47

password. This password has to be provided by SensorNetworkNode SPL, but the pass-

word has to be provided only if the feature Encryption is used. We have two possibilities

to implement code that is needed if a feature of a referenced product line is active.

• One possibility is to use constraints. We can add directly related feature below each

of crosscut features. For example, we can create a feature Encryption in our sensor

network node applications and a constraint that requires that feature if feature

encryption in FAME-DBMS is seleced. The constraint is: FAME-DBMS.Encryption

⇒ SensorNetworkNode.Encryption.

• The other possibility is to use derivatives. Derivatives can be modularized and

separated from interacting features and are not different from other features but

is only needed if the interacting features are present in an SPL instance. A deriva-

tive Fame.Encryption/Sensor.Encryption implements the code for providing the

password.

The implementation is that we have to put the dependent code in a separate folder

and create the shortcut/link to that folder with the name of feature for which we want

to add this code, e.g., the code for using password. That means, we will put the code

for using password as separate feature derivative in a folder. Then we will create the

shortcut for this folder and will rename the shortcut with feature name i.e., encryption

in this case. And put this shortcut in the folder of SensorNetworkNode SPL.

The solution using derivatives is better because the derivative is implicitly selected

and we do not have to add a feature to the feature model of our SensorNetworkNode

SPL. Based on implementation, derivatives are stored in a separate folder usually in

a special location used only for derivatives. The symbolic links within folders of the

corresponding features are used to ease navigation1.

As described above, we used the idea of unfolding feature model references to im-

plement our SensorNetworkNode SPL and ClientApplication SPL. Unfortunately, Fea-

tureIDE doesn’t support project references, so we have to copy the composed Jak code

from Communication SPL to SensorNetworkNode SPL and ClientApplication SPL man-

ually. Different variants of Communication SPL are generated and can be reused in

other SPLs, this is working fine in our implementation. In the next section, we will focus

on the configuration of dependent SPLs, and find a way to automate the configuration

process.

1http://wwwiti.cs.uni-magdeburg.de/iti-db/forschung/fop/featurec/derivatives.htm

48 4.2. Configuring Dependent Software Product Lines

4.2 Configuring Dependent Software Product Lines

We can use the configuration tool to ensure that no configuration constraints

are violated [CW04]. There are a few existing tools that support feature-based

configuration: ConfigEditor [CBUE02], CaptainFeature [Bed02], GEARS [Kru01],

Pure::Consul [VMP03]. The configuration of dependent SPLs is based on an instance

model and domain models of all involved product lines, and should be supported by a

configuration tool, and all of the underlying SPLs should not be visible to users. When

creating a configuration, the user should start with an empty feature selection of the top

level feature model. For example, the feature model of SensorNetwork SPL is the top

level feature model in our sensor network scenario. This feature selection is based on

the domain model of an SPL. Additional constraints in the instance model have to be

checked during configuration. Dependent SPLs are only added when they are needed.

After finishing the configuration of the SPL shown to the user, the configuration of the

underlying SPLs follows [RSKuR08].

Then we will describe the configuration process of SensorNetwork SPL. We start

with an empty feature selection which includes instances of SensorNode SPL and

AccessNode SPL which are needed in sensor networks. If the user selects feature

DataStorage in sensor network feature model, then an instance of DataNode SPL

will be added according to conditional dependence SensorNetwork.DataStorage ⇒
SensorNetwork.dataNode, additionally instances of FAME-DBMS and DataNodeComm

product lines will be added. Selection of feature Laptop adds an instance of Laptop

SPL. After the selection of functional features, constraints have to be checked during

configuration. Not covered constraints will be ignored. If feature PDA is selected, ac-

cording to domain constraints SensorNetwork.PDA ⇒ AccessNode.Bluetooth feature

Bluetooth is enabled in all instances of DataNode product line. After that, all dependent

SPLs have to be configured. For example, if we selected accessNode and sensorNode in

our configuration, then SensorNode SPL and AccessNode SPL have to be configured

separately. For example, if feature AES is selected, instances of SensorNodeComm and

AccessNodeComm will be added according to conditional dependencies SensorNode.AES

⇒ SensorNode.sensorcom and AccessNode.AES ⇒ AccessNode.accesscom. After

all involved SPLs configured, our configuration process of dependent SPLs is finished.

Our configuration process based on domain models and additionally checked against

constraints of an instance model can be used to create a configuration generator for a

composition of dependent SPLs, to achieve an automatic configuration.

Marko et al. developed an infrastructure to ease SPL instantiation and validation

of instances in [RSSA08], i.e., SPL-API, which allows us to dynamically create SPL

instances and avoid invalid configurations before instantiation. Client applications can

access a product line model (PLM) which is stored in an XML files. We can access ref-

Chapter 4. Implementation 49

erenced feature models using functions provided by the class PLM such as PLM::Open

and PLM::CreateInstance. We can open a used feature model from an XLM file and

create instance according to a configuration provided as a list of features. The corre-

sponding SPL can be instantiated and additionally checked against domain constraints

for example. The SPL-API is implemented as a library and can be automatically bound

to an application. According to the feature list in the XML files, a configuration can be

generated automatically at a client development time [RSSA08]. We adopt this idea to

achieve our automatic configuration process. The automatic configuration of dependent

SPLs can be done with the help of SPL-API through storing a feature list in an XML file.

We might extend our FeatureIDE with tools like SPL-API to automate the configuration

of dependent SPLs.

4.3 Summary

In this chapter we described the implementation of Communication SPL, and the imple-

mentation of SensorNetworkNode and ClientApplication SPLs which use Communication

and FAME-DBMS SPL to achieve special functionalities. In sensor network scenario,

SensorNetwork SPL is integrated by multiple SPLs, i.e., SensorNetowrkNode, ClientAp-

plication, Communication, and FAME-DBMS. In our case study, SensorNetwork SPL

contains no source code. All codes are contained in the underlying SPLs. Ideally SPLs

used within other SPLs should be automatically configured. Only functionalities of Sen-

sorNetwork SPL a user is interested in have to be configured manually. Automation is

a benefit of implementing dependent SPLs and has to be done in further work using

configuration generators. The source code of our case study is in the appendix.

50

Chapter 5

Evaluation

In this chapter we will evaluate the approaches of modeling and implementation pre-

sented of dependent SPLs in this thesis. The modeling approaches of dependent SPLs

are presented in chapter three, i.e., feature model references and modeling SPL instances.

The implementation approach of dependent SPLs is presented in chapter four. In the

following, we will describe comparisons of the two modeling approaches. Drawbacks of

feature model references and benefits of modeling SPL instances will be analyzed. How-

ever, there are also some issues of modeling SPL instances that have to be analyzed.

Encountered problems when implementing dependent SPLs will be described. The eval-

uation is based on an existing FAME-DBMS SPL and additionally smaller SPLs that

simulate a sensor network.

5.1 Evaluation of Modeling Approaches

Based on FODA, SPLs are usually described using feature models and domain models.

Feature diagram is an appropriate approach to describe features within an SPL. Feature

model references can be used to handle dependencies and constraints in the composition

of multiple dependent SPLs. We use requires relation to describe dependencies between

different product lines, and underlying SPLs have to be configured according to feature

selection in the higher-level product line.

Although we can use feature model references to describe dependencies and con-

straints between different SPLs, but the drawback is that we cannot take concrete SPL

instances into account using domain constraints, e.g., one SPL uses multiple differently

configured instances of another SPL, and different configured instances of the same SPL

are dependent on each other. In sensor networks, a sensor node may use two different

instances of an encryption SPL, one used for encrypted data storage, and another one

used for communication encryption. Differently configured instances of encryption SPL

are the same product line (i.e., Communication SPL) using feature model references.

Chapter 5. Evaluation 51

A sensor node may need the functionality of data storage node to store data. In this

case, differently configured instances of one SPL (i.e., SensorNetworkNode SPL) are de-

pendent on each other. We cannot describe dependencies and constraints using feature

model references, which is the same for all nodes. We would refer to the same feature

model, and not the concrete SPL instances.

Through the above examples, it is not difficult to see that the approach of using

feature model references is not sufficient to describe compositions of dependent SPLs

where differently configured instances of the same SPL are used. To solve this problem,

we use a model that describes SPL instantiation [RSKuR08], and describe dependencies

and constraints between differently configured SPL instances. As described in chapter

three, we can not only define domain constraints and instance constraints in our model,

but also conditional dependencies. The constraints presented in chapter three are only

requires or implies constraints, but arbitrary propositional formulas might be supported.

We can use Object Constraint Language (OCL) to specify constraints. There are also

approaches to define constraints in domain models. Don Batory presented a fundamental

connection between feature diagrams, grammars, and propositional formulas in [Bat05].

This connection enables efficient logic truth maintenance systems (LTMSs) which provide

a way to propagate constraints as users select features, so that we can avoid inconsis-

tent product specifications. This connection allows us to use satisfiability solvers which

provide automated support to help debug feature models. D. Streitferdt et al. propose

a formalized definition for feature modeling using OCL and a set of constraints to be

used in feature models [SRP03]. Compared with domain models, all constraints have

to define the product line name and the product line instance name in instance model.

The approach of modeling SPL instances is an extension of the existing SPL modeling

techniques.

Feature model references and modeling SPL instances are two useful approaches for

modeling the composition of dependent SPLs. The approach of modeling SPL instances

adopts the concept of class instantiation and uses class diagrams to model SPL com-

positions. SPL specialization is represented by inheritance and the uses relationship

by aggregation. The approach of feature model references is independent of inheri-

tance or aggregation, and allows us to reuse or modularize feature models. Feature

model references do not consider relationships between features such as consists-of or

is generalization-of which are better modeled using class diagrams in the approach of

modeling SPL instances.

A feature model reference is represented using a dashed line. So if we want to

modularize a large feature model over multiple different feature diagrams, a convoluted

diagram cannot be avoid using feature model references. In contrast to feature model

references, by using class diagrams complex compositions of dependent product lines can

be created using existing tools.

52 5.1. Evaluation of Modeling Approaches

Configuration of an SPL which is composed from multiple SPLs, all involved domain

models and instance models has to be considered. When configuring SensorNetwork

SPL, the user starts with an empty feature selection of the SensorNetwork prodcut line

and selects functional features from the domain model. The underlying SPLs need not

to be shown to the user, which should be supported by configuration tools. The feature

selection of SensorNetwork SPL is based on the domain model of sensor networks, and

we still have to check against constraints in the instance model. After finishing the con-

figuration of one SPL, configuration of dependent SPLs follows. We hope that, there

is no further feature selection of dependent SPLs needed, because we need to resolve

constraints to support the automation of the configuration process of dependent SPLs.

We should develop a configuration generator in the further work to achieve the automa-

tion of the configuration process of dependent SPLs. Existing support for generation of

object-oriented from class diagrams can be used to derive configuration generator from

SPL composition models.

Table 5.1: Comparison of Feature Model References and Modeling SPL Instances

Feature Model References Modeling SPL Instances

Constraints Domain Constraints Domain Constraints, In-

stance Constraints, Condi-

tional Dependencies

Composition Modularize Features Using Class Diagrams

Specialization Hierarchical Decomposition Inheritance

Uses Relationship Dashed Line Aggregation

Configuration exist invalid configurations avoid invalid configurations

The comparison of feature model references and modeling SPL instances is shown in

Table 5.1. As discussed above, it is complicated to use feature model references to de-

scribe dependencies and constraints between different SPLs and concrete SPL instances.

Compared with feature model references, modeling SPL instances is a better approach

to describe compositions of dependent SPLs as well as constraints between different con-

crete SPL instances. Feature model references can be used to describe compositions of

different product lines only if an SPL uses one instance of the other SPLs. Modeling SPL

instances can bridge the gap between domain and implementation. In domain analysis,

we can use feature model reference to describe the dependencies and constraints on a do-

main model level. We can ease the transition from feature model to instance model using

a model transformation. A class can be created for each feature model of a composition

of different product lines. We can transform staged configuration of product lines into

a hierarchy of classes to represent different configurations of product lines. Resulting

classes or specialized variants of a product line can be linked to their feature model to

Chapter 5. Evaluation 53

support visualization [RSKuR08].

5.2 Evaluation of Implementation Approaches

We can derive a concrete product by selecting the desired features from an SPL. The cor-

responding feature modules are composed which results in an SPL instance. A program

is created by composing class fragments of all classes according to the selected features.

The concrete composition mechanism depends on the implementation technique. We

can use FeatureC++ and Jak which implements AHEAD for C++ and Java to develop

product lines. In this thesis we focused on the implementation of dependent SPLs using

Jak and FeatureIDE. We created three feature projects (i.e., SensorNetworkNode, Clien-

tApplication, and Communication) which represent three SPLs. SensorNetworkNode

SPL and ClientApplication SPL use functionalities provided by Communication SPL,

e.g., communication using UDP protocol, encryption, and compression. With the help

of feature model references, we can unfold a feature reference, and define constraints

between these features. For example, if we want to implement an encrypted communica-

tion between sensor nodes and client applications, we might create a feature Encryption

both in SensorNetworkNode SPL and ClientApplication SPL. In our implementation,

we first build our Communication project to generate a composed .jak file, and reuse

this .jak file in SensorNetworkNode project and ClientApplication project. Because Fea-

tureIDE doesn’t support project reference, we cannot directly call functions belongs to

other projects. An error will occur when compiling Jak code using project reference.

This problem of FeatureIDE should be further analyzed in the future. Another problem

we encountered is that we cannot use package in our implementation, otherwise, an error

will occur.

Based on the implementation of sensor networks described in the previous chapter,

we can create four instances of Communication SPL. If we use instance constraints to

implement the code reuse in other product line, we have to define different instance

names. The SPL-API developed by Marko et al. in [RSSA08] is helpful to ease SPL in-

stantiation and validation of instances. It allows us to dynamically create SPL instances

and validate configurations before instantiation. In our implementation we discovered

that a correct ordering of features is needed to create a semantically correct instance

of an SPL. We can create correct ordering of features according to the relative ordering

of features at runtime using SPL-API. We have two approaches to solve interactions

between multiple features, one possibility is to use constraints, and the other is to use

derivatives. The solution using derivatives is better because the derivative is implicitly

selected and we do not have to add a feature to the feature model. We also can further

decrease the complexity of SPL composition at runtime using derivatives. The SPL-API

can apply a derivative in the dynamic composition process, if the features which this

54 5.2. Evaluation of Implementation Approaches

derivative belongs are presented in the configuration process.

Because implementation components can only be connected in certain ways, we can

describe their valid configurations using languages, e.g., DSL. A configuration SPL al-

lows us to specify a concrete instance of a product line. All instances can be correctly

described by the modeling approaches such as modeling SPL instances. Feature model

references allow invalid instances and can not describe all instances. In the configuration

process of our implementation, we only want to configure the SensorNetworkNode SPL

and ClientApplication SPL. The underlying Communication SPL should be configured

automatically according to the feature selection in SensorNetworNode SPL and Clien-

tApplication SPL. We cannot automate this configuration process using FeatureIDE

because a configuration generator is missing.

Chapter 6. Conclusion 55

Chapter 6

Conclusion

In this thesis, we use a case study sensor network to describe the modeling and imple-

mentation of dependent SPLs. Feature model references and modeling SPL instances

are two appropriate approaches to implement compositions of multiple dependent SPLs.

SPLs can be reused as part of other product lines. Sometimes, functionalities and

components of multiple product lines have to be integrated into one larger product

line [Omm02], e.g., SensorNetwork SPL. Development of complex and distributed soft-

ware programs, we may have multiple SPLs, usually dependencies between them exist.

Compositions of multiple SPLs imply that we have to consider about the dependencies

between those SPLs. Feature model references can be used to handle dependencies and

constraints between different product lines. In this case, we can use domain constraints

to describe dependencies between different SPLs. Requires relations can be used to

describe dependencies and constraints between different product lines.

Although we can use domain constraints to describe dependencies and constraints be-

tween different product lines, but the drawback is that we cannot take concrete instances

of product line into account using domain constraints. We cannot describe dependencies

and constraints, when one product line uses multiple differently configured instances of

another product line, or when different configured instances of the same product line are

dependent on each other. The approach of using feature model references for modeling

dependencies between different SPLs is not sufficient to describe compositions of depen-

dent product lines where differently configured instances of the same product line are

used. To solve this problem, we can use the approach of modeling SPL instances that

describes SPL instantiation, and describe dependencies and constraints between differ-

ently configured SPL instances. We can not only define domain constraints and instance

constraints in our model, but also conditional dependencies. The constraints presented

in chapter three are only requires or implies constraints, but arbitrary propositional

formulas might be supported.

We described the implementation of an SPL and dependent SPLs. The tool chain

56 6.1. Further Work

we used in our case study is based on Eclipse as a tool platform. Tool Support for

Feature-Oriented Software Development is FeatureIDE (a plug-in for the Eclipse IDE).

With the help of feature model references and modeling SPL instances we implemented

a real sensor network system.

We summarize various conclusions in the light of goals we established at the beginning

of the thesis:

• We compared and evaluated the approaches for compositions of dependent SPLs.

Feature model references and modeling SPL instances are two appropriate ap-

proaches for compositions of dependent SPLs. But when taking multiple SPL

instances into account, feature model references are not sufficient to describe de-

pendencies and constraints between SPLs and SPL instances.

• With respect of assets reuse, we analyzed all possible features of a communica-

tion SPL which provides functionalities for sensor network node product line and

client application product line in our case study, and is used for evaluation of the

approaches of feature model reference and modeling SPL instances.

• Based on existing FAME-DBMS we developed smaller SPLs such as SensorNet-

workNode, ClientApplication, and Communication product lines to simulate a real

sensor network system. With the help of unfolding feature model references we

implemented a sensor network system which provides functionalities of UDP com-

munication protocol, encryption, and compression. Modeling SPL instances are

helpful for referencing different instances of the same SPL in source code.

6.1 Further Work

In this thesis, the modeling and implementation approaches of dependent SPLs have been

presented, but we still have a lot of work of modeling and implementation of dependent

SPLs to be completed in the future.

Automatic Configuration The build process can be automated with tools like Make,

we also want to automate configuration process and quality control activities. Devel-

opment of a configuration generator can realize automatic configuration of dependent

SPLs. We can use the model presented in this thesis as the basis for a configuration

generator with the help of resolving constraints. Using configuration generator a user

only need to select functional features in the top level SPL, the underlying SPLs will be

configured automatically according to constraints defined between dependent SPLs.

Chapter 6. Conclusion 57

Tool Support Through our case study, we find that the lack of tool support is a big

problem in the development of sensor networks. We used FeatureIDE as a development

platform, but it doesn’t support project reference when compiling Jak code which uses

functions belongs to other projects. Package is also not allowed to be used. In order to

better make use FeatureIDE to realize the implementation of dependent SPLs, we have

to expand FeatureIDE to solve the problems we encountered. In the further work, we

want to develop an automated configuration process as part of FeatureIDE through the

use of domain constraints and instance constraints.

58

Bibliography

[Bat05] Batory, D.: Feature Models, Grammars, and Propositional Formulas. In

Proceedings of the International Software Product Line Conference (SPLC),

Volume 3714 of Lecture Notes in Computer Science, Pages 7-20. Springer

Verlag, 2005.

[Bed02] Bednasch, T.: Konzept und Implementierung eines konfigurierbaren Meta-

modells für die Merkmalmodellierung. Diplomarbeit. Fachhochschule Kaiser-

slautern,Standort Zweibrücke Fachbereich Informatik, 2002.

[BSR04] Batory, D.; Sarvela, J. N.; Rauschmayer, A.: Scaling Step-Wise Refinement

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO.

6. 06 2004.

[CBUE02] Czarnecki, K.; Bednasch, T.; Unger, P.; Eisenecker, U.: Generative Pro-

gramming for Embedded Software: An Industrial Experience Report. In Pro-

ceedings of the ACM. SIGPLAN/SIGSOFT Conference on Generative Pro-

gramming and Component Engineering (GPCE02), Pittsburgh, 2002.

[CE00] Czarnecki, K.; Eisenecker, U. W.: Generative Programming—

Methods,Tools,and Application. Addison-Wesley, Canada, 2000.

[CHE04] Czarnecki, K.; Helsen1, S.; Eisenecker2, U.: Staged Configuration Using Fea-

ture Models. Spring Verlag, University of Waterloo, Canada and University

of Applied Sciences Kaiserslautern, Zweibruecken, Germany, 2004.

[CHE05a] Czarnecki, K.; Helsen1, S.; Eisenecker2, U.: Formalizing Cardinality-based

Feature Models and their Staged Configuration. University of Waterloo,

Canada and University of Applied Sciences Kaiserslautern, Zweibruecken,

Germany, 2005.

[CHE05b] Czarnecki, K.; Helsen1, S.; Eisenecker2, U.: Staged Configuration Through

Specialization and Multi-Level Configuration of Feature Models. University

of Waterloo, Canada and University of Applied Sciences Kaiserslautern,

Zweibruecken, Germany, 2005.

BIBLIOGRAPHY 59

[CW04] Czarnecki, K.; Weiland, J.: Variant Configuration of Software Systems. Pro-

cess Family Engineering in Service-Oriented Applications, BMBF-Project.

2004.

[Kru01] Krueger, C. W.: Software Mass Customization. White paper, BigLever

Software Inc., Octoer 2001.

[LAM05] Leich, T.; Apel, S.; Marnitz, L.: Tool Support for FeatureOriented Software

Development,FeatureIDE: An EclipseBased Approach. Nr. MIP-0802. San

Diego, California, 2005.

[Mah07] Mahalik, N. P.: Sensor Networks and Configuration. Fundamentals, Stan-

dards, Platforms, and Applications. Springer Verlag, 2007.

[Omm02] Ommering, R. V.: Building Product Populations with Software Compo-

nents. In Proceedings of the international Conference on Software Engineer-

ing (ICSE), pages 255-265. ACM Press, 2002.

[PBvdL05] Pohl, K.; Boeckle, G.; Linden, F. v. d.: Software Product Line Engineering.

Springer, Heidelberg, 2005.

[RSKuR08] Rosenmüller, M.; Siegmund, N.; Kästner, C.; Rahman, S. S. u.: Modeling

Dependent Software Product Lines. Nr. MIP-0802. Department of Informat-

ics and Mathematics, University of Passau, Nashville, TN, USA, 10 2008.

[RSS+08] Rosenmüller, M.; Siegmund, N.; Schirmeier, H.; Sincero, J.; Apel, S.; Le-

ich, T.; Spinczyk, O.; Saake, G.: FAME-DBMS: Tailor-made Data Man-

agement Solutions for Embedded Systems. ACM International Conference

Proceeding Series, 2008.

[RSSA08] Rosenmüller, M.; Siegmund, N.; Saake, G.; Apel, S.: Code Generation to

Support Static and Dynamic Composition of Software Product Lines.ACM.

2008.

[SMZ07] Sohraby, K.; Minoli, D.; Zanti, T.: Wireless Sensor Networks—Technology,

Protocols, and Applications. Wiley Interscience, 2007.

[SRP03] Streitferdt, D.; Riebisch, M.; Philippow, I.: Details of formalized relations

in feature models using OCL. pages 297-304. IEEE Computer Society Press.

2003.

[VMP03] Variant Management with Pure::Consul. Technical White Paper.pure-

systems. http://web.pure-systems.com/, 2003.

60 BIBLIOGRAPHY

[Zen07] Zenker, R.: Bluetooth Sensor Networks. http://www-

comnet.technion.ac.il/ralf/Bluetooth-Sensor-Network.pdf, Technion,

Israel Institute of Technology Communication Networks Lab, 2007.

61

Appendix

Source code of Communication SPL We have implemented Features UDP, Com-

pression, and Encryption in Communication SPL. Each layer represents a feature in the

source code.

layer Communication;

import java.io.*;

import java.net.*;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

public class Comm {

public Listen l;

public void verhaltung(InetAddress ip,String msg){

}

}

layer Communication;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.SocketException;

public class Listen extends Thread {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public void send(InetAddress ip, int port, String msg) {}

}

layer Compression;

public refines class Listen {

62

public void send(InetAddress ip, int port, String msg) {

Super(InetAddress,int,String).send(ip,port,this.msg);

// compression method

}

public void verhaltung(InetAddress ip,String msg){

Super(InetAddress,String).verhaltung(ip,msg);

// compression method

}

}

layer Encryption;

public refines class Listen {

public void send(InetAddress ip, int port, String msg) {

this.msg=msg.substring(0,13)+rot13(msg.substring(13));

}

public void verhaltung(InetAddress ip,String msg){}

public String rot13(String pf) {

StringBuffer pf2 = new StringBuffer();

for (int i = 0; i < pf.length(); i++) {

int c = pf.charAt(i);

if (c < 65 || c > 122) {

pf2.append((char) c);

} else if ((c < 78 && c >= 65) || (c < 110 && c >= 97)) {

pf2.append((char) (c + 13));

} else if ((c >= 78 && c <= 90) || (c >= 110 && c <= 122)) {

pf2.append((char) (c - 13));

}

}

return pf2.toString();

}

}

layer UDP;

public refines class Listen {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public Listen(int p, Comm comm) {

this.port = p;

try {

this.dsocket = new DatagramSocket(port);

63

packet = new DatagramPacket(buffer, buffer.length);

} catch (SocketException e) {

e.printStackTrace();

}

this.comm = comm;

time=System.nanoTime();

}

public void run() {

while (true) {

try {

dsocket.receive(packet);

} catch (IOException e) {

e.printStackTrace();

}

// Convert the contents to a string, and display them

String msg = new String(buffer, 0, packet.getLength());

System.out.println(packet.getAddress().getHostName() + ": " + msg);

verhaltung(packet.getAddress(),msg);

// Reset the length of the packet before reusing it.

packet.setLength(buffer.length);

}

}

public void send(InetAddress ip, int port, String msg) {

this.msg=msg;

Super(InetAddress,int,String).send(ip,port,this.msg);

long timet=System.nanoTime()-this.time;

this.time=System.nanoTime();

String msgt=this.msg+String.valueOf(timet);

byte[] message = msgt.getBytes();

DatagramPacket packet = new DatagramPacket(message, message.length, ip,

port);

try {

DatagramSocket dsocket = new DatagramSocket();

dsocket.send(packet);

dsocket.close();

} catch (Exception e) {

System.err.println(e);

}

}

public void verhaltung(InetAddress ip,String msg){

this.msg=msg;

comm.verhaltung(ip,this.msg);

}

}

64

Source code of SensorNetworkNode SPL We have implemented Features Nu-

tOS, TinyOS, and Communication in SensorNetworkNode SPL. Each layer represents a

feature in the source code. Layer NewEquation means the code reuse of other SPLs.

layer SensorNetwork_Node_SPL;

public class Main {

public static void main(String[] args){

new Main().PrintOS();

//new Comm().communication();

}

public void PrintOS(){}

}

layer TinyOS;

public refines class Main {

public void PrintOS(){

System.out.println("TinyOS");

}

}

layer NutOS;

public refines class Main {

public void PrintOS(){

System.out.println("NutOS");

}

}

layer Communication;

public refines class Main {

public static void main(String[] args){

Super(String[]).main(args);

new Comm();

}

}

layer Communication;

import java.io.*;

import java.net.*;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

public class Comm {

public Listen l;

65

public Comm(){

System.out.println("Sensor");

l=new Listen(9001,this);

l.start();

try {

InetAddress ip=InetAddress.getByName("127.0.0.1");

String time=String.valueOf(System.nanoTime());

l.send(ip,9100,"time:"+time);

} catch (UnknownHostException e) {

e.printStackTrace();

}

}

public void verhaltung(InetAddress ip,String msg){

String temp=msg.substring(0,13);

String temp1=msg.substring(13);

if (temp.equals("SensorNetwork")){

l.send(ip,9300,temp+temp1.toUpperCase());

};

}

}

layer NewEquation;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.SocketException;

SoUrCe RooT

Communication "../../H:/workspace/Communication_spl/src/Communication/Listen.jak";

abstract class Listen$$Communication extends Thread {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public void send(InetAddress ip, int port, String msg) {}

}

SoUrCe Encryption "../../H:/workspace/Communication_spl/src/Encryption/Listen.jak";

abstract class Listen$$Encryption extends Listen$$Communication {

66

public void send(InetAddress ip, int port, String msg) {

this.msg=msg.substring(0,13)+rot13(msg.substring(13));

}

public void verhaltung(InetAddress ip,String msg){}

public String rot13(String pf) {

StringBuffer pf2 = new StringBuffer();

for (int i = 0; i < pf.length(); i++) {

int c = pf.charAt(i);

if (c < 65 || c > 122) {

pf2.append((char) c);

} else if ((c < 78 && c >= 65) || (c < 110 && c >= 97)) {

pf2.append((char) (c + 13));

} else if ((c >= 78 && c <= 90) || (c >= 110 && c <= 122)) {

pf2.append((char) (c - 13));

}

}

return pf2.toString();

}

}

SoUrCe UDP "../../H:/workspace/Communication_spl/src/UDP/Listen.jak";

public class Listen extends Listen$$Encryption {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public Listen(int p, Comm comm) {

this.port = p;

try {

this.dsocket = new DatagramSocket(port);

packet = new DatagramPacket(buffer, buffer.length);

} catch (SocketException e) {

e.printStackTrace();

}

this.comm = comm;

time=System.nanoTime();

}

public void run() {

while (true) {

try {

dsocket.receive(packet);

} catch (IOException e) {

e.printStackTrace();

67

}

// Convert the contents to a string, and display them

String msg = new String(buffer, 0, packet.getLength());

System.out.println(packet.getAddress().getHostName() + ": " + msg);

verhaltung(packet.getAddress(),msg);

// Reset the length of the packet before reusing it.

packet.setLength(buffer.length);

}

}

public void send(InetAddress ip, int port, String msg) {

this.msg=msg;

Super(InetAddress,int,String).send(ip,port,this.msg);

long timet=System.nanoTime()-this.time;

this.time=System.nanoTime();

String msgt=this.msg+String.valueOf(timet);

byte[] message = msgt.getBytes();

DatagramPacket packet = new DatagramPacket(message, message.length, ip, port);

try {

DatagramSocket dsocket = new DatagramSocket();

dsocket.send(packet);

dsocket.close();

} catch (Exception e) {

System.err.println(e);

}

}

public void verhaltung(InetAddress ip,String msg){

this.msg=msg;

comm.verhaltung(ip,this.msg);

}

}

Source code of ClientApplication SPL We have implemented Features PDA, Lap-

top, and Communication in ClientApplication SPL. Each layer represents a feature in

the source code. Layer NewEquation means the code reuse of other SPLs.

layer ClientApplication;

public class Main {

public static void main(String[] args){

new Main().PrintOS();

}

public void PrintOS(){}

}

layer Laptop;

68

public refines class Main {

public void PrintOS(){

System.out.println("Laptop");

}

}

layer PDA;

public refines class Main {

public void PrintOS(){

System.out.println("PDA");

}

}

layer Communication;

public refines class Main {

public static void main(String[] args){

Super(String[]).main(args);

new Comm();

}

}

layer Communication;

import java.io.*;

import java.net.*;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

public class Comm {

public Listen l;

public void verhaltung(InetAddress ip,String msg){

l.send(ip,9001,"SensorNetwork00abcdefghijklmn00");

}

public Comm(){

System.out.println("Client");

l=new Listen(9300,this);

l.start();

try {

InetAddress ip=InetAddress.getByName("127.0.0.1");

l.send(ip,9001,"SensorNetwork00abcdefghijklmn00");

} catch (UnknownHostException e) {

e.printStackTrace();

}

}

}

69

layer NewEquation;

import java.io.IOException;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

import java.net.SocketException;

SoUrCe RooT

Communication "../../H:/workspace/Communication_spl/src/Communication/Listen.jak";

abstract class Listen$$Communication extends Thread {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public void send(InetAddress ip, int port, String msg) {}

}

SoUrCe Encryption "../../H:/workspace/Communication_spl/src/Encryption/Listen.jak";

abstract class Listen$$Encryption extends Listen$$Communication {

public void send(InetAddress ip, int port, String msg) {

this.msg=msg.substring(0,13)+rot13(msg.substring(13));

}

public void verhaltung(InetAddress ip,String msg){}

public String rot13(String pf) {

StringBuffer pf2 = new StringBuffer();

for (int i = 0; i < pf.length(); i++) {

int c = pf.charAt(i);

if (c < 65 || c > 122) {

pf2.append((char) c);

} else if ((c < 78 && c >= 65) || (c < 110 && c >= 97)) {

pf2.append((char) (c + 13));

} else if ((c >= 78 && c <= 90) || (c >= 110 && c <= 122)) {

pf2.append((char) (c - 13));

}

}

return pf2.toString();

}

}

SoUrCe UDP "../../H:/workspace/Communication_spl/src/UDP/Listen.jak";

70

public class Listen extends Listen$$Encryption {

public int port;

public DatagramSocket dsocket;

public Comm comm;

public byte[] buffer = new byte[2048];

public DatagramPacket packet;

public long time;

public String msg;

public Listen(int p, Comm comm) {

this.port = p;

try {

this.dsocket = new DatagramSocket(port);

packet = new DatagramPacket(buffer, buffer.length);

} catch (SocketException e) {

e.printStackTrace();

}

this.comm = comm;

time=System.nanoTime();

}

public void run() {

while (true) {

try {

dsocket.receive(packet);

} catch (IOException e) {

e.printStackTrace();

}

// Convert the contents to a string, and display them

String msg = new String(buffer, 0, packet.getLength());

System.out.println(packet.getAddress().getHostName() + ": " + msg);

verhaltung(packet.getAddress(),msg);

// Reset the length of the packet before reusing it.

packet.setLength(buffer.length);

}

}

public void send(InetAddress ip, int port, String msg) {

this.msg=msg;

Super(InetAddress,int,String).send(ip,port,this.msg);

long timet=System.nanoTime()-this.time;

this.time=System.nanoTime();

String msgt=this.msg+String.valueOf(timet);

byte[] message = msgt.getBytes();

DatagramPacket packet = new DatagramPacket(message, message.length, ip,

port);

try {

DatagramSocket dsocket = new DatagramSocket();

dsocket.send(packet);

71

dsocket.close();

} catch (Exception e) {

System.err.println(e);

}

}

public void verhaltung(InetAddress ip,String msg){

this.msg=msg;

comm.verhaltung(ip,this.msg);

}

}

72

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit er-

laubten Hilfsmitteln angefertigt habe.

Magdeburg, den 2nd June 2009

Tao Wei

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Goals
	Structure of the Thesis

	Background
	Software Product Line Engineering
	Feature-Oriented Domain Analysis
	Staged Configuration Using Feature Models
	Feature-Oriented Programing

	Dependent Software Product Lines
	Sensor Networks
	Summary

	Modeling Dependent Software Product Lines
	Case Study: Sensor Network Product Line
	Product Lines for a Sensor Network
	Integrating Multiple Product Lines

	Using FM-References for Modeling Dependent Product Lines
	Modeling Software Product Line Instances
	Discussion

	Implementation
	Sensor Networks
	Dependent Software Product Lines
	Implementation of Communication Product Line
	Implementation of Dependent Software Product Lines

	Configuring Dependent Software Product Lines
	Summary

	Evaluation
	Evaluation of Modeling Approaches
	Evaluation of Implementation Approaches

	Conclusion
	Further Work

	Bibliography
	Appendix

