
University of Magdeburg

School of Computer Science

Diplomarbeit

A Machine-Checked Proof

for a Product-Line–Aware Type System

Author:

Thomas Thüm

January 15, 2010

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
Dipl.-Wirt.-Inform. Christian Kästner

Department of Technical & Business Information Systems

Prof. Dr. rer. nat. habil. Jürgen Dassow

Department of Knowledge and Language Engineering

Thüm, Thomas:
A Machine-Checked Proof for a Product-Line–Aware Type System
Diplomarbeit, University of Magdeburg, 2009.

Abstract

A software product line is a set of software-intensive systems that share a common
code base. Program variants are generated using a feature selection, where only the
code for the selected features is generated. Since the number of program variants grows
exponentially with the number of features, we cannot type-check each variant on its own.
Recently, product-line–aware type systems were proposed to efficiently type-check the
software product line. Type soundness proofs show that no ill-typed program variants
can be generated from a well-typed product line. We present a formal type soundness
proof for Colored Featherweight Java in Coq. Furthermore, we present a simplified type
system for Colored Featherweight Java and share our experiences with machine-checked
proofs using the proof assistant Coq.

Acknowledgements

I would like to thank Christian Kästner for the perfect assistance throughout the last
three years. We had many productive discussions that I would not want to miss. His
careful reading of my drafts and his critical view substantially helped to improve this
thesis.

Many thanks to Jürgen Dassow who supported me in mathematical issues. He also
gave me many helpful comments on earlier versions of this thesis.

Special thanks to the people who answered me on the Coq mailing list, especially
Adam Chlipala, Cedric Auger, Bruno de Fraine, Edsko de Vries, and Pierre-Yves Strub.
Without their assistance, many proofs would not be completed yet.

Finally, I would like to thank my fellow students Tom Brosch and Frederik Dornemann
for their help with LATEX and my family for their encouragement.

Contents

List of Figures x

List of Tables xi

List of Code Listings xiv

List of Acronyms xv

1 Introduction 1

2 Background 5
2.1 Software Product Lines . 5

2.1.1 Feature Models . 6
2.1.2 Variant Generation . 7
2.1.3 CIDE . 9

2.2 Type Systems . 10
2.2.1 Type Checking . 10
2.2.2 Type Soundness . 11

2.3 Proof Assistant Coq . 13
2.3.1 Gallina . 13
2.3.2 Proof Tactics . 15

3 Colored Featherweight Java 17
3.1 Featherweight Java . 17

3.1.1 Syntax . 18
3.1.2 Examples . 19
3.1.3 Type System . 21

3.2 Colored Featherweight Java . 23
3.2.1 Syntax and Annotations . 23
3.2.2 Examples . 24
3.2.3 Variant Generation . 27
3.2.4 Type System . 27

3.3 Simplifications of the Type System . 31
3.3.1 Casting and Field Access . 31
3.3.2 Method Typing . 33
3.3.3 Class Typing . 33

viii Contents

3.3.4 Revised Type System . 35

4 Formalization of Colored Featherweight Java 39
4.1 Building on a FJ Formalization . 39

4.1.1 Choosing a FJ Formalization 40
4.1.2 Corrections to the FJ Formalization 40

4.2 Type System . 41
4.2.1 Realization of Annotations . 41
4.2.2 Subtyping and Auxiliary Rules 44
4.2.3 Typing Rules . 47

4.3 Variant Generation . 52
4.4 Summary . 56

5 Type Soundness of Colored Featherweight Java 59
5.1 Type Soundness Theorem . 59

5.1.1 Formalization of the Theorem 60
5.1.2 Splitting the Theorem . 61

5.2 Type Soundness Proof . 63
5.2.1 The Proof Strategy . 63
5.2.2 Problems with Induction . 64
5.2.3 Problems with Mutual Induction 67
5.2.4 Further Problems . 70

5.3 Summary . 73

6 Experiences 75
6.1 Estimated Effort of Our Proof . 75
6.2 Challenges with Proof Assistants . 78
6.3 Advantages of Formal Proofs . 79
6.4 Summary . 80

7 Related Work 83

8 Conclusion 85

9 Future Work 87

A FJ Formalization in Coq 89
A.1 Incomplete Class Tables . 89
A.2 Method Overriding . 91

B CFJ Formalization in Coq 93
B.1 Verification of Our Formalization . 93
B.2 Annotation Lookup Functions . 94
B.3 Theorems, Lemmas, and Facts . 95

Bibliography 101

List of Figures

1.1 Development Costs with Software Product Line Engineering [JKB08] . 2

2.1 A Feature Model Representing a Graph Product Line 6

2.2 Generating Program Variants from a Common Code Base 8

2.3 The Domain of Graph Libraries . 8

2.4 Annotations in CIDE [KAK08] . 9

2.5 Type Checking a Single System . 10

2.6 Type Checking a Software Product Line 11

2.7 Type Soundness Proofs using Coq . 14

3.1 The Syntax of Featherweight Java [KA08] 19

3.2 A Minimal FJ Program . 20

3.3 A FJ Program that Handles Pairs . 20

3.4 Subtyping, Auxiliary, and Typing Rules for FJ 22

3.5 The Syntax of Colored Featherweight Java [KA08] 24

3.6 A CFJ Product Line that Handles Pairs 25

3.7 A CFJ Product Line with Pairs and Single Elements 26

3.8 The Feature Model for our Pair Product Line 26

3.9 The Variant Generation for CFJ [KA08] 27

3.10 Subtyping and Auxiliary Rules for CFJ [KAS] 28

3.11 Typing Rules for CFJ [KAS] . 30

3.12 Our Revised Subtyping and Auxiliary Rules for CFJ 36

3.13 Our Revised Typing Rules for CFJ . 37

4.1 Overview on Definitions for CFJ . 57

x List of Figures

4.2 Overview on the Variant Generation for CFJ 57

5.1 Theorems to Prove Generation Preserves Typing 61

5.2 Further Theorems to Prove Generation Preserves Typing 62

6.1 Estimated Effort in Formally Proving Type Soundness for CFJ 76

6.2 Estimated Effort for Each Part of the Formalization 77

6.3 Time Coq Needs to Check Our Formalization 77

A.1 An Example of an Incomplete Class Table 90

A.2 Method Overriding with Differing Return Types 91

B.1 Dependencies Between the FJ and the CFJ Formalization 94

List of Tables

1.1 Type System Usage in IDEs: Support for Efficient Development 2

1.2 Type System Usage in IDEs: Support for Error Detection 3

2.1 Mapping a Feature Model to a Propositional Formula 7

3.1 Meta-Variables in CFJ and Their Meaning 18

4.1 Annotation Lookup at the Class Table 45

B.1 The Files of Our Formalization . 93

xii List of Tables

List of Code Listings

2.1 Inductive Definitions in Gallina . 14

2.2 Recursive Functions and Definitions in Gallina 15

2.3 Proofs in Gallina . 16

4.1 Formalization of Annotations . 42

4.2 Terms in the FJ Formalization [Fra09a] 42

4.3 Formalization of Terms . 43

4.4 Formalization of the Class Table . 43

4.5 Formalization of Annotation Lookup 44

4.6 Formalization of Subtyping . 45

4.7 Formalization of Field Lookup . 46

4.8 Formalization of Method Lookup . 46

4.9 Formalization of Valid Method Overriding 47

4.10 Reachability Checks for Valid Method Overriding 47

4.11 Formalization of Term Typing . 48

4.12 Formalization of Method Typing . 49

4.13 Reachability Checks for Method Typing 50

4.14 Formalization of Class Typing . 50

4.15 Reachability Checks for Class Typing 51

4.16 Formalization of Well-Typed FJ Programs 52

4.17 Formalization of Well-Typed CFJ Product Lines 52

4.18 Formalization of Well-Typed CFJ Class Tables 52

4.19 Formalization of Parameter List Generation 54

4.20 Formalization of Term Generation . 55

xiv List of Code Listings

4.21 Formalization of Method Generation 55

4.22 Formalization of Class Table Generation 56

5.1 The Type Soundness Theorem—Generation Preserves Typing 60

5.2 Assumptions for Our Proofs . 64

5.3 Variant Generation for Parameter Lists is Unique 65

5.4 Method Present with Existential Quantification 66

5.5 Method Present without Existential Quantification 66

5.6 Combined Scheme for Mutual Induction 67

5.7 Variant Generation for Terms is Unique using Mutual Induction 68

5.8 Variant Generation for Terms is Total 69

5.9 Generation Preserves Typing for Terms 70

5.10 Generation Preserves Typing for Terms using Mutual Induction 71

5.11 Variant Generation for Parameter Lists is a Total Function 72

5.12 Axioms of Our Type Soundness Proof 74

6.1 Example for a Mutual Induction Principle in Coq 79

A.1 Proof that an Incomplete FJ Class Table is Well-Typed 90

A.2 A Definition Allowing Incomplete Class Tables [Fra09a] 91

A.3 The Corrected Definition Prohibiting Incomplete Class Tables 91

A.4 A Definition Allowing Different Return Types [Fra09a] 92

A.5 The Corrected Definition Forcing Identical Return Types 92

B.1 Annotation Lookup Functions for CFJ 94

B.2 Theorems, Lemmas, and Facts to Prove Type Soundness for CFJ . . . 95

List of Acronyms

AT Annotation Table

CFJ Colored Featherweight Java
CIDE Colored Integrated Development Environment

FCJ Featherweight cJ
FFJ Feature Featherweight Java
FFJPL Feature Featherweight Java Product Line
FJ Featherweight Java
FM Feature Model

IDE Integrated Development Environment

LFJ Lightweight Feature Java
LJ Lightweight Java

SPL Software Product Line

xvi List of Acronyms

1. Introduction

A continuous challenge in the field of software engineering is to improve software de-
velopment techniques to build software faster and cheaper. It can be achieved through
a better reuse of software artifacts, since all reused code does not have to be written
over and over again. Obviously, this reduces the time needed to build new software and
thus drops the development costs as well. State-of-the-art object-oriented programming
provides concepts such as inheritance to enable the reuse of classes and avoid duplicated
code [GHJV95]. But can we achieve even more software reuse?

Taking a closer look at today’s software we do still find up to 20% duplicated
code [Bak95, MLM96, KG06]. The reasons are manifold. For instance, we might
have written a database management system for a particular device. A very similar
database is needed for another device with stronger memory limitations. The probably
fastest technique is to copy the code, remove all dispensable routines and adapt it for
the new demand. In this way the code is kind of reused, but we run into problems with
software maintenance and further adoptions [Joh93, Bak95], e.g., an error in duplicated
code need to be fixed multiple times. Recent studies found out that inconsistent code
duplicates are often a source for faults or misbehaviors [JDHW09]. Furthermore, how
to combine the features of two or more database management system variants to create
a new variant?

Software Product Lines

Software product lines aim at efficient development of similar programs using a single
code base [PBvdL05]. A common experience is that object-oriented programming is in-
sufficient on its own [KLM+97, Pre97]. Therefore, on the one hand, object-oriented lan-
guage extensions like aspect-oriented programming [KLM+97] and feature-oriented pro-
gramming [Pre97] were introduced. On the other hand, preprocessor statements [SH04]
and annotations in terms of colors [KAK08] have been proposed. The overall idea is
that of generated programming, functionalities of a software are represented in the code,
so that a software developer can generate a program code according to special require-
ments, i.e., by selecting needed functionalities and a kind of software generator [CE00].

2 1. Introduction

The main motivation to use software product line engineering instead of single system
engineering is that the costs per software product are lower (see Figure 1.1). This is
caused by software reuse strategies that aim on strong commonalities between programs
of a certain domain. But, software product lines have a higher upfront investment. The
use of software product line engineering amortizes when at least three or four single
systems are involved [Beu03, PBvdL05, JKB08]. Hence, for developing more than
three similar programs, we should take advantage of software product line engineering.

software systems as a whole, rather than handling each in-
dividual system on its own. In this sense Parnas defines
program families as

... sets of programs whose common properties
are so extensive that it is advantageous to study
the common properties of the programs before
analyzing individual members. [28]

To avail of these commonalities, SPL engineering ap-
plies techniques that were known before, e.g., software
reuse and software components. In contrast to other ap-
proaches, SPL engineering strives to achieve reuse in a
strategic, prescribed way and to use a managed set of fea-
tures satisfying the needs of a particular market segment [9].

Consequently, in comparison to Single System Engineer-
ing, SPL Engineering requires additional upfront invest-
ment to establish the product line (see in Figure 1). Ex-
amples of such investment include the definition of a prod-
uct line’s scope, the development of reusable assets, and the
creation of a production plan that describes how products
are derived.

Figure 1. Costs of SPL Engineering.

If this investment is to pay off, a sufficient number of
products and a lower costs per product is necessary to lever-
age the economy of scale (see in Figure 1).

Such an approach is applied to FM in SPL as well. For
instance, if a model analysis technique that optimizes prod-
uct derivation is created, the technique and its related tools
must be introduced to an organization , but the marginal
costs of such an introduction is reduced by performing
product-related processes more efficiently .

3.2 SPL Artifacts

To support the efficient execution of SPL processes with
FM, it helps if we first understand the types of artifacts used
in SPL and the relationships between these artifacts. Later
on, we will see how we can exploit these relationships with
FM, for instance by checking the conformance of one model
against constraints given in another model.

SPL engineering employs artifacts very similar to those
used in general software engineering like specifications,

models, and source code. However, SPL artifacts are differ-
ent and distinct in some ways. Some of these differentiating
aspects are summarized in Figure 2.

Figure 2. SPL Artifacts.

3.2.1 Product line vs. Product

SPL approaches distinguish between two levels of system
development: the product line and its products (see ver-
tical dimension in Figure 2). Often, there is one product
line artifact describing an aspect for the whole product line,
and many product-specific artifacts describing that aspect
of the individual products. For example, consider a feature
model with many product-specific feature configurations,
or a product line architecture (PLA) with many product-
specific architectures, based upon this PLA.

We see this introduction of an artifact that explicitly
describes an aspect (e.g., features or architecture) for the
whole software family as a major contribution of SPL En-
gineering. Such a product line artifact serves multiple pur-
poses: (i) it describes the products by modeling overall
structures and constraints, (ii) it provides guidance when
creating a product-specific instance, and (iii) it enables
conformance checking of instances with some given con-
straints.

3.2.2 Variability

As a direct consequence of the structure “one product line,
many products,” SPL engineering has to provide a means
to describe the commonalities and variability between dif-
ferent products (see the diagonal dimension in Figure 2).
This is, for instance, implemented by extending existing
modeling languages, or by introducing a separate variability
model that contains references to elements in other artifacts.

3.2.3 Mapping from Problem to Solution

Another dimension through which one categorizes and re-
lates SPL artifacts is seen in the distinction between prob-
lem and solution (see horizontal dimension in Figure 2).

4

Figure 1.1: Development Costs with Software Product Line Engineering [JKB08]

Type Systems

Modern software engineering uses formal methods to ensure that systems behave cor-
rectly with respect to some specification of its desired behavior [Pie02]. A type system
is such a formal method beside model checkers and run-time monitoring. Although
a lot of software developers already profit from type systems, they do not necessarily
know about them. Hence, we start with some examples what type systems are good for
in Table 1.1. All screenshots are made in Eclipse Ganymede, a widely-used Integrated
Development Environment (IDE).

Content assist and auto completion

Refactorings: renaming identifiers and
moving declarations

Table 1.1: Type System Usage in IDEs: Support for Efficient Development

3

First, a content assist provides context sensitive content for the position of the cursor.
The content compromises local variables, fields, methods and elements from the super
class. Essential is that only references available in the actual context are displayed.
Second, we can simply rename an identifier by providing its new name. The IDE finds
all occurrences of the name, even in other classes.

The support by type systems is not only for efficient development, it is also used for
efficient debugging. Table 1.2 gives examples for errors a type system can detect.Foo.java

public class Foo {
int a = 5 + "3";

}

Page 1

Type mismatch: cannot convert from
String to int

Foo.java

public class Foo {
void bla(){

return; int a;
}

}

Page 1

Unreachable code

Foo.java

public class Foo {
void bla() {}
void bla() {}

}

Page 1

Duplicate method bla in type Foo

Table 1.2: Type System Usage in IDEs: Support for Error Detection

First, the addition of two numbers fails, if one of them is not encoded as a number but
as a string. We get a localized type mismatch error at compile time. Without a type
system, we would get an error at run time, but only if the class is instantiated, i.e.,
extensive testing is essential. Second, a type system can detect unreachable code and
duplicate methods. It prevents from writing and maintaining unnecessary code.

All these examples point up how type systems can be used to improve the efficiency in
software development. Using type systems for software product lines seems worthwhile,
since we are interested in efficient development and many programmers are already
used to have the functionalities of modern IDEs. In software product line engineering
the program variants are generated from a new language or using a generation process,
we can only apply an existing type system to the variants and not to the product line
itself.

As the number of program variants increases possibly exponentially with the number of
features that can be chosen, it is usually not suitable to check all program variants sepa-
rately [CP06, TBKC07, KA08, AKGL09]. Hence, there is a need for product-line–aware
type systems that can efficiently check a whole software product line and guarantee the
absence of certain behaviors for all program variants that can be generated.

Machine-Checked Proofs

A type system is a formal method. Given a type system, we also need a proof of its
correctness. Such a proof is called type soundness proof and is typically long and hard

4 1. Introduction

to verify by humans. One reason is that programming languages getting more and more
complex what makes the proofs consisting of many cases.

A proof assistant is an environment to write a proof that can be verified by a machine.
There are several reasons to decide to use such a machine-checked proof. First, we
cannot simply forget cases or use assumptions that are not given. Second, we need to
formalize all concepts, while informal concepts often lead to wrong conclusions. Third,
having a machine-checked proof we can trust in the proof assistant and focus more on
the theorems themselves.

Goal of this Thesis

The goal of this thesis is to provide a machine-checked type soundness proof of a
product-line–aware type system. We decided to prove type soundness for Colored Feath-
erweight Java (CFJ), because it already comes with a product-line–aware type system
and a proof of its correctness in informal math [KA08]. For other languages, e.g., Fea-
ture Featherweight Java Product Line (FFJPL), only a proof sketch exists [AKGL09],
what may indicate that writing a machine-checked proof is more complicated.

CFJ is a product-line–aware language based on a small functional subset of Java named
Featherweight Java (FJ). Variability is achieved in CFJ by annotations, i.e., code frag-
ments can be annotated with colors. A software generator can then produce a program
variant by removing code annotated with certain colors.

The choice to do a proof manually or machine-checked is not obvious. Many mathe-
maticians decline machine-checked proofs, as they read as a phone book and not like
a mathematical proof. However, communities on proof assistants seem to grow and to
give an example, there is still no manual proof of the Four Color Theorem stated in
the year 1852, for which since 2004 a machine-checked proof exists [Gon04]. Therefore,
a secondary goal of this thesis is that we want to share our experiences with machine-
checked proofs.

Structure of the Thesis

Chapter 2 provides the necessary background on software product lines, type systems
and the proof assistant Coq. Some further background on CFJ is given in Chapter 3
and we present a simplified type system for CFJ. Chapter 4 covers how we formalized
CFJ in the proof assistant Coq. Based on this formalization, we present details on our
machine-checked type soundness proof of CFJ in Chapter 5. We share our experiences
on machine-checked proofs in Chapter 6. Chapter 7 presents related work. We give a
conclusion and point to future work in Chapter 8 and Chapter 9.

2. Background

The subject of this thesis are machine-checked proofs for product-line–aware type sys-
tem. It combines three subjects from computer science for which this chapter provides
the necessary background. First, software product lines are used to efficiently develop
similar programs (Section 2.1). Second, type systems syntactically prove the absence of
certain undesired program behaviors (Section 2.2). Third, machine-checked proofs are
formal proofs whose correctness can be verified by a computer program (Section 2.3).

2.1 Software Product Lines

Pohl et al. define software product line engineering as follows [PBvdL05].

“Software product line engineering is a paradigm to develop software appli-
cations (software-intensive systems and software products) using platforms
and mass customisation.”

The definition covers the development of software as well as software-intensive systems,
i.e., hardware systems that come along with software. Mass customization brings to-
gether the advantages of mass production and customized products. Applied to software
development, the idea is to build programs for specific needs without developing each
program from scratch. Instead, parts are build that can be reused.

Software product lines are widespread in today’s software, while there is a couple of
approaches for realization. The most popular approach is to use #ifdefs and C’s pre-
processor [SB00, AG01]. Arbitrary parts of the code can be surrounded by an #ifdef
construct and a flag indicates the preprocessor to remove the code or not.

Usually, there is more than one flag in a software product line and so we can produce a
number of software applications with different functionality. We use features to describe
the commonalities and differences of these software variants. Kang et al. defined features
as follows [KKL+98].

6 2. Background

“Features are any prominent and distinctive aspects or characteristics that
are visible to various stakeholders, e.g., end-users, domain experts or devel-
opers.”

Not all combinations of features are useful. Section 2.1.1 introduces feature models that
describe the valid combinations of features. How we generate a variant given a valid
combination of features is described in Section 2.1.2. Finally, Section 2.1.3 presents a
tool to develop software product lines, on which our work partly relies on.

2.1.1 Feature Models

In 1990, feature models were introduced in the Feature-Oriented Domain Analysis by
Kang et al. [KCH+90]. A feature model is a hierarchically organized set of features that
is used as a compact representation of all possible program variants. The graphical
representation of a feature model is a feature diagram. We give an example in Figure 2.1.

GraphLibrary

Edges

Directed Undirected

Algorithms

Number Cycle

Cycle ⇒ Directed

Legend:NewCompound1

Layer1 Layer2

And-groupNewCompound1

Layer1 Layer2

Or-groupNewCompound1

Layer1 Layer2

Alternative-group

NewCompound1

Layer1 Layer2
Mandatory

NewCompound1

Layer1 Layer2
Optional

Figure 2.1: A Feature Model Representing a Graph Product Line

Every feature has a parent feature except for one feature that we call the root feature.
Semantically, we want to express that whenever a feature is contained in a product, we
will also find its parent in the same product. Usually, we distinguish between the three
group types in that a feature is connected to its children [GFdA98, CE00].

And-groups have mandatory (filled circle) and optional features (empty circle). Manda-
tory features are always selected when their parent is selected. The semantic of Alter-
native-groups is that whenever the parent is selected, we have to choose exactly one of
its children. Or means that we have to choose at least one of the children.

A feature diagram may also contain cross-tree constraints. Such constraints may express
that one feature requires another or that two features mutually exclude each other.
Cross-tree constraints are often drawn as dashed arrows in feature diagrams or written
below the diagram.

In our example, a graph always has edges that are either directed or undirected. Our
graph library might have algorithms to determine the number of edges or to detect a

2.1. Software Product Lines 7

cycle. The cross-tree constraint states that the cycle detection requires the edges to be
directed.

Propositional formulas can be used as a logical representation of feature models [Bat05].
For every feature we have a variable (usually with the same name) and assigning true to
a variable means that the corresponding feature is selected. The propositional formula
has the truth value true, if and only if the combination of selected features is valid. A
feature model can be translated into a propositional formula using the rules given in
Table 2.1.

Group Type Propositional Formula

And (P ⇒ Ck1 ∧ . . . ∧ Ckm) ∧ (C1 ∨ . . . ∨ Cn ⇒ P)

Or P ⇔ C1 ∨ . . . ∨ Cn

Alternative (P ⇔ C1 ∨ . . . ∨ Cn) ∧ atmost1(C1, . . . , Cn)

Table 2.1: Mapping a Feature Model to a Propositional Formula

P is a place holder for the parent feature, Ci for a child feature and n is the number of
child features. Ck1 , . . . , Ckm are mandatory features and the term atmost1(C1, . . . , Cn)
is equivalent to

∧
1≤i<j≤n(¬Ci ∨ ¬Cj). The propositional formulas for each group are

connected with the logical and. Additionally, we add all cross-tree constraints and the
rule that the root feature is true in all configurations. For example, the propositional
formula representing the feature model in Figure 2.1 is as follows:

GraphLibrary

∧ (GraphLibrary⇒ Edges) ∧ (Edges ∨ Algorithms⇒ GraphLibrary)

∧ (Edges⇔ Directed ∨ Undirected) ∧ (¬Directed ∨ ¬Undirected)

∧ (Algorithms⇔ Number ∨ Cycle)

∧ (Cycle⇒ Directed).

2.1.2 Variant Generation

Software product lines take advantage of generative programming, where software is
generated from a common code base [CE00]. The software generator gets a valid con-
figuration and a code base as input to generate a program variant (see solid arrows
in Figure 2.2). The code base provides a mapping from features to code fragments, so
that the generator can produce a program variant by combining the code for all selected
features. The feature model describes the valid combinations of features, i.e., it is used
to specify whether a given configuration is valid (dashed arrows). Generally, we have
multiple configurations each leading to a different program variant.

A configuration (also feature selection) assigns a truth value to each variable repre-
senting a feature at the feature model. A feature is called selected in a particular

8 2. Background

GraphLibrary

Edges

Directed Undirected

Algorithms

Number Cycle

Cycle ⇒ Directed

Feature Model Code Base

Configurations Software Generator Program Variants

Figure 2.2: Generating Program Variants from a Common Code Base

configuration, if the value assigned to its variable is true. A configuration is called
valid according to a feature model, if the propositional formula representing the feature
model evaluates to true under that configuration. In Figure 2.3, we visualize all valid
configurations of our example feature model in Figure 2.1.

GraphLibrary

Edges

Directed

GraphLibrary

Edges

Undirected

GraphLibrary

Edges

Directed

Algorithms

Number

GraphLibrary

Edges

Directed

Algorithms

Cycle

GraphLibrary

Edges

Undirected

Algorithms

Number

GraphLibrary

Edges

Directed

Algorithms

Number

Cycle

Domain

Figure 2.3: The Domain of Graph Libraries

Our sample domain of graph libraries contains six program variants (visualized as
blocks). The program variants vary in their features (colored layers), e.g., there are
two variants that can detect cycles in graphs and four variants that do not support this
algorithm. There is no program variant with directed and undirected edges, because the
according features are declared as alternatives at the feature diagram. Furthermore, a

2.1. Software Product Lines 9

graph library with cycle checking on undirected graphs is not valid due to the cross-tree
constraint.

In a software product line tool it can easily be determined whether a given configuration
is valid using a satisfiability solver. It checks whether a given propositional formula is
satisfiable or not. On the other hand, we can also check whether the code base with
its mapping from features to code is valid according to the feature model. For this
purpose, type checkers can be used to verify that all valid configurations specified by
the feature model lead to well-typed program variants (see Section 2.2).

2.1.3 CIDE

In 2008, Kästner et el. presented the Colored Integrated Development Environment
(CIDE) as an Eclipse-based prototype tool for software product line development. Com-
pared to other software product line tools it especially focuses on “decomposing legacy
applications into features that may have a fine granularity” [KAK08]. We give a screen-
shot in Figure 2.4.

Figure 2.4: Annotations in CIDE [KAK08]

Similar to the aforementioned #ifdef of C’s preprocessor, CIDE allows to annotate
code with features, but in a more disciplined way. First, not arbitrary code parts
can be annotated. Instead, we can only annotate elements which are optional in the
language’s syntax. Second, the annotations are not written in the source code, they
consist of colored annotations that are stored separately in an annotation table.

In CIDE, source code can also be annotated with multiple features. In other words,
colors may overlap and are drawn using a mixture of colors. When generating program
variants, the source code not annotated with any features is always present. Whether
annotated code is removed or not, depends on the configuration. Thus, different pro-
gram variants can be generated.

10 2. Background

2.2 Type Systems

Pierce defines a type system as follows [Pie02].

“A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of
values they compute.”

A type system is a syntactic method, since programs are classified using their syntactical
elements. Therefore, a type system is usually specific to a certain language. A program
variable can assume a range of values during execution of a program and an upper
bound of such range is called a type of the variable. A language is called typed if
variables can be given types and typed languages are explicitly typed if types are part
of the syntax [Car97]. All languages of interest in this thesis are explicitly typed.

In general, a formal type system is the mathematical characterization of an informal
type system that is described in a programming language manual. Formal type sys-
tems mainly consist of typing rules that classify programs into well-typed and ill-typed
programs. Section 2.2.1 explains the process of classifying programs based on a type
system called type checking. Proving that a type system is correct means to prove a
property named type soundness, as we show in Section 2.2.2.

2.2.1 Type Checking

Typed languages can enforce the absence of certain program errors by performing static
checks, i.e., checks at compile time. This process is named type checking and the tool
that performs this checking is called the type checker [Car97]. Hence, a type checker
classifies a given program as well-typed or ill-typed based on a type system. Figure 2.5
visualizes the process for a single program.

Source Code

Type Checker

40 3. Colored Featherweight Java

Subtyping C <: D

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }
C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M }
fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = C x→C

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

A → AT (M)

mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A)

CT (C) = class C extends D { C f; K M }
m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Method overriding override(m,C,C x→C)

override(m,Object,C x→C0)

CT (C) = class C extends D { D f; K M }
M = B0 m(B g) { return t; }

override(m,D,C x→C0)
M ∈ M implies C = B and C0 = B0 and

AT (M)→ (AT (C x)↔ AT (B g))

override(m,C,C x→C0)

Figure 3.12: Revised Subtyping and Auxiliary Rules for CFJ

3.3. Simplifications of the Type System 41

Term typing A; �` t : C

x : C with A′ ∈ � A → A′
A; �` x : C

(T-Var)

A; �` t0 : C0 fields(C0) = C f
A → AT (Ci fi)

A; �` t0.fi : Ci

(T-Field)

A; �` t0 : C0

mtype(m,C0,A) = D y→C
AT (t); �` t : C C <: D
A →

�
AT (t)↔ AT (D y)

)

AT (t)→ A
A; �` t0.m(t) : C

(T-Invk)

A → AT (C)
fields(C) = D f

AT (t); �` t : C C <: D
A →

�
AT (t)↔ AT (D f)

)

AT (t)→ A
A; �` new C(t) : C

(T-New)

A; �` t0 : D D <: C

A; �` (C)t0 : C
(T-UCast)

A; �` t0 : D C <: D
C 6= D A → AT (C)

A; �` (C)t0 : C
(T-DCast)

Method typing M OK in C

M = C0 m(C x) { return t0; }
AT (M) = A

AT (C x)→ AT (C) AT (C x)→ A
CT (C) = class C extends D { . . . }

override(m,D,C x→C0)
�= x : C with AT (C x),

this : C with AT (C)
A; �` t0 : E0 E0 <: C0

M OK in C

Class typing C OK

K = C(D g, C f’) { super(g’); this.f=f; }
M OK in C fields(D) = D g”

C f = C f’ D g = D g” g = g’
AT (C) = A A → AT (D)

AT (M)→ A AT (C f)→ A∧ AT (C)
AT (C f)↔ AT (this.f=f)
AT (C f)↔ AT (C f’)

A →
�
AT (D g)↔ AT (D g”)

)

AT (D g)↔ AT (g’) AT (D g)→ A
class C extends D { C f; K M } OK

Product line typing (L, t,FM,AT)

L OK ∅; ∅ ` t : C

(L, t,FM,AT)

Figure 3.13: Revised Typing Rules for CFJ

Type System

Program
Well-Typed?

Figure 2.5: Type Checking a Single System

2.2. Type Systems 11

We want to use type checking not only for single system, we want to type-check an
entire software product line. A naive approach is to generate all programs, as described
in Section 2.1.2, and check each program separately. This is often not feasible, as the
number of variants tends to be very high and identical parts of the variants need to be
checked multiple times [AKGL09, KA08].

Product-line–aware type systems are type systems that can efficiently type check soft-
ware product lines. Recently, product-line–aware type systems were proposed for dif-
ferent software product line languages [CP06, TBKC07, KA08, DCB09, AKGL09]. The
overall idea is to classify the whole software product line as well-typed or ill-typed and
for every well-typed product line, all variants generated using valid configurations are
well-type.

Figure 2.6 shows that the type checker based on a product-line–aware type system gets
the feature model and the code base (with a mapping from features to code) to classify
software product lines into well-typed and ill-typed ones.

GraphLibrary

Edges

Directed Undirected

Algorithms

Number Cycle

Cycle ⇒ Directed

Feature Model Code Base

Type Checker

40 3. Colored Featherweight Java

Subtyping C <: D

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }
C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M }
fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = C x→C

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

A → AT (M)

mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A)

CT (C) = class C extends D { C f; K M }
m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Method overriding override(m,C,C x→C)

override(m,Object,C x→C0)

CT (C) = class C extends D { D f; K M }
M = B0 m(B g) { return t; }

override(m,D,C x→C0)
M ∈ M implies C = B and C0 = B0 and

AT (M)→ (AT (C x)↔ AT (B g))

override(m,C,C x→C0)

Figure 3.12: Revised Subtyping and Auxiliary Rules for CFJ

3.3. Simplifications of the Type System 41

Term typing A; �` t : C

x : C with A′ ∈ � A → A′
A; �` x : C

(T-Var)

A; �` t0 : C0 fields(C0) = C f
A → AT (Ci fi)

A; �` t0.fi : Ci

(T-Field)

A; �` t0 : C0

mtype(m,C0,A) = D y→C
AT (t); �` t : C C <: D
A →

�
AT (t)↔ AT (D y)

)

AT (t)→ A
A; �` t0.m(t) : C

(T-Invk)

A → AT (C)
fields(C) = D f

AT (t); �` t : C C <: D
A →

�
AT (t)↔ AT (D f)

)

AT (t)→ A
A; �` new C(t) : C

(T-New)

A; �` t0 : D D <: C

A; �` (C)t0 : C
(T-UCast)

A; �` t0 : D C <: D
C 6= D A → AT (C)

A; �` (C)t0 : C
(T-DCast)

Method typing M OK in C

M = C0 m(C x) { return t0; }
AT (M) = A

AT (C x)→ AT (C) AT (C x)→ A
CT (C) = class C extends D { . . . }

override(m,D,C x→C0)
�= x : C with AT (C x),

this : C with AT (C)
A; �` t0 : E0 E0 <: C0

M OK in C

Class typing C OK

K = C(D g, C f’) { super(g’); this.f=f; }
M OK in C fields(D) = D g”

C f = C f’ D g = D g” g = g’
AT (C) = A A → AT (D)

AT (M)→ A AT (C f)→ A∧ AT (C)
AT (C f)↔ AT (this.f=f)
AT (C f)↔ AT (C f’)

A →
�
AT (D g)↔ AT (D g”)

)

AT (D g)↔ AT (g’) AT (D g)→ A
class C extends D { C f; K M } OK

Product line typing (L, t,FM,AT)

L OK ∅; ∅ ` t : C

(L, t,FM,AT)

Figure 3.13: Revised Typing Rules for CFJ

Type System

Product Line
Well-Typed?

Figure 2.6: Type Checking a Software Product Line

2.2.2 Type Soundness

A type soundness theorem states that well-typed terms always evaluate to val-
ues [WF94]. If a type soundness theorem holds, we call the type system sound. In order
to prove type soundness formally, we need to formalize the whole language [Car97], i.e.,
we need to define a relation that identifies well-typed programs and a relation that
defines the semantics by providing evaluation rules.

Typing Rules

For most languages especially types and terms are of interest, where a term is a state-
ment, an expression or another program fragment. To type a term, we additionally
need the environment specifying the types of variables that may occur in the term of

12 2. Background

interest. For instance, in a method declaration, we may have parameter variables with
specific types and whenever we want to analyze the type of a term in that method, we
also need the type of all variables that occur in our term.

The relation that a term t has the type T in the context Γ is written as Γ ` t : T. An
context Γ is a list of type assignments of the form x : T, meaning that the variable x
has type T in the context Γ [WF94]. We use ∅ to denote an empty context. A type
system consists of typing rules that define which terms are in this relation.

Typing rules are basically inference rules, stating that if a potentially empty set of
premises is fulfilled, then the conclusion is valid. We could write them as a propositional
formula, but a common notation is to write the premises above a line and the conclusion
below. We give an example that is often part of type systems.

x : T ∈ Γ

Γ ` x : T
(T-Var)

The rule T-Var states that a variable x has type T if the environment assigns T to x.
For instance, we know that y : U, x : T ` x : T. We present more typing rules in the
following chapter, but the overall principle is identical.

Evaluation Rules

Before we go into detail how type soundness is proven, we explain shortly how a program
is evaluated to a value. Similar to typing rules, evaluation rules are inference rules that
allow us to replace certain terms by other possibly simpler terms [Pie02].

The intuition is that t is the state of the abstract machine at a given moment, then the
machine can make a step of computation and change its state to t’. t→ t’ is pronounced
as “t evaluates to t’ in one step”. Evaluation rules concisely define the semantics of the
language and are very specific to a language. Therefore, we give a very general example
that fits in most languages.

t→ t’

t in some construct→ t’ in the same construct
(E-Something)

The term t in some language construct can be evaluated to t’ in the same construct, if t
evaluates to t’ in one step. Building the reflexive and transitive closure of the one-step
evaluation, we get the multi-step evaluation denoted as t→∗ t’. A value is a term that
cannot be further evaluated.

2.3. Proof Assistant Coq 13

Progress and Preservation

The soundness theorem can be proven in two steps, known as the progress and the
preservation theorem [Pie02]. The progress theorem states that a well-typed term is
either a value or it can take a step according to the evaluation rules. The preservation
theorem predicates that if a well-typed term takes a step of evaluation, then the resulting
term is also well-typed. Both theorems together tell us that a well-typed term always
evaluates to a value [WF94].

2.3 Proof Assistant Coq

Coq is a formal proof management system, or short proof assistant [CDT09a]. It pro-
vides the formal language Gallina to write mathematical definitions and theorems to-
gether with an environment for interactive development of machine-checked proofs. In
2004, Gonthier used Coq to proof the Four Color Theorem [Gon04]. This is probably
the most famous machine-checked proof, because it is the first major theorem that was
proven using a computer, for which still no manual proof exists.

A proof assistant is a tool for interactive theorem proving, whereas formal proofs are
developed by a man-machine collaboration [BC04]. It comes with an interactive proof
editor, with which a human provides mathematical definitions, theorems and proofs.
The proof assistant can verify that the proofs are correct. If a proof is accepted by the
proof assistant, we call it a machine-checked proof.

Similarly, in automated theorem proving, a human defines mathematical theorems in a
certain logic and the machine checks their validity. Contrary to proof assistants, the
human does not write a proof and theorem provers do not provide a human readable
proof. Automated theorem proving usually requires more computing power and it may
not terminate within a reasonable time.

In our work, the proof assistant Coq is used to verify a type soundness proof for a
type system. Therefore, all definitions that build up the type system and the proof
are formalized in Gallina, the proof assistant’s language (see Figure 2.7). Coq verifies
the definitions and the proof step-by-step. Either all statements can be verified or Coq
stops earlier with an error message and we know the proof is incomplete. Given the
definitions and the proof, Coq can verify whether the proof is correct or not.

In the following, we explain fundamentals of theorem proving with Coq. This back-
ground is necessary to understand definitions and proofs provided in Chapter 4 and
Chapter 5. Section 2.3.1 introduces the basic language constructs of Gallina, i.e., how
definitions can be expressed with it. Finally, in Section 2.3.2, we introduce theorem
definitions and how tactics are used in Coq to interactively develop proofs.

2.3.1 Gallina

Gallina is the specification language of Coq and it allows to develop mathematical
theories and proofs. It is out of the scope of this thesis to give a complete introduc-
tion to Coq, but we exemplify Gallina in the following. For more details, we refer to

14 2. Background

Gallina

Definition ...

Inductive ...

Fixpoint ...

Notation ...

Type System

Theorem ...

Lemma ...

Proof ... Qed.

Type Soundness
Proof Proof Assistant Coq

Proof
Correct?

Figure 2.7: Type Soundness Proofs using Coq

the reference manual [CDT09b] as well as to Bertot and Castéran’s book “Interactive
Theorem Proving and Program Development - Coq’Art: The Calculus of Inductive
Constructions” [BC04].

Inductive definitions play a fundamental role in Coq. We give two examples in List-
ing 2.1. The first defines natural numbers inductively. We name our definition nat

and it is of type Set. In Gallina every term is typed using the notation term : type.
Elements in nat are either O of type nat or S which is the successor function taking one
element of nat and returns an element of type nat.

Inductive nat : Set :=
| O : nat

| S : nat → nat.

Inductive even : nat → Prop :=
| even_O : even O

| even_SS : forall n:nat, even n → even (S (S n)).

Listing 2.1: Inductive Definitions in Gallina

Our second inductive definition shows how nat can be used. It is named even and is
an unary relation on nat. The latter is indicated by the type nat → Prop. O is in
the relation even and if n is in even, where n : nat, then also (S (S n)) is in the
relation even. The identifiers even_O and even_SS are used to refer to these options.

We now define a recursive function add using the keyword Fixpoint that adds two
terms of type nat (see Listing 2.2), which is needed for a simple proof in the following
section. The parameters n and m are of type nat. Coq verifies that the recursive
function terminates for all possible parameters. We need to help Coq by specifying the
decreasing parameter using {struct n}. We use the match operator for a distinction

2.3. Proof Assistant Coq 15

on the possible cases n with the various constructors. If n equals O, then m is returned.
Otherwise n matches S p and we return the successor of add p m.

Fixpoint add (n m:nat) {struct n} : nat :=
match n with
| O ⇒ m

| S p ⇒ S (add p m)
end.

Definition twice (n:nat) : nat := add n n.

Listing 2.2: Recursive Functions and Definitions in Gallina

We can also have non-inductive definitions. Our example is the definition of twice as
a function with a parameter of type nat. It returns a term of type nat, which is twice
the given value. We explained the most used language constructs of our formalization.
The next section shows how to write basic theorems and proofs in Coq.

2.3.2 Proof Tactics

In order to proof a lemma or a theorem, we first need to define it. We give two examples
in Listing 2.3 based on the definitions of the previous section. The lemma add_left

states that for the addition of two elements of type nat, the following equality holds
n + (1 + m) = 1 + (n + m). It is declared as a lemma cause we only need it to
proof the theorem even_twice: every natural number multiplied by two is even. The
theorems are rather simple, but the proofs already contain the most important language
constructs for proof writing.

First, we introduce the nomenclature used in Coq. Proving a theorem means to solve
a goal. When starting the proof, the goal is identical to the theorem. We use tactics to
manipulate the (sub-)goal to get to simpler subgoals. The proof is finished, if we solved
all subgoals. Therefore, a tactic might (a) solve the subgoal, (b) produce new subgoals,
or (c) replaces the subgoal [BC04].

Before we explain our example proofs, we need to mention that proving in Coq has one
main difference to manual proofs. Manual proofs usually base on forward reasoning:
given a proof of A and B, we can deduce C. Instead, Coq uses backward reasoning:
applying a tactic means to replace the proof of C by a proof of A and a proof of B.
That way, a tactic reduces a goal to a number of subgoals [CDT09b].

We start explaining how our example theorem even_twice is proven. Usually, we begin
our proofs with the intros-tactic that takes all quantified variables and premises and
states them as our assumptions. In our example, we then have the assumption that n

is a variable of type nat and our new goal is even (twice n).

The tactic unfold replaces an identifier (in our case twice) by its definition. This
results in the subgoal even (add n n). We then start an induction on n using the
induction tactic. This results in two subgoals which we explain in the following.

16 2. Background

Lemma add_left : forall (n m:nat), add n (S m) = S (add n m).
Proof.

intros.
induction n.

unfold add.
trivial.

unfold add.
fold add.
rewrite IHn.
trivial.

Qed.

Theorem even_twice : forall (n:nat), even (twice n).
Proof.

intros.
unfold twice.
induction n.

unfold add.
apply even_O.

rewrite add_left.
unfold add.
fold add.
apply even_SS.
apply IHn.

Qed.

Listing 2.3: Proofs in Gallina

The first subgoal is even (add O O); the induction beginning. Unfolding the definition
of add simply means to replace it by O. The reason is that the first parameter matches
to O (see definition in Listing 2.2). The apply tactic can be used to solve the goal since
even_O is a proof of even O. We identify solved goals by a followed empty line or Qed.
The indent is used to show how many subgoals are produced by a certain tactic.

The second subgoal is even (add (S n) (S n)); the induction step. We first use
our lemma to simplify our subgoal using the rewrite tactic. This results in the sub-
goal even (S (add (S n) n)). Unfolding add and folding it right afterwards leads
us to the subgoal even (S (S (add n n))). Applying even_SS we get the sub-
goal even (add n n), what is exactly our induction hypothesis. Hence, applying our
induction hypothesis named IHn solves the last subgoal.

The proof of lemma add_left has only one different tactic named trivial. It solves a
goal if it is a trivial equality. For instance, S m = S m at its first use and at the end
of the proof it solves S (S (add n m)) = S (S (add n m)). For more details on
tactics, we refer to the Coq reference manual [CDT09b].

3. Colored Featherweight Java

This chapter describes the basic concepts of FJ and CFJ. These programming languages
are already known from the literature, but a clear understanding is needed for the
following two chapters, where we formalize the type systems in Gallina (see Chapter 4)
and proof crucial properties about them using the proof assistant Coq (see Chapter 5).

The main innovation of this chapter is our revised type system for CFJ. The type system
known from literature can be simplified due to redundant premises at the some typing
rules. A smaller contribution is that we give some new and adapted examples of FJ
programs and CFJ product lines.

In Section 3.1, we introduce the syntax of FJ, give examples and a type system. Based
on that, Section 3.2 shortly describes the extension CFJ and present a type system
from the literature. Finally, we propose a simplified type system for CFJ in Section 3.3
and prove that it is equivalent to the original type system.

3.1 Featherweight Java

“Inside every large language is a small language struggling to get out. . . ”
Tony Hoare [IPW01]

In 1999, Igarashi et al. presented FJ as a lightweight version of Java [IPW99]. They
omit almost all language constructs of Java to ease type soundness proofs and propose
it as a good starting point for proofs on language extensions. A type soundness proof
for FJ and a proof sketch for an extension with generic classes are provided. A full
proof is given in the revised version of the paper published in 2001 [IPW01], which
describes the calculus in more detail and a slightly changed notation. Additionally, FJ
is a subject of Pierce’s book “Types and Programming Languages” [Pie02]. We base
our work on Pierce’s notation as it is also used in publications dealing with CFJ.

Notice, that for full Java type soundness proofs are not practical, since the Java language
description is informal and 688 pages long [GJSB05]. Formalizations and proofs tend

18 3. Colored Featherweight Java

to be more extensive. Therefore, the community on type systems often uses elementary
languages to proof certain properties of interest. We point the reader to Chapter 7 for
more such elementary languages.

FJ is a programming language, while it is not intended to be used it in industrial
practice. The expressiveness of FJ is closer to that of the lambda-calculus than that
of a real programming language like Java. Nevertheless, it can be used to get a better
understanding of the fundamental concepts in Java. Igarashi et al. propose that type
soundness proofs for FJ illustrate “many of the interesting features of a safety proof for
the full language” [IPW99].

FJ is designed with a special property in mind; every FJ program is also a full Java
program. We refer to this property as backward compatibility and it means, that we
can use tools designed for Java to write FJ programs, e.g., with syntax highlighting or
code assist, and compile and run such programs. This is an important property from a
tool support perspective and is also important for extensions as CFJ, as we explain in
Section 3.2.

In Section 3.1.1, we formally characterize syntactically correct FJ programs. Examples
for syntactically correct programs are given in Section 3.1.2 for a better comprehension.
Particularly, those examples are well-typed according to the type system we state in
Section 3.1.3.

3.1.1 Syntax

Before we present the syntax and type system for FJ, we introduce the notations used.
Table 3.1 gives an overview on the ranges of used meta-variables. We assume the
special variable this, which cannot be used as a method parameter and is replaced by
an appropriate object.

Meta-Variables Range Over

C, D, E Class names

f, g Field names

m Method names

x Variables

t Terms

L Class declarations

K Constructor declarations

M Method declarations

Table 3.1: Meta-Variables in CFJ and Their Meaning

We write A for a possibly empty sequence of A1, . . . ,An, where A is one of our meta-
variables or a term like C f. The latter, i.e., C f stands for C1 f1, . . . ,Cn fn. The empty

3.1. Featherweight Java 19

sequence is denoted by • and the concatenation of sequences by a comma. Sequences of
field declarations, parameter names, and method declarations are assumed to contain
no duplicate names. As in Java, we assume that casts bind less tightly than other forms
of expression [IPW01].

FJ drops complex language features of Java, such as threads or reflection, but even
simpler ones are neglected: interfaces, assignments, imports, abstract classes, inner
classes, modifiers, static methods - to give some examples. Let us take a closer look at
what language constructs FJ provides using the FJ syntax in Figure 3.1.

P ::= (L, t) FJ program

L ::= class C extends C {C f; K M } class declaration

K ::= C(C f) { super(f); this.f=f; } constructor declaration

M ::= C m(C x) { return t; } method declaration

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C)t cast

Figure 3.1: The Syntax of Featherweight Java [KA08]

A FJ program consists of a list of classes (class table) and a start term that acts as
the content of the programs main method. Each class has a unique name, a super class
that might be Object, a number of fields, one constructor and a list of methods. The
constructor provides a list of parameters, a super call and a list of assignments that
save the parameters in fields.

A method has a return type, a unique name, a list of parameters and one term cal-
culating the return value. Finally, a term can be a variable, a field access, a method
invocation with a list of terms as parameters, an object creation with a list of terms as
parameters or the cast of a term.

3.1.2 Examples

Since syntax descriptions are not always easy to look through, we give some examples
for syntactically correct FJ programs. Additionally, these examples are well-typed
regarding the type system that we provide in Section 3.1.3. They may be useful to
understand the following considerations.

A Minimal Program

The first example that we give is a minimal FJ program (see Figure 3.2). The simplest
start term that a program can have is given by a creation term of a class C without
fields. Of course, we need this class C at the class table and it do not need to have

20 3. Colored Featherweight Java

1 class C extends Object {
2 C() { super(); }
3 }

new C()

Figure 3.2: A Minimal FJ Program

any methods. In some way, this program corresponds to a Java program with a main
method that just creates an instance of a class (with an empty constructor).

The class C extends the class Object. Hence, there are no parameters that we have
pass at the super call. Since C does not have any fields, the constructor has none either
and no fields can be initialized. To get minimal program, C does not have any methods.

Pairs

Our second example can handle pairs of objects and we have two kinds of objects that
can be passed (see Figure 3.3). This example and some of the following are based on an
example from Igarashi et al. [IPW01]. The class Pair has two fields saving the first and
the second element of the pair. The constructor gets the two elements as parameters
and initializes the fields.

1 class A extends Object {
2 A() { super(); }
3 }
4 class B extends Object {
5 B() { super(); }
6 }
7 class Pair extends Object {
8 Object fst;
9 Object snd;
10 Pair(Object fst, Object snd) {
11 super(); this.fst=fst; this.snd=snd;
12 }
13 Pair setfst(Object newfst) {
14 return new Pair(newfst, this.snd);
15 }
16 }

((Pair)
new Pair(new A(), new A()).

setfst(new Pair(new A(), new B())).fst
).snd

Figure 3.3: A FJ Program that Handles Pairs

Additionally, there is a method to set the first element of the pair. But since we cannot
assign a new value to the fields, we need to return a new instance of Pair. The start

3.1. Featherweight Java 21

term creates a new instance of Pair and sets the first element to a new pair. Then, the
first element of the outermost pair is returned, casted to a pair and the second element
is returned. This term evaluates to new B().

The presented FJ programs do not contain any type errors. But these errors do occur
if we would remove the class declaration for the class A or if we omit the the method
setfst. These examples would lead to dangling class or method references. To identify
well-typed programs we present a type system for FJ in the following section.

3.1.3 Type System

In this section, we give a compact representation of the FJ type system. For a de-
tailed description we refer the reader to Pierce’s book “Types and Programming Lan-
guages” [Pie02]. All inference rules assume a fixed class table CT that satisfies some
sanity conditions:

1. class C. . . for every C ∈ dom(CT)

2. Object /∈ dom(CT)

3. For every class name C (except Object) appearing anywhere in CT, we have C ∈
dom(CT)

4. There are no cycles in the subtype relation induced by CT, i.e., the <: relation is
antisymmetric

Figure 3.4 contains all inference rules and we explain them shortly in a top-down way. A
FJ program is well-typed if all classes in the class table and the start term are well-typed.
A class is well-typed if the constructor initializes the fields and super fields properly and
all methods are well-typed. A method is well-typed if it correctly overrides potentially
super methods and the outermost term is well-typed and the type is a subtype of the
return type.

A term can have five different shapes that are typed individually. A variable has a
certain type if it is specified by the context (see T-Var). According to T-Field a field
access is well-typed if the base term is well-typed and the field exists for that class. For
a method invocation also the base term must be well-typed and the parameter terms
must be well-typed and their types have to be a subtypes of the method parameter
types (see T-Invk). T-New states the same for object creation terms except that we
do not have a base term.

Casting terms is more complicated. In general, up- and down-casts are allowed. T-
UCast forces that a cast is well-typed if the base term is well-typed and its type is a
subtype of the target class. Analogously, a cast is well-typed if the base type is well-
typed and its type is a super type of the target class (see T-DCast). But, a combination
of up- and downcasts can result in ill-typed terms. For example, (A)(Object)new B()
is a stupid cast, for two unrelated types A and B as defined in Figure 3.3. Therefore,
the FJ type systems specifies well-typed programs except for stupid casts.

22 3. Colored Featherweight Java

Subtyping C <: D

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }
C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M }
fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C) = C→C

CT (C) = class C extends D { C f; K M }
B m(B x) { return t; } ∈ M

mtype(m,C) = B→B

CT (C) = class C extends D { C f; K M }
m is not defined in M

mtype(m,C) = mtype(m,D)

Method overriding override(m,C,C→C0)

mtype(m,C) = B→B0 implies
C = B and C0 = B0

override(m,C,C→C0)

Term typing Γ ` t : C

x : C ∈ Γ

Γ ` x : C
(T-Var)

Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci

(T-Field)

Γ ` t0 : C0

mtype(m,C0) = D→C
Γ ` t : C C <: D

Γ ` t0.m(t) : C
(T-Invk)

fields(C) = D f
Γ ` t : C C <: D

Γ ` new C(t) : C
(T-New)

Γ ` t0 : D D <: C

Γ ` (C)t0 : C
(T-UCast)

Γ ` t0 : D C <: D C 6= D

Γ ` (C)t0 : C
(T-DCast)

Method typing M OK in C

CT (C) = class C extends D { . . . }
override(m,D,C→C0)

x : C, this : C ` t0 : E0 E0 <: C0

C0 m(C x) { return t0; } OK in C

Class typing C OK

K = C(D g, C f) { super(g); this.f=f; }
M OK in C fields(D) = D g

class C extends D { C f; K M } OK

Program typing (L, t)

L OK ∅ ` t : C

(L, t)

Figure 3.4: Subtyping, Auxiliary, and Typing Rules for FJ

3.2. Colored Featherweight Java 23

Finally, we have a look at the subtyping and auxiliary rules. To identify valid subtypes,
the reflexive and transitive closure on the inheritance hierarchy from the class table
is determined. Field lookup is defined recursive where all fields of a class are the own
fields together with all fields of the super class; while Object has no fields at all. Method
lookup gives the signature of a method in case it exists and it consist of a sequence of
parameter types and the return type. If the method is defined at the current class
the signature is returned, otherwise there is an recursive call on the super class. Valid
method overriding simply uses the method lookup.

Another part of FJ’s type system are the evaluation rules. They define the semantics
of FJ programs. We omit the evaluation rules in our thesis as we do not need it. The
FJ extension of interest does not need evaluation rules, because a CFJ product line is
never directly evaluated. Instead, a FJ program is generated at evaluated. We would
need it if we proof type soundness for FJ which is already done and out of the scope of
this thesis.

3.2 Colored Featherweight Java

In 2008, Kästner and Apel presented CFJ as an extension of FJ to support software
product lines [KA08]. Instead of writing multiple FJ programs separately, a CFJ prod-
uct line is written, from which we generate separate FJ programs. CFJ product lines
are never directly evaluated. Instead, FJ programs are generated that can be evaluated.

The principle of CFJ is identical to that of CIDE (see Section 2.1.3). Code fragments
can be annotated with certain colors representing features. The tool is based on full
Java, but the type system is not complete due to complexity reasons. CIDE can be used
to write CFJ product lines, since (1) every CFJ product line stripped of its annotations
and the feature model is a valid FJ program (see Section 3.2.1) and (2) every FJ program
is also a valid full Java program (see Section 3.1).

As for FJ, we start providing the syntax description in Section 3.2.1 and some examples
of syntactically valid and well-typed CFJ product lines in Section 3.2.2. Section 3.2.3
describes how variability is achieved using annotations, i.e., how FJ program variants
are generated from a CFJ product line. Finally, we present the type system for CFJ in
Section 3.3.4.

3.2.1 Syntax and Annotations

The overall idea in CIDE is that languages are extended to develop product lines, but
the syntax is identical to that of the host language. This way, editors and views in IDEs
can be used for the extended language. As CFJ product lines can be written in CIDE,
the syntax (of classes) is identical to that of FJ. The only difference is that a CFJ
program additionally consists of a feature model FM describing the available variants
(highlighted in Figure 3.5).

CFJ is a product-line–aware language and the variability is achieved by annotations.
Code fragments can be annotated with a certain color representing a feature of the soft-
ware. Given a CFJ product line, variants can be generated by removing code annotated

24 3. Colored Featherweight Java

P ::= (L, t, FM) CFJ product line

L ::= class C extends C {C f; K M } class declaration

K ::= C(C f) { super(f); this.f=f; } constructor declaration

M ::= C m(C x) { return t; } method declaration

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C)t cast

Figure 3.5: The Syntax of Colored Featherweight Java [KA08]

with particular colors. The idea of colors as annotations in Java or fragments of Java
is similar to that of #ifdef statements for the C preprocessor, but more disciplined.
There are more restrictions on the kind of annotations and which code fragments can
be annotated as we show in the following.

All optional code fragments in the syntax can be annotated. This makes sure that re-
moving annotated code fragments we get a syntactically correct FJ program. Optional
code fragments do only occur as elements of lists (bold in Figure 3.5), such as classes,
fields, methods, constructor parameters, super constructor call parameters, field ini-
tializations, method parameters, method call parameters, and creation parameters. An
element can be annotated with more than one color.

As there are no syntactical constructs to store annotations, the annotations are stored
externally in an annotation table. The annotation table maps code fragments to their
annotated colors. Since a code fragment might occur multiple times, additionally the
line number is used to reference each element and that, e.g., different occurrences of
new C() can have different annotations.

Given a type system for FJ and an appropriate type system for CFJ, the backward
compatibility can be shown. A proof is given in [KA08]. Together with the backward
compatibility of FJ to full Java, we get that every CFJ stripped of its feature model
and all annotations is a valid Java program. Again, this is useful as we can use Java
tools to develop CFJ product lines.

3.2.2 Examples

Syntactically correct CFJ product lines were formalized in the previous section. Before
we present the type system in Section 3.2.4, we want to give two examples of well-typed
CFJ product lines for a better understanding. We visualize how code fragments are
annotated with colors and explain how the according FJ program variants look like.

Swapping Pairs

In Figure 3.6, a CFJ product line of programs to handle pairs is presented. There is
a method to swap elements, i.e., to flip the left and the right element of a pair. The

3.2. Colored Featherweight Java 25

method swap() in the class Pair is annotated with the feature Swapping (highlighted
in Figure 3.6). We can remove this method since it overrides a method in AbstractPair

and all calls to this method are still possible.

1 //definition of A and B
2 class AbstractPair extends Object {
3 Object fst;
4 Object snd;
5 AbstractPair(Object fst, Object snd) {
6 super(); this.fst=fst; this.snd=snd;
7 }
8 Pair swap() {
9 return new Pair(this.fst, this.snd);
10 }
11 class Pair extends AbstractPair {
12 Pair(Object fst, Object snd) {
13 super(fst, snd);
14 }
15 Pair swap() {
16 return new Pair(this.snd, this.fst);
17 }
18 }

new Pair(new A(), new B()).swap().fst

Figure 3.6: A CFJ Product Line that Handles Pairs

The super method does not swap the elements. Thus, we get a different behavior
depending on whether the highlighted code is present or not. Suppose the feature
model allows it, we are able to generate two FJ program variants. One with and one
without the Swapping feature. If we select the Swapping feature the start term evaluates
to new B() and otherwise to new A().

Pairs with an Optional Element

This example also handles pairs, whereas the second element is optional. According to
Figure 3.7, we have pairs that consists of a first and a second element and pairs that
only have the first element.

Instances of the class Pair store two objects fst and snd. The objects are initialized in
the constructor and no further methods or fields exist. The field snd is annotated with
the feature Second (highlighted in Figure 3.7). Additionally, the according constructor
parameter and the field assignment are annotated with that feature, too.

Furthermore, we have a library to create pairs. The class Library has no further fields,
but two methods that create pairs, where either the left or the right element is always
an instance of A. In both method the second parameter is annotated with the feature
SecondCall (highlighted in Figure 3.7). We annotated the code in our example with

26 3. Colored Featherweight Java

1 //definition of A and B
2 class Pair extends Object {
3 Object fst;
4 Object snd;
5 Pair(Object fst, Object snd) {
6 super(); this.fst=fst; this.snd=snd;
7 }
8 }
9 class Library extends Object {
10 Library() { super(); }
11 Pair pairAX(Object second) {
12 return new Pair(new A(), second);
13 }
14 Pair pairXA(Object first) {
15 return new Pair(first, new A());
16 }
17 }

new Library().pairAX(new B()).fst

Figure 3.7: A CFJ Product Line with Pairs and Single Elements

Base

Second

SecondCall

Legend:NewCompound1

Layer1 Layer2

And-groupNewCompound1

Layer1 Layer2

Or-groupNewCompound1

Layer1 Layer2

Alternative-group

NewCompound1

Layer1 Layer2
Mandatory

NewCompound1

Layer1 Layer2
Optional

Figure 3.8: The Feature Model for our Pair Product Line

two features to clarify the impact of the feature model. We present the feature model
for our example in Figure 3.8.

The feature Base represents all code that not annotated with other features. The fea-
ture Second is optional and the feature SecondCall is selected, if and only if Second is
selected. This is important, because otherwise the number of parameters of Pair cre-
ation terms and the constructor of Pair would be different. The propositional formula
representing this feature model is as follows.

Base ∧ (Second ∨ SecondCall⇒ Base) ∧ (Second⇔ SecondCall)

Hence, our product line contains two FJ programs, the program with pairs (all features
selected) and the program with single elements (only Base selected). The start term
calls the method from the library, that creates a pair with new A() as the first element

3.2. Colored Featherweight Java 27

and the parameter as the second. We return the first element of this pair. Hence, the
start term evaluates for both programs to new A().

3.2.3 Variant Generation

Given a CFJ product line, FJ programs are generated by removing source code anno-
tated with certain colors. Therefore, a feature selection specifies which features we want
to be present in our variant, where a color is annotated to all the code that represents
a feature. We use the same notation as Kästner and Apel to formalize the variant
generation [KA08].

FJ programs are generated using the function variant that takes a CFJ product line or
a CFJ code fragment X and a configuration C as input and returns a FJ program. The
function variant is defined recursively decreasing in X and applies the function remove
to all code fragments that can be annotated. The latter removes code fragments, for
which the annotation evaluates to false. All other code fragments remain in the code
and are stripped of their annotations. For brevity, we write variant(X,C) as [[X]] and
remove(X,C) as 〈〈X〉〉. The variant function is defined in Figure 3.9.

[[x]] = x (G.1)

[[t.f]] = [[t]].f (G.2)

[[t.m(t)]] = [[t]].m([[〈〈t〉〉]]) (G.3)

[[new C(t)]] = new C([[〈〈t〉〉]]) (G.4)

[[(C)t]] = (C)[[t]] (G.5)

[[C m(C x) {return t;}]] = C m(〈〈C x〉〉) {return [[t]];} (G.6)

[[C(C f) {super(f); this.f=f;}]] = C(〈〈C f〉〉) {super(〈〈f〉〉); 〈〈this.f=f;〉〉} (G.7)

[[class C extends D { C f; K M }]] = class C extends D { 〈〈C f〉〉; [[K]] [[〈〈M〉〉]] } (G.8)

[[(L, t,FM)]] = ([[〈〈L〉〉]], [[t]]) (G.9)

Figure 3.9: The Variant Generation for CFJ [KA08]

Such program variants generated from a CFJ product line are always syntactically
correct FJ programs. The reason is, that CFJ uses the same syntax for classes as FJ
and only optional elements can be annotated and thus removed. Additionally, it can
be shown that every variant generated from a well-typed CFJ product line with a valid
configuration is a well-typed FJ program. Given type systems for FJ and CFJ we
present a machine-checked proof in Chapter 5.

3.2.4 Type System

Type errors can especially occur in CFJ. For instance, if we annotate a method decla-
ration but not the method invocation or if we annotate a parameter of a method but
do not annotate the method invocation accordingly. The problem might only occur in

28 3. Colored Featherweight Java

some program variants. As the number of program variants is potentially high, it is not
feasible to generate and type-check all FJ programs.

In 2008, Kästner and Apel presented a product-line–aware type system for CFJ which
supersedes generating and type-checking each variant [KA08]. They extended the FJ
type system with reachability checks. Reachability checks make sure that if a certain
code fragment is present in a variant, also other code fragments are present, e.g., the
invocation of a method always implies an existing declaration. Since this type system
is similar to the FJ type system we highlighted the extensions, which are basically
reachability checks. We only explain the extensions and start with the auxiliary rules
in Figure 3.10.

As this is part of ongoing work, there are some differences between our definitions and
those in [KA08]. For the type system, we use unpublished auxiliary and typing rules,
since they are revised and will appear in upcoming work [KAS].

Subtyping C <: D

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }
C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M }
fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = C x→C

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

A → AT (M)

mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A)

CT (C) = class C extends D { C f; K M }
m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Method overr. override(m,C,C x→C,A)

override(m,Object,C x→C0,A)

CT (C) = class C extends D { D f; K M }
M = B0 m(B g) { return t; }
override(m,D,C x→C0,A)

M ∈ M implies C = B and C0 = B0 and
(A ∧ AT (M))→ (AT (C x)↔ AT (B g))

override(m,C,C x→C0,A)

Figure 3.10: Subtyping and Auxiliary Rules for CFJ [KAS]

3.2. Colored Featherweight Java 29

The method lookup is enriched by a check that the method is reachable from the current
code. A rule is added to make sure that otherwise the search is continued at the super
class. Valid method overriding additionally checks that the annotations of all method
parameters for the method and the super method are equivalent.

The extended typing rules can be found in Figure 3.11. A product line additionally
consists of a feature model specifying valid variants. It is referred indirectly by the
results of the annotation table. Assume a is a code fragment, then AT (a) = A ∧ FM,
where A is the annotation and FM is a propositional formula representing the feature
model (see Section 2.1.1). The annotation A of a code fragment is the conjunction of
all annotated features Fi, i.e., A = F1 ∧ . . . ∧ Fn.

A product line is is well-typed, if all classes in the class table are well-typed and if the
start term is well-typed. The start term is typed under the empty annotation and the
empty context, both denoted as ∅. The empty annotation is used since since the start
term has no surrounding code fragments that could be annotated.

Class typing needs a couple of checks. If a class is present, (a) the super class must be
present, (b) the fields, the field assignments and the according constructor parameters
must have equivalent annotations, and (c) the fields of the super class, the super call
parameters and the according constructor parameters must have equivalent annotations.

That three annotations a, b, and c are equivalent is denoted by Kästner and Apel as
a ↔ b ↔ c [KA08]. Note, that biconditional is not associative, i.e., (a ↔ b) ↔ c
is not equal to a ↔ (b ↔ c). Therefore, we have to specify the semantics, which is
(a↔ b) ∧ (b↔ c).

Furthermore, if (a) a method, (b) a field, (c) a constructor parameter, (d) a super
call parameter, or (e) a field assignment is present, the surrounding class must also be
present. For all fields and also for the fields of the super class, the type must be present
if the field is present.

In method typing it is forced that the return type is present, whenever the method is
present. The parameter type and the method itself is present, if one of its parameters
is present. For typing the methods outermost term, each element in the context is
enriched with an annotation stating in which variants the type exists. Moreover, our
rules for term typing get a new element—the annotation of the current context, which
is the methods annotation.

The rules for term typing are extended as follows. A variable is well-typed if it is present
in all variants of the current context. For a field access, the field and its type must be
present in all variants where the access occurs. If the parameters of a method invocation
are present also the invocation needs to be present. Whenever the method invocation
is present, the parameter terms and the parameters at the methods declaration must
have equivalent annotations. Both checks also occur for object creation terms and
additionally the type of the object must be present, whenever the object creation is
present. For casting, an additional premise makes sure that the target type is present
in the current context.

30 3. Colored Featherweight Java

Term typing A; Γ ` t : C

x : C with A′ ∈ Γ A → A′
A; Γ ` x : C

(T-Var)

A; Γ ` t0 : C0 fields(C0) = C f
A → AT (Ci fi) A → AT (Ci)

A; Γ ` t0.fi : Ci

(T-Field)

A; Γ ` t0 : C0

mtype(m,C0,A) = D y→C
AT (t); Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D y)

)

AT (t)→ A
A; Γ ` t0.m(t) : C

(T-Invk)

A → AT (C)
fields(C) = D f

AT (t); Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D f)

)

AT (t)→ A
A; Γ ` new C(t) : C

(T-New)

A; Γ ` t0 : D D <: C
A → AT (C)

A; Γ ` (C)t0 : C
(T-UCast)

A; Γ ` t0 : D C <: D
C 6= D A → AT (C)

A; Γ ` (C)t0 : C
(T-DCast)

Method typing M OK in C

M = C0 m(C x) { return t0; }
AT (M) = A A → AT (C0)

AT (C x)→ AT (C) AT (C x)→ A
CT (C) = class C extends D { . . . }

override(m,D,C x→C0,A)
Γ = x : C with AT (C x),

this : C with AT (C)
A; Γ ` t0 : E0 E0 <: C0

M OK in C

Class typing C OK

K = C(D g, C f’) { super(g’); this.f=f; }
M OK in C fields(D) = D g”
AT (C) = A A → AT (D)

AT (M)→ A AT (C f)→ AT (C) A →(
AT (C f)↔ AT (this.f=f)↔ AT (C f’)

)

C f = C f’ AT (C f)→ A
A →

(
AT (D g)↔ AT (g’)↔ AT (D g”)

)

D g = D g” g = g’ AT (D g)→ A
AT (D g)→ AT (D) AT (C f’)→ A
AT (g’)→ A AT (this.f=f)→ A
class C extends D { C f; K M } OK

Product line typing (L, t,FM)

L OK ∅; ∅ ` t : C

(L, t,FM)

Figure 3.11: Typing Rules for CFJ [KAS]

3.3. Simplifications of the Type System 31

The reachability check in T-UCast is redundant and can be removed without changing
the typing of CFJ product lines. We found some simplifications like this, for which we
give a proof in the following section. Based on that we present revised typing rules for
CFJ.

3.3 Simplifications of the Type System

The type system for CFJ given in Section 3.2.4 can be simplified. While working
with the type system, we encountered redundant premises in some inference rules. For
other rules we can provide simplifications for reachability checks based on propositional
formulas.

We speak of simplifications as all the intended changes result in a more compact rep-
resentation of the inference rules. Hence, the representation of the type system itself is
more compact and a bit more readable. Although our scope is not on implementations
of type checkers, we also expect a small speedup for type-checking a CFJ product line
as a type checker needs to verify all (redundant) premises for each inference rule that
is applied.

We mentioned earlier that FJ is not intended to be used in industrial practice and
so CFJ is not either. Therefore a speedup of an implementation seems not useful.
But (a) the type system might be extended to check product lines and programs with
additional language constructs, e.g., interfaces and (b) some of our rules can also be
applied without further adaptions when CFJ is extended, e.g., adding a base type (like
Java’s int) has no influence on checking method parameter annotations of declarations
and invocations.

We have the choice to prove that our changes lead to an equivalent type system (a)
informally or (b) formally using Coq. Using Coq we can (i) formalize both type system
at once and proof the equivalence or (ii) just formalize the parts where our proofs rely
on. (ii) is not feasible for all our proofs as some rely on almost all inference rules.
In the following chapter, we formalize the revised type system, but (i) would require
that we additionally formalize the original type system and that we formally proof the
equivalence even in parts that are unchanged. As our changes are rather simple, we
decided to give informal proofs.

First, we manually proof that our changes lead to an equivalent type system. Sec-
tion 3.3.1 presents changes to casting and field access rules. In Section 3.3.2 and Sec-
tion 3.3.3, rewrites for premises in method and class typing are given and proved.
Second, we summarize our changes by proposing a revised type system in Section 3.3.4.

3.3.1 Casting and Field Access

Let us take a closer look at the typing rule T-UCast checking the type soundness for
up-casts. Contrary to the rules of FJ, there is a premise added to make sure that the
type to cast to is reachable in all variants. In the following, we prove that this premise
is redundant. But first we prove a lemma stating that a premise implicitly holds for all
typed terms.

32 3. Colored Featherweight Java

Lemma 3.1. The following implication holds.

(A; Γ ` t : C)→
(
A → AT (C)

)

Proof. We proof by induction on the term t.

Our induction hypothesis is

(A; Γ ` t : C)→ (A → AT (C)
)

(3.10)

We show the induction beginning using a case analysis.

(B1) A; Γ ` x : C. Using rule T-Var we get x : C with A′ ∈ Γ and A → A′. Context
is only created in method typing. We analyze the cases that occur.

(a) this : C with AT (C). Hence A′ = AT (C) we have A → AT (C).

(b) x : C with AT (C x). Hence A′ = AT (C x) we have A → AT (C x). Further-
more, in method typing we have AT (C x) → AT (C). With transitivity of
propositional formulas we obtain A → AT (C). Rewriting our list notation we
get xi : Ci with AT (Ci xi) and A → AT (Ci) for all i, what is exactly what we
wanted to show.

(B2) A; Γ ` t.f : C. T-Field directly leads us to A → AT (C).

(B3) A; Γ ` new C(. . .) : C. T-New directly leads us to A → AT (C).

(B4) A; Γ ` (D)t : D. We give a proof for up- and down-casts separately. Note, that
contrary to the inferences rules of the type system we have switched C and D.

(a) C <: D. T-UCast directly leads us to A → AT (D).

(b) D <: C ∧ C 6= D. T-DCast directly leads us to A → AT (D).

For the induction step there is just one case left to proof: A; Γ ` t.m(. . .) : C. T-Invk
forces that A; Γ ` t : C0. Applying our induction hypothesis in Equation 3.10, we get
A → AT (C0).

Theorem 3.2. Assume A; Γ ` t : D and D <: C, the following formula holds

A → AT (C).

Proof. Class typing makes sure that for every class F the super class G is always reach-
able, i.e., AT (F) → AT (G). Because of transitivity, this also holds if G is not a direkt
super class, as long as F <: G. Thus, D <: C leads to

AT (D)→ AT (C). (3.11)

Applying Lemma 3.1 toA; Γ ` t : D, we omitA → AT (D). Together with Equation 3.11
we can conclude A → AT (C).

3.3. Simplifications of the Type System 33

The check that the type of a field must be present in T-Field is redundant as it is
already checked for classes. In the following we give a proof.

Theorem 3.3. Given a well-typed CFJ product line (L, t,FM), a class C ∈ L and a
field access t0.fi anywhere at the class table L or in the start term t, then the following
implication holds.

[
(A; Γ ` t0 : C) ∧ (fields(C) = C f) ∧

(
A → AT (Ci fi)

)]
→
(
A → AT (Ci)

)

Proof. Since (L, t,FM) is well-typed and C ∈ L, we know that

class C extends D { C f; K M } OK.

Therefore, AT (C f) → AT (C) and especially, AT (Ci fi) → AT (Ci). Together with
A → AT (Ci fi) we get A → AT (Ci).

Note, that removing the redundant premise does not affect the proof of Theorem 3.2
as the premise can be expressed as shown in the proof of Theorem 3.3.

3.3.2 Method Typing

Method typing has two redundant premises. We give a proof for both premises sepa-
rately.

Theorem 3.4. The premise A ∧ AT (M) in method overriding can be simplified to
AT (M) without changing the type systems behaviour.

Proof. Valid method overriding is formalized in Figure 3.10, where a reachability check
containsA∧AT (M). Method overriding is only called from method typing in Figure 3.11
and always with A = AT (M). Therefore, we get AT (M) ∧ AT (M), which can be
simplified to AT (M).

Theorem 3.5. The premise A → AT (C0) in method typing is redundant.

Proof. On of the premises in method typing is A; Γ ` t0 : C0. Lemma 3.1 states that
A → AT (C0) is fulfilled. Therefore, the premise is redundant.

3.3.3 Class Typing

In class typing we found premises that can be removed or simplified. We proof that one
premise is redundant and that two sets of premises can be rewritten.

Theorem 3.6. The following premise in class typing is redundant.

AT (D g)→ AT (D) (3.12)

Thomas Thüm
Rechteck
The theorem and the proof is actually wrong. The problem is, that AT(M) is not equal to AT(M), because it represents annotations to different methods, e.g., the method of a class and one of the (indirect) super classes having the same method.Conclusion: The revised type system presented is a little bit to restrict, as we might occur overridden methods with different annotations and check the method overriding in cases where both methods might not occur at the same time. See note at the type system in Figure 3.12 on Page 36.The type soundness proof is not affected, but the type system is more restrictive than necessary.

34 3. Colored Featherweight Java

Proof. Transitivity of
AT (D g)→ A

and
A →

(
AT (D g)↔ AT (g’)↔ AT (D g”)

)

leads to
AT (D g)→

(
AT (D g)↔ AT (g’)↔ AT (D g”)

)
.

Hence we can conclude that

AT (D g)→ AT (D g”). (3.13)

Additionally, the rule
AT (C f)→ AT (C) in C OK

corresponds to the rule
AT (D f”)→ AT (D) in D OK. (3.14)

With Equation 3.13 and Equation 3.14 we shown that Equation 3.12 is already contained
in other premises and thus redundant.

Theorem 3.7. The equality P ≡ Q holds, where

P =
(
A → (B ↔ C ↔ D)

)
∧ (B → A) ∧ (C → A) ∧ (D → A)

and
Q = (B ↔ C) ∧ (B ↔ D) ∧ (B → A).

Especially with B = AT (C f), C = AT (this.f=f), and D = AT (C f’).

Proof. We give a proof using the truth value table.

A B C D P Q

0 0 0 0 1 1
0 0 0 1 0 0
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 0

A B C D P Q

1 0 0 0 1 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 1 1

Theorem 3.8. The equality P ≡ Q holds, where

P =
(
A → (B ↔ C ↔ D)

)
∧ (B → A) ∧ (C → A)

and
Q = (B ↔ C) ∧

(
A → (B ↔ D)

)
∧ (B → A).

Especially with B = AT (D g), C = AT (g’), and D = AT (D g”).

3.3. Simplifications of the Type System 35

Proof. Again, we give a proof using the truth value table.

A B C D P Q

0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 0 0 0
0 0 1 1 0 0
0 1 0 0 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 1 1 1 0 0

A B C D P Q

1 0 0 0 1 1
1 0 0 1 0 0
1 0 1 0 0 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 0
1 1 1 0 0 0
1 1 1 1 1 1

3.3.4 Revised Type System

In this section, we propose our revised type system, which is largely the same as the
type system by Kästner and Apel. But as we use this revised type system for our
formalization in Coq (see Chapter 4), we want to present it as one piece. This might
also be appreciated by future work that relies on our type system.

In Figure 3.12, we present the revised subtyping and auxiliary rules for CFJ. We only
applied Theorem 3.4, i.e., we replace A∧AT (M) with AT (M). Additionally, the anno-
tation as a parameter is no longer needed and removed.

The revised typing rules for CFJ can be found in Figure 3.13. At the rules T-UCast
and T-Field we omit the redundant reachability check according to Theorem 3.2
and Theorem 3.3. According to Theorem 3.5, we remove the redundant premise from
method typing. For class typing we apply the equalities from Theorem 3.7 and Theo-
rem 3.8 as well as we omit the redundant premise known from Theorem 3.6.

Furthermore, we added the annotation table to the tuple that represents a CFJ product
line, because it has an influence on the FJ programs we can generate and also whether
the product line is well-typed or not. It also needs to be inserted at the syntax of CFJ,
but we omit a repetition of the syntax.

36 3. Colored Featherweight Java

Subtyping C <: D

C <: C

C <: D D <: E

C <: E

class C extends D { . . . }
C <: D

Field lookup fields(C) = C f

fields(Object) = •

CT (C) = class C extends D { C f; K M }
fields(D) = D g

fields(C) = D g,C f

Method lookup mtype(m,C,A) = C x→C

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

A → AT (M)

mtype(m,C,A) = B x→B

CT (C) = class C extends D { C f; K M }
M = B m(B x) { return t; } M ∈ M

¬(A → AT (M))

mtype(m,C,A) = mtype(m,D,A)

CT (C) = class C extends D { C f; K M }
m is not defined in M

mtype(m,C,A) = mtype(m,D,A)

Method overriding override(m,C,C x→C)

override(m,Object,C x→C0)

CT (C) = class C extends D { D f; K M }
M = B0 m(B g) { return t; }

override(m,D,C x→C0)
M ∈ M implies C = B and C0 = B0 and

AT (M)→ (AT (C x)↔ AT (B g))

override(m,C,C x→C0)

Figure 3.12: Our Revised Subtyping and Auxiliary Rules for CFJ

tthuem
Rechteck
See note at Page 33. The method overriding is more restrictive than necessary. One should use the method overriding defined by Kästner (see Page 28).

3.3. Simplifications of the Type System 37

Term typing A; Γ ` t : C

x : C with A′ ∈ Γ A → A′
A; Γ ` x : C

(T-Var)

A; Γ ` t0 : C0 fields(C0) = C f
A → AT (Ci fi)

A; Γ ` t0.fi : Ci

(T-Field)

A; Γ ` t0 : C0

mtype(m,C0,A) = D y→C
AT (t); Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D y)

)

AT (t)→ A
A; Γ ` t0.m(t) : C

(T-Invk)

A → AT (C)
fields(C) = D f

AT (t); Γ ` t : C C <: D
A →

(
AT (t)↔ AT (D f)

)

AT (t)→ A
A; Γ ` new C(t) : C

(T-New)

A; Γ ` t0 : D D <: C

A; Γ ` (C)t0 : C
(T-UCast)

A; Γ ` t0 : D C <: D
C 6= D A → AT (C)

A; Γ ` (C)t0 : C
(T-DCast)

Method typing M OK in C

M = C0 m(C x) { return t0; }
AT (M) = A

AT (C x)→ AT (C) AT (C x)→ A
CT (C) = class C extends D { . . . }

override(m,D,C x→C0)
Γ = x : C with AT (C x),

this : C with AT (C)
A; Γ ` t0 : E0 E0 <: C0

M OK in C

Class typing C OK

K = C(D g, C f’) { super(g’); this.f=f; }
M OK in C fields(D) = D g”

C f = C f’ D g = D g” g = g’
AT (C) = A A → AT (D)

AT (M)→ A AT (C f)→ A∧ AT (C)
AT (C f)↔ AT (this.f=f)
AT (C f)↔ AT (C f’)

A →
(
AT (D g)↔ AT (D g”)

)

AT (D g)↔ AT (g’) AT (D g)→ A
class C extends D { C f; K M } OK

Product line typing (L, t,FM,AT)

L OK ∅; ∅ ` t : C

(L, t,FM,AT)

Figure 3.13: Our Revised Typing Rules for CFJ

38 3. Colored Featherweight Java

4. Formalization of
Colored Featherweight Java

This chapter presents our formalization of CFJ in Coq, that is used in the following
chapter to provide a machine-checked proof of type soundness for CFJ. Our formal-
ization is based on a formalization of FJ in Coq by de Fraine [Fra09b]. We present
some changes to this existing formalization and its proofs, making it consistent with
the informal type system presented in the previous chapter. To formalize CFJ, we need
to realize the typing rules, the variant generation and the fundamental concept of the
annotation table.

Our contribution is the formalization of CFJ in Coq. This is the first time CFJ is
formalized using a proof assistant. The main innovation is the formalization of the
annotation table, for which only informal descriptions exist so far. While the realization
of the variant generation is straightforward, the formalization of the typing rules is not,
caused by the concept to formalize the annotation table. A smaller contribution is our
adapted formalization for FJ.

First, we prepare a formalization of FJ in Section 4.1. The idea is to reuse an existing
formalization of FJ, where we only need to create new definitions if necessary for CFJ
and otherwise reuse existing ones. In Section 4.2, we present new definitions for the
CFJ type system. The CFJ variant generation mechanism is formalized in Section 3.2.3.
Finally, we summarize our formalization in Section 4.4.

4.1 Building on a FJ Formalization

Fortunately, formalizations of FJ in Coq already exist and two of them are publicly
available. In Section 4.1.1, we justify our choice for one formalization. In Section 4.1.2,
we disclose inconsistencies in this formalization according to our definitions in Sec-
tion 3.1.3. We adjust the formalization and the proofs accordingly.

40 4. Formalization of Colored Featherweight Java

4.1.1 Choosing a FJ Formalization

We want to reuse one of the existing formalizations of Featherweight Java, because they
are peer reviewed and accepted in the community. We found one formalization of FJ
by Weirich and contacted the Coq mailing list for further formalizations, where we got
a second formalization by de Fraine.1 Both formalizations come with type soundness
proofs.

The first formalization by Weirich is from 2005 and compiles with Coq 7.3.1 (October
2002) [Wei05]. It is not compatible with newer versions of Coq, i.e., the verification
in Coq stops with an error. The second formalization by de Fraine is from 2009 and
intended to run with Coq 8.2 (May 2009), but is also compatible with the most recent
version Coq 8.2pl1 (July 2009) [Fra09a].

We decided to base our formalization on de Fraine’s FJ formalization due to two reasons.
First, this formalization was used as a basis for type soundness proofs of particular
aspect-oriented concepts, i.e., they also wanted to prove properties for an extension of
Featherweight Java [Fra09b]. Therefore, this formalization is build with an extension
in mind and our extension might be easier.

Second, we want to use the most recent version of Coq, namely Coq 8.2pl1 (July 2009),
because newer versions come with improvements and many other researches work with
the current version. If we would use the version from 2002, we might have a problem to
prove a certain theorem that is possible in newer versions. Additionally, for the recent
version we have better tool support.

In principle, it is possible to port a formalization from an older version to a newer one.
But in the particular case of Weirich’s formalization, we were not able to. This is mostly
due to missing documentations on older versions of Coq, since we need to understand
the old version before we can migrate it. For the stated reasons, we base our work on
de Fraine’s formalization.

4.1.2 Corrections to the FJ Formalization

This section uncovers four inconsistencies of de Fraine’s formalization according to the
type system presented in Section 3.1.3:

1. The class table may contain references to classes that are not in the class table.

2. A method can override another method if the return type is a subtype of return
type in the original method; the types do not need to by identical.

3. Casting is not formalized.

4. There is no representation of the constructor.

1http://logical.saclay.inria.fr/coq-puma/messages/f4840f7689b9905a

http://logical.saclay.inria.fr/coq-puma/messages/f4840f7689b9905a

4.2. Type System 41

We found an example for a well-typed FJ class table according to this formalization
that references classes not in the class table. We give a machine-checked proof in
Appendix A.1 and propose a change to class typing that incomplete class tables are no
longer classified as well-typed.

Valid method overriding in de Fraine’s formalization is realized as we know it from full
Java. A method overriding is valid, if the return type is a subtype of the return type
of the overridden method. For FJ, the type has to be exactly the same as of the super
method [Pie02, IPW01]. In Appendix A.2, we present our adapted method overriding.

Both other limitations are not so easy to adopt. They require large rewritings of proof
scripts and are out of the scope of this thesis. The missing representation of the con-
structor involves that there is no representation of the constructor parameters, the super
call parameters, or the field assignments.

Note, that for FJ the constructor is well-defined giving the fields of the class and the
super class. Therefore, the annotations of constructor parameters, super call parameters
and field assignments have to be equivalent to those of the particular fields. That this
is fulfilled, can easily be seen at the typing rules for CFJ.

4.2 Type System

The formalization of the type system for CFJ that we present in this section, is similar
to the type system for FJ formalized by de Fraine. Since we want to prove properties
on both formalizations it is useful to stay as close as possible. Both type systems are
formalized step-wise and we often have one definition for every typing rule.

We base our formalization on the revised typing rules in Figure 3.13 and the auxiliary
rules in Figure 3.12. We present our definitions bottom-up as defined in Coq. In
Section 4.2.1, we explain how we realized the fundamental concept of the annotation
table in Coq. The subtyping and auxiliary rules are presented in Section 4.2.2, while
Section 4.2.3 shows the formalized typing rules.

4.2.1 Realization of Annotations

This section explains how we formalized annotations in Coq. We discuss realizations of
the annotation table and come up with storing annotations directly at the class table.
Hence, a new definition of the class table is required as well as functions to lookup
annotations at the class table, e.g., given a class or method name.

Annotation Table

Annotations are modeled as propositional formulas. The type of propositional formulas
in Coq is Prop. An annotation can either be True, False, or a function returning one
of these two values, while the function can represent every conceivable propositional
formula based on variables of type Prop. For example, A ∧ B is such a function,
where A : Prop and B : Prop, and the computed value is True, if and only if A and
B are True.

42 4. Formalization of Colored Featherweight Java

We defined ann as a notation for Prop to make clear where we expect annotations
(see Listing 4.1). In listings of this chapter, we highlight all parts that are of interest,
i.e., parts added in CFJ to similar definitions in the FJ formalization. Many of the
definitions we present in this chapter are largely the same as for FJ, which is intended
as we want to prove properties between CFJ and FJ.

Notation ann := Prop.

Listing 4.1: Formalization of Annotations

In the following, we discover alternatives to realize the annotation table, i.e., how do
we map code fragments to annotations. Since Kästner et al. only propose informal
descriptions for the annotation table [KA08, KAS], it is a challenge to formalize this
construct into a proof assistants language. For this purpose, we show how terms are
formalized at the FJ formalization (see Listing 4.2).

Inductive exp : Set :=
| e_var : var → exp

| e_field : exp → fname → exp

| e_meth : exp → mname → list exp → exp

| e_new : cname → list exp → exp.

Listing 4.2: Terms in the FJ Formalization [Fra09a]

A FJ term (expression) is (a) a variable, (b) a field access, (c) a method invocation, or
(d) an object creation. Field access and method invocation terms consist of an arbitrary
base term, while method invocation and object creation terms handle a list of arbitrary
terms, the parameter list. Each parameter term can be annotated. We need a strategy
to map these terms to annotations.

In CFJ, annotations are stored in the annotation table. It maps code fragments to
annotations by their node in an abstract syntax tree with the offset and length [KA08].
We simply have no abstract syntax tree to determine the absolute position of of a
particular term at the class table. The problem is, that identical terms may occur at
different positions with different annotations. Our example in Figure 3.7 on Page 26
contains the term new A() with two different annotations.

Identifying the position of a particular term would require (a) the class and method
where it occurs if it is not part of the start term, (b) the position of the term in the
outermost parameter list, and (c) the positions of all further parameter lists if applicable.
There is a simpler solution, which we use to realize the annotation table. We store the
annotations directly at each parameter list.

Terms

Terms can be annotated if they occur in a list. Since a term can itself contain a list
of terms, we need to extend the inductive definition of terms. Term lists are stored for

4.2. Type System 43

Inductive a_exp : Type :=
| ae_var : var → a_exp

| ae_field : a_exp → fname → a_exp

| ae_meth : a_exp → mname → list (ann ∗ a_exp) → a_exp

| ae_new : cname → list (ann ∗ a_exp) → a_exp.

Listing 4.3: Formalization of Terms

method invocations and object creation terms. For both we simply store a list of pairs
of an annotation and a term.

Whenever we need to adapt a FJ definition, we give it a new name with the prefix a_

to state that this definition handles annotations and is part of the CFJ formalization.
We do not use the same name as for FJ, because we need to distinguish between FJ
and CFJ definitions in our proofs.

Class Table

We must provide a new definition for CFJ class tables for two reasons. First, the FJ
class table uses the definition of terms. Second, other code fragments than terms can
be annotated and we want to store those annotations accordingly. In Listing 4.4, we
present our adapted definition of the class table.

Notation a_env := (list (var ∗ (ann ∗ typ))).

Notation a_flds := (list (fname ∗ (ann ∗ typ))).
Notation a_mths := (list (mname ∗ (ann ∗ (typ ∗ a_env ∗ a_exp)))).

Notation a_ctable := (list (cname ∗ (ann ∗ cname ∗ a_flds ∗ a_flds ∗
a_flds ∗ a_flds ∗ a_mths))).

Parameter aCT : a_ctable.

Listing 4.4: Formalization of the Class Table

First, in environments mainly used for method parameters, we can annotate every
parameter. The variable names are mapped to an annotation and a type. Second, field
names are mapped not only to a type, they are mapped to an annotation and a type.
Third, method names are mapped to an annotation and a method declaration. The
declaration consists of a return type, a parameter list and a term.

The class table maps class names to a class declaration. The class declaration is a
six-tuple (a,D,gs,ts,fs,ms), where a is the annotation of the class, D is the super
class, gs are the constructor parameters, hs are the super call parameters, ts are the
field assignments at the constructor, fs are the fields, and ms are the methods. To be
able to save all possible annotations, we added a, gs, hs, and ts at the CFJ class table.
Note, that de Fraine do not model constructor parameters, super call parameters and
assignments as they are uniquely described by the fields of each class.

44 4. Formalization of Colored Featherweight Java

The FJ formalization by de Fraine makes advantage of a fixed class table. It means,
that we assume to have one class table for FJ that remains unchanged while we check
certain properties. For instance, we check that each class is well-typed, but therefore
we rely on the whole class table. We check classes, methods, and fields iteratively. For
instance, a list of classes is well-typed if the first class is well-typed and the list without
the first class is well-typed—or if the list is empty. We remove classes from this local
list, while checks, e.g., whether the super class exists, are made on the fixed class table.
This way, we can check class tables where two classes reference each other, what is
explicitly allowed in FJ.

Since we want to reuse the FJ formalization, we also need to assume that the FJ class
table is fixed. Additionally, we assume that the CFJ class table is fixed, because our
formalization should be as close as possible to the FJ formalization. Hence, whenever
we want to prove properties between the CFJ and the FJ class table, we also need to
assume a fixed configuration that is used to generate the FJ class table from the CFJ
class table. We give more details on the variant generation in Section 4.3. As in the
FJ formalization, we assume the CFJ class table aCT as a global parameter that we do
not have to pass it to every definition (see Listing 4.4).

Annotation Lookup

In our typing rules we need to lookup annotations at the class table. For instance,
for typing a class we need the annotation of the super class. The function given in
Listing 4.5 returns the annotation of a class and expects the class name as a parameter.
We use a similar naming to that of the informal description that the reachability checks
look similar and the correct realization can easily be verified by the reader.

Definition AT (C:cname) : ann :=
match (get C aCT) with
| None ⇒ False

| Some (a, _, _, _, _, _, _) ⇒ a

end.

Listing 4.5: Formalization of Annotation Lookup

To lookup annotations of other code elements than classes, we need different functions,
because they appear at other locations at the class table and we need more parameters
to identify the code fragments. In Table 4.1, we summarize the annotation lookup
functions and their meaning. We omit the definitions in Coq here, since they are highly
repetitive. They can be found in Appendix B.2.

4.2.2 Subtyping and Auxiliary Rules

We present our formalization of the CFJ subtyping and auxiliary rules. Subtyping
and field lookup is identically to that of FJ except that the lookup is defined on the
CFJ class table. For method lookup we additionally needed to add reachability checks
and a new sub case. The formalization of CFJ method overriding also includes some
additionally reachability checks.

4.2. Type System 45

Function Annotation Lookup for

AT Classes
ATp Constructor Parameters
ATs Super Call Parameters
ATa Assignments this.f:=f;
ATf Fields
ATm Methods

Table 4.1: Annotation Lookup at the Class Table

Subtyping

The subtyping rules of CFJ and FJ are identical. Nonetheless, we need a new definition
in Coq that lookups the super type relation at the CFJ class table. In Listing 4.6,
we present the formalization consisting of two definitions as for FJ. The definition
a_extends C D is valid, if C is a direct subclass of D. The reflexive and transitive
closure of a_extends is determined by a_sub.

Definition a_extends (C D : cname) : Prop :=
exists gs, exists hs, exists ts, exists fs, exists ms,

binds C (AT C,D,gs,hs,ts,fs,ms) aCT.
Inductive a_sub : typ → typ → Prop :=
| a_sub_refl : forall t, a_sub t t

| a_sub_trans : forall t1 t2 t3,
a_sub t1 t2 → a_sub t2 t3 → a_sub t1 t3

| a_sub_extends : forall C D, a_extends C D → a_sub C D.

Listing 4.6: Formalization of Subtyping

As in the FJ formalization, we use implication whenever possible, as it is common in
Coq and the proofs are easier. One needs to know that the implication in Coq is right-
associative [BC04], meaning that A → B → C is equivalent to A → (B → C). We
know that B → C is true, whenever A ist true. Assuming that A is true, we get that C is
true, whenever B ist true. Therefore, A → (B → C) is equivalent to (A ∧ B) → C,
what corresponds to the semantics of inference rules. This also holds for more than two
premises.

Field Lookup

The FJ field lookup determines the fields of a class inductively. The class Object has
no fields. Every other class has the own fields concatenated with the fields of the super
class. The CFJ field lookup works absolutely identical, but on the CFJ class table (see
Listing 4.7). The definition a_field is used to check if a class contains a field mapped
to a particular type and annotation.

46 4. Formalization of Colored Featherweight Java

Inductive a_fields : cname → a_flds → Prop :=
| a_fields_obj : a_fields Object nil

| a_fields_other : forall C D gs hs ts fs fs’ ms,
binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
a_fields D fs’ →
a_fields C (fs’++fs).

Definition a_field (C:cname) (f:fname) (a:ann) (t:typ) : Prop :=
exists2 fs, a_fields C fs & binds f (a,t) fs.

Listing 4.7: Formalization of Field Lookup

Method Lookup

Method lookup needs to be redefined, because mtype in Figure 3.12 on Page 36 has a
new case, that returns the method declaration of the super class if the method is not
present in all variants, where it is used. In Listing 4.8, we realized this new case.

Inductive a_method : cname → mname → ann → typ ∗ a_env ∗ a_exp →
Prop :=

| a_method_this : forall (C D:cname) (fs gs hs ts:a_flds) (m:mname)
(ms:a_mths) (mdecl:typ ∗ a_env ∗ a_exp) (a:ann),
binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
binds m (ATm C m,mdecl) ms →
(a → ATm C m) →
a_method C m a mdecl

| a_method_notthis : forall (C D:cname) (fs gs hs ts:a_flds) (m:mname)
(ms:a_mths) (mdecl mdecl’:typ ∗ a_env ∗ a_exp) (a:ann),
binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
binds m (ATm C m,mdecl’) ms →
∼(a → ATm C m) →
a_method D m a mdecl →
a_method C m a mdecl

| a_method_super : forall (C D:cname) (fs gs hs ts:a_flds) (m:mname)
(ms:a_mths) (mdecl:typ ∗ a_env ∗ a_exp) (a:ann),
binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
no_binds m ms →
a_method D m a mdecl →
a_method C m a mdecl.

Listing 4.8: Formalization of Method Lookup

Furthermore, the formalization of reachability checks is straightforward, as annotations
are modeled of type Prop. Implication can be implemented like it is used for the type
system in Section 3.3.4. Negation of propositional formulas is denoted by ∼ and we use
the annotation lookup function for methods as described above.

Valid Method Overriding

Valid method overriding is realized as follows. For every method declaration that exists
with the given method name at any super class, we force that the return type is equal

4.2. Type System 47

Definition a_can_override (C D:cname) (m:mname) (C0:typ) (E:a_env)
(a:ann) : Prop :=
forall C0’ E’ t,
a_method D m a (C0’,E’,t) →
C0 = C0’ ∧ a_can_override_check a m C E D E’.

Listing 4.9: Formalization of Valid Method Overriding

to that of to the given method (see Listing 4.9). Additionally, some reachability checks
need to be satisfied.

Listing 4.10 shows the reachability checks for method overriding. It makes sure that
both parameter lists have identical types and that the annotations are equivalent when-
ever the method is present.

Inductive a_can_override_check : ann → mname → cname → a_env →
cname → a_env → Prop :=

| a_coc_nil : forall (a:ann) (m:mname) (C D:cname),
a_can_override_check a m C nil D nil

| a_coc_cons : forall (a AT_Cixi AT_Diyi:ann) (m:mname) (C D:cname)
(Cxs Dxs:a_env) (xi yi:var) (Ci:cname),
a_can_override_check a m C Cxs D Dxs →
(a → (AT_Cixi ↔ AT_Diyi)) →
a_can_override_check a m C ((xi,(AT_Cixi,Ci))::Cxs)

D ((yi,(AT_Diyi,Ci))::Dxs).

Listing 4.10: Reachability Checks for Valid Method Overriding

4.2.3 Typing Rules

In this section, we present the formalization of the CFJ typing rules. The new definitions
are enriched with respective reachability checks. We describe term typing, method
typing, class typing, and finally product line typing.

Term Typing

The formalization of term typing is different than the definitions we already presented.
First, it is defined inductively, because a term might contain further terms. Second, we
need to type terms and list of terms. Third, for lists we usually need wide typing, i.e.,
a term has a type that is a sub type of a particular type. For instance, we need wide
typing to classify well-typed methods.

Listing 4.11 shows the formalization and again it is very close to that of term typ-
ing for FJ by de Fraine. Term typing is realized using mutually inductive defini-
tions. Mutually inductive means that the definitions for a_typing, a_wide_typing

and a_wide_typings can reference each other. This is only possible due to a special
language construct named with. Otherwise, Coq would bring an error if we try to use
a definition that is not specified before.

48 4. Formalization of Colored Featherweight Java

Inductive a_typing : ann → a_env → a_exp → typ → Prop :=
| a_t_var : forall (a a’:ann) (E:a_env) (x:var) (C:typ),

ok E →
binds x (a’,C) E →
(a → a’) →
(a’ → AT C) →
a_typing a E (ae_var x) C

| a_t_field : forall (a:ann) (E:a_env) (t0:a_exp) (C0 Ci:typ)
(fi:fname),
a_typing a E t0 C0 →
a_field C0 fi (ATf C0 fi) Ci →
(a → ATf C0 fi) →
(ATf C0 fi → AT Ci) →
a_typing a E (ae_field t0 fi) Ci

| a_t_meth : forall (a:ann) (E:a_env) (Dys:a_env) (t0 t:a_exp)
(C0 C:typ) (m:mname) (ts:list (ann ∗ a_exp)),
a_typing a E t0 C0 →
a_method C0 m a (C,Dys,t) →
a_wide_typings a E ts (imgs Dys) →
(a → AT C) →
a_typing a E (ae_meth t0 m ts) C

| a_t_new : forall (a:ann) (E:a_env) (Dfs:a_flds) (C:typ)
(ts:list (ann ∗ a_exp)),
a_fields C Dfs →
a_wide_typings a E ts (imgs Dfs) →
(a → AT C) →
a_typing a E (ae_new C ts) C

with a_wide_typing : ann → a_env → a_exp → typ → Prop :=
| a_wt_sub : forall (a:ann) (E:a_env) (e:a_exp) (t t’:typ),

a_typing a E e t → sub t t’ → a_wide_typing a E e t’

with a_wide_typings : ann → a_env → list (ann ∗ a_exp) →
list (ann ∗ typ) → Prop :=

| a_wts_nil : forall (a:ann) (E:a_env),
ok E →
a_wide_typings a E nil nil

| a_wts_cons : forall (a AT_t AT_Dy:ann) (E:a_env)
(Ds:list (ann ∗ typ)) (ts:list (ann ∗ a_exp)) (t:a_exp) (C:typ),
a_wide_typings a E ts Ds →
a_wide_typing AT_t E t C →
(a → (AT_t ↔ AT_Dy)) →
(AT_t → a) →
a_wide_typings a E ((AT_t,t)::ts) ((AT_Dy,C)::Ds).

Listing 4.11: Formalization of Term Typing

4.2. Type System 49

The inductive definition a_typing is used to describe well-typed terms. We have the
same cases as in Figure 3.13 on Page 37, except for casting, since we decided to formalize
cast-free CFJ. The reachability checks are straightforward to implement. We strongly
highlighted three additional checks in typing of variables, field accesses, and method
invocations, which we explain in Section 5.2.4. For short, they are used to reduce the
complexity of the type soundness proof.

In the cases a_t_meth and a_t_new, the typing of parameters is realized using
a_wide_typings. Fortunately, the parameter checks for method invocation and object
creation are identical, so that we only need to implement them once at a_wts_cons.
The definition a_wide_typing is used to type every parameter and it takes advantage
of sub to identify valid sub classes, as it is defined for FJ.

Method Typing

Method typing for CFJ is straightforward given the formalization of FJ. Listing 4.12
presents our formalized definition. The let-in construct is used to define a local variable
a, representing the annotation of the current method.

Definition a_ok_meth (C D:cname) (m:mname) (C0:typ) (Cxs:a_env)
(t0:a_exp) : Prop :=
let a := ATm C m in
let E := (this,(AT C,C))::Cxs in
(a → AT C0) ∧
a_ok_meth_check a Cxs ∧
a_can_override C D m C0 Cxs a ∧
a_wide_typing a E t0 C0.

Definition a_ok_meth’ (C D: cname) (m : mname)
(v:ann ∗ (typ ∗ a_env ∗ a_exp)) : Prop :=
match v with (_,(C0,E,t)) ⇒ a_ok_meth C D m C0 E t end.

Listing 4.12: Formalization of Method Typing

A method is well-typed, if the following four conditions are fulfilled [Pie02].

1. The return type C0 is present, whenever the method is present.

2. The reachability checks for the method parameters are satisfied.

3. The method overrides potentially super methods properly.

4. The term is well-typed according to the return type and under the annotation of
the method.

The variable Cxs represents the method parameters. In FJ, it is a list of pairs mapping
a variable name to a class name. Since we store annotations directly at the class table,
our parameter list is a list of pairs mapping variable names to a pair of an annotation

50 4. Formalization of Colored Featherweight Java

and a class name. Accordingly, the variable name this is mapped to the annotation of
the class and the class name.

Definitions ending with ’ are only needed for technical reasons. Whenever a function
need to be applied to all elements of a list, de Fraine uses forall_env. It gets the
function and a list as parameters. It yields True if the function evaluates to True for
all elements in the list. We reuse forall_env.

In Listing 4.13, the reachability checks for the method parameters are formalized. As
for class typing, they are defined inductively. The realization of the reachability checks
is straightforward.

Inductive a_ok_meth_check : ann → a_env → Prop :=
| a_omc_nil : forall (a:ann),

a_ok_meth_check a nil

| a_omc_cons : forall (a AT_Cixi:ann) (Cxs:a_env) (Ci:typ) (xi:var),
a_ok_meth_check a Cxs →
(AT_Cixi → AT Ci) →
(AT_Cixi → a) →
a_ok_meth_check a ((xi,(AT_Cixi,Ci))::Cxs).

Listing 4.13: Reachability Checks for Method Typing

Class Typing

In Listing 4.14, we present how we formalized well-typed CFJ classes in Coq.

Definition a_ok_class (C:cname) (D:cname) (fs:a_flds) (ms:a_mths) :
Prop := let a := AT C in
(exists gs:a_flds,

a_fields D gs ∧ a_ok_class_check a C D fs gs ms ∧
ok (gs ++ fs)) ∧

(a → AT D) ∧ ok ms ∧ forall_env (a_ok_meth’ C D) ms.

Definition a_ok_class’ (C:cname) (v:ann ∗ cname ∗ a_flds ∗ a_flds ∗
a_flds ∗ a_flds ∗ a_mths) : Prop :=
match v with (_,D,_,_,_,fs,ms) ⇒ a_ok_class C D fs ms end.

Listing 4.14: Formalization of Class Typing

A class is well-typed if five conditions are fulfilled. We give informal descriptions while
using the same order as they appear in the formalization.

1. The class check is fulfilled.

2. The field names of this and all super classes are distinct.

3. The annotation of the class implies the annotation of the superclass.

4. All methods have distinct names.

4.2. Type System 51

5. All methods are well-typed.

The first and the third condition are added to realize the reachability checks. The other
conditions are identical to that of FJ, while we need to use our adapted method typing.

The reachability checks we realize at the class check iterate on the own fields, the overall
fields of the super class, and the methods of a particular class. Listing 4.15 shows that
we defined the check inductively. If the three lists of interest are empty (denoted by
nil), the check is fulfilled. If the check is fulfilled for some particular lists and certain
conditions are satisfied, then the check is also fulfilled for the lists, where a field or
method is added.

Inductive a_ok_class_check :
ann → cname → cname → a_flds → a_flds → a_mths → Prop :=

| a_occ_nil : forall (a:ann) (C:cname) (D:cname),
a_ok_class_check a C D nil nil nil

| a_occ_cons_flds1 : forall (a:ann) (C:cname) (D:cname) (fs:a_flds)
(fi:fname) (Ci:typ),
a_ok_class_check a C D fs nil nil →
(ATf C fi → a ∧ AT Ci) →
((ATf C fi ↔ ATa C fi) ∧ (ATa C fi ↔ ATp C fi)) →
a_ok_class_check a C D ((fi,(ATf C fi,Ci))::fs) nil nil

| a_occ_cons_flds2 : forall (a AT_Digi:ann) (C:cname) (D:cname)
(fs gs:a_flds) (gi:fname) (Di:typ),
a_ok_class_check a C D fs gs nil →
(a → (ATp C gi ↔ AT_Digi)) →
(ATp C gi ↔ ATs C gi) →
(ATp C gi → a) →
a_ok_class_check a C D fs ((gi,(AT_Digi,Di))::gs) nil

| a_occ_cons_mths : forall (a:ann) (C: cname) (D: cname)
(fs gs:a_flds) (ms:a_mths) (m:mname) (m’:typ ∗ a_env ∗ a_exp),
a_ok_class_check a C D fs gs ms →
(ATm C m → a) →
a_ok_class_check a C D fs gs ((m,(ATm C m,m’))::ms).

Listing 4.15: Reachability Checks for Class Typing

Using the lookup functions for annotations, the reachability checks are straightforward
to implement. Due to our similar naming, they even appear very close to the checks we
presented in Figure 3.13 on Page 37.

Product Line Typing

Before we formalize product line typing, we give a definition that identifies well-typed
FJ programs (see Listing 4.16). This definition was assumed implicitly for the FJ type
system formalized by de Fraine. A FJ program is well-typed if the class table is well-
typed and the start term is well-typed. Since the type of the start term is not part
of a FJ program, we state that there exists such a type, for that the start term is
well-typed. The start term is typed under the empty context, because there are no
surrounding variables.

52 4. Formalization of Colored Featherweight Java

Definition FJ_program (t:exp) : Prop :=
ok_ctable CT ∧ exists C:cname, typing nil t C.

Listing 4.16: Formalization of Well-Typed FJ Programs

A CFJ product line is well-typed, if both, the class table and the start term are well-
typed pursuant to the CFJ type system (see Listing 4.17). The definition a_typing

needs the current annotation as an additional parameter, which is in our case the empty
annotation represented by True.

Definition CFJ_product_line (t:a_exp) : Prop :=
a_ok_ctable aCT ∧ exists C:cname, a_typing True nil t C.

Listing 4.17: Formalization of Well-Typed CFJ Product Lines

A CFJ class table is well-typed, if all classes have unique names and all classes are
well-typed (see Listing 4.18). This definition is identical to that of FJ, except for the
new definition that is used to identify well-typed classes. Fortunately, we can reuse
ok as is, since the CFJ class tables also map class names to their declaration and the
definition only uses the class names to make sure that no two classes with the same
name occur.

Definition a_ok_ctable (ct:a_ctable) :=
ok ct ∧ forall_env a_ok_class’ ct.

Listing 4.18: Formalization of Well-Typed CFJ Class Tables

4.3 Variant Generation

This section presents our formalization of the variant generation. It maps CFJ class
tables and the CFJ start term to a FJ class table and a FJ start term. Existentially
for the variant generation is a valid configuration describing which annotated code to
remove.

Valid configurations are specified at the feature model, so that we start with the for-
malization of the feature model. Afterwards, we formalize the variant generation for
parameter lists, terms, methods, and whole class tables. Finally, we give an overview
on the presented definitions.

Feature Model and Valid Configuration

Before we can formalize the variant generation, we need a representation of the feature
model in Coq. The reason is, that we need to distinguish between valid and invalid
configurations. We present three ideas to formalize the feature model that arise from
our introduction on feature models in Section 2.1.1.

4.3. Variant Generation 53

1. Enumeration. We enumerate all valid variants, i.e., we define a set in Coq includ-
ing all valid configurations. A function could lookup, whether a given configura-
tion is in the specified set or not. The configurations itself could be represented
as sets containing all selected features.

2. Feature diagram. We emulate the structure of a feature diagram and possible
cross-tree constraint in Coq. This includes all group types—And -, Or -, and Al-
ternative-groups—and arbitrary propositional formulas for cross-tree constraints.
Additionally, a function is needed to determine if a given configuration is valid
according to the feature model, which is not trivial.

3. Propositional formula. The feature model is converted into a propositional for-
mula by human or a feature modeling tool. Then, this propositional formula is
formalized in Coq. As for annotations, we can use the type Prop and logical con-
nector given for this type. A configuration is an allocation of True or False to
each variable representing a feature. A configuration is valid, if the propositional
formula representing the feature model evaluates to True for this allocation.

The first idea is unpractical for large feature models which can have millions of valid
configurations. The second idea is more complicated than the third one, as the cross-tree
constraints may be arbitrary propositional formulas and we would need to realize the
third idea as well as formalizing the feature model. Therefore, we decided to formalize
the feature model based on propositional formulas.

Given a valid configuration a code fragment is removed, if and only if the annotation
evaluates to false under the configuration. To apply variant generation to the class
table, we need an inductively defined generation function that is defined on classes,
methods, fields, terms and parameters, i.e., we need multiple functions that have a
similar structure as our definitions for well-typed CFJ class tables.

Parameter Lists

Whenever a FJ method is generated, we might need to remove certain parameters whose
annotations evaluate to False. We defined variant_env for this issue and it gets a
CFJ parameter list and a FJ parameter list and returns True if both describe valid
variant generation according to an assumed configuration (see Listing 4.19).

In fact, variant_env is a relation and two parameter lists are in that relation if both are
empty. According to ve_cons_y, given two lists that are in relation and an annotation
a that evaluates to True, we know that adding this variable and type to both lists is in
that relation too. If a does evaluate to False, i.e., ∼a evaluates to True, then we do
not add this parameter to the FJ parameter list.

The reader might wonder why we do not formalize variant generation as a recursive
function, e.g., using Fixpoint. The reason is, that the result depends on the anno-
tation, i.e., whether it evaluates to True or False. Recursive functions that rely on
values of propositional formulas are not allowed in Coq.

54 4. Formalization of Colored Featherweight Java

Inductive variant_env : a_env → env → Prop :=
| ve_nil :

variant_env nil nil

| ve_cons_y : forall (E:a_env) (E’:env) (x:var) (a:ann) (C:typ),
variant_env E E’ →
a →
variant_env ((x,(a,C))::E) ((x,C)::E’)

| ve_cons_n : forall (E:a_env) (E’:env) (x:var) (a:ann) (C:typ),
variant_env E E’ →
∼a →
variant_env ((x,(a,C))::E) E’.

Listing 4.19: Formalization of Parameter List Generation

Terms

FJ terms need to be generated, since they occur in methods. The outermost term of
a method cannot be annotated, but we might need to remove certain terms given as
parameters. Parameters occur in method invocation terms and object creation terms.
Listing 4.20 presents our formalization of term generation.

The mapping of variables and fields is straightforward, since they cannot be annotated.
However, for fields we need to force that the term, on which the field is applied, is
generated correctly. The same is true for methods. Additionally, for method invocations
and object creations we have to generate the parameter term lists.

The latter is done by a mutual definition variant_terms. Contrary to variant_term,
it directly removes terms occurring in a list based on their annotation. It is very similar
to variant_env. Note, the recursive call to variant_term which is needed as, e.g., a
parameter list might contain a further parameter list.

Methods

Our formalization of FJ method generation is based on the three previous definitions.
Listing 4.21 presents the definition variant_methods, which gets a list of CFJ methods
and a list of FJ methods as parameters. Additionally, it requires the name of the class
in which the methods are defined.

The class name is needed for a special reason; we use it as a parameter for the function
ATm, which returns the annotation of the method. We do not need to lookup the
annotation at the class table at this point, since we get the method declaration including
the annotations as a parameter. The usage of the lookup function has technical reasons:
it simplifies some of the proofs we present in the next chapter.

Beside this consideration, the formalization of variant_methods is straightforward us-
ing induction on lists. Again, we have three cases: (a) both lists are empty, (b) the
annotation of a method evaluates to True, or (c) to False. If it evaluates to True, we
add this method to the list of FJ methods with the generated term and the generated
parameter list.

4.3. Variant Generation 55

Inductive variant_term : a_exp → exp → Prop :=
| vt_var : forall (x:var),

variant_term (ae_var x) (e_var x)
| vt_field : forall (t:a_exp) (t’:exp) (f:fname),

variant_term t t’ →
variant_term (ae_field t f) (e_field t’ f)

| vt_meth : forall (t:a_exp) (t’:exp) (m:mname) (ts:list (ann∗a_exp))
(ts’:list exp),
variant_term t t’ →
variant_terms ts ts’ →
variant_term (ae_meth t m ts) (e_meth t’ m ts’)

| vt_new : forall (ts:list (ann∗a_exp)) (ts’:list exp) (C:typ),
variant_terms ts ts’ →
variant_term (ae_new C ts) (e_new C ts’)

with variant_terms : list (ann∗a_exp) → list exp → Prop :=
| vts_nil :

variant_terms nil nil

| vts_cons_y : forall (ts:list(ann∗a_exp)) (ts’:list exp) (a:ann)
(t:a_exp) (t’:exp),
variant_terms ts ts’ →
a →
variant_term t t’ →
variant_terms ((a,t)::ts) (t’::ts’)

| vts_cons_n : forall (ts:list(ann∗a_exp)) (ts’:list exp) (a:ann)
(t:a_exp),
variant_terms ts ts’ →
∼a →
variant_terms ((a,t)::ts) ts’.

Listing 4.20: Formalization of Term Generation

Inductive variant_methods : cname → a_mths → mths → Prop :=
| vms_nil : forall (C:cname),

variant_methods C nil nil

| vms_cons_y : forall (C:cname) (ms:a_mths) (ms’:mths) (m:mname)
(C0:typ) (Cxs:a_env) (Cxs’:env) (t:a_exp) (t’:exp),
variant_methods C ms ms’ →
variant_term t t’ →
variant_env Cxs Cxs’ →
ATm C m →
variant_methods C ((m,(ATm C m,(C0,Cxs,t)))::ms)

((m,(C0,Cxs’,t’))::ms’)
| vms_cons_n : forall (C:cname) (ms:a_mths) (ms’:mths) (m:mname)

(C0:typ) (Cxs:a_env) (t:a_exp),
variant_methods C ms ms’ →
∼(ATm C m) →
variant_methods C ((m,(ATm C m,(C0,Cxs,t)))::ms) ms’.

Listing 4.21: Formalization of Method Generation

56 4. Formalization of Colored Featherweight Java

Class Table

Finally, we present how a FJ class table is generated from a CFJ class table. The
definition we present in Listing 4.22 is very similar to that for methods.

Inductive variant_ct : a_ctable → ctable → Prop :=
| vct_nil :

variant_ct nil nil

| vct_cons_y : forall (ct:a_ctable) (ct’:ctable) (C D:cname)
(fs gs hs ts:a_flds) (fs’:flds) (ms:a_mths)(ms’:mths),
variant_ct ct ct’ →
variant_env fs fs’ →
variant_methods C ms ms’ →
AT C →
variant_ct ((C,(AT C,D,gs,hs,ts,fs,ms))::ct)

((C,(D,fs’,ms’))::ct’)
| vct_cons_n : forall (ct:a_ctable) (ct’:ctable) (C D:cname)

(fs gs hs ts:a_flds) (fs’:flds) (ms:a_mths) (ms’:mths),
variant_ct ct ct’ →
∼(AT C) →
variant_ct ((C,(AT C,D,gs,hs,ts,fs,ms))::ct) ct’.

Listing 4.22: Formalization of Class Table Generation

The cases vct_nil and vct_cons_n are straightforward to implement using our previous
considerations. The interesting case is vct_cons_y, which generates a FJ class from a
CFJ class. The superclass remains the same and we only have to generate fields and
methods.

Methods are generated using variant_methods we just defined. Fortunately, the fields
of the FJ class can be generated using the parameter list generation variant_env. The
reason is, that in the FJ formalization and also in our CFJ formalization parameter
lists and fields are both lists of pairs mapping a variable or field name to a type and in
case of CFJ to a pair of annotation and type. Variable and fields names are convertible,
i.e., fname and var are both notations for the same type atom that is used for all names
at the FJ and CFJ class tables.

4.4 Summary

We presented several definitions that identify well-typed CFJ product lines. Figure 4.1
summarizes the definitions and shows how they are related. An arrow that begins in at
a certain definition, indicates the definitions that is uses.

Additionally, CFJ_product_line uses a_ok_ctable and a_typing. Again, we see the
special position of the term typing that we realized using mutual induction. Variant
generation for CFJ is formalized using five definitions. The dependencies between these
definitions are visualized in Figure 4.2. Again, an arrow starting at a definition means,
that this definition uses another definition.

We appear some similarities to typing for CFJ. The overall structure beginning at the
class table and iterating through fields, methods and finally terms is similar. For terms

4.4. Summary 57

a_method

a_typing

a_wide_typing

a_wide_typings

a_ok_meth

a_ok_class

a_ok_ctable

a_can_override_check

a_can_override

a_ok_meth_check

a_ok_class_check

a_field

a_fields

Figure 4.1: Overview on Definitions for CFJ

we also have mutual definitions, in this case only two ones, since wide typing is not
needed for the variant generation.

Given the formalization of the type system and the variant generation, we can prove
type soundness of CFJ in the following chapter.

variant_env variant_term

variant_methods

variant_ct

variant_terms

Figure 4.2: Overview on the Variant Generation for CFJ

58 4. Formalization of Colored Featherweight Java

5. Type Soundness of
Colored Featherweight Java

This chapter presents our machine-checked type soundness proof for CFJ. A type sound-
ness theorem states that a given type system is correct, e.g., there is no dangling method
reference in any FJ program variant. The proof is based on our formalization of the
CFJ type system and variant generation proposed in the previous chapter. Our con-
tribution is the first machine-checked proof of type soundness for CFJ. Recently, type
soundness was proven by Kästner et al. in informal math [KAS, KA08], which is the
only type soundness proof for CFJ so far.

Our proof of the type soundness theorem is based on 29 further theorems, lemmas, and
facts for that we also provide formal proofs checked by the proof assistant Coq. We do
not want to examine every proof in detail. The reason is, that the proofs can be verified
by Coq and the main attention should be on the definitions and the theorems, since
Coq can only verify proofs, but not that our definitions and theorems are reasonable.
Instead, we give an overview on the theorems and discuss problems solved in proof
writing.

First, we formalize the type soundness theorem for CFJ in Section 5.1. Additionally, we
describe all theorems, lemmas, and facts used. Second, Section 5.2 describes our proof
strategy, discusses problems in proving and presents our solutions used to complete all
proofs. Finally, we summarize this chapter in Section 5.3.

5.1 Type Soundness Theorem

Section 5.1.1 describes what type soundness means for CFJ and proposes our formal-
ization of the theorem. In Section 5.1.2, we give an overview on the facts, lemmas, and
theorems used to prove the type soundness theorem.

60 5. Type Soundness of Colored Featherweight Java

5.1.1 Formalization of the Theorem

Type soundness of FJ is proven using the progress theorem and the preservation theo-
rem [IPW99]. The formalization by de Fraine already contains the proofs of both. We
introduced progress and preservation in Section 2.2.2. Progress means that a well-typed
term is either a value or it can take a step of evaluation. Preservation states that if a
well-typed term takes a step of evaluation, then the resulting term is well-typed as well.

Type soundness of CFJ cannot be proven using progress and preservation, because CFJ
product lines are never directly evaluated. Kästner and Apel argue that the crucial
property for CFJ is that variant generation preserves typing [KA08]. That is, every
FJ program generated from a well-typed CFJ product line using a valid configuration is
well-typed according to the FJ typing rules. Kästner and Apel provided a proof sketch
for the generation preserves typing theorem in informal math [KA08]. In recent work,
Kästner et al. provided a full proof in informal math [KAS].

The theorem concludes that every generated FJ program is well-typed, given (a) the
CFJ product line is well-typed, (b) the program is generated from the product line and
(c) using a valid configuration. We present our formalization of type soundness for CFJ
in Listing 5.1, which is straightforward given the definitions of well-typed CFJ product
lines and the variant generation defined in Chapter 4.

1 Theorem generation_preserves_typing : forall (t:a_exp) (t’:exp),
2 CFJ_product_line t →
3 variant_ct aCT CT →
4 variant_term t t’ →
5 FM →
6 FJ_program t’.

Listing 5.1: The Type Soundness Theorem—Generation Preserves Typing

The first premise states that the CFJ product line is well-typed (see Line 2). We defined
CFJ_product_line in Section 4.2. The product lines consists of the CFJ class table
aCT and the start term t. The second and the third premise describes the connection
between the CFJ product line and the FJ program, i.e., the variant generation (see
Line 3 and Line 4). The FJ class table aCT is generated from the CFJ class table and
the FJ start term t’ is generated from the CFJ start term t.

The conclusion is that the FJ class table CT and the start term t’ together build up a
well-typed FJ program (see Line 6). We use our adapted FJ formalization at this point,
because it is consistent with the FJ type system presented in Chapter 3. Note, that our
adoptions are so simple that we reuse the most parts of de Fraine’s FJ formalization
as-is.

The last premise FM corresponds to the requirement that the configuration is valid (see
Line 5). It is a propositional formula representing the feature model, which is True

for all configurations that are valid. This premise is not needed for the proof itself,
but we need it to be able to build CFJ product lines that are classified as well-typed.
The problem is, that for invalid configurations an empty FJ class table is generated.

5.1. Type Soundness Theorem 61

Remember, that we decided to insert the feature model FM into every annotation, by
what all annotations evaluate to False and so all classes are removed. But this implies,
that whenever we use a feature model, where such an invalid configuration exists, we
can only use new Object() as a start term, since other start terms would need existing
classes at the class table.

5.1.2 Splitting the Theorem

The proof of the type soundness theorem is not trivial. In fact, it is so complex that
we proved it based on two other theorems stating generation preserves typing on terms
and class tables (gpt_typing and gpt_ok_ctable), i.e., every FJ term or class table
generated from a well-typed CFJ term or class table is well-typed as well.

In Figure 5.1, we visualize the dependencies between the theorems, i.e., which theorems
were used to prove a certain theorem. The definitions in Coq are omitted here, since
many of them are very similar. All definitions can be found in Appendix B.3, while the
number in the right upper corner of each theorem is the line number.

no_binds_env1

ok_env7

gpt_mutual_typing147

gpt_wide_typing170

gpt_ok_meth186

gpt_ok_class196

gpt_ok_ctable204

generation_preserves_typing211

class_present_reverse88

method_present_reverse129

gpt_typing178

ok_env_env13

no_binds_ct26

Legend: Theorem Lemma Fact

Figure 5.1: Theorems to Prove Generation Preserves Typing

We distinguish between theorems (highlighted), lemmas (italic), and facts. The the-
orems state generation preserves typing on different levels, e.g., classes, methods, or
terms. Facts can either be proven without splitting or just rely on other facts. Lemmas
indicate properties concerning reachability checks.

Generation preserves typing for class tables is proven using generation preserves typing
on classes (gpt_ok_class). In turn, the latter is shown with generation preserves typing

62 5. Type Soundness of Colored Featherweight Java

on methods (gpt_ok_meth). This breakdown is basically caused by the structure of CFJ
product lines and FJ programs. Both consist of a class table and a start term, while
the class table contains classes containing methods.

We need two theorems stating generation preserves typing for terms. While for the start
term the type is established (gpt_typing), for the term of a method, we only know it
has to be well-typed with a sub type of the method’s return type (gpt_wide_typing).
In Section 5.2.3, we explain the need for a further theorem to prove these two theorems
concerning term typing (gpt_mutual_typing).

We split theorems into smaller ones, largely for two reasons, because the proof is too
complex to prove at once or because the proof is needed at multiple positions in one
or more proofs. For clarity, we avoided splitting theorems if not necessary. Still, all
dependencies do not fit into one single figure, so that we present further dependencies
in Figure 5.2.

field_present103

gpt_mutual_typing147

field_class69

no_binds_ms20

class_present79

class_superclass64

variant_term_total57

variant_term_unique40

variant_env_total60

type_present137

gpt_ok_class196

fields_present97

vtt_trick52

vtu_mut32

variable_present72

subtype_present141

method_present109

variant_env_unique46

Legend: Theorem Lemma Fact

Figure 5.2: Further Theorems to Prove Generation Preserves Typing

We classify facts into three groups. First, if a variable, method, or class is not contained
in a CFJ list, then it is not in the generated FJ list (no_binds_env, no_binds_ms, and

5.2. Type Soundness Proof 63

no_binds_ct). Second, if a list contains no duplicate names in CFJ, then the generated
FJ list does not either (ok_env and ok_env_env). Third, variant generation for terms
and parameter lists is a total function, i.e., for every CFJ code fragment there is an
unique FJ code fragment generated (remaining facts).

We also have three groups of lemmas. First, if a given annotation evaluates to True,
then also another annotation evaluates to True as well. We proved the two lemmas that
whenever a field is present, the class is present too (field_class) and that whenever
a class is present, its super class is as well (class_superclass).

Second, whenever an annotation for a particular code fragment evaluates to True,
then the code fragment is at the FJ class table, while we need this property for vari-
ables, methods, and fields (variable_present, method_present, field_present, and
fields_present). All these lemmas are used for term typing. Remember, a term might
be a parameter, a field access, a method invocation or an object creation. In all these
cases we can ensure that the annotation evaluates to True and need to prove that a
particular code fragment is at the FJ class table.

Third, a group of lemmas states the reverse of the second group. Whenever a code
fragment occurs at the FJ class table, then we know that its annotation at the CFJ
class table evaluates to True. We need to prove it for code fragments as methods
(method_present_reverse in Figure 5.1) and classes (class_present_reverse).

5.2 Type Soundness Proof

Type soundness of CFJ has already been proven in informal math by Kästner and
Apel [KAS]. In this section, we present our formal proof of type soundness, that is
very different from the informal proof. We argue why we proved it another way in
Section 5.2.1 and explain some assumptions we used for many proofs.

We do not present all proofs in detail in this thesis, since they are verified by the proof
assistant Coq. Instead, we present problems arisen in proving type soundness and how
we solved them. This way, we give details of those parts of our proofs, which were not
straightforward. In Appendix B, we give instructions how to verify our type soundness
proof using Coq.

In Section 5.2.2 and Section 5.2.3, we discuss problems dealing with induction or mutual
induction. Section 5.2.4 describes problems and our solutions of further problems not
dealing with induction. These sections are intended to make clear which problems we
solved for our proofs and possibly helps further work with similar problems. Note, that
we describe technical details that are probably hard to read for people not familiar with
Coq. The reader might want to skip Section 5.2.2 and Section 5.2.3.

5.2.1 The Proof Strategy

Kästner and Apel proved type soundness in two steps. First, they proved that a well-
typed CFJ product line stripped of its annotations without removing any code fragments

64 5. Type Soundness of Colored Featherweight Java

is always a well-typed FJ program. Second, they proved for every code fragment that
is removed, that it is not referenced anywhere else at the class table [KAS].

The formalization of the soundness theorem in Coq is straightforward given the for-
malization of both type systems and the variant generation. But in Coq the theorem
can only be proven by reduction on other theorems. It is not obvious how to reduce
the type soundness theorem in Coq according to the two steps of the informal proof
presented by Kästner and Apel.

Therefore, we decided to use a different proof strategy. We prove that the generated
FJ program is well-typed, directly on its structure. It consists of a class table and a
start term. In turn, the class table consists of classes with fields and methods and we
prove for every part that it is well-typed, i.e., that all referenced classes, methods, fields
and variables do exist at the class table. We prove that everything referenced in the FJ
program exists at the class table, while Kästner and Apel proved, that everything we
remove from the class table is not referenced in the FJ program.

In the following, we denote assumptions used for the proof. The proof of the theorem
generation preserves typing is not trivial. We created several theorems, lemmas, and
facts to prove it. There are assumptions that we need at several proofs, for which we
do not want to give the assumptions explicitly over and over again. Coq provides the
ability to specify parameters, which were also used for the FJ and the CFJ class table.
We defined three parameters that are listed in Listing 5.2.

Parameter aCT_well_typed : a_ok_ctable aCT.

Parameter aCT_correlates_with_CT : variant_ct aCT CT.

Parameter FM : Prop.

Listing 5.2: Assumptions for Our Proofs

First, we force that the CFJ class table given as the parameter aCT is well-typed.
Second, the FJ class table is generated from the CFJ class table. Both assumptions
are rather intuitive and premises of generation preserves typing. Third, we assume
that the feature model FM is given as a parameter. Again, it is used to specify valid
configurations and is one premise in our theorem.

5.2.2 Problems with Induction

This section describes problems dealing with induction and how we solve them. First,
a general problem with variable quantification in Coq is presented. Second, we discuss
a problem with induction and tuple destruction, already known in the Coq commu-
nity. Third, a problem arisen by the use of existential quantification is shown and two
solutions are presented.

Quantification

Almost all of our theorems, lemmas, and facts are proven using induction. But in
one case the induction could not be applied as usual. It concerns the proof, that

5.2. Type Soundness Proof 65

the generated FJ parameter list from a given CFJ parameter list assuming a fixed
configuration is unique. This fact is formalized in Listing 5.3.

Fact variant_env_unique : forall (fs:a_flds) (fs’ fs’’:flds),
variant_env fs fs’ →
variant_env fs fs’’ →
fs’ = fs’’.

Proof.
intros fs fs’ fs’’ H; revert fs’’.
induction H; inversion 1; intuition (f_equal; eauto).

Qed.

Listing 5.3: Variant Generation for Parameter Lists is Unique

This fact can be proven using induction on variant_env fs fs’, but we tried it
unsuccessfully. We created a minimal example where our problem still occurs, i.e.,
without references to FJ or CFJ definitions. We sent this example to the Coq mailing
list and received an answer with a solution.1

The problem was, that the variable fs’’ is defined before the premise used for induc-
tion. This way, the variable is quantified inappropriate and the proof is impossible.
The solution by Strub was to generalize fs’’ before applying the induction, which is
done using revert fs’’. Another possible solution would be, to rewrite the fact. The
variable fs’’ can simply be introduced between the first and the second premise. In
Coq, one should introduce only what is necessary to apply induction, possibly using
revert.

Tuple Destruction

We use tuples at several parts of our CFJ formalization, e.g., for class declarations
and method declarations. A know problem in Coq is, that induction generalizes all
variables, dropping any information on the structure. This is problematically, if we do
induction on an expression containing a tuple and one of the tuples elements is used
also outside of the tuple. The proof cannot be completed since Coq does replace the
tuple with a new variable, but not the elements accordingly.

The problem was discussed at the Coq mailing list by others.2 Overall, they presented
two solutions if induction cannot be avoided. First, prove the theorem without tuples
first and use this prove. Second, rewrite all occurrences of elements using the whole
tuple, i.e., given a tuple (a, b) we can rewrite a by fst (a, b).

This problem occurred in our proof of method_present and method_present_reverse.
Since, the proof could not easily be done without tuples, we decided to rewrite all occur-
rences of tuple elements. Additionally, the generalized tuple need to be destructed into
their elements and the elements we rewrote using fst and snd need to be simplified to
elements again. These proofs would be a easier without tuples, therefore we recommend
to use tuples only if necessary.

1http://logical.saclay.inria.fr/coq-puma/messages/696999107b55d8a6
2http://logical.saclay.inria.fr/coq-puma/messages/4db1bb6e78519ef9

http://logical.saclay.inria.fr/coq-puma/messages/696999107b55d8a6
http://logical.saclay.inria.fr/coq-puma/messages/4db1bb6e78519ef9

66 5. Type Soundness of Colored Featherweight Java

Existential Quantification

The proofs of the lemmas method_present and method_present_reverse are the two
most complicated proofs, mainly for two reasons. First, these are the only proofs where
we have used three nested inductions; (a) induction over the CFJ method lookup, (b)
induction over the class table, and (c) induction over the variant generation for methods.
Second, these two proofs could not be solved as usual, since they contain existential
quantifications. For example, method_present states that if a CFJ method’s annotation
evaluates to True, then the method exists at the FJ class table, while the parameter
list and the term are generated using the variant generations (see Listing 5.4).

Lemma method_present’ : forall (a:ann) (C C0:cname) (m:mname)
(Dys:a_env) (t:a_exp),

a →
AT C →
a_method C m a (C0,Dys,t) →
exists Dys’:env, exists t’:exp,

variant_env Dys Dys’ ∧
variant_term t t’ ∧
method C m (C0,Dys’,t’).

Listing 5.4: Method Present with Existential Quantification

The problem with the existential quantification of the parameter list and the method’s
term strongly relies on how we prove this theorem. As we do not want to get further
into details, we give a brief explanation. For the proof, we need to provide instances
for the parameter list and the term, for which the induction on the variant generation
for methods is required. But to prove that the method is part of the FJ class table,
the induction on the class table needs to be applied before doing induction on the
variant generation—and we have to provide instances for the parameter list and the
term before. We solved this contradiction by proving a lemma first, where we eliminated
the existential quantification (see Listing 5.5)

Lemma method_present : forall (a:ann) (C C0:cname) (m:mname)
(Dys:a_env) (t:a_exp) (Dys’:env) (t’:exp),

a →
AT C →
a_method C m a (C0,Dys,t) →
variant_env Dys Dys’ →
variant_term t t’ →
method C m (C0,Dys’,t’).

Listing 5.5: Method Present without Existential Quantification

The proofs of method_present’ and method_present using method_present’ require
further facts due to this rewrite. We need to prove that the variant generation for
parameter lists and terms is a total function, i.e., that for every input CFJ parameter
list or CFJ term there is an output and the output is unique (see these facts in Figure 5.2
on Page 62).

5.2. Type Soundness Proof 67

In proving method_present_reverse it occurred the same problem with existential
quantification. Unfortunately, we cannot apply the same strategy as above presented
for method_present, because the CFJ term (parameter list) from that a given FJ term
(parameter list) is generated, is not unique, i.e., variant generation is not a bijective
function. For example, a CFJ object creation term with one parameter whose anno-
tation evaluate to false and the same term without a parameter lead to the same FJ
term.

Our solution uses the command cut X. By this command, we can prove that our
theorem holds given that X is valid and second, we need to prove that X is valid. We
needed to use different X depending on the case of our induction. For further details,
we refer to the full proof (see Appendix B).

5.2.3 Problems with Mutual Induction

This section describes problems dealing with mutual induction. We already introduced
mutual definitions in Section 4.2 and Section 4.3. Mutual definitions often require
mutual induction, even if we only need to prove a fact on one of two or three mutual
definitions. Mutual induction means, that we prove a fact for all (two or more) mutual
definitions, assuming that it is proven for all other definitions.

Mutual Induction on Terms

The fact variant_term_unique states that, given a CFJ term, the generated FJ is
unique. This cannot be proven using straightforward induction on terms, because
variant_term is defined mutually with variant_terms. A proof of a property for
variant_term always relies on a proof of an according property for variant_terms.
Listing 5.6 shows how to generate a useful induction principle in Coq.

Scheme variant_term_ind2 := Minimality for variant_term Sort Prop
with variant_terms_ind2 := Minimality for variant_terms Sort Prop.

Combined Scheme variant_term_mutind from variant_term_ind2,
variant_terms_ind2.

Listing 5.6: Combined Scheme for Mutual Induction

The command Scheme generates induction principles for each mutual definition and
takes into account the mutual structure. The command Combined Scheme is used
create an induction principle, which can be used to prove a property for all mutual
definitions. In Listing 5.7, we present the fact variant_term_unique_mut proving the
uniqueness for terms and lists of terms at the same time.

Given the induction principle and the combined fact, the proof is straightforward. In
variant_term_unique we can simply use the proof for terms. The literature on mutual
induction in Coq is sparsely. The book by Bertot and Castéran dedicates only four pages
on mutual induction [BC04]. We contacted the Coq mailing list for that issue and got
support.3

3http://logical.saclay.inria.fr/coq-puma/messages/786f85b60432ce86

68 5. Type Soundness of Colored Featherweight Java

Fact variant_term_unique_mut :
(forall (t:a_exp) (t’:exp),

variant_term t t’ →
forall (t’’:exp), variant_term t t’’ → t’ = t’’) ∧

(forall (ts:list (ann∗a_exp)) (ts’:list exp),
variant_terms ts ts’ →
forall (ts’’:list exp), variant_terms ts ts’’ → ts’ = ts’’).

Proof.
apply variant_term_mutind; try inversion 6; try inversion 5;

try inversion 4; try inversion 3; try inversion 1;
intuition (f_equal; eauto).

Qed.

Fact variant_term_unique :
forall (t:a_exp) (t’ t’’:exp),

variant_term t t’ →
variant_term t t’’ →
t’ = t’’.

Proof.
destruct variant_term_unique_mut; eauto.

Qed.

Listing 5.7: Variant Generation for Terms is Unique using Mutual Induction

Mutual Proofs

A very similar fact is variant_term_total, whereas our proof is totally different. The
reason is that variant_term_mutind cannot be applied, because there is simply no
premise containing variant_term. This relation is only contained at the conclusion
(see Listing 5.8).

We could create a fact similar to variant_term_unique_mut in Listing 5.7. But we
cannot apply variant_term_mutind, since this would imply a fact with a structure
like (variant_term x y → P x y) ∧ (variant_terms a b → Ps a b) and our
fact has no premise.

Again, we created a minimal example and asked on the Coq mailing list.4 The first
solutions posted only worked for the example and not for our real fact. The reason
is, that we needed to strongly simplify our example. Finally, Auger presented two
solutions.

The first solution requires to rewrite the definition of FJ terms. For method invocation
terms and object creation terms a new type represents the list of parameter terms
instead of a simple list of terms. This way, Coq perceives the mutual definition and
we can generate a useful induction principle. Applying this solution would mean to
totally overwork the FJ and the CFJ formalization, because terms occur in almost all
definitions and theorems.

The second solution by Auger is a trick with a special notation. It uses our idea how
we would proof this in informal math; first, we assume variant_term_total to prove

4http://logical.saclay.inria.fr/coq-puma/messages/b5c4bad3158b6616

http://logical.saclay.inria.fr/coq-puma/messages/b5c4bad3158b6616

5.2. Type Soundness Proof 69

Definition vtt_trick

(REC : forall (t:a_exp), exists t’:exp, variant_term t t’) :
forall (ts:list (ann∗a_exp)),
exists ts’:list exp, variant_terms ts ts’.

Proof.
intro H.
induction ts.
exists nil; auto.

destruct a as [a t].
destruct H with (t:=t) as [t’ Hvt].
destruct IHts as [ts’ Hts].
assert (Ha:a ∨ ∼a) by apply classic.
destruct Ha.
exists (t’::ts’); auto.

exists ts’; auto.
Defined.

Fact variant_term_total :
forall (t:a_exp), exists t’:exp, variant_term t t’.

Proof.
refine (fix variant_term_total (t : a_exp) := _); destruct t;

try destruct (variant_term_total t) as [t’ Hvt];
try destruct (vtt_trick variant_term_total l) as [l’ Hvts].
exists (e_var v); auto.

exists (e_field t’ f); auto.

exists (e_meth t’ m l’); auto.

exists (e_new c l’); auto.
Qed.

Listing 5.8: Variant Generation for Terms is Total

variant_terms_total, which is the same fact for lists of terms, i.e., there is a generated
list of FJ terms for every list of CFJ terms. Second, we prove variant_term_total

using the above fact. The idea is a proof on a special assumption, followed by a proof
of the assumption.

The proof is realized with the second solution. The definition vtt_trick is used at
the proof of the fact variant_term_total. Using this special notation, the proof is
straightforward. We conclude that Coq’s support for lists is not satisfying and the usage
of lists might be avoided in further formalizations.

Advanced Mutual Induction

The facts gpt_typing and gpt_wide_typing are also proved using mutual induction.
They use the definitions of well-typed terms in FJ and CFJ (see Listing 5.9). Well-
typed FJ terms are specified using three mutual definitions typing, wide_typing,

70 5. Type Soundness of Colored Featherweight Java

and wide_typings, to cover typing of terms, method terms, and terms as parame-
ters. Accordingly, well-typed CFJ terms are defined by a_typing, a_wide_typing,
and a_wide_typings.

Theorem gpt_wide_typing :
forall (a:ann) (E:a_env) (t:a_exp) (C:cname) (E’:env) (t’:exp),

a_wide_typing a E t C →
a →
variant_env E E’ →
variant_term t t’ →
wide_typing E’ t’ C.

Theorem gpt_typing :
forall (a:ann) (E:a_env) (t:a_exp) (C:cname) (E’:env) (t’:exp),

a_typing a E t C →
a →
variant_env E E’ →
variant_term t t’ →
typing E’ t’ C.

Listing 5.9: Generation Preserves Typing for Terms

Furthermore, as both facts formulate generation preserves typing for terms, they ref-
erence the variant generation for terms, i.e., variant_term. Hence, both theorems are
using three independent definitions, where each is mutually defined. Clearly, we need
mutual induction to prove this, but it is not trivial to see on what to apply induction.

With our experience from other proofs, we conclude that this can be proven using
mutual induction on the variant generation. To apply the combined scheme created in
Listing 5.6, we need to create a theorem for proving generation preserves typing at the
same time for a_typing, a_wide_typing, and a_wide_typings.

Again, we could not apply this combined scheme without further help from the Coq
mailing list.5 The problem is, that we have to prove three facts with a combined scheme
designed to prove two facts at the same time. Creating a minimal example was time-
consuming, but an idea by de Fraine lead us to a proof of our facts. We present the
combined fact gpt_mutual_typing in Listing 5.10.

We merged the fact gpt_typing with the fact gpt_wide_typing, since for both the FJ
term is generated using variant_term. We omit the proofs here, since they are long and
redundant. The redundancy comes from the induction on the variant generation. The
induction principle does not take advantage of the correlation between the definitions
a_typing and a_wide_typing. This results in many similar cases, because a goal
including a_wide_typing needs to be reduced to a goal using a_typing. Therefore, we
need to prove the same fact twice under very similar assumptions.

5.2.4 Further Problems

In this section, we describe two problems not dealing with induction and our solutions.
First, we present how we realized case analysis on annotations. Second, a problem

5http://logical.saclay.inria.fr/coq-puma/messages/786f85b60432ce86

http://logical.saclay.inria.fr/coq-puma/messages/786f85b60432ce86

5.2. Type Soundness Proof 71

Theorem gpt_mutual_typing :
(forall (t:a_exp) (t’:exp),

variant_term t t’ →
(forall (a:ann) (E:a_env) (C:cname) (E’:env),

a_typing a E t C →
a →
variant_env E E’ →
typing E’ t’ C) ∧

(forall (a:ann) (E:a_env) (C:cname) (E’:env),
a_wide_typing a E t C →
a →
variant_env E E’ →
wide_typing E’ t’ C)) ∧

(forall (ts:list (ann∗a_exp)) (ts’:list exp),
variant_terms ts ts’ →
forall (a:ann) (E:a_env) (Cxs:a_env) (E’:env) (Cxs’:env),

a_wide_typings a E ts (imgs Cxs) →
a →
variant_env E E’ →
variant_terms ts ts’ →
variant_env Cxs Cxs’ →
wide_typings E’ ts’ (imgs Cxs’)).

Listing 5.10: Generation Preserves Typing for Terms using Mutual Induction

with reachability checks is discussed and we make a decision for one of two presented
solutions.

Case Analysis on Annotations

A simple proof we want to present in detail is the proof of the fact variant_env_total.
Given a parameter list in CFJ, it exists a parameter list in FJ that is generated from
the former list. The formalization of this fact is straightforward (see Listing 5.11).

We proof this fact using induction on the list of CFJ parameters fs. The induction
beginning: if the CFJ list is empty, then the FJ list is empty, too. Otherwise, we need
a case analysis on the annotation of the first parameter to prove the induction step.
The parameter is included, if and only if the annotation evaluates to True.

The intended case analysis can be done using destruct on an assumption stating that
a ∨ ∼a, whereas a is the annotation of the parameter. We get two new subgoals,
where the first has an assumption stating a holds, and the second has an assumption
stating ∼a holds.

What remains unclear is how we prove a ∨ ∼a in Coq. For this proof we need to
add a further library named Coq.Logic.Classical_Prop to our imports. It contains
an axiom stating exactly this formula. It is called the excluded middle and cannot be
proven using Coq.

Type Present in Term Typing

This section describes another issue with the proof of gpt_mutual_typing. Several
cases of the proof rely on the fact, that for every well-typed term in CFJ, the type is

72 5. Type Soundness of Colored Featherweight Java

Fact variant_env_total :
forall (fs:a_flds),
exists fs’:flds, variant_env fs fs’.

Proof.
intros fs.
induction fs.
exists nil; auto.

destruct a as [f [a C]].
destruct IHfs as [fs’ Hve].
assert (Ha:a ∨ ∼a) by apply classic.
destruct Ha.
exists ((f, C)::fs’); auto.

exists fs’; auto.
Qed.

Listing 5.11: Variant Generation for Parameter Lists is a Total Function

always reachable regarding the current annotation. We already proved this fact for CFJ
in informal math (see Lemma 3.1 on Page 32).

We give an example to illustrate why we cannot avoid to prove this in order to prove
gpt_mutual_typing. Using the induction principle explained in the previous section,
we prove that the FJ term is well-typed if it is generated from well-typed CFJ term. A
sub case is, that the term is a variable and we prove the property for wide typing, i.e.,
the term has a subtype of a particular type.

Therefore, we need to prove the following: the subtype exists at the FJ class table. The
only way to prove this, is to evaluate the annotation of that class, because a class is
present at the FJ class table, if and only if its annotation evaluates to True. We need a
proof of this, for all shapes of terms, i.e., the term is a variable, a field access, a method
invocation, or an object creation term. The reason is that all these terms can occur
in a method, where we need this wide typing. Hence, we need to prove Lemma 3.1 in
Coq.

Unfortunately, the proof is not so easy like in informal math. The following sentence
from our informal proof is problematically: “Context is only created in method typing.”
In Coq, we cannot access all positions from where a definition is called. In the following
we present how to prove this.

A term we type is either the start term, a method’s term, or part of it. The start term
has an empty context and the problematically case of variable typing cannot occur in
well-typed start terms. For typing of all other terms we can use the class and method of
the term instead of the environment for typing. First, the environment can be retrieved
using class and method and second, we can inductively prove, that the annotations at
the context always imply that the type is present.

The proof of Lemma 3.1 would need large rewritings of the definitions and adaption
of many proofs. Therefore, we decided to add further checks in term typing. We

5.3. Summary 73

highlighted these additional premises in Listing 4.11 on Page 48. For object creation
terms we do not need to add this check, since it is already part of the CFJ type system.

Notice, all three premises are redundant and do not change the type system, since they
are already fulfilled according to Lemma 3.1. Nevertheless, this thesis is about proving
type soundness of CFJ formally and this is a potential weakness of our formalization.
Assuming our proof of Lemma 3.1 is wrong, than our proof would still be valid, but the
type system we formalized in Coq might be more restrictive than the CFJ type system,
for which we want to prove type soundness.

5.3 Summary

We proposed a formalization of the type soundness theorem for CFJ in Coq. It states
that generation preserves typing, i.e., every FJ program generated from a well-typed
CFJ product line is well-typed. Since the theorem is too heavy to prove at once, we
presented six further theorems, eleven lemmas, and eleven facts reducing the complexity.

While our formalization of the CFJ type system and the variant generation has a total
of 467 lines, all proof scripts sum up to 1081 lines. The proof strategy we used is totally
different from the existing proof in informal math. The idea is to prove that everything
referenced in the FJ program exists at the class table.

Proving type soundness for CFJ in formal math was not straightforward. We discussed
eight problems and how we solved them. Three times, we asked for help on the Coq
mailing list and one solution was already at the archive of the mailing list. The proofs
would probably not be completed within the time restrictions of this thesis without the
help by others on the mailing list.

For one problem we decided to reasonably change the type system to reduce the com-
plexity of the proof scripts. This change does not affect the proof of type soundness,
but might make the CFJ type system more restrictive. We proved in informal math
that these changes have no influence on the behavior of the type system.

Coq has the ability to print the axioms used to prove a certain theorem. The axioms
are important, as a wrong axiom would make the proof incorrect. Listing 5.12 prints
all axioms used to prove generation preserves typing. We highlighted the assumptions
due to our formalization of CFJ. All other assumptions are caused by the underlying
formalization of FJ by de Fraine.

The axiom aCT is similarly to that of FJ and needed to make the CFJ class table
available to all theorems and definitions. For the same reason the assumptions FM,
aCT_correlates_with_CT, and aCT_well_typed are modeled as parameters. They are
part of the assumptions at the type soundness theorem. A further axiom needed for
case analysis on annotation is that of classical logic, which seams reasonable in this
context.

74 5. Type Soundness of Colored Featherweight Java

Axioms:
FM : ann

aCT : a_ctable

aCT_correlates_with_CT : variant_ct aCT CT

aCT_well_typed : a_ok_ctable aCT

Classical_Prop.classic : forall P : ann, P ∨ ∼ P

CT : ctable

Object : cname

this : var

atom : Set
eq_atom_dec : forall x y : atom, {x = y} + {x <> y}

Listing 5.12: Axioms of Our Type Soundness Proof

6. Experiences

Whenever we want to prove properties about certain definitions, we can chose between
an informal proof and a formal proof, which can be verified by a proof assistant. We
want to share our experiences writing formal proofs in Coq to help others making a
decision to write formal or informal proofs.

We start with providing some statistics on the effort of this thesis and the parts of our
formalization in Section 6.1. Then, we explain some challenges we encountered while
working with the proof assistant Coq in Section 6.2. Advantages of formal proofs that
we experienced are described in Section 6.3. Finally in Section 6.4, we summarize our
experiences and give an advice when to use formal instead of informal proofs.

6.1 Estimated Effort of Our Proof

In this thesis, we developed a formalization of CFJ in Coq and provided a formal proof of
type soundness. We were already familiar with software product lines and annotations,
but not with type systems or formal proofs. In Figure 6.1, we estimated the time needed
for getting familiar with basic theories, formalizing CFJ, and proving type soundness.
This consideration might help to predict the effort for similar theses.

Getting a handle on formalizing definitions and proving properties in Coq took more
than six weeks. Practicing proof writing on small examples was essential to complete
the large proofs for CFJ. We completed some tutorials before we could start with the
formalization presented in this thesis.

The thesis forced us to get familiar with the theory of type systems. More than three
weeks were necessary to learn the basic concepts. Additionally, we spend about three
more weeks to understand all details of FJ and CFJ. This includes the syntax, the type
systems, and the informal type soundness proof of CFJ.

The introduction to CFJ and to Coq was not completely done before we started with
our actual challenge. But in total, we needed about three months to have the knowledge
and practice to formalize CFJ in Coq, which is about 55 percent of the total time.

76 6. Experiences

Introduction to Coq

25%

Introduction to Type Systems

15%

Introduction to FJ and CFJ
15%

Formalization of CFJ

20%

Type Soundness Proof

25%

Figure 6.1: Estimated Effort in Formally Proving Type Soundness for CFJ

Roughly, we worked five weeks on the formalization and approximately seven weeks on
the type soundness proof. Again, the formalization was not entirely completed before
we started working on the proof. However, while proving type soundness we found
several errors in our formalization. For some errors large rewriting on the definitions
and proofs were indispensable.

Getting familiar with interactive theorem proving in Coq was similar to learning the first
programming language, e.g., Java. First, one learns how interactive theorem proving
works in general—we have goals and tactics can manipulate, split or solve goals (similar
to learn about control flow statements in Java). Second, we needed to understand how
to write proofs in Coq (analog to programs in Java), i.e., what are the basic tactics and
how do we formalize our definitions and theorems. This analogy points up the effort
for getting familiar with theorem proving in Coq.

We want to give a detailed view on the effort of the formalization of CFJ and the type
soundness proof. Our formalization consists of five files, containing (a) the definitions
of type soundness and variant generation, (b) facts and their proofs, (c) lemmas and
their proofs, (d) theorems and their proofs, and (e) an example CFJ product line and
a proof that it is well-typed. In Figure 6.2, we visualize the total number of lines and
the estimated lines written and removed, e.g., lines containing definitions that were
replaced or unsuccessful proof scripts.

We want to explain the order these files were written, because it largely influences the
overhead in writing. Of course, we started writing CFJ_Definitions.v containing
all definitions for the type system and the variant generation. It was followed by
CFJ_Properties.v containing the proofs of all theorems, since we decided to prove
type soundness top-down.

While proving the theorems, we found mistakes in our definitions. The changes in
CFJ_Definitions.v lead to overhead for the definitions and for already proved theo-
rems, since they strongly rely on the definitions. We continued proving several facts

6.1. Estimated Effort of Our Proof 77

0 500 1,000 1,500

CFJ_Example.v

CFJ_Properties.v

CFJ_Lemmas.v

CFJ_Facts.v

CFJ_Definitions.v

Resulting Lines
Estimated Overhead

Figure 6.2: Estimated Effort for Each Part of the Formalization

and lemmas in CFJ_Facts.v and CFJ_Lemmas.v. The proofs again made it necessary
to change definitions and all referencing parts in the proof scripts.

The file CFJ_Example.v could be created with little overhead, because it was written
at last. The definitions were almost correct, we only found smaller bugs concerning a
too restrictive type system. The large overhead for CFJ_Lemmas.v is caused by very
complex proofs which needed several tries combining tactics in different ways.

The time Coq needs to verify our proof scripts is not negligible. We used a standard
notebook with a Windows Experience Index of 3.2 and Coq consumes up to three
minutes to check our formalization. In Figure 6.3, we present the time in seconds
needed for each file. We measure the time to check all commands and the time to
compile. Compilation is necessary to use the definitions and theorems in other files.

0 20 40 60 80

CFJ_Example.v

CFJ_Properties.v

CFJ_Lemmas.v

CFJ_Facts.v

CFJ_Definitions.v Seconds to Check Commands

Seconds to Compile

Figure 6.3: Time Coq Needs to Check Our Formalization

78 6. Experiences

Compilation is always a little bit faster. The reason might be that no graphical user
interface needs to be refreshed after every command. Checking our definitions takes 6
seconds, while our large proof scripts of our lemmas need up to 54 seconds. There is
no obvious reason for us, why it takes so long to verify the proof, that our example is
a well-typed CFJ product line.

Note, that whenever we change the some small part of the definitions and want to make
sure, that the proof scripts remain valid, it takes up to three minutes to compile all
files. Whenever we change one of the files, Coq forces us to recompile this file. We
spent a lot of time in waiting for Coq’s response. An incremental check as known from
modern IDEs would be valuable.

6.2 Challenges with Proof Assistants

The first challenge is the high effort to get familiar with the proof assistant’s language
and interactive theorem proving in general. When starting this work, we could hardly
read existing definitions and proof scripts in Coq. We give an example of a hard-to-read
mutual induction principle generated by Coq in Listing 6.1, e.g., we used this principle
to prove gpt_mutual_typing and variant_term_unique_mut.

Everything needs to be formalized, e.g., we could not easily omit formalizing the anno-
tation table in our formalization of CFJ as by Kästner and Apel [KA08]. Moreover, we
cannot use all proof ideas available for informal proofs. For instance, it is not possible
to reason on all definitions that use a particular definition, since proofs are checked
command-wise and a further command can come up with such a new definition. We
explained this problem in Section 5.2.4.

Proofs scripts in Coq are hard to be verified by human. They are intended to be verified
by the proof assistant and we need to trust its algorithm. Furthermore, we need to trust
in the compiler and the used hardware, which is more hypothetically. Basically, we need
to verify by ourselves that the definitions are formalized correctly.

Proof assistants evolve over time, e.g., their languages are extended or changed. There-
fore, a formalization including the proofs might only be accepted by specific versions
of the proof assistant. This especially becomes a problem if one wants to use formaliza-
tions together which do not compile with the same version of the proof assistant. For
example, we had the problem to port a FJ formalization to the most current version of
Coq (see Section 4.1.1).

A proof usually relies on definitions. When definitions and proofs get more and more
complex, a change of a definition is often very expensive. The reason is that proof
script rely on names of variables, on their order, on the order of premises and so on.
If we need to change a definition, we usually need to adapt proof scripts that rely on
the particular definition. For example, we had to change how annotations are realized.
First, we stored annotations in an annotation table, but it was not obvious how to
map different annotations to identical terms occurring at different positions. Hence,
we decided to store annotations directly at the class table. This caused rewrites of
almost all definitions and proofs, which took several days. But, there are also changes

6.3. Advantages of Formal Proofs 79

variant_term_mutind

: forall (P : a_exp → exp → ann)
(P0 : list (ann ∗ a_exp) → list exp → ann),

(forall x : var, P (ae_var x) (e_var x)) →
(forall (t : a_exp) (t’ : exp) (f0 : fname),
variant_term t t’ → P t t’ →

P (ae_field t f0) (e_field t’ f0)) →
(forall (t : a_exp) (t’ : exp) (m : mname)

(ts : list (ann ∗ a_exp)) (ts’ : list exp),
variant_term t t’ →
P t t’ →
variant_terms ts ts’ →
P0 ts ts’ → P (ae_meth t m ts) (e_meth t’ m ts’)) →

(forall (ts : list (ann ∗ a_exp)) (ts’ : list exp) (C : typ),
variant_terms ts ts’ → P0 ts ts’ →

P (ae_new C ts) (e_new C ts’)) →
P0 nil nil →
(forall (ts : list (ann ∗ a_exp)) (ts’ : list exp) (a : ann)

(t : a_exp) (t’ : exp),
variant_terms ts ts’ →
P0 ts ts’ →
a → variant_term t t’ → P t t’ →

P0 ((a, t) :: ts) (t’ :: ts’)) →
(forall (ts : list (ann ∗ a_exp)) (ts’ : list exp) (a : ann)

(t : a_exp),
variant_terms ts ts’ → P0 ts ts’ → ∼ a →

P0 ((a, t) :: ts) ts’) →
(forall (a : a_exp) (e : exp), variant_term a e → P a e) ∧
(forall (l : list (ann ∗ a_exp)) (l0 : list exp),
variant_terms l l0 → P0 l l0)

Listing 6.1: Example for a Mutual Induction Principle in Coq

to definitions we avoided, because of the overhead, e.g., according tuples in Section 5.2.2
and according the location of terms at the class table in Section 5.2.4.

Before a proof is written in formal as well as in informal math, we need to have a
proof idea, i.e., a clear understanding how to prove a theorem. Given this idea it is
challenging task to find the proof assistant’s tactics needed to realize the proof. Coq’s
manual lists all tactics with a short description each and we often searched through
all these tactics to find a suited one. We still needed help by the Coq mailing list, as
the documentation of tactics is insufficient, e.g., syntactical elements used to perform
mutual proofs are not documented (see Section 5.2.3).

6.3 Advantages of Formal Proofs

One of the most obvious advantages is that our proofs scripts are verified. In particular,
this gives non-mathematician proof writers a good feeling that they are done and did a
good job. A proof reader can concentrate on the definitions and axioms to find out if
the formalization is useful in the context. For example, we found inconsistencies at the

80 6. Experiences

formalization of FJ in Coq (see Section 4.1.2). We adapted some definitions and proof
scripts if necessary, for what we needed to understand only particular proofs, i.e., those
where the verification failed.

When writing a proof in a proof assistant the proof is checked stepwise. A mistake in
the proof can be found very early. This prevents from working on wrong assumptions
which might be time consuming. Every time a further step is accepted by the proof
assistant we know that it is correct, while it does not need to be a promising direction.
For instance, we made a typical human mistake and tried to deduce a false conclusion
(a post-hoc fallacy), e.g., given A → B and B, we wanted to show A. Fortunately, Coq
did not except that and we recognized our mistake.

A proof assistant provides at each step a complete overview about the assumptions and
the things left to show. In this manner, we cannot forget to proof a subgoal and it is
impossible to use an assumption not available at this step. Additionally, it gives an
idea how far we are from finishing the proof. A higher number of subgoals to show
usually results in more steps to do. Especially, when continuing a particular proof after
an intermission, we found the complete overview on assumptions and sub goals very
helpful to get back into the proof.

Writing proofs, we might occur a case that cannot be proven easily. Sometimes, this
indicates an error at the definitions and also the concrete position of that error. A
proof assistant does not only verify proof scripts, it also points out locations of possible
errors in definitions or theorems. For example, we found an error in our definitions
concerning the CFJ method lookup. For a method that is not always reachable in all
variants were it is called, the lookup continues at the super class. Our error was, that
the method declaration has be identical to that of the super class. Hence, the proof
of method_present_reverse was impossible and we uncovered this error. But we also
found an error in the informal definition of the CFJ type system, where A ↔ B ↔ C

was used to express that the value of these three variables is identical, which is wrong
independent of how we put it into parenthesis (see Section 3.2.4).

6.4 Summary

We presented some statistics on this thesis, showing that for our machine-checked proof
we needed six weeks to get familiar with interactive theorem proving in Coq. Fur-
thermore, we shown that writing our machine-checked proof consists of some effort
that not directly leads to the formalization. More than 3000 lines were written use-
less. We argued that the time Coq needs for verification—up to three minutes for our
formalization—is an issue.

Proof assistants come with certain new challenges. Definitions and theorems are often
hard to read by humans and proof scripts are almost impossible to verify by human
that we have to trust in the proof assistant. We explained problems with both evolving
definitions, proof scripts need to be adapted, and evolving proof assistants, whereas
formalizations only compile with particular versions of the proof assistant. Finally,
finding appropriate tactics is not always easy.

6.4. Summary 81

On the other hand, formal proofs have strong advantages. Our proof scripts are verified
by the proof assistant and humans can concentrate more one the definitions itself.
Already incomplete proofs can be checked and errors can often be detected very early.
Proof assistants can assist the proof in giving an overview on the assumptions and the
goals remaining to prove. A rejected proof step sometimes points out errors at the
formalization.

Considering all these advantages and disadvantages of formal proofs, we can neither
recommend formal proofs for all applications nor advise against them. Our suggestion
is that machine-checked proofs are used, whenever it is easier for a human to verify
the formal definitions and theorems in a proof assistants language than to verify the
informal proof.

Furthermore, this advantage should be so significant that the additional challenges of
interactive theorem proving are worth. We might get better results by analyzing the
humans who want to verify our proof. For a community with a good knowledge in
interactive theorem proving or even in the particular proof assistant, it will be easier
to verify the formal definitions than for others without this knowledge.

82 6. Experiences

7. Related Work

We first discuss related work on extensions of Colored Featherweight Java (CFJ). Käst-
ner et al. present an extension of CFJ with alternative features [KAS]. In 2009, Rosen-
thal worked on particular problems dealing with alternative features in CFJ [Ros09].
Alternative features do not occur in the same variant, as such variants are prohibited by
the feature model. Their work focuses on a type system that allows alternative features
and an implementation in CIDE. Notice, that the type system of our consideration
forbids alternative features to conserve backward compatibility, e.g., alternative imple-
mentations of one method. Furthermore, our focus is more on proving the correctness
of a given type system.

Beside CFJ, there are two other software product line approaches using annotation to
achieve variability. Czarnecki and Pietroszek present an automated verification proce-
dure for feature-based model templates guarantying that all template instances gen-
erated from using a valid configuration are well-typed [CP06]. A feature-based model
template consists of a feature model and a model template. They use annotated UML
class models as model templates and argue that also other model templates are possible.
At the UML class model, classes and connections can be annotated with features or
propositional formulas on features of the feature model. Given a valid configuration,
the template instance is generated, while all classes and connections whose annotation
evaluates to false are removed as in CFJ. Contrary to CFJ, they have not presented a
type system for that type soundness could be proven.

Huang et al. proposed a similar approach based on a programming language named
cJ [HZS07]. cJ adds to generic Java classes the ability to annotate super types, fields,
and methods with type conditionals. Given a generic class with one or more parameter
types, a type condition checks whether the parameter types are sub types of a particular
given type. Only if the type condition is fulfilled, the following super class, method or
field is present at the generated variant. Contrary, CFJ additionally supports annota-
tions for parameters. cJ is more interesting from a practical point of view as it is based
on full Java 5, but a type soundness proof for cJ is impractical for that reason. They
informally prove type soundness for a subset of cJ named Featherweight cJ (FCJ).

84 7. Related Work

In the following, we discuss three approaches to type check feature-oriented software
product lines. Thaker et el. present safe composition to guarantee the absence of refer-
ences to undefined elements, e.g., classes [TBKC07]. Their approach uses a satisfiability
solver to check that all implementation constraints are implied by the feature model
and is based on the feature-oriented language Jak. It is a programming language similar
to Java enriched with new keywords to express variability. Their type checks are not
complete, e.g., a parameter list could contain a reference to a type that is undefined.

Ott is a tool to semantically define full-scale programming languages [SNO+07]. A
meta language is introduced to simplify the precise definition of large programming
languages. Once defined in Ott, a formal representation in Coq, Isabelle or HOL and
an informal representation in LATEX can be generated. This is especially useful to make
sure that informal and formal representations are synchronized correctly. Lightweight
Java (LJ) is a fragment of Java proposed by Strnǐsa et al. [SSP07]. They used Ott
to formally describe LJ in the proof assistant Isabelle/HOL. It was originally used to
introduce the Java Module System and is imperative, whereas FJ is only functional,
since variable assignments are not supported. As FJ, LJ is a proper subset of Java,
i.e. every LJ program is a Java program. Delaware et al. present a type system in
Coq for Lightweight Feature Java (LFJ), an extension of LJ with support for feature
modules [DCB09]. The type system is proven to be sound using Coq. Furthermore, a
constrained-based type system has been derived that a satisfiability solver can be used
to check whether all products specified by a feature model are type-safe Lightweight
Java programs.

Apel et al. present Feature Featherweight Java (FFJ) as an extension of FJ to support
feature-oriented programming [AKGL09]. Furthermore, they provide Feature Feath-
erweight Java Product Line (FFJPL)—a language for feature-oriented product lines.
Type systems were presented for both languages. They prove the type soundness of the
FFJ type system and give a proof sketch for the correctness of the FFJPL type system.
They state that FFJPL has a property called completeness, meaning that if all program
variants that can be generated are well-typed, then also the product line is well-typed.
Note, that this property does not hold for CFJ, because of backward compatibility, e.g.,
two methods with the same name in one class are not allowed, even if they do not occur
in the same program variant.

There is also work on type checking aspect-oriented software product lines. Kammüller
and Vösgen present their ongoing work towards type soundness for aspect-oriented
languages [KV06]. Similar to our work, they work with an extension of FJ and formalize
the type systems in Coq. The main difference is that their extension is aspect-oriented.
Additionally, they are not yet able to give proofs as they first have to come up with a
solution to the runtime weaving problem. This problem is specific to aspect-oriented
languages.

8. Conclusion

Software product lines and type system, both intend to build software more efficiently.
When applying type systems to software product lines, it is not feasible to generate each
program variant and type-check it separately. Hence, product-line–aware type systems
have been proposed to check the software product line at once. Type soundness proofs
for these type system are long and hard to verify by human, what makes it worth to
prove them formally using a proof assistant.

We present the first machine-checked type soundness proof for CFJ, i.e., we show that
the CFJ type system we formalized is correct. Given a software product line that is well-
typed according to our CFJ type system, all program variants that can be generated
using a valid configuration are well-typed FJ programs, e.g., they cannot lead to errors
as dangling method references.

We propose a simplified type system for CFJ based on the type system by Käst-
ner et al. [KAS] and prove its semantically equivalence in informal math. Furthermore,
by proving type soundness formally, we found an error in the informal type system,
which remained uncovered at the informal proof. We presented the revised type system
informally and in Coq. Both representations may be useful for future work.

Our machine-checked type soundness proof verifies that our formal type system for
CFJ is correct. From this follows that our informal type system is correct, if (a) all
product lines well-typed in our informal type system are also well-typed according to
the formalized type system, (b) type soundness can also be proven for casting, which
we omitted in our formalization, (c) type soundness can be proven for the formal type
system without the three premises we added to simplify the proof, and (d) we trust
into machine-checked proofs using Coq. But it might also be correct, if not all these
conditions are fulfilled.

We reported our experiences in writing machine-checked proofs in Coq, to help others
to decide for a formal or informal proof. We discussed several advantages and even more
challenges with proof assistants. Our recommendation is that machine-checked proofs

86 8. Conclusion

should be used, whenever a human can better verify the formal definitions and theorems
than an informal proof. In the case of type systems, we conclude that formally proving
type soundness using a proof assistant is worth, mainly because of three reasons. First,
type soundness proofs get used to be proven with interactive theorem proving and so
the community is familiar with verifying formal definitions. Second, the proofs tend
to have many cases that are probably harder to verify than the formalized definitions
with a manageable amount of cases. Third, there is a chance to detect inconsistencies
in informal definitions.

Formalizing the CFJ type system, variant generation and proving type soundness for
CFJ is not straightforward. We documented our problems with the proof assistant
Coq and present our solutions. Future work on product-line–aware type system—or
even interactive theorem proving using Coq in general—might profit from our detailed
problem descriptions. The discussion of our positive and negative experiences with Coq
can also help others to make a decision to do an informal proof or a formal proof using
a proof assistant.

Our main contribution is the machine-checked type soundness proof for CFJ. We present
a revised type system for CFJ in informal math and in Coq, where we overcome redun-
dant typing rules and an inconsistency due to informal notations.

9. Future Work

Improving our Proof

Our type soundness proof can probably be simplified. In Section 5.2.2, we presented the
proof idea used to prove method_present_reverse. The idea is to use the command
cut to cleverly eliminate the existence quantifiers. We believe that it can also be applied
to prove method_present, which would possibly result in six facts and one lemma less.
If so, we would not need the library with the classical logic for any of the remaining
proofs.

In Section 5.2.4, we described a proof that we completed by adding premises, for which
we shown informally that they are redundant. Future work could formally prove the
redundancy or do the proof on the unchanged type system, to prove formally that
the formalized type system is not more restrictive than the type system in informal
math. This work includes large rewritings of definitions and proofs as explained in
Section 5.2.4.

Our adopted FJ formalization has two inconsistencies to the informal definition of FJ,
as described in Section 4.1.2. First, the formalization does not support casting. Second,
constructors are not represented in this formalization. Future work might overcome one
or both limitations and rewrite definitions and proof scripts of the FJ formalization.

Further Proofs on CFJ

Kästner and Apel informally proved backward compatibility of CFJ, i.e., every well-
typed CFJ product line stripped of its annotations without removing code fragments is
a well-typed FJ program [KA08]. Future work could provide a machine-checked proof
of this property. Furthermore, we can think of a similar property that we name forward
compatibility: every well-typed FJ program enriched with empty annotations and a
possibly empty feature model is a well-typed CFJ product line. Both properties are
especially interesting from a tool perspective, since with backward compatibility we can

88 9. Future Work

reuse tools of the host language and with forward compatibility we can start with a
single program to develop a product line.

For some other product-line–aware type systems than CFJ, e.g., the type system of
FFJPL, we can prove that if all generated programs are well-typed, then also the product
line is well-typed. We cannot proof this for CFJ, because of its backward compatibility.
But we might be able to find an understated, provable property. Research in that
direction may lead to a less restrictive CFJ type system, for that we can still prove type
soundness.

Beyond CFJ

FJ and CFJ cannot be seen as real programming languages as there are no base types
and no operations on them. Additionally, there are no language constructs for condi-
tions and repetitions. Even if FJ is expressible as the typed lambda-calculus, it cannot
practically be used to write programs. Our examples are fare away from industrial
practice. Future work might prove type soundness for richer languages or extend FJ if
the effort is reasonable.

Beside CFJ, other product-line–aware languages can be formalized in Coq. For in-
stance, the formalization of FFJPL might be valuable as no informal and no formal
type soundness proof exists so far. Therefore, a formalization of the variant language
FFJ would be required. Future work might then formalize the refactorings between
FFJPL and CFJ presented by Kästner et al. [KAK09].

Based on an FJ formalization by de Fraine, we presented an adapted FJ formalization
with different method overriding and a change concerning incomplete class tables. That
our changes can be retraced and a certain change can be undone, we marked them in the
formalization and kept the removed lines in comments. This way, we could produce a
FJ formalization with our fix forbidding incomplete class tables and de Fraine’s method
overriding. Our vision are proof product lines that can be used to represent a product-
line of formalizations and proofs. As for software product lines, checking all proof
variants individually is not feasible as the number of changes increases and we need
new techniques to check that all proof variants are valid.

Improving Tools for Coq

We want to come back down to earth. Essential for efficient interactive theorem proving
are proof assistants providing sophisticated IDEs as known from programming. We
worked with CoqIDE, a very simple tool for proof writing shipped with Coq. There is
no support for incremental compilation, which would strongly reduce the user’s time
waiting for Coq’s checks. While Coq uses a type system to check validity, the front-
end has no such functionality as renaming identifiers or content assist. Finally, we
would have profit of any kind of dependency overviews on definitions and theorems,
e.g., determine all positions where a particular theorem is referenced. It took hours to
keep the graphics in this thesis updated, while we needed them for proving. Hopefully,
there will be future work on developing modern IDEs for interactive theorem proving.

A. FJ Formalization in Coq

Our formalization of CFJ and our type soundness proof are based on a formalization
of FJ in Coq. We used a FJ formalization by de Fraine that we adapted to overcome
two inconsistencies presented in Section 4.1.2. In Section A.1, we give a proof that
incomplete class table are classified as well-typed with the formalization by de Fraine.
We present a new FJ class typing that prohibits incomplete class tables. In Section A.2,
we propose a new definition for valid method overriding.

Our adjusted FJ formalization is publicly available (see Appendix B). We use the
following convention that our changes can be identified. Each edit begins with
(∗EDITn BEGIN∗) and ends with (∗EDITn END∗), where n indicates the correc-
tion (1 for the class table and 2 for the method overriding). In between these markers,
we commented out the statements of the before version and added our new version. This
way, also version can easily be obtained were only particular adjustments are applied.
For instance, someone might need a formalization of FJ that prohibits incomplete class
tables and realizes method overriding as formalized by de Fraine.

A.1 Incomplete Class Tables

The typing of classes in de Fraine’s formalization does not fulfill the following sanity
condition we presented in Section 3.1.3: for every class name C (except Object) appear-
ing anywhere in CT, we have C ∈ dom(CT). In Figure A.1, an example is presented
that is well-typed according to the formalization. Apparently, the class name D appears
in the class table, but D /∈ dom(CT). We give a machine-checked proof using Coq in
Listing A.1.

The cause lies in the typing of classes; we give the according definition in Listing A.2.
In Line 3, fields D fs’ evaluates to true, if the class table contains a type D with
the fields fs’. Since, D does not appear in our class table there is no such fs’ that
fields D fs’ evaluates to true. Therefore, the implication is always true and it is not
checked that D is in the class table. Note, that the following line only checks that the
methods are well-typed.

90 A. FJ Formalization in Coq

1 class C extends D {
2 C() { super(); }
3 }

new C()

Figure A.1: An Example of an Incomplete Class Table

1 Require Import Metatheory.
2 Require Import FJ_Definitions.
3 Require Import FJ_Facts.
4
5 Variable A : cname.
6 Variable B : cname.
7 Hypothesis A_fresh : Object <> A.
8 Hypothesis B_fresh : Object <> B ∧ A <> B.
9
10 Hypothesis ct_fix: CT = (A,(B,nil,nil)) :: nil.
11
12 Module ExOkTable: OkTable.
13
14 Fact nobinds_binds : forall (x:cname) (a:cname∗flds∗mths) E,
15 no_binds x E → binds x a E → False.
16 Proof.
17 unfold binds. unfold no_binds. intros.
18 rewrite H in H0. discriminate.
19 Qed.
20
21 Lemma ok_ct: ok_ctable CT.
22 Proof.
23 rewrite ct_fix in ` ∗.
24 unfold ok_ctable in ` ∗.
25 split.
26 auto 8 using nobinds_nil, nobinds_cons.
27
28 apply fa_cons; try apply fa_nil.
29 unfold ok_class’ in ` ∗.
30 unfold ok_class; repeat split;
31 [intros | apply ok_nil | apply fa_nil].
32 inversion H; clear H; subst.
33 contradict H1; apply B_fresh.
34
35 contradict H0; unfold not.
36 apply nobinds_binds with (x:=B) (a:=(D, fs, ms)) (E:=CT).
37 rewrite ct_fix.
38 apply nobinds_cons; try apply nobinds_nil.
39 set B_fresh; destruct a; intuition.
40 Qed.
41
42 End ExOkTable.

Listing A.1: Proof that an Incomplete FJ Class Table is Well-Typed

A.2. Method Overriding 91

Definition ok_class (C: cname) (D: cname) (fs: flds) (ms: mths) :
Prop :=
(forall fs’, fields D fs’ → ok (fs’ ++ fs)) ∧
ok ms ∧ forall_env (ok_meth’ C D) ms.

Listing A.2: A Definition Allowing Incomplete Class Tables [Fra09a]

In Listing A.3, we present a slightly different definition that satisfies our sanity condi-
tion. We changed the forall quantifier into an exists quantifier to make sure that
the class table contains a class D with the possibly empty list of fields fs’. We can do
this, since the class table maps a class to a list of fields if the class is contained in the
class table. Additionally, we changed the implication to a conjunction, as we want to
force that fields D fs’ evaluates to true.

Definition ok_class (C: cname) (D: cname) (fs: flds) (ms: mths) :
Prop :=
(exists fs’, fields D fs’ ∧ ok (fs’ ++ fs)) ∧
ok ms ∧ forall_env (ok_meth’ C D) ms.

Listing A.3: The Corrected Definition Prohibiting Incomplete Class Tables

Thereupon, we also need to change proofs based on this definition. Fortunately, these
were only trivial changes to three proofs.

A.2 Method Overriding

In Section 3.1.3, valid method overriding implies that the super method and the method
have the same return type. Full Java also allows the usage of subtypes and so de Fraine’s
formalization. We give an example in Figure A.2 that is allowed according to the
formalization but not in FJ.

1 class D extends Object {
2 D() { super(); }
3 D create() {
4 return new D();
5 }
6 }
7 class C extends D {
8 C() { super(); }
9 C create() {
10 return new C();
11 }
12 }

new C()

Figure A.2: Method Overriding with Differing Return Types

92 A. FJ Formalization in Coq

Listing A.4 shows the definition allowing subtypes. The relation sub t t’ evaluates
to true if t is a subtype of or identical to t’.

Definition can_override (D: cname) (m: mname) (t: typ) (E: env) :
Prop :=
forall t’ E’ e, method D m (t’,E’,e) → sub t t’ ∧ imgs E = imgs E’.

Listing A.4: A Definition Allowing Different Return Types [Fra09a]

We present a corrected definition in Listing A.5. The only change is that we force
t = t’ instead of sub t t’.

Definition can_override (D: cname) (m: mname) (t: typ) (E: env) :
Prop :=
forall t’ E’ e, method D m (t’,E’,e) → t = t’ ∧ imgs E = imgs E’.

Listing A.5: The Corrected Definition Forcing Identical Return Types

As for incomplete class tables, this change needs to be propagated to theorems and
proofs using this definition. In total, one theorem and two related proofs needed to be
adapted.

B. CFJ Formalization in Coq

Our formalization of CFJ including the type soundness proof is publicly available.1 In
Section B.1, we provide information on our formalization necessary to verify it using
Coq. Section B.2 and Section B.3 present definitions we omitted in previous chapters.

B.1 Verification of Our Formalization

Accordingly to the formalization of FJ by de Fraine, we partition our formalization
into several files. In Table B.1, we give an overview on the files and their content. We
separated the definitions for the CFJ type system and the variant generation from all
proofs. Additionally, we split the proofs into the proofs of theorems, lemmas, and facts.

File Content

CFJ_Definitions.v Definitions for type system and variant generation
CFJ_Facts.v Facts including Proofs
CFJ_Lemmas.v Lemmas including Proofs
CFJ_Properties.v Theorems including Proofs
CFJ_Example.v Example for a well-typed CFJ product line and

a generated FJ program including Proofs

Table B.1: The Files of Our Formalization

Furthermore, in CFJ_Example.v we give an example of a well-typed CFJ product line
and a generated FJ program according to a given valid configuration. We give proofs
that the product line is well-typed and the program is generated from the product
line. We conclude that the FJ program is well-typed applying our generation preserves
typing theorem.

Using a Coq file in another one, we need to import and compile the file. The order
to compile the files really matters, since all imported files need to be compiled first.

1http://wwwiti.cs.uni-magdeburg.de/˜tthuem/

http://wwwiti.cs.uni-magdeburg.de/~tthuem/

94 B. CFJ Formalization in Coq

Figure B.1 presents the dependencies between all files of the FJ formalization on the
left side and all files of the CFJ formalization on the right side. For clarity, transitive
dependencies are printed in light gray.

CFJ_Definitions.v

CFJ_Facts.v

CFJ_Lemmas.v

CFJ_Properties.v

CFJ_Example.v

FJ_Definitions.v

FJ_Facts.v

FJ_Properties.v

FJ_Example.v

Metatheory.v

Atom.v

AdditionalTactics.v

Figure B.1: Dependencies Between the FJ and the CFJ Formalization

An order for compilation can easily be derived. One could compile all FJ files top-down
and then all CFJ files top-down. The overview also shows that we used a partition for
CFJ similar to that of FJ. The additional file with lemmas contains all proves dealing
with reachability checks, which we we do not have in FJ.

B.2 Annotation Lookup Functions

Annotation lookup at the class table was presented in Section 4.2.1. We present the
definitions here, because they are highly repetitive (see Listing B.1). The functions
lookup the annotation of a particular code fragment at the class table. There is a
function for every kind of code fragment.

1 Definition AT (C:cname) : ann :=
2 match (get C aCT) with
3 | None ⇒ if C == Object then True else False

4 | Some (a, _, _, _, _, _, _) ⇒ a

5 end.
6 Definition ATp (C:cname) (f:fname) : ann :=
7 match (get C aCT) with
8 | None ⇒ False

9 | Some (_, _, gs, _, _, _, _) ⇒

B.3. Theorems, Lemmas, and Facts 95

10 match (get f gs) with
11 | None ⇒ False

12 | Some (a, _) ⇒ a

13 end
14 end.
15 Definition ATs (C:cname) (f:fname) : ann :=
16 match (get C aCT) with
17 | None ⇒ False

18 | Some (_, _, _, hs, _, _, _) ⇒
19 match (get f hs) with
20 | None ⇒ False

21 | Some (a, _) ⇒ a

22 end
23 end.
24 Definition ATa (C:cname) (f:fname) : ann :=
25 match (get C aCT) with
26 | None ⇒ False

27 | Some (_, _, _, _, ts, _, _) ⇒
28 match (get f ts) with
29 | None ⇒ False

30 | Some (a, _) ⇒ a

31 end
32 end.
33 Definition ATf (C:cname) (f:fname) : ann :=
34 match (get C aCT) with
35 | None ⇒ False

36 | Some (_, _, _, _, _, fs, _) ⇒
37 match (get f fs) with
38 | None ⇒ False

39 | Some (a, _) ⇒ a

40 end
41 end.
42 Definition ATm (C:cname) (m:mname) : ann :=
43 match (get C aCT) with
44 | None ⇒ False

45 | Some (_, _, _, _, _, _, ms) ⇒
46 match (get m ms) with
47 | None ⇒ False

48 | Some (a, _) ⇒ a

49 end
50 end.

Listing B.1: Annotation Lookup Functions for CFJ

B.3 Theorems, Lemmas, and Facts

In Section 5.1.2, we omitted the formal definitions of theorems, lemmas, and facts used
to prove type soundness of CFJ. In Listing B.2, we present these definitions without
the proofs, because they are very long and can be found on-line. The order is identical
to that in our formalization.

1 Fact no_binds_env :
2 forall (x:var) (E:a_env) (E’:env),

96 B. CFJ Formalization in Coq

3 no_binds x E →
4 variant_env E E’ →
5 no_binds x E’.
6
7 Fact ok_env :
8 forall (E:a_env) (E’:env),
9 ok E →
10 variant_env E E’ →
11 ok E’.
12
13 Fact ok_env_env :
14 forall (E F:a_env) (E’ F’:env),
15 ok (E ++ F) →
16 variant_env E E’ →
17 variant_env F F’ →
18 ok (E’ ++ F’).
19
20 Fact no_binds_ms :
21 forall (C:cname) (m:mname) (ms:a_mths) (ms’:mths),
22 no_binds m ms →
23 variant_methods C ms ms’ →
24 no_binds m ms’.
25
26 Fact no_binds_ct :
27 forall (C:cname) (ct:a_ctable) (ct’:ctable),
28 no_binds C ct →
29 variant_ct ct ct’ →
30 no_binds C ct’.
31
32 Fact vtu_mut :
33 (forall (t:a_exp) (t’:exp),
34 variant_term t t’ →
35 forall (t’’:exp), variant_term t t’’ → t’ = t’’) ∧
36 (forall (ts:list (ann∗a_exp)) (ts’:list exp),
37 variant_terms ts ts’ →
38 forall (ts’’:list exp), variant_terms ts ts’’ → ts’ = ts’’).
39
40 Fact variant_term_unique :
41 forall (t:a_exp) (t’ t’’:exp),
42 variant_term t t’ →
43 variant_term t t’’ →
44 t’ = t’’.
45
46 Fact variant_env_unique :
47 forall (fs:a_flds) (fs’ fs’’:flds),
48 variant_env fs fs’ →
49 variant_env fs fs’’ →
50 fs’ = fs’’.
51
52 Definition vtt_trick

53 (REC : forall (t:a_exp), exists t’:exp, variant_term t t’) :
54 forall (ts:list (ann∗a_exp)),
55 exists ts’:list exp, variant_terms ts ts’.
56

B.3. Theorems, Lemmas, and Facts 97

57 Fact variant_term_total :
58 forall (t:a_exp), exists t’:exp, variant_term t t’.
59
60 Fact variant_env_total :
61 forall (fs:a_flds),
62 exists fs’:flds, variant_env fs fs’.
63
64 Lemma class_superclass :
65 forall (C D:cname) (gs hs ts fs:a_flds) (ms:a_mths),
66 binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
67 (AT C → AT D).
68
69 Lemma field_class :
70 forall (C:cname) (f:fname), ATf C f → AT C.
71
72 Lemma variable_present :
73 forall (x:var) (a:ann) (t:typ) (E:a_env) (E’:env),
74 binds x (a,t) E →
75 a →
76 variant_env E E’ →
77 binds x t E’.
78
79 Lemma class_present :
80 forall (C D:cname) (gs hs ts fs:a_flds) (ms:a_mths),
81 AT C →
82 binds C (AT C,D,gs,hs,ts,fs,ms) aCT →
83 exists fs’:flds, exists ms’:mths,
84 variant_env fs fs’ ∧
85 variant_methods C ms ms’ ∧
86 binds C (D,fs’,ms’) CT.
87
88 Lemma class_present_reverse :
89 forall (C D:cname) (fs’:flds) (ms’:mths),
90 binds C (D,fs’,ms’) CT →
91 exists gs:a_flds, exists hs:a_flds, exists ts:a_flds,
92 exists fs:a_flds, exists ms:a_mths,
93 variant_env fs fs’ ∧
94 variant_methods C ms ms’ ∧
95 binds C (AT C,D,gs,hs,ts,fs,ms) aCT.
96
97 Lemma fields_present :
98 forall (C:cname) (fs:a_flds),
99 AT C →
100 a_fields C fs →
101 exists fs’:flds, variant_env fs fs’ ∧ fields C fs’.
102
103 Lemma field_present :
104 forall (C D:cname) (f:fname),
105 ATf C f →
106 a_field C f (ATf C f) D →
107 field C f D.
108
109 Lemma method_present :
110 forall (a:ann) (C C0:cname) (m:mname) (Dys:a_env) (t:a_exp)

98 B. CFJ Formalization in Coq

111 (Dys’:env) (t’:exp),
112 a →
113 AT C →
114 a_method C m a (C0,Dys,t) →
115 variant_env Dys Dys’ →
116 variant_term t t’ →
117 method C m (C0,Dys’,t’).
118
119 Lemma method_present’ :
120 forall (a:ann) (C C0:cname) (m:mname) (Dys:a_env) (t:a_exp),
121 a →
122 AT C →
123 a_method C m a (C0,Dys,t) →
124 exists Dys’:env, exists t’:exp,
125 variant_env Dys Dys’ ∧
126 variant_term t t’ ∧
127 method C m (C0,Dys’,t’).
128
129 Lemma method_present_reverse :
130 forall (a:ann) (C C0:cname) (m:mname) (Dys’:env) (t’:exp),
131 method C m (C0,Dys’,t’) →
132 exists Dys:a_env, exists t:a_exp,
133 variant_env Dys Dys’ ∧
134 variant_term t t’ ∧
135 a_method C m a (C0,Dys,t).
136
137 Lemma type_present :
138 forall (a:ann) (E:a_env) (t:a_exp) (C:typ),
139 a_typing a E t C → (a → AT C).
140
141 Lemma subtype_present :
142 forall (C D:typ),
143 AT C →
144 a_sub C D →
145 sub C D.
146
147 Theorem gpt_mutual_typing :
148 (forall (t:a_exp) (t’:exp),
149 variant_term t t’ →
150 (forall (a:ann) (E:a_env) (C:cname) (E’:env),
151 a_typing a E t C →
152 a →
153 variant_env E E’ →
154 typing E’ t’ C) ∧
155 (forall (a:ann) (E:a_env) (C:cname) (E’:env),
156 a_wide_typing a E t C →
157 a →
158 variant_env E E’ →
159 wide_typing E’ t’ C)) ∧
160 (forall (ts:list (ann∗a_exp)) (ts’:list exp),
161 variant_terms ts ts’ →
162 forall (a:ann) (E:a_env) (Cxs:a_env) (E’:env) (Cxs’:env),
163 a_wide_typings a E ts (imgs Cxs) →
164 a →

B.3. Theorems, Lemmas, and Facts 99

165 variant_env E E’ →
166 variant_terms ts ts’ →
167 variant_env Cxs Cxs’ →
168 wide_typings E’ ts’ (imgs Cxs’)).
169
170 Theorem gpt_wide_typing :
171 forall (a:ann) (E:a_env) (t:a_exp) (C:cname) (E’:env) (t’:exp),
172 a_wide_typing a E t C →
173 a →
174 variant_env E E’ →
175 variant_term t t’ →
176 wide_typing E’ t’ C.
177
178 Theorem gpt_typing :
179 forall (a:ann) (E:a_env) (t:a_exp) (C:cname) (E’:env) (t’:exp),
180 a_typing a E t C →
181 a →
182 variant_env E E’ →
183 variant_term t t’ →
184 typing E’ t’ C.
185
186 Theorem gpt_ok_meth :
187 forall (C D C0:cname) (m:mname) (Cfs:a_env) (Cfs’:env) (t:a_exp)
188 (t’:exp),
189 a_ok_meth C D m C0 Cfs t →
190 AT C →
191 ATm C m →
192 variant_env Cfs Cfs’ →
193 variant_term t t’ →
194 ok_meth C D m C0 Cfs’ t’.
195
196 Theorem gpt_ok_class :
197 forall (C D:cname) (fs:a_flds) (fs’:flds) (ms:a_mths) (ms’:mths),
198 a_ok_class C D fs ms →
199 AT C →
200 variant_env fs fs’ →
201 variant_methods C ms ms’ →
202 ok_class C D fs’ ms’.
203
204 Theorem gpt_ok_ctable :
205 forall (ct:a_ctable) (ct’:ctable),
206 a_ok_ctable ct →
207 variant_ct ct ct’ →
208 ok_ctable ct’.
209
210 Theorem generation_preserves_typing :
211 forall (t:a_exp) (t’:exp),
212 FM →
213 CFJ_product_line t →
214 variant_ct aCT CT →
215 variant_term t t’ →
216 FJ_program t’.

Listing B.2: Theorems, Lemmas, and Facts to Prove Type Soundness for CFJ

100 B. CFJ Formalization in Coq

Bibliography

[AG01] Michalis Anastasopoules and Critina Gacek. Implementing Product Line
Variabilities. Software Engineering Notes, 26(3):109–117, 2001. 5

[AKGL09] Sven Apel, Christian Kästner, Armin Größlinger, and Christian Lengauer.
Type-Safe Feature-Oriented Product Lines. Technical Report MIP-0909,
Department of Informatics and Mathematics, University of Passau, June
2009. 3, 4, 11, 84

[Bak95] Brenda S. Baker. On Finding Duplication and Near-Duplication in Large
Software Systems. In Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 86–95, Washington, DC, USA, July 1995.
IEEE Computer Society. 1

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of the International Software Product Line Conference (SPLC),
volume 3714 of Lecture Notes in Computer Science, pages 7–20. Springer,
2005. 7

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development - Coq’Art: The Calculus of Inductive Constructions. Springer,
Germany, 2004. 13, 14, 15, 45, 67

[Beu03] Danilo Beuche. Composition and Construction of Embedded Software Fam-
ilies. PhD thesis, University of Magdeburg, Germany, 2003. 2

[Car97] Luca Cardelli. Type Systems. In Allen B. Tucker, editor, The Computer
Science and Engineering Handbook, chapter 103, pages 2208–2236. CRC
Press, 1997. 10, 11

[CDT09a] The Coq Development Team. The Coq Proof Assistant. Website, September
2009. Available online at http://coq.inria.fr/; visited on November 9th,
2009. 13

[CDT09b] The Coq Development Team. The Coq Proof Assistant Reference Manual.
LogiCal Project, 2009. Version 8.2pl1. 14, 15, 16

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley, 2000. 1, 6,
7

http://coq.inria.fr/

102 Bibliography

[CP06] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying Feature-Based
Model Templates Against Well-Formedness OCL Constraints. In Proceed-
ings of the International Conference on Generative Programming and Com-
ponent Engineering (GPCE), pages 211–220, New York, NY, USA, 2006.
ACM. 3, 11, 83

[DCB09] Benjamin Delaware, William Cook, and Don Batory. A Machine-Checked
Model of Safe Composition. In Proceedings of the Workshop on Foundations
of Aspect-Oriented Languages (FOAL), pages 31–35, New York, NY, USA,
2009. ACM. 11, 84

[Fra09a] Bruno De Fraine. Formalization and Type-Soundness Proof for Feather-
weight Java in Coq. Website, August 2009. Available online at http:
//soft.vub.ac.be/˜bdefrain/featherj/featherj-20090813.zip; visited on Octo-
ber 21st, 2009. xiii, xiv, 40, 42, 91, 92

[Fra09b] Bruno De Fraine. Language Facilities for the Deployment of Reusable As-
pects. PhD thesis, University of Brussel, Belgium, June 2009. 39, 40

[GFdA98] Martin L. Griss, John Favaro, and Massimo d’ Alessandro. Integrating
Feature Modeling with the RSEB. In Proceedings of the International Con-
ference on Software Reuse (ICSR), pages 76–85, 1998. 6

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995. 1

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley, Amsterdam, June 2005. 17

[Gon04] Georges Gonthier. A Computer-Checked Proof of the Four Colour Theorem.
Technical report, Microsoft Research Cambridge, 2004. 4, 13

[HZS07] Shan Shan Huang, David Zook, and Yannis Smaragdakis. cJ: Enhancing
Java with Safe Type Conditions. In Proceedings of the International Con-
ference on Aspect-Oriented Software Development (AOSD), pages 185–198,
New York, NY, USA, March 2007. ACM. 83

[IPW99] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: A Minimal Core Calculus for Java and GJ. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA), pages 132–146. ACM, 1999. 17, 18, 60

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
Java: A Minimal Core Calculus for Java and GJ. ACM Transactions on
Programming Languages and Systems (TOPLAS), 23(3):396–450, 2001. 17,
19, 20, 41

http://soft.vub.ac.be/~bdefrain/featherj/featherj-20090813.zip
http://soft.vub.ac.be/~bdefrain/featherj/featherj-20090813.zip

Bibliography 103

[JDHW09] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wag-
ner. Do Code Clones Matter? In Proceedings of the International Confer-
ence on Software Engineering (ICSE). IEEE Computer Society, 2009. 1

[JKB08] Mikoláš Janota, Joseph Kiniry, and Goetz Botterweck. Formal Methods
in Software Product Lines: Concepts, Survey, and Guidelines. Technical
Report Lero-TR-SPL-2008-02, Lero, University of Limerick, May 2008. ix,
2

[Joh93] J. Howard Johnson. Identifying Redundancy in Source Code using Finger-
prints. In Proceedings of the Conference of the Centre for Advanced Studies
on Collaborative Research (CASCON), pages 171–183. IBM Press, October
1993. 1

[KA08] Christian Kästner and Sven Apel. Type-Checking Software Product Lines
- A Formal Approach. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 258–267. IEEE Computer
Society, 2008. ix, 3, 4, 11, 19, 23, 24, 27, 28, 29, 42, 59, 60, 78, 87

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Soft-
ware Product Lines. In Proceedings of the International Conference on Soft-
ware Engineering (ICSE), pages 311–320, New York, NY, USA, May 2008.
ACM. ix, 1, 9

[KAK09] Christian Kästner, Sven Apel, and Martin Kuhlemann. A Model of Refac-
toring Physically and Virtually Separated Features. In Proceedings of the
International Conference on Generative Programming and Component En-
gineering (GPCE), pages 157–166. ACM, October 2009. 88

[KAS] Christian Kästner, Sven Apel, and Gunter Saake. Type Checking Software
Product Lines - A Formal Approach for Annotation-Based Implementa-
tions. Unpublished Manuscript. Submitted on August 10th, 2009. ix, 28,
30, 42, 59, 60, 63, 64, 83, 85

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, 1990. 6

[KG06] Cory J. Kapser and Michael W. Godfrey. Supporting the Analysis of Clones
in Software Systems: A Case Study. Journal of Software Maintenance and
Evolution, 18(2):61–82, 2006. 1

[KKL+98] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Gerard Jounghyun
Kim, and Euiseob Shin. FORM: A Feature-Oriented Reuse Method with
Domain-Specific Reference Architectures. Annals of Software Engineering,
5(1):143–168, January 1998. 5

104 Bibliography

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Program-
ming. In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 1241 of Lecture Notes in Computer Science,
pages 220–242. Springer, 1997. 1

[KV06] Florian Kammüller and Matthias Vösgen. Towards Type Safety of Aspect-
Oriented Languages. In Proceedings of the Workshop on Foundations of
Aspect-Oriented Languages (FOAL), Bonn, Germany, March 2006. ACM.
84

[MLM96] Jean Mayrand, Claude Leblanc, and Ettore Merlo. Experiment on the
Automatic Detection of Function Clones in a Software System Using Met-
rics. In Proceedings of the International Conference on Software Main-
tenance (ICSM), pages 244–253, Washington, DC, USA, November 1996.
IEEE Computer Society. 1

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering : Foundations, Principles and Techniques. Springer,
September 2005. 1, 2, 5

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, Cam-
bridge, Massachusetts, USA, 2002. 2, 10, 12, 13, 17, 21, 41, 49

[Pre97] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Ob-
jects. In Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 1241 of Lecture Notes in Computer Science,
pages 419–443. Springer, 1997. 1

[Ros09] Malte Rosenthal. Alternative Features in Colored Featherweight Java.
Diplomarbeit, University of Passau, Germany, July 2009. 83

[SB00] Mikael Svahnberg and Jan Bosch. Issues Concerning Variability in Soft-
ware Product Lines. In Proceedings of the International Workshop on Soft-
ware Architectures for Product Families (IW-SAPF), volume 1951 of Lecture
Notes in Computer Science, pages 146–157, London, UK, 2000. Springer. 5

[SH04] Mark Staples and Derrick Hill. Experiences Adopting Software Product
Line Development without a Product Line Architecture. In Proceedings
of the Asia-Pacific Software Engineering Conference (APSEC), pages 176–
183, Los Alamitos, CA, USA, 2004. IEEE Computer Society. 1

[SNO+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom
Ridge, Susmit Sarkar, and Rok Strnisa. Ott: Effective Tool Support for
the Working Semanticist. In Proceedings of the International Conference
on Functional Programming (ICFP), pages 1–12. ACM, 2007. 84

Bibliography 105

[SSP07] Rok Strnǐsa, Peter Sewell, and Matthew Parkinson. The Java Module Sys-
tem: Core Design and Semantic Definition. In Proceedings of the Con-
ference on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA), pages 499–514, New York, NY, USA, October 2007.
ACM. 84

[TBKC07] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe Com-
position of Product Lines. In Proceedings of the International Conference
on Generative Programming and Component Engineering (GPCE), pages
95–104. ACM, 2007. 3, 11, 84

[Wei05] Stephanie Weirich. Formalization and Type-Soundness Proof for Feath-
erweight Java in Coq. Website, August 2005. Available online at http:
//www.cis.upenn.edu/˜plclub/wiki-static/fj-coq.tar.gz; visited on October
20th, 2009. 40

[WF94] Andrew K. Wright and Matthias Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115(1):38–94, November 1994.
11, 12, 13

http://www.cis.upenn.edu/~plclub/wiki-static/fj-coq.tar.gz
http://www.cis.upenn.edu/~plclub/wiki-static/fj-coq.tar.gz

106 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 15. Januar 2010

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.1.1 Feature Models
	2.1.2 Variant Generation
	2.1.3 CIDE

	2.2 Type Systems
	2.2.1 Type Checking
	2.2.2 Type Soundness

	2.3 Proof Assistant Coq
	2.3.1 Gallina
	2.3.2 Proof Tactics

	3 Colored Featherweight Java
	3.1 Featherweight Java
	3.1.1 Syntax
	3.1.2 Examples
	3.1.3 Type System

	3.2 Colored Featherweight Java
	3.2.1 Syntax and Annotations
	3.2.2 Examples
	3.2.3 Variant Generation
	3.2.4 Type System

	3.3 Simplifications of the Type System
	3.3.1 Casting and Field Access
	3.3.2 Method Typing
	3.3.3 Class Typing
	3.3.4 Revised Type System

	4 Formalization of Colored Featherweight Java
	4.1 Building on a FJ Formalization
	4.1.1 Choosing a FJ Formalization
	4.1.2 Corrections to the FJ Formalization

	4.2 Type System
	4.2.1 Realization of Annotations
	4.2.2 Subtyping and Auxiliary Rules
	4.2.3 Typing Rules

	4.3 Variant Generation
	4.4 Summary

	5 Type Soundness of Colored Featherweight Java
	5.1 Type Soundness Theorem
	5.1.1 Formalization of the Theorem
	5.1.2 Splitting the Theorem

	5.2 Type Soundness Proof
	5.2.1 The Proof Strategy
	5.2.2 Problems with Induction
	5.2.3 Problems with Mutual Induction
	5.2.4 Further Problems

	5.3 Summary

	6 Experiences
	6.1 Estimated Effort of Our Proof
	6.2 Challenges with Proof Assistants
	6.3 Advantages of Formal Proofs
	6.4 Summary

	7 Related Work
	8 Conclusion
	9 Future Work
	A FJ Formalization in Coq
	A.1 Incomplete Class Tables
	A.2 Method Overriding

	B CFJ Formalization in Coq
	B.1 Verification of Our Formalization
	B.2 Annotation Lookup Functions
	B.3 Theorems, Lemmas, and Facts

	Bibliography

