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TU Braunschweig - Institute of Software Engineering and Automotive Informatics



Krieter, Sebastian:
Efficient Configuration of Large-Scale Feature Models Using Extended Implication
Graphs
Master’s Thesis, University of Magdeburg, 2015.



Acknowledgments

I would like to thank my advisors Prof. Gunter Saake, Thomas Thüm, and Reimar
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1. Introduction

Software product line engineering (SPLE) has become an important concept to de-
velop software and software-intensive systems. It enables developers to efficiently
create customized software for various customers in terms of development time and
costs [PBvdL05, CN01]. In SPLE, developers provide single software artifacts instead
of complete software products. By composing a subset of all available software arti-
facts, with respect to their mutual dependencies, developers are able to build individual,
coherent software products. Therefore, developers are able to efficiently develop and
maintain variable and common source code parts for all their products [PBvdL05]. In
our thesis, we use the common term feature to refer to software artifacts.

In order to build specific products in SPLE, one has to specify the set of included
features. This vital aspect of SPLE is called the configuration process, which results
in a configuration that specifies the included features of one software product [CN01].
Naturally, not all features can be freely composed together, due to certain dependen-
cies and interactions among each other. To define the possible, valid combinations,
developers have to provide a feature model that specifies the relationships between all
features [CE00, ABKS13]. Thereby, the developers only allow feasible combinations of
features that can be composed to a correctly working product. It is part of the con-
figuration process to test whether the defined set of features is in accordance with the
dependencies given by the feature model [PBvdL05]. By nature, the test for validity
of a given combination can be done in polynomial time, however the task of finding a
valid combination (i.e., the configuration process) is NP-complete [Coo71].

In most cases, the configuration process is sequential, with the developers deciding the
inclusion of each feature, step-by-step [CHE05]. In each configuration step, the devel-
opers decide whether they include or exclude a given feature from the product that
they want to build. Due to the feature’s interdependencies, the decision for one specific
feature can lead to the forced inclusion or exclusion of other depending features. There
are two conceptually differing methods to handle this situation by either ignoring or
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determining the implications resulting from the latest decision. The first method ig-
nores the potential implications in each configuration step and later checks whether any
dependencies of the feature model are violated [WSB+08]. If so, the developers have
to resolve the problem by revoking some of their decisions. The second method deter-
mines all implications and updates the current set of features after each configuration
step. This leads to an interactive configuration process, in which the developers receive
feedback about the implications of their last made decision [HSJ+04]. For an interac-
tive configuration process, it is necessary to automatically determine all implications
of a decision, which is called decision propagation. While the first method requires less
computational effort than the second one, in some cases, it may lead to a frustrating
configuration process for the developer, due to a high amount of revocations. Hence, if
the developer’s system has sufficient computational recourses, then the second method
is more preferable.

An interactive configuration relies on decision propagation for each configuration step.
Consequently, whenever a configuration step is performed, an algorithm has to deter-
mine whether the current step implies the in- or exclusion of other features. However,
determining the configuration status of another feature, given a set of arbitrary de-
pendencies, is an NP-complete problem and, thus, in general its execution time grows
exponentially with an increasing number of features. Thus, straight-forward algorithms
for decision propagation are unable to handle the configuration of large product lines
in a feasible amount of time. Especially for large feature models with 10, 000 or more
features (e.g., a model of the Linux kernel [TLD+11]), such an approach may require
several minutes to finish one single configuration step, which is highly impracticable.
Still, there is evidence that points out that most real-world feature models do not con-
tain highly complex feature dependencies [MWC09]. Therefore, it is likely that for
most real-world product lines, there are efficient ways to apply decision propagation
for the configuration process. Based on this assumption, we want to find a decision
propagation algorithm that performs more efficiently, regarding computation time, for
large-scale feature models, which are used in industry today.

In our thesis, we propose a new approach that is based on implication graphs, which
are known from the domain of boolean algebra. By expressing all dependencies of a
feature model as an implication graph, the problem of decision propagation becomes
easy to solve [APT79]. In detail, the decision propagation is reduced to solving multi-
ple 2-satisfiability problems which are known to be P-complete [HJ90]. However, most
feature models cannot entirely be expressed as an implication graph, due to their com-
plex dependencies. Nevertheless, we try to utilize its advantages by expressing simple
dependencies as a partial implication graph and storing additional information about
the remaining complex dependencies. For this, we extend ordinary implication graphs
to suit our needs and call the resulting data structure feature graph. Our new proposed
approach, the configuration assistant, uses feature graphs to reduce the amount of com-
putational effort for the decision propagation and, thus, achieves a faster performance
for this process.
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From a scientific point of view, we want to answer the following research questions.

RQ1: Does the usage of a feature graph significantly reduce the required com-
putational effort for decision propagation?

RQ2: Does the performance improvement dependent on the used feature model
and if so, which kinds of feature models are most suited for our approach?

RQ3: How is the overall performance of the feature graph, regarding construc-
tion time and memory consumption?

Goals and Contribution

In accordance to our scientific research questions, we infer that our main objective
is to investigate the efficiency of our new approach, as part of our evaluation, and to
determine feature-model structures for which our approach is most suitable. Aside from
the scientific investigation, we make the following contributions.

• We introduce our new approach the configuration assistant.

• We implement the configuration assistant as part of the FeatureIDE framework.

• We compare our approach with other state-of-the-art configuration tools.

In addition to a fast performance for decision propagation, we require certain secondary
conditions for our new approach. In particular, we design our approach to have the
following properties.

1. Our configuration assistant can operate on arbitrary feature models and always
provides a complete and correct result.

2. The computations to determine the features’ configuration status are independent
from each other.

These secondary conditions result from technical requirements and certain functional-
ities that we want to support with our approach. In detail, we want to integrate our
approach in an existing framework, which relies on an exact result of the decision prop-
agation. There exist efficient decision-propagation methods that only work on certain
feature model structures [Men09]. Unlike these methods, we require that we can apply
decision propagation to any kind of feature model and receive a correct result in every
case (cf. Condition 1). In addition, we want to use several implementation techniques
such as multi-threading to further improve the performance of our approach. In order
to use these techniques, we have to be able to determine the configuration status of each
feature in an arbitrary order or even in parallel. Thus, we must be able to compute
each feature’s configuration status independently of each other (cf. Condition 2).
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Outline

In order to related to our new approach, we provide background information on SPLE
in Chapter 2, with a particular focus on the configuration process. In Chapter 3, we
introduce our new approach, the configuration assistant, and present its core concept,
the feature graph. Moreover, in Chapter 4, we state details of the configuration assis-
tant’s implementation that we used for our evaluation. In Chapter 5, we describe our
evaluation concept for answering our research questions and present the evaluation re-
sults. Subsequently, in Chapter 6, we talk about similar approaches and related topics.
In Chapter 7, we summarize all our findings and draw a conclusion. Finally, we talk
about possible future work in Chapter 8.



2. Background

In this chapter, we give all necessary information to comprehend to our new approach
for an interactive configuration process. We explain the concept of software prod-
uct line engineering, where we especially focus on feature modeling and product-line
configuration. In detail, we show two different feature-model representations, feature
diagrams and propositional formulas. Furthermore, we describe the general concept
and challenges of the interactive configuration process. Finally, we review relevant
feature-model analyses, which are necessary for our approach.

2.1 Software Product Line Engineering

At first, we define software product line engineering (SPLE) in accordance to Pohl
et al. as “a paradigm to develop software applications (software-intensive systems and
software products) using [...] mass customization” [PBvdL05]. In SPLE, we achieve
mass customization by implementing reusable software artifacts that we can individ-
ually combine to build certain customized products. For this, we develop common
and variable software artifacts and embed them in one software product line (SPL).
Thus, an SPL represents multiple customized software products that share a common
source-code basis [CN01, CE00].

2.1.1 Applications of SPLE

The main advantage to choose SPLE over conventional software development is the
efficiency increase, when fulfilling the requirements of multiple customers. The devel-
opment of reusable artifacts introduces some development overhead, compared to the
development of a single product. However, when we develop multiple products, based
on an SPL, we do not have to implement every new product from scratch. Hence, we
save development time for new products, which we depict in Figure 2.1. Similarly, the
initial development costs of an SPL amortize over time, due to smaller costs for single
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Figure 2.1: Comparison of development time between product lines and single sys-
tems. [PBvdL05]

software products, which we depict in Figure 2.2. Additionally, SPLE eases the main-
tenance of the derived products. When we need to modify source code that is common
in multiple products, we only have to edit the corresponding software artifacts, instead
of maintaining every product on its own. Therefore, we save development time when
extending or debugging already existing source code.

There are several frameworks and tools that can be used for SPLE. In our thesis, we
use FeatureIDE as basis for our approach. FeatureIDE is a framework for SPLE that
allows us to develop, configure, and analyze SPLs [TKB+14].

2.1.2 Domain and Application Engineering

SPLE can be divided into two consecutive tasks, domain engineering and application
engineering. As both are relevant for our approach, we describe them briefly in the
following.

Domain Engineering

In domain engineering, the developers define all common and variable artifacts of a
software product line [CE00]. Additionally, in order to manage the commonality and
variability of a software product line, developers define variability models, which specify
the dependencies between all artifacts of the product line. In our thesis, we focus on
variability models based on features that are organized in a feature model to manage
variability. Feature models map all artifacts of an SPL onto a set of features and
describes the dependencies between these features.

Domain engineering also includes the implementation of the single features. However,
we do not consider the actual implementation in this thesis, since it is independent from
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Figure 2.2: Comparison of development costs between product lines and single sys-
tems. [PBvdL05]

the pure feature-modeling and configuration process. We examine feature modeling
further in the separate Section 2.2. Furthermore, we describe the analysis of feature
models in Section 2.4.

Application Engineering

In application engineering, the developers derive the final products of an SPL by
composing its single features with respect to the dependencies of the SPL’s feature
model [PBvdL05]. One aspect of application engineering is the decision of which fea-
tures are composed to a final product. This decision is called the configuration process,
which is the objective of our thesis. In Section 2.3, we describe the configuration process
in more detail.

There exist many different implementation techniques for the actual composition to final
software products [ABKS13]. These implementation techniques specify the generation
mechanism and by this determine the final source code for single products. For instance,
there are preprocessors [Käs10], aspect-oriented programming (AOP) [KLM+97], and
feature-oriented programming (FOP) [ABKS13, Pre97, AKL13, Bat06]. Though, we
do not need to consider these different techniques for our approach, since we are work-
ing with feature models and their specified dependencies. Feature models are on a
more abstract level and, thus, independent of the chosen implementation technique.
Hence, in this work, we focus on the configuration of an SPL, rather than the actual
implementation.

2.2 Feature Modeling
In literature, we find several definitions for a feature of an SPL. We decided to define a
feature in conformity with Kang et al. as “a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or systems” [KCH+90].
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Figure 2.3: Example of a feature diagram, representing a small Chat product line.

In most cases, features are not independent of one another, but have certain interde-
pendencies that must be considered in order to derive a correctly working product. All
dependencies between different features are represented by a feature model [CE00]. For
example, features can be mutually exclusive, such as features that include source code
for different operating systems. Furthermore, features can be dependent on another,
such as a feature that changes the appearance of an application relies on a feature that
implements a graphical user interface.

There exist multiple representations for feature models, which have their individual
advantages [CE00]. In this thesis, we consider the two most popular representations,
feature diagrams and propositional formulas, and describe them in more detail in the
next sections.

2.2.1 Feature Diagram

A popular, graphical representation for feature models is a feature diagram. A fea-
ture diagram consists of a hierarchical tree structure with one root feature at the
top [CE00, KCH+90]. Feature dependencies are modeled by the arrangement of fea-
tures within the tree structure, special edge types, and additional cross-tree constraints.
Through the feature diagram’s hierarchical structure, feature diagrams offer a proper
overview of all features in a feature model and their dependencies. Thus, they provide
a good readability to humans. We show an example of a feature diagram in Figure 2.3.
Here, we illustrate the feature model of a small Chat product line, which represents
multiple variants of a basic chat client. In sum, the model consists of ten features Chat,
Security, Encryption, Authentication, Online, Direct, Chatroom, Login, User-

name, and Password. The feature diagram consists of all basic constructs that can
be used to express dependencies between features. These constructs are parent-child
relationships, optional features, mandatory features, feature groups, and cross-tree con-
straints. Parent-child relationships are the fundamental construct for the hierarchical
tree structure. Each feature relies on its parent and, thus, can only be part of a prod-
uct, if its parent is there as well. For instance, all products that contain the feature
Password, also contain its parent feature Login and, therefore, also Login’s parent fea-
ture Chat. The feature Username is mandatory, which means that if its parent feature
Login is part of a product, then Username is also contained in it. By contrast, the
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optional features Security, Online, Login, and Password have no such relationships
to their corresponding parent features. The features Encryption and Authentication

are part of an OR-group, which means that if their parent feature Security is part
of a product, then at least one of them must be in the product as well. The features
Direct and Chatroom are part of an alternative-group. If their parent feature Online

is contained in a product, then exactly one of them must also be present. Another ele-
ment of feature diagrams are cross-tree constraints, which specify additional constraints
that cannot be represented by the current tree structure. For instance, the cross-tree
constraint Chatroom ⇒ Username is depicted at the bottom of the diagram.

2.2.2 Propositional Formula

Every feature model can be represented by a propositional formula [Bat05]. In a propo-
sitional formula, each feature is represented by one boolean variable. Feature depen-
dencies are modeled by connecting the variables with different logical operators. Propo-
sitional formulas are often used as input for algorithms that modify or analyze feature
models, because most tasks can be reduced to well-known problems in boolean algebra.

A feature model represented by a feature diagram can always be transformed into a
propositional formula. Our example feature model in Figure 2.3 can be written as the
formula given in Figure 2.4.

Chat ∧ root feature (1.1)

(Encryption ∨ Authentication⇒ Security) ∧ parent-child dependency (1.2)

(Encryption ∨ Authentication ∨ ¬Security) ∧ OR-group (1.3)

(Direct ∨ Chatroom⇒ Online) ∧ parent-child dependency (1.4)

(Direct ∨ Chatroom ∨ ¬Online) ∧ alternative-group (1.5)

(¬Direct ∨ ¬Chatroom) ∧

(Username ∨ Password⇒ Login) ∧ parent-child dependency (1.6)

(Login⇒ Username) ∧ mandatory feature (1.7)

(Chatroom⇒ Username) cross-tree constraint (1.8)

Figure 2.4: Propositional formula of the Chat feature model.

All parent-child relationships can be expressed in a propositional formula with an im-
plication (e.g., Equation 1.2). Consequently, mandatory features can be expressed as
an implication as well (e.g., Equation 1.7). As the name suggests, OR-groups represent
a logical OR (i.e., a disjunction) between all features in the group, hence they can be
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expressed using disjunctions and negations (e.g., Equation 1.3). Alternative-groups are
similar to OR-groups, but with one additional rule, all children exclude each other,
which can be written as set of pairwise disjunctions (e.g., Equation 1.5).

Often, applications require certain representations of propositional formulas. For in-
stance, the formula given above, in Figure 2.4, contains multiple logical operators, such
as implication (⇒), disjunction (∨), conjunction (∧), and negation (¬). However, often,
algorithms that work on feature models require the conjunctive normal form (CNF) of
a propositional formula. Another useful representation is an implication graph, which
is one way to combine the domains of boolean algebra and graph theory. In our thesis,
we rely on both, CNFs and implication graphs. Thus, we now describe the two concepts
in more detail.

Conjunctive Normal Form

A CNF contains only the logical operators disjunction, conjunction, and negation in a
certain order. It consists of a conjunction of clauses that consists of a disjunction of
single positive or negative variables. Negation is only allowed on single variables and
not for whole clauses or the entire formula. Every propositional formula can be written
in CNF [Das05]. For instance, the constraint Chatroom ⇒ Username can also be
written as ¬Chatroom ∨ Username.

In most cases, CNFs are easy to create from feature diagrams, since a CNF simply re-
sembles a collection (conjunction) of constraints (clauses) that must be fulfilled. How-
ever, transforming complex cross-tree constraints can be a time consuming task, since
this is, in general, an NP-complete problem. When we transform the complete propo-
sitional formula given in Figure 2.4, we get the CNF depicted in Figure 2.5.

Chat ∧ (2.1)

(¬Encryption ∨ Security) ∧ (¬Authentication ∨ Security) ∧ (2.2)

(Encryption ∨ Authentication ∨ ¬Security) ∧ (2.3)

(¬Direct ∨Online) ∧ (¬Chatroom ∨Online) ∧ (2.4)

(Direct ∨ Chatroom ∨ ¬Online) ∧ (2.5)

(¬Direct ∨ ¬Chatroom) ∧ (2.6)

(¬Username ∨ Login) ∧ (¬Password ∨ Login) ∧ (2.7)

(¬Login ∨ Username) ∧ (2.8)

(¬Chatroom ∨ Username) (2.9)

Figure 2.5: Propositional formula of the Chat feature model in CNF.
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Implication Graph

An implication graph is a special data structure to represent propositional formu-
las [APT79]. It is a directed graph, whose nodes represent the variables of a formula
and each edge an implication from one variable to another. Every variable is mapped
to exactly two nodes. The first node represents the positive and the second one the
negative form of a variable. Hence, the number of nodes in an implication graph is twice
the amount of variables in the formula. If the value of one variable implies a certain
value for another variable, this is represented by an edge.

To express a propositional formula as an implication graph, it must be transformable
into a 2-CNF, which is a formula in CNF, where all clauses consist of at most two
variables. All clauses in a 2-CNF are equivalent to a logical implication, as we demon-
strated above. Thereby, the entire formula can be written as a set of implications, which
can be mapped to edges in the implication graph. By contrast, a constraint with more
than two variables, such as (Direct ∨ Chatroom ∨ ¬Online), cannot be expressed as
set of implications between only two variables and, thus, it is not possible to create a
corresponding 2-CNF. Therefore, not every propositional formula can be expressed by
an implication graph.

There already exists extension to implications graphs that allow the usage of arbi-
trary propositional formulas, such as the inclusion of conjunction nodes [TGH97] or
the expansion to hypergraphs [CW07]. However, in our thesis, we focus on ordinary
implication graphs and propose an own extension that suits our needs best.

2.3 Product-Line Configuration
In general, a product line consists of multiple features that can be part of a product.
The process of configuring a product of an SPL is the decision of which features are
part of a certain product with respect to the feature dependencies specified by the
SPL’s feature model [PBvdL05]. A configuration is the (intermediate) result of the
configuration process and specifies for each feature in the SPL whether it is included
or not. A configuration is called valid, if it satisfies all dependencies of a given feature
model. By contrast, a configuration that contradicts at least one dependency is called
invalid.

A straight-forward approach to configure a product line is to manually define a config-
uration, which specifies all features that are part of one product. We then provide a
configuration for each product that we want to derive. With this approach we configure
all features of the feature model at once. Of course, this approach can lead to invalid
configurations, since a manually defined configuration is likely to violate at least one
feature dependency. Thus, a manual configuration process for all features is unreason-
able for large product lines. An alternative approach is a stepwise configuration process,
where we configure each feature one-at-a-time. In the following, we describe the pro-
cedure of a stepwise configuration process in detail. Furthermore, in the subsequent
section, we explain the concept of an interactive configuration process, which includes
the propagation of decision implications.
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2.3.1 Stepwise Configuration Process

In the stepwise configuration process, we configure all features of an SPL in succession.
This is strongly related to staged configurations, which is the process of specializing a
feature model in consecutive stages to derive a final configuration [CHE05]. Similar to
staged configuration, the stepwise configuration process reduces the number of possible
decisions with each step and, thus, limits the configuration space.

During the stepwise configuration process, a feature can have one of three possible
selection states, positive (the feature is selected), negative (the feature is deselected),
or undefined (there is no decision for this feature yet). At the beginning, the selection
states of all features are set to undefined. Step by step, we set the selection state of
each feature to either positive, which means it is included in the product, or negative,
which means it is excluded from the product. The stepwise configuration process is
finished if there remains no undefined feature. In addition, we can finish the stepwise
configuration process at any given point by assigning a default selection state, such as
negative, to all remaining undefined features.

After each configuration step, we get a partial configuration that specifies the selection
states of all features of the product line. In a partial configuration some features can
have an undefined selection state. By contrast, when we finished the configuration
process, we get a full configuration, in which all features are either selected or deselected.
Thus, a full configuration can be considered as a special case of a partial configuration.
Contrary to most implementations, we do not omit deselected features, but include
both, selected and deselected features, in a full configuration. In the remainder of our
thesis, we use the short term configuration to refer to a partial configuration.

A stepwise configuration process may lead to an invalid configuration that does not
meet all constraints specified by the feature model. For example, consider our Chat
feature model from Figure 2.3. If we select the feature Direct, then it is not possible to
select Chatroom without introducing a conflict in the configuration. However, we might
not be aware of that fact and are still able to select Chatroom. Not before we test the
current configuration for validity, we know about the resulting conflict. In this case,
we have to undo the last configuration steps until the introduction of the conflict. Of
course a feature selection or deselection can introduce multiple conflicts in the current
configuration. Thus, we might need to undo more than one configuration step. To
avoid the revocation of configuration steps in the first place, we can use the concept of
the interactive configuration process, which we describe in the following.

2.3.2 Interactive Configuration Process

An interactive configuration process means that at no time during a stepwise config-
uration process the resulting partial configuration is invalid [Men09]. To enforce a
valid partial configuration, we propagate every selection state that is implied from the
last configuration step. This process is called decision propagation [MBC09, TKB+14].
As a consequence, we never have to undo a configuration step, because it contradicts
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with the feature model’s dependencies. Hence, the resulting configuration process is
backtracking-free.

Using an interactive configuration process, we exemplary configure a product of our
Chat product line (see Figure 2.3). At first, we deselect the feature Security, because
we do not need a secure chat application. Through decision propagation the features
Encryption and Authentication are deselected, since it is not possible to select them if
their parent feature is already deselected. Next, we select the feature Chatroom, because
we want to chat with more than one person simultaneously. The selection of Chatroom
affects many other features. Its parent feature Online is selected as well. By contrast,
its sibling Direct is deselected, due to the alternative-group’s constraint. The cross-tree
constraint Chatroom ⇒ Username infers the selection of Username and, consequently,
its parent Login. Now, Password is the only feature left with an undefined selection
state. In this example, we deselect Password. In the end, after three configuration steps,
we have a full configuration (i.e., no undefined features) with the selected features Chat,
Online, Chatroom, Login, and Username.

A way to realize decision propagation is the application of the feature-model dependency
analysis. The results of this analysis are equal the outcome of decision propagation. In
the following section, we explain the analysis, among others, in more detail.

2.4 Feature-Model Analysis
Our concept for decision propagation relies on certain properties of a feature model. In
order to determine these properties, we use several automated feature-model analyses,
which we want to describe in this section. Thus, we present the analyses of void fea-
ture models, variant features, and atomic sets and the dependency analysis [BSRC10].
Moreover, we briefly present an implementation concept for each these analyses.

We use the feature-model representation of propositional formulas to explain the
feature-model analyses and their implementation concepts. Thereby, we are able to
reduce all analyses to one or more instances of the satisfiability problem. The satisfi-
ability problem (SAT) represents the question whether there is a variable assignment
that satisfies a given propositional formula. For example, consider the following propo-
sitional formula Chat∧ (Chat⇒ Login). This formula is satisfiable, because it has the
satisfying variable assignment, (Chat = true, Login = true). By contrast, the propo-
sitional Chat ∧ (Chat ⇒ Login) ∧ ¬Login has no satisfying variable assignment. In
terms of product-line configuration, a satisfying variable assignment represents a valid,
full configuration of a product line.

The general satisfiability problem is NP-complete and, therefore, likely not be solved in
polynomial time [Coo71]. However, there exist algorithms designed for solving instances
of the satisfiability problem by using certain heuristics to find a solution in reasonable
time for most cases. These algorithms are called satisfiability solvers. Additionally,
Mendonça et al. point out that the satisfiability problem does scale well for most feature
models [MWC09]. Since we reduce the presented feature-model analyses to SAT, we
are able to use satisfiability solvers in the actual implementation of all shown analyses.
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2.4.1 Void Feature Model

An important question is whether a given feature model is valid, which means that it
represents at least one valid product. By contrast, we call a feature model void, if it
represents no product [Bat05]. A feature model can be void if it either has no features
or if it contains a contradiction in its feature dependencies. Consider we would add the
constraint ¬Chat to our feature model Chat (cf. Figure 2.3). Since the feature Chat

must be contained in every valid product, we would create a contradiction within the
feature model and, thus, it would be void.

The void feature-model analysis is of high importance, since we cannot use void feature
models in the application-engineering process. Furthermore, due to their definitions, all
of the following analyses can only be performed on non-void feature models [STSS13].

If we use a propositional formula as feature-model representation, we can easily test
for validity by solving the corresponding satisfiability problem. If there is a satisfying
variable assignment for the propositional formula, the feature model represents at least
one product and, thus, is not void. Otherwise, if there is no variable assignment that
satisfies the feature dependencies, the feature model is void.

2.4.2 Variant Features

In general, in a full configuration, a feature can be selected or deselected in a certain
product. Features that can configured both ways are called variant features [BSRC10].
In contrast, there are dead features and core features, which have only one possible
selection state. A features is called core, if and only if it is part of every possible product
of an SPL [BSRC10, TRC09]. Thereby, its only possible selection state is positive.
Contrarily, a feature that is part of no product is called dead [BSRC10, TBC06]. Thus,
it can only have the selection state negative.

In our Chat feature model (cf. Figure 2.3), all features but Chat are variant features.
Chat is the root feature of the given feature diagram and, thus, contained in every
product. Hence, Chat is a core feature by default. Hypothetically, if we would add
the constraint Chat⇒ Chatroom, the analysis would identify five core features, Chat,
Login, Username, Online, and Chatroom, and one dead feature, Direct.

The knowledge of variant, core, and dead features can help to enhance the configuration
process and to detect flaws in a feature model. Dead features can always be seen as
defect, since they have no conceivable purpose. On the other hand, core features can
naturally occur in a feature model. The implementation of core features can be used
to provide the common source code base for all possible products. For instance, the
root feature of a feature diagram is always a core feature. Furthermore, in order for our
approach to work correctly, we need to know all variant features of a feature model.

If the feature model is given in form of a propositional formula, all dead and core feature
can be determined by using the following approach. For each feature, we set the truth
value of the corresponding variable to false. If the formula is not satisfiable, then the
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feature is core. Analogous, if the variable’s value was set to true and the formula cannot
be satisfied, then the feature is dead. After determining the dead and core features of
a feature model, all remaining features must be variant features. This analysis only
applies if the formula was satisfiable in the first place (i.e., the feature model is not
void). In other words, if a feature model represents no products, it is not feasible to
ask, whether a feature is part of every product.

2.4.3 Dependency Analysis

The dependency analysis is the most important analysis for our approach, since it is the
basis for decision propagation. The dependency analysis can be seen as a generalization
of the core and dead feature analysis. Additionally to a feature model, this analysis also
takes a partial configuration as input. Then, the analysis determines all selection states
that are implied by the given partial configuration and updates the partial configuration
accordingly [BSRC10]. We call the corresponding features of determine selection states
conditionally dead and conditionally core features [BSRC10].

For example, using our Chat feature model (cf. Figure 2.3), the feature Chatroom

is conditionally dead if the given partial configuration defines the feature Direct as
selected. In addition, the parent feature Online would be conditionally core.

The implementation of the dependency analysis using satisfiability solvers is similar to
the core and dead analysis, but with one exception. Before testing every feature, we
assign the corresponding truth values to all variables in the propositional formula, whose
of corresponding features are selected or deselected in the given partial configuration.
Afterwards, we perform the same procedure as if determining core and dead features.
For each undefined feature, we set the truth value of its corresponding variable to either
false or true and check whether the propositional formula is still satisfiable.

2.4.4 Atomic Sets

An atomic set is a maximal set of features that fulfills the following condition. In each
valid, full configuration all feature in the set are either all selected or all deselected. For
certain algorithms and analyses, features in an atomic set can be treated as a single
unit [BSRC10].

Regarding our Chat feature model (cf. Figure 2.3), an example for an atomic set are
the features Login and Username. It is not possible to only include one of them in a
valid product. They are either both present or both absent.

Since features in an atomic set have an equal selection state for each configuration, it
is possible to combine all of them in one feature that represents all of them at once.
Thereby, we effectively decrease the number of features in a feature model and, thus,
limit the configuration space. Therefore, we can use atomic sets to reduce the com-
plexity of certain analyses and the configuration process [Seg08, ZZM04]. We further
discuss this extension in Chapter 8.
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A simple implementation concept of this analysis using SAT is the following, which
tests each pair of features, whether they are in an atomic set or not. For each pair, we
set the truth value of one variable to true and the truth value of the other variable to
false, if the propositional formula is still satisfiable under this condition, the features
cannot be in an atomic set. Otherwise, we repeat the test with inverted truth values.
If the formula is not satisfiable in the second test as well, then the features must be
in the same atomic set. Since each pair of features is tested, this approach needs to
solve about n2 satisfiability problems, where n is the number of features. Hence, its
computational effort for large feature models is quite high.

2.5 Summary

In this chapter, we presented the concept of software product line engineering and fo-
cused on two vital aspects, namely feature modeling and configuration. In addition, we
presented certain feature-model analyses that are related to our approach. We described
feature modeling as the process of creating a feature model that represents all features
of an SPL and their interdependencies. Additionally, we presented feature diagrams
and propositional formulas as representation for feature models and explained how im-
plication graphs can be used to express simple feature dependencies. We introduced
the stepwise configuration process and based on that the interactive configuration pro-
cess, which relies on decision propagation to update the resulting partial configuration
for each step. Finally, we explained several feature-model analyses, such as void fea-
ture models, variant features, dependency analysis, and atomic sets, and demonstrated
implementation concepts for each analysis by applying the satisfiability problem.



3. Concept

In this chapter, we introduce the configuration assistant, our new approach for auto-
mated decision propagation during an interactive configuration process. For this, we
propose an extension for implication graphs that we call feature graph and use it to
express the dependencies of a feature model. During the decision propagation, our
configuration assistant traverses a feature graph to efficiently determine all forced se-
lection states for the current partial configuration. First of all, we give an overview
of our approach and explain the general idea behind it. Then, we describe our new
data structure, the feature graph, and demonstrate its application to the automated
decision propagation during the interactive configuration process. Finally, we explain
the feature graph’s construction process.

3.1 Overview of the Configuration Assistant

Our new approach, the configuration assistant, is designed for an interactive configu-
ration process with the main goal of reducing the computation time of the automated
decision propagation as much as possible. For this, we try to avoid using the complex
propagation test for determining each feature’s selection state during the automated
decision propagation. The complex propagation test refers to an arbitrary implemen-
tation of the dependency analysis presented in Chapter 2 using satisfiability solvers.
Although we assume that the complex propagation test always finds the correct solu-
tion, it can be very time consuming, since it is solving multiple NP-complete problems.
In detail, if there are n undefined features in the current partial configuration, the
complex propagation test has to solve 2 · n problems.

In the following, we describe the basic principle of our approach and why it can be useful
for improving the performance of the interactive configuration process. Furthermore,
we explain the usage of implication graphs to express feature dependencies and our
associated extension, the feature graph.
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Figure 3.1: Reduced feature model of the Chat product line.

3.1.1 Basic Principle

Our approach is based on two observations on the interactive configuration process.
First, many forced selection states that are found during the decision propagation origi-
nate from simple feature dependencies (i.e., feature dependencies that can be expressed
in 2-CNF). Second, many features that are not affected by the decision propagation are
independent of the currently configured feature (i.e., there are no dependencies between
them). A good example for these observations are feature dependencies that originate
from a feature diagram’s tree structure. Parent-child dependencies, as well as manda-
tory features, can be expressed with a logical implication between two features. We
consider logical implications as simple feature dependencies, since they can be easily
evaluated during the decision propagation. Moreover, features in different subtrees are
always independent of each other if there exist no cross-tree constraints connecting both
trees.

In each configuration step of the interactive configuration process, we make a decision
that changes the selection state of one feature. Afterwards, the automated decision
propagation is used to update the remaining undefined features of the current partial
configuration. By using the two observations mentioned above, we are able to cate-
gorize the potential selection states of all undefined features dependent on the made
decision and divide them into one of three groups. The selection state of an undefined
feature is either directly dependent, indirectly dependent, or completely independent on
the latest decision. A direct dependency means that we can derive a feature’s selection
state directly from the latest decision, because both features are connected via one
or more logical implications (i.e., simple feature dependencies). By contrast, an indi-
rectly dependent selection state cannot be determined without considering the selection
state of other features besides the one configured in the latest configuration step. An
independent selection state is not affected by the latest decision step at all.

To exemplify our statements in this chapter, we use a smaller version of the Chat feature
model from Chapter 2. We depict the corresponding feature diagram in Figure 3.1. By
examining a configuration step involving the feature Chatroom, we can show all three
mentioned categories of selection-state dependencies. Assume, we start an interactive
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configuration process and, as first step, we assign a positive selection state to Chatroom

(i.e., select it). We can see that some selection states of other features are directly
dependent on this decision. These are the positive selection states of Online, Username,
and Login and the negative selection state of Direct. A negative selection state is
implied for Direct, due to the alternative-group with Chatroom. In addition, a positive
selection state is implied for Online (parent of Chatroom), Username (via a cross-tree
constraint), and Login (parent of Username). We can derive each of these selection
states directly from the positive selection state of Chatroom without considering the
selection state of other features. Furthermore, we can see that the positive and negative
selection states of feature Password are independent from our decision. By contrast,
if we start the interactive configuration process by assigning a negative selection state
to Chatroom (i.e., deselecting it), we can see indirect dependencies for other selection
states. In total, there are six selection states that are indirectly dependent on this
decision, the positive selection states of Direct, Online, Username, and Login and the
negative selection states of Direct and Online. All these selection states might be
implied after our made decision, but they do not directly dependent on the deselection
of Chatroom. For instance, a negative selection state of Chatroom’s parent feature
Online is forced, if Online’s other child, Direct, is also deselected in the current
partial configuration. Likewise, a positive selection state of Direct is forced if Online
is selected. However, we cannot determine these selection states without considering at
least one other feature besides the currently configured one (e.g., Chatroom).

For automated decision propagation, we can use the categorization of other features’
selection states to reduce the amount of complex-propagation-test applications. Both,
directly dependent and independent selection states of features can be determined by
just considering the currently configured feature. Only the indirectly dependent se-
lection states require more extensive computations. Therefore, a categorization of the
possible selection states of all undefined features, based on the current configuration
step, means that we are able to save computational effort and, hence, improve the
overall performance of the configuration process.

3.1.2 Usage of Implication Graphs

A first approach to realize the categorization described above is to model the feature
dependencies as an implication graph. As we stated in Chapter 2, all propositional
formulas that are convertible into 2-CNF can also be written as an implication graph.
However, most feature models contain feature groups or complex cross-tree constraint,
which prevents us from representing the entire feature model as a 2-CNF propositional
formula. Therefore, in most cases, we cannot use ordinary implication graphs to express
the dependencies of a feature model. However, we can exclude those parts of the
feature model that cannot be written in 2-CNF and use the remaining constraints to
build a reduced implication graph. Except for feature groups and complex cross-tree
constraints, we can convert every construct of a feature diagram into a 2-CNF statement.

For instance, if we only use the 2-CNF clauses of a CNF, we could create a partial
implication graph. From this partial graph, we are able to derive certain information
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that are useful for the decision propagation. Naturally, this graph does not fully rep-
resent the original model, since we excluded all other clauses. However, in Chapter 1,
we specified secondary conditions for our approach that demand an exact and com-
plete result of the decision propagation (cf. condition 1). Therefore, we also need the
remaining dependencies of the feature model for a complete decision propagation and,
thus, we propose an extension for implication graphs that is able to hold the necessary
information. We call the resulting data structure a feature graph.

A feature graph is based on an ordinary implication graph and, thus, it is also a directed
graph with nodes that represent the selection states of single features. The difference
between our graph and an ordinary implication graph is that we use two different kinds
of edges, which we call strong connections and weak connections. Strong connections
represent a direct dependency from one node to another. By contrast, weak connections
represents an indirect dependency. Furthermore, if we traverse through the feature
graph, starting from node A and are not able to reach a certain node B, then these two
nodes, A and B, are independent of one another. Thus, the feature graph exactly holds
those information that are required by our configuration assistant.

We can divide our approach into two consecutive phases, the initialization phase, where
the feature graph is constructed and the configuration phase, where the feature graph
is used for the automated decisions propagation. In the following section, we explain
both phases in detail. At first, we demonstrate how we utilize the information, repre-
sented by our feature graph, to improve the decisions propagation in the configuration
phase. Afterwards, we present the initialization phase of our approach, which consist
of constructing a feature graph based on a given feature model.

3.2 Configuration Phase

We now demonstrate how our feature graph is used during the interactive configuration
process. To comprehend to our approach, in Figure 3.2, we depict a complete feature
graph for our small Chat product line (see Figure 3.1). The feature graph consists of
two nodes for each variant feature in the feature model. Each node represents either
the positive or negative selection state of the corresponding feature (e.g., Chatroom
and ¬Chatroom). The dependencies between the nodes (i.e., selection states) are rep-
resented by the graph’s strong and weak connections.

The interactive configuration process consists of consecutive configuration steps with
subsequent decisions propagation. In our approach, we realize the decision propagation
with a selection algorithm that uses the information of our feature graph. For each con-
figuration step, our selection algorithm traverses through the feature graph to determine
selection states of yet undefined features. The decision, made in one configuration step,
can be mapped to the corresponding node in the feature graph. For instance, when we
deselect the feature Chatroom, this decision is mapped to the feature-graph node that
represents the negative selection state of Chatroom (i.e., ¬Chatroom). This node rep-
resents the starting point of the following traversal. By performing a depth-first search
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Figure 3.2: Feature graph for the Chat feature model (cf. Figure 3.1).

(DFS), our selection algorithm visits every node that can be reached from the starting
node via one or more connections. For each reached node, the algorithm examines the
connection types in the path from the starting node. If the path only consists of strong
connections (i.e., a strong path), our algorithm immediately knows the selection state
of the corresponding feature. By contrast, if the path contains at least one weak con-
nection (i.e., a weak path), our algorithm has to determine the selection state with the
complex propagation test. For all nodes that are not connected to the starting node,
the algorithm has to do nothing.

In Algorithm 1, we show pseudo source code for the general selection algorithm. This
algorithm realizes the feature-graph traversal recursively. The algorithm starts with
the procedure decisionPropagation (Line 1). As parameters, the algorithm passes
the feature graph and information from the latest configuration step, which feature was
configured and which selection state (positive or negative) was set. At first, the algo-
rithm retrieves the node in the feature graph that maps to the latest decision (Line 2).
Then, it traverses along all strong paths (Lines 3, 6–15) and sets the corresponding se-
lection states (Lines 11, 28–34). After that, it traverses along the weak paths (Lines 4,
16–27) and tests the found selection states via the complex propagation test (Line 21).
If the complex propagation test is successful, the algorithm sets the corresponding se-
lection state (Lines 22, 28–34). In Section 3.3.2 we introduce the concept of transitive
closure, which adds all transitive edges to the feature graph. Without anticipating too
much, we can say that this approach limits the DFS’ search depth to one level, i.e.,
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Algorithm 1 Configuration Assistant - General Selection Algorithm: After each con-
figuration step, decisionPropagation is called with according parameters.

1: procedure decisionPropagation(featureGraph, feature, selectionState)

2: node← featureGraph.getNode(feature, selectionState)
3: traverseStrong(node, ∅)
4: traverseWeak(node, ∅)
5: end procedure

6: procedure traverseStrong(nodestart, nodesvisited)

7: nodesvisited ← nodesvisited ∪ {nodestart}
8: nodesadjacent ← nodestart.strongNeighbors \ nodesvisited
9: for all nodeneighbor ∈ nodesadjacent do
10: if nodeneighbor.feature.selectionState = UNDEFINED then
11: configure(nodeneighbor)
12: end if
13: traverseStrong(nodeneighbor, nodesvisited)
14: end for

15: end procedure

16: procedure traverseWeak(nodestart, nodesvisited)

17: nodesvisited ← nodesvisited ∪ {nodestart}
18: nodesadjacent ← nodestart.allNeighbors \ nodesvisited
19: for all nodeneighbor ∈ nodesadjacent do
20: if nodeneighbor.feature.selectionState = UNDEFINED then
21: if complexTest(nodeneighbor) then
22: configure(nodeneighbor)
23: end if
24: end if
25: traverseWeak(nodeneighbor, nodesvisited)
26: end for

27: end procedure

28: procedure configure(node)

29: if node.isPositive then
30: node.feature.selectionState← POSITIVE
31: else
32: node.feature.selectionState← NEGATIVE
33: end if

34: end procedure

it only has to visit the direct neighbors of the starting node. Thereby, we are able to
simplify the selection algorithm. We present the corresponding pseudo source code in
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Algorithm 2 Configuration Assistant - Simplified Selection Algorithm.

1: procedure decisionPropagation(featureGraph, feature, selectionState)

2: node← featureGraph.getNode(feature, selectionState)
3: traverseStrong(node)
4: traverseWeak(node)

5: end procedure

6: procedure traverseStrong(nodestart)

7: for all nodeneighbor ∈ nodestart.strongNeighbors do
8: if nodeneighbor.feature.selectionState = UNDEFINED then
9: configure(nodeneighbor)
10: end if
11: end for

12: end procedure

13: procedure traverseWeak(nodestart)

14: for all nodeneighbor ∈ nodestart.weakNeighbors do
15: if nodeneighbor.feature.selectionState = UNDEFINED then
16: if complexTest(nodeneighbor) then
17: configure(nodeneighbor)
18: end if
19: end if
20: end for

21: end procedure

Algorithm 2. Nevertheless, in Section 3.3.2, we also introduce an alternative concept,
transitive reduction, which relies on the general selection algorithm.

We exemplify the functionality of the simplified selection algorithm (i.e., Algorithm 2)
with the help of our Chat feature model (see Figure 3.1). In order to use the sim-
plified selection algorithm, we have to apply transitive closure to the feature graph
depicted in Figure 3.2. We later explain the procedure of transitive closure in more
detail (see Section 3.3.2), for now, we just consider the resulting feature graph, which
we visualize in Figure 3.3. As first configuration step, we manually select the fea-
ture Online. We now look at all nodes that can be reached from the starting node
Online, which represents the positive selection state of feature Online. We can find
connections in the graph that lead to the nodes Direct, Chatroom, Username, Login,
¬Direct, and ¬Chatroom. Thus, we have to determine the corresponding selection
states. Note that we do not need to consider other nodes such as Password or ¬Login,
nor any other nodes that cannot be reached from Online. Since there are weak con-
nections on all found paths, we need to use the complex propagation test to compute
all forced selection states. When we apply the complex propagation test, we find out
that there is no other feature that has to be selected or deselected in this configuration
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Figure 3.3: Feature graph for the Chat feature model (cf. Figure 3.1) after feature-graph
restructuring (using transitive closure).

step. In the next configuration step, we manually deselect the feature Login. When
we look at the feature graph, we see that we have strong connections from ¬Login to
¬Password, ¬Username, and ¬Chatroom. In addition, we have weak connections to
Direct, ¬Direct, Online, and ¬Online. However, since we already know the selection
states for the features Online, Login, Chatroom, Username, and Password, we only
have to compute whether Direct has to be selected, deselected, or stays undefined. By
using the complex propagation test, we find out that we have to select Direct. We
now have a full and valid configuration of our example product line, which includes the
features Online and Direct.
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3.3 Initialization Phase

Before we can use our new approach to configure a software product line, we need to
build a feature graph by extracting feature dependencies of the product line’s feature
model. Our approach creates a feature graph for a given feature model in its initial-
ization phase, which consists of three major steps. The first step is the computation
of all variant features of the given feature model, which form the basis for the feature
graph’s nodes. In the second step, all feature dependencies from the feature model are
converted into edges between the nodes of our feature graph. As last step, the created
feature graph is restructured by either removing or adding transitive edges. The in-
tention behind the last step is to increase the feature graph’s efficiency either in terms
of memory-space consumption or computational effort during the automated decision
propagation. In the following, we explain each step in more detail.

3.3.1 Feature-Graph Construction

The first step of building the feature graph consists of finding all variant features, i.e.,
all non-core, non-dead features of the given feature model (cf. Section 2.4.2). Since
the selection states of core and dead features are fixed, we do not need to consider
these features in the automated decision propagation. By reducing the total number of
features contained in the graph, we are able to save memory space. Additionally, we
might be able to derive several strong connections if non-variant features are contained
in a feature group. Moreover, including dead or core features in the feature graph would
cause problems later on, when we are determining transitive connections.

In particular, we calculate all core and dead features and remove them from the total set
of features. All remaining features are variant features and are used to create the nodes
of our feature graph. Each feature is converted into two nodes, where the first node
represents the positive and the second node the negative selection state. Considering
our example feature model shown in Figure 3.1, we now have a feature graph with 12
nodes and no connections, which we display in Figure 3.4 (Note that the depicted graph
is centrally symmetric to provide an easy orientation).

In the second step of building the feature graph, our approach converts all dependencies,
specified by the feature model, to connections in the feature graph. The most general
way of converting all dependencies is to translate them into a CNF and transform
each clause into the corresponding connections. In fact, we use this method for feature
models given as a propositional formula and for complex cross-tree constraints in feature
diagrams. However, if the feature model is given in form of a feature diagram, we are
able to analyze its tree structure to identify dependencies without translating it into a
CNF. Moreover, many feature-diagram structures can be written as logical implications
and, thus, are converted to strong connections.

For the mapping of structural information from feature diagrams to connections of our
feature graph, we use a set of mapping rules. We list the mapping rule for each structure
in a feature diagram in Table 3.1 and explain it in the following, in more detail. In total,
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Figure 3.4: Incomplete feature graph for the Chat feature model (cf. Figure 3.1) after
determining variant features (containing nodes only).

there are six structures in a feature diagram that we need to consider. We can derive
feature dependencies from parent-child relationships, mandatory features, alternative-
groups, OR-groups, and complex and simple cross-tree constraints. Note that any type
of connection is only added to the feature graph if both involved features are neither
dead or core features, because these are not contained in the graph.

At first, we consider the most frequent structure of a feature graph, the parent-child
relationship. This structure can be represented by a logical implication from the child to
its parent. Hence, they are mapped to a strong connection from the positive node of the
child feature to the positive node of its parent. Since an implication A⇒ B is equivalent
to the expression ¬B ⇒ ¬A, we also add a strong connection from the negative parent
node to the negative child node. In Figure 3.5, we visualize our example feature graph
with all strong connections that result from parent-child relationships (highlighted in
blue color).

Next, we add strong connections for all mandatory features in the feature diagram.
Similar to parent-child relationships, mandatory features can be represented by a logical
implication between parent and child feature. Though, the implication is inverted
compared to the parent-child relationship. Thus, we add two strong connections to the
feature graph, from the positive node of the parent to the positive node of the child and
from the negative node of the child to the negative node of the parent. Considering
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Structure (Features) Strong Connections Weak Connections

Parent-Child Relationship Parent → Child
(Parent, Child) ¬Child → ¬Parent

Mandatory Feature Child → Parent
(Parent, Child) ¬Parent → ¬Child

Alternative-Group Child1 → ¬Child2 Parent → Child1
(Parent, Child1, Child2 → ¬Child1 Parent → Child2
Child2) ¬Child1 → Child2

¬Child1 → ¬Parent
¬Child2 → Child1
¬Child2 → ¬Parent

OR-Group Parent → Child1
(Parent, Child1, Parent → Child2
Child2) ¬Child1 → Child2

¬Child1 → ¬Parent
¬Child2 → Child1
¬Child2 → ¬Parent

2-CNF Cross-Tree ¬A → B
Constraint (A ∨B) ¬B → A

Complex Cross-Tree ¬A → B
Constraint ¬A → C

(A ∨B ∨ C) ¬B → A
¬B → C
¬C → A
¬C → B

Table 3.1: Rules for mapping feature-diagram structures to connections of a feature
graph.

our example feature graph, we add both strong connections for the mandatory feature
Username and depict the result in Figure 3.6.

Contrary to parent-child relationships and mandatory features, feature groups add weak
connections to the graph, since they involve more than two features. For OR-groups,
we add a weak connection from the positive node of the parent feature to the positive
node of each child feature in the group. In addition, we add a weak connection from
the negative node of each child to the positive node of every other child. Moreover,
we add a weak connection from the negative node of each child to the positive node
of its parent. Alternative-groups are converted exactly like OR-group, but with one
extension. For each alternative feature we add a strong connection from its positive
node to each negative node of other features in the group. Note that, for both feature
groups, we do not need to add strong connections from child to parent nodes, since
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Figure 3.5: Incomplete feature graph for the Chat feature model (cf. Figure 3.1) during
feature-graph construction (only parent-child relationships).

these connections were already added via the conversion of parent-child relationships.
We display the updated feature graph of our running example in Figure 3.7.

In some special cases, it is possible to identify more strong connections within feature
groups or at least reduce the amount of weak connections. As we mentioned above, such
a situation can occur if a group contains non-variant features. If a core feature is part
of an OR-group, it makes all other variant features in this group optional. Hence, we do
not need to add weak connections for this particular group. Another important point is
that each dead feature within any feature group can be neglected. Therefore, we count
all non-dead features of a feature group. Assuming the parent feature of the group is not
dead, there are two different situations in which we are able to add strong connections
instead of weak ones. First, if any feature group only contains one variant feature, it
can be treated as ordinary mandatory feature. Second, if an alternative-group contains
exactly two variant features and the parent feature is core, then, instead of weak, we
can add strong connections between both features of the group. Although these special
cases seem rather odd and ill-designed, they can actually be found in industrial feature
models, since those models often evolve over time and are not completely redesigned.

Finally, we add connections to the graph that result from cross-tree constraints. For
cross-tree constraints, as well as for feature models given as propositional formula, we
use the method mentioned above. In particular, we translate the whole constraint or
formula into a CNF and investigate each clause on its own. For us, the relevant property
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Figure 3.6: Incomplete feature graph for the Chat feature model (cf. Figure 3.1) during
feature-graph construction (only parent-child relationships and mandatory features).

is the number of different variables contained in the current clause. If a clause contains
exactly two variables it can be written as an implication and, thus, is converted into
strong connections in our feature graph. Furthermore, a clause with only one variable
represents a core or dead feature and since these features are not part of the feature
graph, we ignore those clauses. In contrast, a clause with three or more variables is
converted into weak connections. We add a weak connection from the negative to the
positive node for each variable 2-tuple in the constraint. If a variable in a clause is
present in its negated form, we respectively use the opposite node in the graph. We
display the complete example feature graph in Figure 3.8.

Naturally, we try to identify as many strong connections as possible to avoid adding
weak connections to our feature graph. In this work, we use a rather simple approach
to convert the dependencies and, thus, may not find the maximum amount of strong
connections. As we demonstrated in Section 3.2, only weak connections lead to ex-
tensive computations. Therefore, we can infer that the fewer weak connections are
contained in a feature graph the better is the performance of the automated decision
propagation. Feature-diagram structures that lead to weak connections are OR-groups,
alternative-groups, and complex constraints (i.e., constraints that cannot be written in
2-CNF). Hence, we assume that these structures have a negative impact on the overall
performance.
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Figure 3.7: Incomplete feature graph for the Chat feature model (cf. Figure 3.1) during
feature-graph construction (excluding cross-tree constraints).

3.3.2 Feature-Graph Restructuring

As a last step of the initialization phase, we apply one of two contrary strategies,
transitive closure or transitive reduction, to restructure the current feature graph. That
is, we are either adding all possible transitive connections to the graph or reducing them
to a minimum. Although these strategies are not mandatory in order for the selection
algorithm to work, each strategy has individual advantages and disadvantages regarding
memory-space consumption of the graph and computational effort of the initialization
and configuration phase. In addition, the chosen strategy has an influence on the
selection algorithm, which we already addressed in Section 3.2. In our implementation
and, thus, also in our evaluation, we use the first strategy, transitive closure, for various
reason, which we explain in the next section.

Transitive Closure

Transitive closure adds all transitive connections to the feature graph. The main ad-
vantage of this method is reduction of computational effort during the configuration
phase. Since all transitive connections are already contained in the feature graph, there
is no need for a complete search in the graph during the decision propagation to find
all affected features. It is sufficient to just consider the direct neighbors of the starting
node. Therefore, the selection algorithm becomes easier to implement, as we already
presented in Section 3.2. This advantage comes at the cost of more computational effort
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Figure 3.8: Complete feature graph for the Chat feature model (cf. Figure 3.1) after
feature-graph construction.

for constructing the feature graph, because the search must be performed during the
initialization phase.

To find all transitive connections, we use a search algorithm that is based on a DFS. We
show the general approach of the search algorithm as pseudo code in Algorithm 3. For
each node in the graph, the search algorithm performs a DFS and adds a connection for
every found path. At first, the search algorithm only considers strong paths (Lines 5,
15–22). For each found strong path, the search algorithm adds a strong connection
to the feature graph (Line 19). Note that the used procedure addStrongConnection

overrides existing weak connections. Afterwards, the search algorithm adds transitive
connections for the remaining weak paths (Lines 11, 23–30). Unlike the previous pro-
cedure addStrongConnection, the procedure addWeakConnection (Line 27) does not
override any strong connection. In order to avoid searching the same subgraph twice,
the algorithm keeps track of all nodes where the DFS was already performed (Lines 2, 6,
8, 12). However, since we perform a DFS for each feature, we end up with a complexity
of O(n3), where n is the number of nodes in the graph.

As example, we visualize the results of transitive closure on the feature graph depicted in
Figure 3.2. In Figure 3.9, we show all transitive strong connections that can be found
using our search algorithm. We depict the complete result, containing all transitive
connections, in Figure 3.3.
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Algorithm 3 Search Algorithm for Transitive Closure of a Feature Graph.

1: procedure transitiveClosure(featureGraph)

2: nodesvisited ← ∅
3: for all node ∈ featureGraph.nodes do
4: nodesvisitedCopy ← nodesvisited
5: searchStrong(node, node, nodesvisitedCopy)
6: nodesvisited ← nodesvisited ∪ {node}
7: end for

8: nodesvisited ← ∅
9: for all node ∈ featureGraph.nodes do
10: nodesvisitedCopy ← nodesvisited
11: searchWeak(node, nodesvisitedCopy)
12: nodesvisited ← nodesvisited ∪ {node}
13: end for

14: end procedure

15: procedure searchStrong(nodestart, nodecurrent, nodesvisited)

16: nodesvisited ← nodesvisited ∪ {nodecurrent}
17: nodesadjacent ← nodecurrent.strongNeighbors \ nodesvisited
18: for all nodeneighbor ∈ nodesadjacent do
19: addStrongConnection(nodestart, nodeneighbor)
20: searchStrong(nodestart, nodeneighbor, nodesvisited)
21: end for

22: end procedure

23: procedure searchWeak(nodestart, nodecurrent, nodesvisited)

24: nodesvisited ← nodesvisited ∪ {nodecurrent}
25: nodesadjacent ← nodestart.allNeighbors \ nodesvisited
26: for all nodeneighbor ∈ nodesadjacent do
27: addWeakConnection(nodestart, nodeneighbor)
28: searchWeak(nodestart, nodeneighbor, nodesvisited)
29: end for

30: end procedure

Since transitive closure adds connections to the feature graph, it becomes more dense.
Due to this circumstance, we store a feature graph, restructured with transitive closure,
as an adjacency matrix. Although the usage of an adjacency matrix leads to quadratic
space consumption with respect to the number of variant features in the given feature
model, contrary to an adjacency list, a matrix has a constant size regarding the number
of connections within the feature graph.
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Figure 3.9: Feature graph for the Chat feature model (cf. Figure 3.1) during feature-
graph restructuring (using transitive closure).

Transitive Reduction

With transitive reduction, we try to make the graph as minimal as possible by remov-
ing transitive connections within the graph. When we consider the complete feature
graph of our Chat feature model (cf. Figure 3.2), we can see that it is already free of
transitive connections. Due to the small amount of cross-tree constraints, no redundant
connections were added during the feature-graph construction.

The strategy of transitive reduction can help to reduce the graph’s space consumption
and may lead to performance improvements during the configuration phase. A sparse
graph can be saved efficiently, in terms of space consumption, by using an adjacency
list. Regarding computation time during the configuration phase, there exists both,
advantages and disadvantages. On the one hand, the selection algorithm needs to
traverse through the whole feature graph (i.e., perform a full DFS) in order to find
all potential selection states it needs to consider. This may lead to performance loss
compared to the simplified selection algorithm, which we described above. On the
other hand, it is possible to enhance the selection algorithm to exclude certain paths
and, subsequently, reduce the amount of complex propagation tests. By this, we are
able to compensate a weakness of the alternative strategy, transitive closure.

During the application of transitive closure, weak paths always lead to weak tran-
sitive connections, which can cause unnecessary computations in certain cases. We
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demonstrate this situation with the help of the transitive reduced feature graph (see
Figure 3.2) and the transitive closed feature graph (see Figure 3.3) of our Chat feature
model. Assume, we select feature Online and afterwards deselect feature Direct. By
the application of transitive closure, there exists a weak connections from ¬Direct to
Chatroom, Username, and Login. Therefore, the selection algorithm would apply the
complex propagation test to determine the selection states of the features Chatroom,
Username, and Login. However, from the selection state of Chatroom, we can directly
infer the selection states of Username and Login, due to the strong connection between
these three features. A selection algorithm that is able to consider this circumstance
and traverses carefully through the feature graph, could exclude unnecessary complex
propagation tests and, thus, would have a faster performance. Of course, the success
rate of this method highly depends on the traversing order. However, since we are
using transitive closure, we do not further investigate feasible traversing orders for the
selection algorithm.

Strategy Comparison

Both strategies have their individual advantages, however, in our actual implementation
we use transitive closure. The main advantage of transitive closure is that the simplified
selection algorithm does not need to consider a specific traversing order. Thus, we
are able to use any arbitrary traversing order, which is the demand of our secondary
conditions that we specified in Chapter 1 (cf. condition 2). Another reason, why
we choose this strategy over transitive reduction, is the lower implementation effort.
Both the adjacency matrix as well as the automated decision propagation algorithm
can be implemented more easily, which on the one hand saves time and on the other
hand reduces the number of potential bugs in the implementation. Therefore, in the
remainder of our thesis, we focus on the strategy of transitive closure and the simplified
selection algorithm. Nevertheless, the strategy of transitive reduction might be worth
considering in the future to further improve our approach.

3.3.3 Feature-Graph Storage

In sum, the initialization phase of our approach consists of two time consuming tasks,
the determination of variant features and the restructuring of the feature graph. For
each new interactive configuration process, we have to re-execute the initialization
phase. However, all information from the initialization phase are available in the feature
graph. Hence, it is wise to save the computed graph after the first initialization phase
to the hard drive and load it again, when needed. As long as the used feature model is
not modified, we can load the already computed feature graph into the main memory
and, thus, are able to skip the initialization phase of our approach.

Above, we already discussed the space consumption for the two different restructuring
techniques. A possible way to further minimize the required memory space is the usage
of certain compression techniques. However, the additional investigation of a suitable
feature-graph compression technique is beyond the scope of our thesis.
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In this chapter, we explain the implementation details of our approach, the configura-
tion assistant. In particular, we describe the internal structure of the feature graph and
the propagation algorithm that is used for the interactive configuration process. Fur-
thermore, we explain the implementation of the complex propagation test and propose
two modifications that improve its performance.

We prototypically implement our configuration assistant in Java 1.7 and embed it into
FeatureIDE to use the already existing tool support such as loading and analyzing fea-
ture models. For instance, we use the analysis for variant features and the dependency
analysis implemented in FeatureIDE (cf. Section 2.4).

4.1 Feature-Graph Structure

In Chapter 3, we introduced two alternative concepts for restructuring the feature graph,
transitive closure and transitive reduction, which both have their individual advantages.
Our implementation, presented in this chapter and used for our evaluation, is based on
transitive closure. Due to the inclusion of all transitive connections, the feature graph
can become relatively dense, in theory. Since an adjacency list produces too much
spatial overhead for dense graphs, compared to an adjacency matrix, we use a matrix
to store the feature graph data structure.

4.1.1 Underlying Data Structure

The adjacency matrix is a 2D array that contains all connections of the graph. Since
we use a directed graph, the matrix is not symmetrical. Thus, when we access a single
value, the order of the specified indices matters. For instance, if we want to check
whether there is a connection from node A with the index 1 to Node B with the index
2, we read the matrix cell at the position (1, 2). To check the other direction, we have
to invert both indices (i.e., (2, 1)).
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Our concept uses two different connection types, strong and weak connections (cf. Chap-
ter 3). In addition, there can also be no connection between two features. Hence, we
need at least two bits to indicate the existence of a connection. Therefore, we decided
to use one byte for each cell of the adjacency matrix and store it as one linear byte
array. A linear array infers that we map each index tuple (i, j) to just one value k with
the function k = (i ∗ n) + j where n is the number of nodes in the feature graph.

4.1.2 Connection Encoding

To further utilize the storage capacity of a one-byte cell, we combine the positive and
negative nodes of each feature. If one feature is not connected to another one, we
can express this with an empty cell (i.e., it contains the value 0). Naturally, the main
diagonal of the matrix only contains empty cells, since no feature is connected to itself.
Otherwise, if a feature has at least one connection to another feature, the corresponding
cell has to specify three distinct properties, which we state in Table 4.1.

Property Possible values Meaning

From positive, negative whether from-node is negative or positive
To positive, negative whether to-node is negative or positive
Connection weak, strong whether the connection is weak or strong

Table 4.1: Information in a matrix cell for one connection.

Using these three independent properties, there are 8 possible combinations. Thus, we
use the byte of each matrix cell as a bit field, where each single bit represent a certain
connection. We list the encodings of all 8 bits in Table 4.2. The advantage of using
single bits is that they can be handle by using bitwise operations, such as shifting and
logical operations, which has a positive effect on the runtime performance.

Bit From To Connection

00000001 (0x01) negative negative weak
00000010 (0x02) negative negative strong
00000100 (0x04) negative positive weak
00001000 (0x08) negative positive strong

00010000 (0x10) positive negative weak
00100000 (0x20) positive negative strong
01000000 (0x40) positive positive weak
10000000 (0x80) positive positive strong

00000000 (0x00) - - none

Table 4.2: Meaning of each bit in a single cell of the adjacency matrix.

Since one cell refers to more than one node in the feature graph, the single bits can be
combined with each other to indicate multiple connections. For example, consider our
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Chat feature model from Chapter 3 (see Figure 3.1). The feature model has six variant
features. Hence, the resulting byte array for the adjacency matrix has 36 entries. Based
on preorder indexing of the features, the feature Online has the index 0 and Chatroom

has the index 2. Thus, the 12th cell (i.e., (2 · 6) + 0 = 12) in the byte array represents
all connections in the feature graph from Chatroom to Online. In our example, the cell
has the value 10000101. With respect to our encoding given in Table 4.2, we see that
there are three connections, a strong connection from the node Chatroom to the node
Online, a weak connection from ¬Chatroom to Online, and a weak connection from
¬Chatroom to ¬Online.

Note that the bits in Table 4.2 are ordered in a certain way. The four upper bits repre-
sent connections from positive nodes, whereas the four lower bits represent connections
from negative nodes. Thus, both bit-groups are independent of each other and can be
combined in any way. By contrast, there are invalid bit combinations within a sin-
gle bit-group. For example, the byte 00001010 is invalid, because the four lower bits
represent contradictory strong connections (i.e., ¬A → B and ¬A → ¬B). In total,
there are six valid and ten invalid combination for each bit-group. We listed all possible
combinations in Table 4.3.

Combination Valid Connection To

0000 (0x00) yes none -
0001 (0x01) yes weak negative node
0010 (0x02) yes strong negative node
0011 (0x03) no - -
0100 (0x04) yes weak positive node
0101 (0x05) yes weak positive and negative node
0110 (0x06) no - -
0111 (0x07) no - -
1000 (0x08) yes strong positive node
1001 (0x09) no - -
1010 (0x0A) no - -
1011 (0x0B) no - -
1100 (0x0C) no - -
1101 (0x0D) no - -
1110 (0x0E) no - -
1111 (0x0F) no - -

Table 4.3: Validity of all possible bit combinations for one bit-group (i.e, the four upper
or lower bits).

4.1.3 Feature-Graph Storage

The usage of an adjacency matrix means that the byte array grows quadratically in
size with an increasing number of features. Considering only the byte array, the feature
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graph uses a memory space of n2 + 12 byte where n is the number of variant features
and 12 the overhead for a primitive array in Java. However, the byte array is only
one part of a single Java class that represents the entire feature graph. Besides the
byte array, the class also contains three string arrays to store the core, dead, and
variant features separately. Although, we do not include core and dead features in the
feature graph, these features must be present for the configuration process to ensure a
consistent feature model. The array containing all variant features is used to define a
unique index for each feature in the feature graph. Generally, the exact size of these
arrays cannot be specified in advance, since it is dependent on the length of the single
feature names. Anyway, the total size of all three arrays only grows linearly with the
number of features. Thus, their impact on the overall space consumption of the feature
graph class is negligible for large feature models.

Since the initial computation of the feature graph takes up some time, we implemented
a store and load mechanism to save the feature graph to the hard drive. For this, we
use the native serialization stream of Java. Hence, we are not using any compression
techniques to shrink the feature graph’s size. However, it is most likely that even
standard compression techniques can reduce the size of the saved array drastically,
which has mainly two reasons. First, more than half of the possible bit combinations are
invalid and, second, it is unlikely that the valid bit combinations are evenly distributed.

4.2 Selection Algorithm

The connections in our feature graph determine whether we have to use the complex
propagation test or are able to directly deduce the implied selection state. In this sec-
tion, we describe the implementation of the traversal through a feature graph during one
configuration step. Furthermore, we describe the implementation of the complex prop-
agation test that we use for our evaluation. In addition, we propose two modifications
that we use to improve the performance of the complex propagation test.

4.2.1 Feature-Graph Traversal

Each configuration step consists of one configured feature and the subsequent decision
propagation (see Section 2.3). For the propagation, we have to traverse through the
feature graph to find all possibly affected features. In our implementation, we use
transitive closure to compute all transitive connections before the actual configuration
process. Hence, the traversal of the feature graph during one configuration step can be
reduced to an iteration of all direct neighbors of the configured feature. In detail, we
iterate through a complete row of the adjacency matrix. That means, if the configured
feature has the index i, we check all matrix cells from (i, 0) to (i, n− 1), where n is the
number of features in the feature graph.

Depending on the defined selection state of the configured feature, we either consider
the four upper (i.e., positive) or the four lower bits (i.e., negative). For every other
feature of the feature graph, we find one of the six valid bit combination as shown in
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Table 4.3. Each bit combination infers an appropriate action, which we list in Table 4.4.
The combination 0000 indicates that there is no connection from the configured feature
to the other one. Thus, in this case, the algorithm has to do nothing and proceeds. If
we find a strong connection (i.e., for the combinations 0010 or 1000), we accordingly
change the selection state of the other feature, to positive or negative. Otherwise, if
we find a weak connection (i.e., 0001, 0100, or 0101), we add the other feature to a
list of features that we have to test with the complex propagation test. Since a weak
connection can connect to a positive and a negative node, we manage two separate lists
for potential conditionally core and conditionally dead features.

Valid Combination Action

0000 (0x00) do nothing

0010 (0x02) deselect the current feature
1000 (0x08) select the current feature

0001 (0x01) add current feature to dead list
0100 (0x04) add current feature to core list
0101 (0x05) add current feature to core list and dead list

Table 4.4: Performed action for each valid bit combination for one bit-group.

After we finished the traversal through the feature graph, we changed the selection
states of all features that could be reached via a strong connection. In addition, we
collected all features that are weakly connected to the configured feature. Afterwards,
we perform the complex propagation test with each feature in the core and dead list
independently. Thus, we present our implementation of the complex propagation test
in the following section.

4.2.2 Complex Propagation Test

All weakly connected features that were collected by the selection algorithm during the
feature-graph traversal have to be tested with the complex propagation test. As we
stated in Chapter 3, the complex propagation test consists of an arbitrary implemen-
tation of the dependencies analysis (cf. Section 2.4.3). Generally, our approach can be
used with every dependencies-analysis implementation, as long as it is conform to our
secondary conditions specified in Chapter 1. For our implemented prototype, we use a
slightly adapted dependencies-analysis implementation of FeatureIDE, which is based
on satisfiability solvers. In turn, FeatureIDE relies on the Sat4j library, which is a pop-
ular Java library that provides multiple satisfiability-solver implementations [LBP10].

FeatureIDE uses the dependency-analysis implementation concept that we presented
in Chapter 2 (cf. Section 2.4.3). At first, FeatureIDE’s algorithm assigns the truth
values to all variables in the propositional formula according to the selection states
in the current partial configuration. The truth value of the variable for each selected
feature is set to true and for each deselected feature to false. Then, the algorithm
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iterates over all undefined features and performs a satisfiability test for each feature as
follows. The truth value of the variable for the undefined feature is set to false and
subsequently a satisfiability solver determines the satisfiability of the formula regarding
the current variable assignment. If the formula is not satisfiable, then the current feature
is conditionally core and, thus, is selected in the partial configuration. Otherwise, if the
formula is satisfiable, the algorithm tests whether the undefined feature is conditionally
dead by applying the same test with the initial truth value true and, if necessary,
deselects the feature in the partial configuration. Thus, for each undefined feature that
is checked, the algorithm has to query the satisfiability solver. In the worst-case, this
results in 2 · n satisfiability solver calls, where n is the number of undefined features in
the given partial configuration.

Since we are using FeatureIDE’s dependency-analysis implementation in our configura-
tion assistant, we made two modifications that significantly speed up the process. We
are using multi-threading for parallel computation and exploit a property of satisfiabil-
ity solvers to reduce the number of checks it has to execute. It is possible to combine
both modifications and, thus, we implemented both and use them in our evaluation. In
the following, we present both modifications in more detail.

Satisfiability Model

Since our complex-propagation-test implementation uses satisfiability solvers, we can
exploit a certain property of these solvers to decrease the total number of complex prop-
agation tests during one configuration step. Each time a satisfiability solver positively
tests a propositional formula for satisfaction, it has identified a satisfying variable as-
signment, also known as model. This model can be used to exclude some possible
selection states in advance, without testing them explicitly. For instance, if a model
defines a variable as true, we know that there exists at least one valid configuration
that includes the corresponding feature. Thus, it is not possible that this feature is
(conditionally) dead. Hence, we do not need to execute the according complex propa-
gation test. Analogous, a variable cannot represent a core feature, if a model defines
the variable as false.

As example for this modification, we use our Chat feature model from Chapter 3 (see
Figure 3.1) for an interactive configuration. We perform a first configuration step by
selecting the feature Login. Next, we use a satisfiability solver for the decision propa-
gation. At first, we assign the truth value for Login = true and perform a satisfiability
check. Since the formula is still satisfiable, the solver finds a suitable model. Here we
assume that the solver computes the model (Chat = true, Online = false, Direct =
false, Chatroom = false, Login = true, Username = true, Password = false).
Thereby, we now know that the variables Online, Direct, Chatroom, and Password
can be false in a satisfying variable assignment. Therefore, the corresponding features
cannot be conditionally core. Similarly, it is possible that the variables Chat, Login,
and Username are true and, thus, it is impossible that their corresponding features are
conditionally dead.
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By using the proposed modification, at least half of all complex propagation tests be-
come unnecessary. That means that this modification approximately improves the
overall runtime of the decision propagation by factor 2. Moreover, we also update the
current model after each complex propagation test, which should result in additional
performance improvements.

Multi-Threading

Due to our secondary conditions from Chapter 1, our approach is able to determine the
selection states of the features independently of each other. This means, we are able to
compute multiple complex propagation tests in parallel.

Our prototype uses the Sat4j library, which, unfortunately, does not support concurrent
access to a satisfiability solver. Therefore, we have to use an extra satisfiability-solver
instantiation for each thread, which results in some minor disadvantages. An extra
instance for each thread produces more overhead for the initialization phase and requires
a higher amount of memory space. Since the single instances are not intended for
parallel work, they cannot share their internal states, which might lead to some duplicate
computations. However, when we combine both modifications, we are able to mitigate
this disadvantage by sharing the computed model and all excluded truth values. Still,
we must be aware of concurrent write access to the shared model and, thus, we have to
synchronize its update method.

4.2.3 Graphical Interaction

Since, FeatureIDE provides an interactive graphical user interface (GUI), we have to
make visible updates for the developer. In FeatureIDE, the developer can edit a config-
uration via a configuration editor, which list all features in form of a tree-structured list.
Every feature has an advanced check box that indicates whether the feature is selected,
deselected, or still undefined. Via clicking this check box, the developer can change the
selection state of the corresponding feature (i.e., perform a configuration step). Each
change then triggers the decision propagation for the altered partial configuration.

Normally, the GUI waits for the decision propagation to finish, before updating the
check boxes of all features. However, as our secondary conditions from Chapter 1
demand, our configuration assistant computes the selection states of each feature in-
dividually. Thus, we are enabled to update the check boxes for each feature on its
own. In addition, we start the decision propagation with the set of features that are
currently visible to the developer. In most cases, this is a very small percentage of the
total number of features. This approach empowers the developer to change the selection
state of another feature before the current decision propagation has finished. When our
selection algorithm executes the complex propagation tests, it checks after each test if
the current partial configuration was altered manually by the developer. If so, the cur-
rently running selection algorithm interrupts itself and afterwards restarts with the new
partial configuration as input. When the selection algorithm is interrupted, it saves the
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lists containing the not yet computed selection states from the current decision prop-
agation and considers these lists in the restarted process. Thus, the final result of the
new decision propagation is still correct, such as if both decision propagation processes
were executed consecutively.



5. Evaluation

In this chapter, we evaluate our approach, the configuration assistant, to find answers
to our research questions from Chapter 1. At first, we describe our evaluation concept,
which properties we want to evaluate, the concrete evaluation set up, and the used
feature models. Then, we present and analyze our evaluation results and discuss pos-
sible threads to validity. We compare our evaluation results with other state-of-the-art
configuration tools, such as S.P.L.O.T. (Software Product Line Online Tools) and Fea-
tureIDE. In addition, we collect and examine various statistical information of feature
graphs from multiple feature models, during the evaluation process.

5.1 Evaluation Concept

As reminder, we, once more, list all of our three research questions below.

RQ1: Does the usage of a feature graph significantly reduce the required com-
putational effort for decision propagation?

RQ2: Does the performance improvement dependent on the used feature model
and if so, which kinds of feature models are most suited for our approach?

RQ3: How is the overall performance of the feature graph, regarding construc-
tion time and memory consumption?

In order to answer our research questions properly, we firstly present an evaluation con-
cept that enables us to measure all necessary values. Initially, we define our evaluation
objectives (i.e., which values we want to measure). Then, we describe our evaluation
set up and what tools and hardware we use for the evaluation process. Finally, we
present the feature model collection that we use as input for the evaluated configura-
tion tools. We use a variety of feature models, which originated from different feature
model repositories, our industrial partners, and the S.P.L.O.T. feature-model generator.
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5.1.1 Evaluation Objectives

During our evaluation, we perform multiple measurements. In particular, we want to
evaluate the following four properties for every feature model.

1. The time required for the initialization phase of each configuration tool.

2. The time required for the decision propagation by each configuration tool.

3. The memory-space consumption of the feature graph.

4. The amount of the different connection types within the feature graph.

Initialization Time

In Chapter 3, we mentioned that our approach requires an initialization phase to build
the feature graph of a feature model. Anyway, all other configuration tools require cer-
tain initial computations as well. Therefore, we measure the computation time of the
initialization phase for all used configuration tools on each feature model. In particular,
all SAT-based configuration tools, including FeatureIDE, S.P.L.O.T., and our config-
uration assistant, have to determine the set of variant features for the given feature
model. As we decided to use transitive closure in our implementation, the initialization
phase of the configuration assistant is extended by the determination of all transitive
connections for the feature graph. Beside S.P.L.O.T.’s SAT-based approach for the
interactive configuration process, it offers another method, which, in its initialization
phase, has to construct a suitable binary decision diagram (BDD). By comparing the
initial computation times of all configuration tools, we are able to partly answer our
research question RQ3.

Decision-Propagation Time

The next measured value, the required time for decision propagation, is the basis for
answering our research question RQ1. Again, we measure the times for all used con-
figuration tools and afterwards compare the results. Due to the exponential number
of different valid configurations, it is practically impossible to compare all configura-
tions of a large feature model. Hence, we thought of three configuration plans, False,
True, and Random, to efficiently compare the performance of different configuration
tools. To simulate an interactive configuration process, we iterate over all features of
a feature model in a certain order and if a feature’s selection state is undefined, we set
it, according to the used configuration plan, to either selected or deselected. Our first
configuration plan, False, tries to deselect as much features as possible by deselecting
each undefined feature. By contrast, our second configuration plan, True, selects each
undefined feature and, thus, tries to select as much features as possible. Lastly, our
third configuration plan, Random, decides randomly whether to select or deselect an un-
defined feature. The used feature order is equal for each configuration plan. In detail,
we use the order given by a preorder traversal of the corresponding feature diagram.

Our first and second configuration plan are straight-forward approaches for selecting
and deselecting as much features as possible. Together, they represent an appropriate
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indicator for the average computation time. Our third configuration plan is designed
as an approximation of how a developer would configure a product line. Normally,
a person traverses through a tree in preorder (i.e., manually performing a depth-first
search) and decides for each feature whether they want to in- or exclude it from the
current product (if the feature is still undefined). Of course, we use the same random
selection of features for each configuration tool. This is realized by using the same seed
for the Java pseudo-random generator for all configuration tools. As the performance of
this configuration plan can vary depending on the randomly chosen selection states, we
use more than one random sample to receive a more significant result. In our evaluation,
we use 6 passes for each model and configuration tool and then compute the arithmetic
mean to get an average result.

Feature-Graph Memory-Space Consumption

To answer the second part of our research question RQ3, we measure the memory-space
consumption of all feature graphs. For this, we save the feature graphs to the hard drive
by using Java’s native serialization mechanism (cf. Chapter 4). Afterwards, we deter-
mine the size of the saved feature-graph files. In addition, we want to measure the
potential of reducing a feature graph’s memory-space consumption through compres-
sion. Thus, we compress the feature-graph files with a standard compression technique
using the open-source tool 7zip1 (Version 9.20). As compression technique, we use the
well-known LZMA algorithm with 7zip’s default settings.

Feature-Graph Connections

Our research question RQ2 addresses the suitability of different feature models for our
approach. Thus, we are interested in structural information about the feature graphs
for our used feature models. Since we assume that the distribution of a feature graph’s
connection types has the most influence on the performance during the configuration
phase, we measure this value and relate it to the computational time for the decision
propagation. For this, we count the connections within the graph by using a static and
a dynamic approach. First, we ingestive the entire feature graph and count all exist-
ing connections within it (i.e., static analysis). Second, we count the actually visited
connections during the decision propagation (i.e., dynamic analysis). Additionally, in
the dynamic analysis, we measure the total number of executed complex propagation
tests. From the static analysis, we can deduce information about the feature graph’s
structure. For instance, its denseness and the ratio between its strong and weak con-
nections. The dynamic analysis gives us information about the traversal in the feature
graph during decision propagation.

5.1.2 Evaluation Set Up

In the following, we describe our evaluation set up, which tools we used, and our
hardware specifications. For the evaluation, we use the prototypical implementation

1http://www.7-zip.org

http://www.7-zip.org
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of our configuration assistant, which we described in Chapter 4. We evaluate this
implementation against other approaches for decision propagation. Additionally, since
our configuration assistant allows the usage of multi-threading (cf. Chapter 4), we use
a varying number of threads for the evaluation of our approach. In total, we use the
following six methods for the interactive configuration process:

• FeatureIDE (FIDE)

• S.P.L.O.T. using a satisfiability solver (SplotSAT)

• S.P.L.O.T. using BDDs (SplotBDD)

• Configuration Assistant using 1 thread (CA1)

• Configuration Assistant using 2 threads (CA2)

• Configuration Assistant using 4 threads (CA4)

FeatureIDE

We already introduced FeatureIDE in Chapter 2 as a framework for various SPLE
tasks, including the interactive configuration process. For our evaluation, we use the
Version 2.7.4, which was published in June 2015. In Chapter 4, we stated that our
approach is based on FeatureIDE and uses its dependency-analysis implementation for
the complex propagation test. Therefore, we expect our approach to be at least as fast
as FeatureIDE for the decision propagation.

S.P.L.O.T.

S.P.L.O.T. is a framework for configuring and analyzing SPLs [MBC09]. We use its
latest version, which was build in November 2010. For our evaluation, we locally execute
S.P.L.O.T. on our machine, instead of using its official web interface2. Thus, we are
able to properly compare the results with other configuration tools. S.P.L.O.T. has two
“configuration engines”, one using satisfiability solvers and the other one using BDDs.
In our evaluation, we test both of them. However, BDDs are not suited for very large
feature models and, thus, we could only apply the BDD configuration engine to feature
models with less than 5,000 features.

Despite using the latest version of Sat4j (2.3.5) in the actual prototype of our approach,
in our evaluation we use the Version 2.0.0, which is also used by S.P.L.O.T.. Since there
are performance differences between both Sat4j versions, we decided to use the same
version for all configuration tools to ensure an unbiased comparison. Because of the
incompatibility of S.P.L.O.T. with the latest Sat4j version, we downgrade the Sat4j
version of FeatureIDE and our prototype, which works without any difficulty.

2http://www.splot-research.org/

http://www.splot-research.org/
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Evaluation Platform

We execute our evaluation on a single machine with the following specifications:

• Processor: Intel Core i5-4670 (4 Cores @ 3.40 GHz)

• Main-Memory Size: 16 GB

• Operating System: Windows 7 Professional (64 Bit)

• Java Version: 1.7.0 71 (64 Bit)

To simulate an interactive configuration process, we implemented an evaluation tool
that uses our three configuration plans and the different configuration tools. Our eval-
uation tool is based on Java 1.7 and contains wrapper interfaces for each configuration
tool in order to ensure an equal interaction with each of them. To take time mea-
surements, our evaluation tool uses the native Java command System.nanoTime(). In
order to avoid excessive garbage collection and memory swapping, we increased the
maximum heap size of the executing Java Virtual Machine (JVM) to 10 GB with an
initial size of 6 GB.

Since some configuration tools are not suitable for certain feature models (e.g.,
SplotBDD for feature models with 5,000 or more features) and take an immense amount
of time for decision propagation, we implemented a timeout mechanism to avoid wast-
ing evaluation time. For instance, if we want to completely configure our largest feature
model (with over 17,000 features), using the configuration plan True, FeatureIDE would
need at least one week to finish. The timeout applies for the accumulated time of all
executed configuration steps in one single configuration process. Before executing the
next configuration step, our evaluation tool checks whether it reached the specified
timeout and if so, cancels the current configuration process. For our evaluation set up,
we determined an appropriate timeout value of 7,200,000 milliseconds (i.e., 2 hours).
An exception is the feature model Splot10001, for which we increased the timeout value
to 18, 000, 000 ms (i.e., 5 hours).

5.1.3 Evaluated Feature Models

In order to evaluate our approach, we need large-scale feature models with at least
50 features. The time required for the configuration process of smaller feature models
(i.e., feature models with less than 50 features) is too small (e.g., less than 10 ms) for
a reasonable comparison. However, large-scale feature models are rare among online
feature-model repositories. From our industrial partners, we got two feature models
with over 2,000 and 17,000 features. In addition, we searched for large feature models
in the repositories of S.P.L.O.T. and FeatureIDE. We found feature models with around
100, up to 300 features. Finally, we used artificial feature models of different sizes, which
were created with the S.P.L.O.T. feature-model generator. In the following, we describe
all used feature models in more detail. Additionally, we discuss the handling of different
feature-model-file formats of S.P.L.O.T. and FeatureIDE.

In Table 5.1, we list certain structural information for the evaluated feature models. In
detail, the table includes the feature model name, the number of features and cross-tree
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Model #Features #Groups #Constraints Constraint
Alternative OR Coverage (%)

BerkeleyDB1 76 8 4 20 42.1
EShopFIDE 326 0 39 21 10.4
Automotive1 2,513 407 43 2,833 50.9
Automotive2 17,365 1,165 111 948 6.5
Splot1001 1,120 62 75 100 8.4
Splot1006 1,109 62 76 100 8.7
Splot2004 2,212 141 128 100 6.9
Splot2005 2,236 145 136 100 7.1
Splot5001 5,545 339 336 150 5.3
Splot5005 5,543 350 324 150 5.3
Splot10001 11,065 676 617 100 2.4

Table 5.1: Structural information about evaluated feature models.

constraints, and the number of alternative- and OR-groups in the feature diagram. In
addition, we state the relative number of features that are contained in one or more
cross-tree constraints (i.e., constraint coverage). The provided structural information
can be used as an indicator for a feature model’s complexity. Due to spatial limitations,
in this chapter, we just provide a representative selection of all used feature models.
A complete list of all feature models and their corresponding statistical values can be
found in Table A.1.

Real-World Feature Models

Both feature models that we got from our industrial partners are from the automotive
domain. However, they are obfuscated in a way that all feature names are replaced with
unique identifiers. Hence, we call the feature models Automotive1 and Automotive2.
Automotive1 has 2,513 and Automotive2 17,365 features. We list more details for both
feature models in Table A.1.

Feature-Model Repositories

We selected several feature models from the S.P.L.O.T. online repository3 and from the
example feature models provided by FeatureIDE4. In detail, we selected the following
six feature models:

• Dell (S.P.L.O.T.)

• EShopSplot (S.P.L.O.T.)

• BerkeleyDB1 (FeatureIDE)

3http://www.splot-research.org/
4https://github.com/tthuem/FeatureIDE/tree/master/plugins/de.ovgu.featureide.examples/

http://www.splot-research.org/
https://github.com/tthuem/FeatureIDE/tree/master/plugins/de.ovgu.featureide.examples/
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• BerkeleyDB2 (FeatureIDE)

• Violet (FeatureIDE)

• EShopFIDE (FeatureIDE)

In Table A.1 provide some more details about the feature models size and structure.

Feature-Model Generator

A part of S.P.L.O.T. is a feature-model generator with various parameters that can
be used to create artificial feature models for evaluation purposes. S.P.L.O.T. already
provides several generated feature models in its repository [MBC09]. Since these feature
models can be easily accessed by others, we decided to use them for our evaluation
instead of generating completely new ones. In sum, we selected 31 feature models with
sizes from 1,000, up to 10,000 features.

• Splot1001 - Splot1010 (≈ 1,000 features)

• Splot2001 - Splot2010 (≈ 2,000 features)

• Splot5001 - Splot5010 (≈ 5,000 features)

• Splot10010 (≈ 10,000 features)

Again, we provide more details for each feature model in Table A.1.

Feature-Model-File Format

While S.P.L.O.T. stores feature models in the Simple XML Feature Model format
(SXFM), FeatureIDE relies on its XML-based file structure. Thus, for each config-
uration tool, we have to convert the feature models in the corresponding format. Fea-
tureIDE is capable of im- and exporting feature models from and to SXFM. However,
due to its own feature-model format, when importing a feature model from SXFM,
FeatureIDE needs to insert some connection features for alternative- and OR-groups,
which slightly increases the total number of features. Therefore, after importing a
feature model from SXFM, we exported it again to SXFM to ensure that every config-
uration tool works on the same model with the same number of features.

5.2 Evaluation Results

We now present the result of our measurements before and during the configuration pro-
cess. At first, we present the results of the time measurement for the initialization phase
of each configuration tool. Next, we show the time-measurement results for the actual
interactive configuration process. Finally, we present the data that originated from the
static and dynamic analysis of all feature graphs. As our measurements produced a
high amount of values, we list most of our results in multiple tables in Chapter A. Nev-
ertheless, to provide a proper overview of our results, we display a subset of all results
based on the representative selection of feature models given in Table 5.1.
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Model
Initialization Time (in ms)

CA1 CA2 CA4 FeatureIDE SplotBDD SplotSAT

BerkeleyDB1 10 9 9 19 24 21
EShopFIDE 22 17 16 42 111 20
Automotive1 1,430 1,143 1,056 1,396 218,663 1,410
Automotive2 98,039 81,966 69,784 53,003 - 598,512
Splot1001 316 262 245 312 176,912 135
Splot1006 314 261 241 300 627,256 141
Splot2004 1,267 1,036 957 1,023 597,840 726
Splot2005 1,326 1,086 1,006 1,124 330,369 693
Splot5001 4,490 3,593 3,401 4,769 - 3,782
Splot5005 6,934 5,790 5,285 5,929 - 7,508
Splot10001 43,958 39,267 34,781 26,291 - 50,659

Table 5.2: Time required by each configuration tool for its initalization phase (regarding
the feature-model selection given in Table 5.1).

5.2.1 Initialization Time

In Table A.2 we compare the times that each configuration tool needed for their initial-
ization phase, before starting the configuration process. For a more convenient compari-
son, we visualize the results for our representative feature-model selection (cf. Table 5.1)
in Figure 5.1 and provide a shortened list of the results in Table 5.2. As it can be seen
in the dataset, SplotBDD has very high values compared to other configuration tools.
For all feature models with 5,000 or more features our evaluation tool was not able to
build a BDD at all, due to the limited main memory capacities. Hence, we omitted the
bar plot for SplotBDD for all feature models, except for BerkeleyDB1 and EShopFIDE.

In the dataset, we can see a wide range of measured values, reaching from 5 milliseconds
(CA1) to over 2,000,000 milliseconds (SplotBDD). Remarkably, the initialization time
for all feature models with less than 1,000 features is below 200 milliseconds for every
configuration tool. Moreover, there is a clear correlation between the measured time and
the feature model size, for each configuration tool, except SplotBDD. A higher number
of features always leads to a higher computation time for the initialization phase.

In comparison, for most feature models, SplotSAT has the shortest initialization time,
which is less than 1 second, even for feature models with 2,000 features. However, for
the two largest feature models, Splot10001 and Automotive2, SplotSAT’s initialization
time is significantly higher than the times of FeatureIDE and our approach. When
comparing the times of our approach and FeatureIDE, we discover that the results for
CA4 and FeatureIDE are highly similar for most feature models. Furthermore, there is
a visible correlation between the three variants of our approach CA1, CA2, and CA4.
The measured times of CA4 are mostly between 20% and 30% smaller than those of
CA1. Whereas the results of CA2 are somewhere between those of CA1 and CA4.
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Figure 5.1: Comparison of initialization times for all configuration tools (regarding the
feature-model selection given in Table 5.1).

5.2.2 Decision-Propagation Time

In the following, we show the decision propagation times for the different configuration
tools. For each tool, we measured the maximum and average time needed for the de-
cision propagation of one configuration step. We omitted the minimum time, as it was
equal or close to 0 in almost all cases (except for the configuration processes with oc-
curred timeouts). We also measured the accumulated computation time for each whole
configuration process. We present the results of FeatureIDE, SplotSAT, SplotBDD,
and CA1 in Table A.3, and for CA2 and CA4 in Table A.4. Additionally, we state the
decision-propagation times for our feature-model selection (cf. Table 5.1) in Table 5.3
(for FeatureIDE and CA1) and in Table 5.4 (for SplotSAT and CA4). In all tables,
each row contains the measured values for one feature model and a given configuration
plan. For a proper overview, we group the results by the different feature models and,
in addition, aggregate the results for all three configuration plans. Thus, the first row
for each feature model contains the overall maximum time and the arithmetic mean of
the average and the accumulated time (rounded down).
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Model
FeatureIDE (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
BerkeleyDB1 15 0 19 36 0 9
EShopFIDE 22 6 739 5 0 18

Automotive1 776 238 106,697 590 103 49,544
False 505 173 43,716 420 46 11,651
True 776 283 156,939 590 160 88,713
Random(∅) 687 257 119,437 426 102 48,268

Automotive2 * 66,762 62,239 7,248,604 2,762 105 921,950
Splot1001 175 49 15,142 152 41 13,325
Splot1006 182 59 16,562 144 43 12,554
Splot2004 692 245 135,552 510 153 88,433
Splot2005 931 218 118,029 599 209 119,133
Splot5001 2,644 1,073 985,222 1,952 493 463,505
Splot5005 3,818 1,343 1,709,376 4,061 1,102 1,475,103
Splot10001 * 13,992 6,152 9,429,971 * 17,880 6,194 8,985,031

Table 5.3: Decision-propagation times for FeatureIDE and CA1 (regarding the feature-
model selection given in Table 5.1).

Note that there are missing values for SplotBDD, since it was not possible to construct a
BDD for certain feature models. Moreover, timeouts occurred in our evaluation tool for
the feature models Splot10001 and Automotive2 and the configuration tools FeatureIDE
SplotSAT, CA1, and CA2. Therefore, all the measured values for those feature models
and configuration tools are not accurate, but biased in certain ways. Naturally, the
sum is capped to a value just over 7,200,000 milliseconds (18,000,000 for Splot10001),
since this was the specified timeout value. By contrast, the average time is likely to
be higher than for a complete configuration process, since later configuration steps are
generally faster, due to less undefined selection states. Because of the same reasons, we
can assume that the maximum value is close or equal to the real value. We annotated
each data group (i.e., for one configuration tool) in a row that was affected by a timeout
with an asterisk symbol (*).

We visualize the aggregated result, over all executed configuration plans for our feature-
model selection (cf. Table 5.1) in the following three diagrams. In Figure 5.2 and Fig-
ure 5.3, we depict the average and the maximum computation time for one configuration
step. In both diagrams, we omit the two smallest feature models, BerkeleyDB1 and
EShopFIDE, as most values are close to 0 milliseconds. We show a comparison of the
total computation times of all configuration processes in Figure 5.4. Since the measured
values for SplotBDD are either missing or are disproportionately higher than the values
of the other configuration tools, we only depict the values of SplotBDD for the first two
feature models, BerkeleyDB1 and EShopFIDE.
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Model
SplotSAT (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

BerkeleyDB1 4 0 1 30 0 17
EShopFIDE 2 0 7 5 0 19

Automotive1 826 227 108,191 266 50 24,044
False 812 104 26,317 203 23 6,022
True 812 319 176,868 266 77 42,694
Random(∅) 826 259 121,390 217 49 23,416

Automotive2 * 508,729 499,464 7,491,963 1,266 71 634,596
Splot1001 73 12 4,232 93 19 6,295
Splot1006 91 17 5,052 91 18 5,395
Splot2004 541 133 73,735 252 63 36,697
Splot2005 548 97 56,101 305 88 50,053
Splot5001 2,293 457 436,579 1,103 262 246,664
Splot5005 6,647 1,232 1,595,739 2,230 578 774,688
Splot10001 * 48,342 14,374 10,071,199 9,546 2,711 5,555,055

Table 5.4: Decision-propagation times for SplotSAT and CA4 (regarding the feature-
model selection given in Table 5.1).
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Figure 5.2: Comparison of the average decision-propagation times for each configuration
tool (regarding the feature-model selection given in Table 5.1).
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Figure 5.3: Comparison of the maximum decision-propagation times for each configura-
tion tool and feature model (regarding the feature-model selection given in Table 5.1).

5.2.3 Feature-Graph Memory-Space Consumption

We now present the measured values for each feature graph’s memory consumption in
byte and its corresponding compression rate (i.e, compression rate =

sizecompressed

sizeuncompressed
),

for a compression with LZMA (values rounded down). We list the values for all feature
models in Table A.6 and for our feature-model selection (cf. Table 5.1) in Table 5.5.

The uncompressed feature-graph sizes are ranging from 5 kilobyte to 250 megabyte with
compression rates from 33.6% to 0.1%. As we expected, we see a quadratic growth in
size with an increasing number of features. Furthermore, with a higher number of
features the compression rate decreases noticeably, which means that the compression
is more effective for larger feature models. For instance, we can save 99.9% of the
memory space for Automotive2.

5.2.4 Feature-Graph Connections

We state the results of our static analysis on each feature graph in Table A.6. The table
contains the number of nodes and all weak and strong connections in the feature graph
for each feature model. In addition, we calculate the number of non-existent potential
connections between the nodes (i.e., connectionsnone = nodes2 − (connectionsweak +
connectionsstrong) ). We list the result subset for our feature-model selection (cf. Ta-
ble 5.1) in Table 5.5. In Figure 5.5, we visualize the number of connections in the
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Figure 5.4: Comparison of the total computation times of the configuration process for
each configuration tool (regarding the feature-model selection given in Table 5.1).

feature graph and relate them to the performance of CA4 compared to FeatureIDE and
SplotSAT (i.e., the average accumulated decision-propagation times for each feature
model).

The number of nodes in the feature graphs reaches from 76 to 31,614. Concerning the
feature-graph connections, we can see that despite using transitive closure, all feature
graphs are relatively sparse with a graph density below 50%. It is also visible that weak
connections by far outnumber strong connections in every feature graph. While the
number of strong connections range between 374 and 1,742,324, the number of weak
connections reaches from 2,812 to 94,441,654.

Finally, we present the results of our dynamic analysis in Table A.5. For each configura-
tion plan, we list the number of connections that the selection algorithm has visited in
the feature graph. Additionally, we show the number of complex propagation tests (i.e.,
calls to the satisfiability solver) for CA1, CA2, and CA4. Again, we group the results
by feature models and aggregate the values by calculating the arithmetic mean. Similar
to the static analysis, we calculate the not-visited potential number of connections by
using the following method. In a worst-case scenario the selection algorithm has to
visit both nodes of each feature that is still undefined in the current partial configura-
tion. Thus, the maximum number of connections that the selection algorithm is able
to visit in one configuration step is two times the number of the currently undefined
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Model
#Connections

#Nodes
Size (in byte)

none strong weak (Compressed %)

BerkeleyDB1 13,325 1,500 3,671 136 9,409 (24.5)
EShopFIDE 254,162 1,958 12,204 518 105,324 ( 8.7)
Automotive1 14,375,894 195,698 5,106,504 4,436 5,086,553 ( 0.7)
Automotive2 996,174,355 695,346 2,575,295 31,614 250,875,368 ( 0.1)
Splot1001 2,687,005 55,596 1,983,675 2,174 1,248,816 ( 1.6)
Splot1006 2,757,169 66,760 1,755,671 2,140 1,210,071 ( 1.8)
Splot2004 12,286,639 73,296 6,216,165 4,310 4,771,038 ( 0.8)
Splot2005 10,888,199 116,370 8,904,875 4,462 5,111,251 ( 0.8)
Splot5001 39,969,030 539,128 20,020,242 7,780 15,396,671 ( 0.5)
Splot5005 74,445,701 348,354 44,758,301 10,934 30,206,394 ( 0.3)
Splot10001 389,559,638 967,192 94,441,654 22,022 121,877,300 ( 0.2)

Table 5.5: Results of the static analysis on certain feature graphs (regarding the feature-
model selection given in Table 5.1).

features. Thereby, we can calculate the not-visited potential number of connections by
subtracting the actual visited connections from the maximum value. We visualize the
aggregated number of visited connections during the decision propagation in Figure 5.6
and again relate them to the performance of CA4 compared with FeatureIDE and Splot-
SAT. In addition, we depict the number of complex propagation tests compared to the
visited weak connections in Figure 5.7.

During the configuration phase, the ratio between weak and strong connections is even
higher than for our static analysis, as the selection algorithm visits far more weak
connections. The number of weak connections ranges from 50 to 20,115,423, whereas
the number of strong connections just reaches from 1 to 12,248. However, the number
of feature-graph nodes that the selection algorithm does not need to consider, due to
absent connections ranges between 9 and 195,930,049. These numbers are comparatively
high and indicate the high amount of avoided complex propagation tests during decision
propagation. Moreover, the total number of executed complex propagation tests varies
from 23 to 10,303,427 and is always at least 50% lower than the number of weak
connections. When comparing CA1, CA2, and CA4, we notice that the number of
complex propagation tests increases for a higher number of threads.

5.2.5 Result Discussion

In the following, we further assess our measured values and attempt to answer our
research questions. We start by considering each of our three research questions indi-
vidually, with regard to the evaluation results. Afterwards, we point out certain minor
remarks and general conclusions that we can infer from our evaluation results.



5.2. Evaluation Results 57

Berke
leyD

B1

EShopFIDE

Automotive
1

Automotive
2

Splot1001

Splot1006

Splot2004

Splot2005

Splot5001

Splot5005

Splot10001
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 18,496
341,056

19,678,096

999,444,996

4,726,276
4,579,600

18,576,100

19,909,444

60,528,400

119,552,356

484,968,484
R

el
at

iv
e 

V
al

ue
 (

S
ca

le
d 

to
 M

ax
im

um
)

Feature Model

● ●

●

●

● ●

●

●

●

● ●

●CA4 vs. FIDE CA4 vs. SplotSAT Weak Connection Strong Connection No Connection

Total Number of Connections

Figure 5.5: Number of connections between all nodes within a feature graph. Compar-
ison of decision-propagation times for CA4 to FeatureIDE and SplotSAT. (Regarding
the feature-model selection given in Table 5.1)

RQ1 - Faster Decision Propagation?

As we can see in Figure 5.2, the average computation time of our approach for the
feature models Automotive1, Automotive2, Splot5005, and Splot10001 is significantly
lower than the average computation time of the other evaluated configuration tools.
Remarkably, in almost all cases our approach is faster than FeatureIDE. Though, we
already expected this outcome, because our implementation is based on FeatureIDE and
aims to reduce the number of complex propagation tests. By using more than one thread
simultaneously, our approach is even able to outperform SplotSAT for feature models
with 2,000 or more features and performs equally fast for feature models with only 1,000
features. In our evaluation, SplotBDD turned out to be unsuitable for larger feature
models. Therefore, a serious comparison with our approach becomes obsolete. When
we take a look at the absolute computation times of the configuration assistant, we can
see that the maximum of all measured values is 18 seconds (rounded up), which comes
from the Splot10001 feature model. For the real-world feature models Automotive1 and
Automotive2, we got maximal values of 0.6 and 2.8 seconds, whereas the average time
was at 0.1 seconds for both models. For the artificial models the average time was equal
(Splot5001 - Splot5010) or lower (Splot1001 - Splot2010) than 1 second. Furthermore,
when using 4 threads simultaneously, our approach performs approximately twice as
fast.
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Figure 5.6: Number of visited connections during decision propagation. Comparison
of decision-propagation times for CA4 to FeatureIDE and SplotSAT. (Regarding the
feature-model selection given in Table 5.1)

In summary, we can conclude that our new approach is indeed capable of accelerating
the decision propagation process, compared to other configuration tools. The absolute
computation times also fortify the feasibility of our approach for an interactive config-
uration process. However, not all feature models are equally suited for our approach,
which is the subject of our second research question.

RQ2 - Suitable Feature-Model Types?

From our evaluation results we can clearly see that our approach performs better, com-
pared to the other configuration tools, when the total number of features increases. Es-
pecially the real-world feature models, Automotive1 and Automotive2, and the largest
artificial feature model, Splot10001, benefit from our approach. However, when using
only one thread for the configuration assistant, S.P.L.O.T. was usually faster for most
of the artificial models. Since, our approach is based on FeatureIDE, in Figure 5.6, we
can see a clear correlation between the number of visited connections in the feature
graph and the performance compared to FeatureIDE. This correlation demonstrates
the strong influence of weak connections in the feature graph to the performance of the
configuration assistant. Thereby, it fortifies the importance of reducing the amount of
weak connection within the feature graph.
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Figure 5.7: Number of weak connections and satisfiability tests during decision propa-
gation (regarding the feature-model selection given in Table 5.1).

Independent from their number of features, both real-world feature models Automotive1
and Automotive2 seem to be well-suited for our approach, as the measured computa-
tion times are significantly lower compared to all other configuration tools. Although
Automotive1 has a high number of cross-tree constraints (2,833) and also its constraint
coverage is quite high (50.6%), it performs excellently when using our configuration
assistant. A more detailed look at the feature model reveals that without exception
all cross-tree constraints can be converted into 2-CNF. This circumstance reduces the
amount of weak connections to about 25% of all possible connections. However, the
statistical values of the second feature model are quite different. The constraint cover-
age of Automotive2 is similar to the coverage most of the artificial models (Splot1001
- Splot5010) and considerably lower than the coverage of Automotive1. In addition,
there are fewer cross-tree constraints (948), which is still far more than for the Splot
feature models. However, some of the constraints are more complex and involve up to 9
features. Thus, considering only the statistical values of the feature models, both look
rather different. Their most obvious similarity is that both are designed by humans.
Therefore, we assume that features that are contained in cross-tree constraints are not
spread over the entire feature diagram, but are relatively close to each other, which has
a positive influence on the complexity of the feature graph.

In conclusion, as far as we can infer from our evaluation, the configuration assistant
is well-suited for highly large-scale feature models and feature models with simple fea-
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ture dependencies. Unfortunately, we cannot make a definitive statement about the
feasibility of different feature models from the measured statistical values alone. We
presume that the most important influence is the overall design of the feature model and
how separated single groups of features are. A structure that is designed by humans
most likely leads to fewer arbitrary feature dependencies and consequently simplifies
the corresponding feature graph.

RQ3 - Feature-Graph Passive Performance?

Comparing the initialization time of our configuration assistant with the time needed
by the other configuration tools, we can see that CA1 is never the fastest tool for larger
feature models. Either FeatureIDE or SplotSAT are faster than CA1 in most cases.
However, the required time for the initialization phase is not disproportionately higher
than those of the other configuration tools and has a maximal value of 98 seconds (for
Automotive2) which is acceptable for an initial computation. In addition, the usage of
multiple threads reduced the initialization time even further (70 seconds with 4 threads).
Furthermore, since we implemented a load and store mechanism for the feature graph,
we only have to compute the feature graph once and can use it henceforth, as long as
the feature model is not modified.

Another concern of ours was the memory-space consumption of the feature graph.
Indeed, the uncompressed memory space used by our feature-graph implementation
grows quadratically in size and takes up several megabyte for large feature models (e.g.,
250 megabyte, the maximum size in our evaluation). However, two things considerably
mitigate the impact of these results. First, the constructed feature graphs are relatively
sparse and, second, most of them have a very high compression potential. We assumed
that a transitive closed graph would be more dense and, thus, stored the feature-graph
data in an adjacency matrix. Considering our static analysis on the feature graphs,
we probably would store the feature graph more efficiently, when using an adjacently
list, which is more suited for these conditions. Furthermore, we can compress feature-
graph data to save even more memory space. Unfortunately, we cannot use the LZMA
compression for the main-memory storage, because we need a fast random access to the
feature-graph data structure. Nevertheless, there exist other compression techniques
that allow a transparent data access while still reducing the overall size. Moreover, we
can use the shown compression technique when actually saving the feature graph to the
hard drive. Therefore, the feature-graph file on the hard drive can make full-use of the
shown compression rates.

Overall, we can conclude that the impact of the feature graph’s passive performance is
not as high as we suspected. The time required by our configuration assistant for the
initialization phase is quite reasonable, especially when using more than one thread. In
addition, although the memory consumption is relatively high with the current feature-
graph implementation, it can potentially be reduced by using another underlying data
structure or compression of the data.
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General Conclusions

In Chapter 4, we proposed a modification to speed up the complex propagation test by
using the model computed by the satisfiability solver to exclude certain queries. From
Figure 5.7, we can infer that this modification saved over half the amount of calls to
the satisfiability solver.

Another interesting detail from our evaluation regards the usage of multiple threads for
the configuration assistant. Since a higher number of threads causes a larger overhead
for initializing the satisfiability solvers, it is possible to lose performance for smaller
feature models (e.g., BerkeleyDB and EShopFIDE). However, considering the low ab-
solute values, measured for these feature models, the impact of the overhead becomes
insignificant. In addition, when using feature models with 1,000 or more features, a
higher number of threads always leads to a faster performance. Anyhow, due to the
independent computation of the single selection states, we assumed an approximately 4
times faster performance, when using four threads simultaneously. In reality, however,
we could only increased the overall performance by factor 2. Most likely this result
follows from the lack of shared information between the satisfiability solver instanti-
ations. Another modification that we described in Chapter 4 reduces the amount of
calls to satisfiability solver by constantly updating the current solver model. In order to
use the modification’s full potential, the information about the current model must be
shared among the single satisfiability solver instances. A too slow information spread
is probably the reason for the unexpected performance impairment. This hypothesis
is supported by the result in Table A.5, as we can see the increase in the number of
complex propagation tests for a higher number of threads.

5.2.6 Threats to Validity

Like for all experimental evaluations, there exists certain threats to the validity of our
results. Thus, we now address possible threats and explain how we tried to handle
them in our evaluation. We differentiate between internal threats, which arise from our
own evaluation set up and implementations and external threats, which are induced by
other tools or implementations on which we rely.

Internal

In our evaluation, we evaluated just two large-scale, real-world feature model, since
there are few large-scale real-world feature models freely available. Furthermore, we use
artificial feature models. A randomly generated feature model might lack the structure
from well designed feature models that are used in industry. Therefore, the composition
of feature dependencies can differ from real-world model and, thus, bias our results.
However, the artificial feature models were not chosen arbitrarily, but are present in
the S.P.L.O.T. feature-model repository and are used in other evaluations as well. In
addition, the feature models themselves are generated with different parameters and
differ in size, number of cross-tree constraints, and constraint coverage.
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To measure the computation time of the decision propagation, we used random con-
figuration plans. This approach can induce a potential bias of the evaluation results.
Unfortunately, it is practically impossible to test every potential configuration order.
To mitigate the effect of a random bias, we used multiple samples and afterwards com-
puted the arithmetic mean. However, the tested amount of configuration plans is just
a small fraction of all possible plans and could still lead to biased values.

Another possible threat are bugs in our implemented prototype and evaluation tool.
An unnoticed bug can produce invalid results and in addition falsifying the time mea-
surements of our evaluation. Although we cannot guarantee the absence of bugs in
our implementation, we successfully performed several unit tests that indicate a correct
behavior of our implementation. Additionally, we compared the decision-propagation
results from our configuration assistant with the results from other tools. In all cases,
we received equal results. Thus, we can be relatively sure that our prototype works
correctly.

External

We converted feature models from SXFM to the FeatureIDE XML format and vice-
versa. Since, we rely on the implementation of FeatureIDE for importing and exporting
feature models, we cannot guarantee an absolutely accurate conversion. However, after
each configuration process we received an equal configuration from every configura-
tion tool, which is a very good indicator that the corresponding input feature models
represented the same feature dependencies.

In our evaluation tool, we used an older version of Sat4j. Hence, the real values for
the execution times might be different. However, we used the same version for every
configuration tool. Thus, a potential bias would apply to all configuration tools as well.



6. Related Work

Configuration of software product lines is a vital part of SPLE. Thus, there exist nu-
merous works addressing the topic of the configuration process. In this chapter, we
present certain publications that are related to our approach and point out major sim-
ilarities and differences. In particular, we examine other approaches to perform the
configuration process with and without using decision propagation.

6.1 Approaches for Decision Propagation

In the following, we show implementations of decision propagation in the interactive
configuration process that are not based on satisfiability solvers, but use other reasoning
techniques. For instance, in our evaluation, we used the configuration tool of S.P.L.O.T.,
which has two different configuration engines, based on satisfiability solvers and binary
decision diagrams (BDDs) [MBC09].

Mendonça et al. showed how feature-model dependencies can be translated into BDDs
to apply efficient reasoning [MWCC08]. The main problem of constructing a BDD is
to find a suitable variable ordering to minimize its final size. However, once a BDD is
created, subsequent queries to it can be answered relatively fast. The usage of BDDs
for decision propagation was investigated by Hadzic et al. [HSJ+04]. Their general idea
is to solve the difficult NP-complete problem before starting the actual configuration
process (i.e., in the initialization phase). Thus, they construct a BDD and use it during
the interactive configuration process. However, as we saw in our evaluation for the
SplotBDD configuration tool, this approach does not scale for large feature models.

In our thesis, we implemented the complex propagation test by considering the de-
pendencies of a feature model as a satisfiability problem (SAT). Another method is the
translation of feature dependencies to a constraint satisfaction problem (CSP) as shown
by Benavides et al. [BTRC05]. By contrast to a SAT-based method, a CSP allows the
usage of finite variable domains rather than just boolean variables. To apply CSPs to
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an interactive configuration process, Amilhastre et al. propose assumption-based CSPs
(A-CSP), an extension to classic CSPs that adds a set of assumptions, which originate
from the users decisions during the configuration process [AFM02]. The A-CSP can be
used to determine the remaining domains for each variable, which can still lead to a
valid configuration.

Mendonça propose a method for decision propagation based only on the feature tree,
which they call “Feature Tree Reasoning System” (FTRS) [Men09]. Using the graph-
based algorithms of the FTRS, decision propagation can be executed with linear time
complexity. However, in our thesis, we consider arbitrary cross-tree constraints, which
are not applicable to this method. The authors are aware of this problem and propose
a hybrid-system, the “Feature Tree Reasoning System” (FMRS), which extends their
FTRS and is capable of handling additional cross-tree constraints. The general concept
is to combine the FTRS with a more powerful solver engine and perform an interleaved
reasoning process. If, for our approach, we would use transitive reduction and an intel-
ligent selection algorithm that uses an efficient variable ordering, we would presumably
achieve a similar behavior like the FMRS. Anyway, our current implementation sepa-
rates the fast evaluation of strong connections within the feature graph and the slow,
SAT-based evaluation of weak connections.

6.2 Approaches for Error Resolution

In Chapter 2, we talked about other methods to specify a valid configuration, besides
the interactive configuration process. Nevertheless, in case the SPL developers do not
use decision propagation in their configuration process, there exists the possibility of
creating invalid configurations. In those cases, the developers have to resolve the config-
uration errors, which is difficult for large-scale feature models without tool support. An
approach called “CURE” that resolves errors in an invalid configuration is introduced
by White et al. [WSB+08]. CURE considers the configuration process as CSP and is
capable of finding the minimal set of features that should be selected or deselected to
make the current configuration valid. The authors especially focus on configurations
that are created through staged configurations, since this process involves multiple de-
velopers and, thereby, increases the possibility of configuration errors. A configuration
tool that support this kind of error detection in configurations is included in the FaMa
framework [BSTRC07].



7. Conclusion

SPLE is used in software development to efficiently build new software products by
reusing software artifacts (i.e., features). Valid combinations of different features that
can be composed to a working software product are defined by a feature model. An
important part of SPLE is the configuration process, in which the developer specifies a
valid feature combination (i.e., a configuration). To support the developer in this pro-
cess, certain configuration tools offer an interactive configuration process, which enforces
a valid configuration state by updating the current configuration based on the decisions
made by the developer (i.e., decision propagation). However, decision propagation for
large-scale feature models is challenging, as it is an NP-complete problem. In our thesis,
we addressed the problem of efficiently performing an interactive configuration process
on large-scale feature models.

Contributions

We introduced a new concept for representing feature dependencies in a data struc-
ture based on implication graphs, the feature graph. We used the feature graph as
basis for our new approach the configuration assistant. In addition, we proposed two
alternative restructuring strategies for the feature graph. To evaluate our approach, we
prototypically implemented the configuration assistant and embedded it in the SPLE
framework FeatureIDE. Additionally, we raised three research questions to investigate
the properties of our new approach and answered them with the help of our evaluation
results. For this, we compared our implementation with two other configuration tools,
FeatureIDE and S.P.L.O.T..

Research Results

In our evaluation, we discovered that our approach is well suited for large-scale feature
models. The performance for the interactive configuration process is reasonable for all of
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our evaluated feature models. Thus, we are able to positively answer our first research
question, whether we can profit from our new data structure. We can also draw a
positive conclusion for our third research question concerning memory consumption and
construction time of the feature graph. Our evaluation showed that the time required for
constructing the feature graph was not disproportionately higher (and partly even lower)
than the initialization time of other configuration tools. Moreover, although we saw a
rather high memory consumption for our feature-graph data structure, we could also
measure very high compression rates when applying a standard compression technique
to saved feature-graph files. Unfortunately, due to insufficient data, we are not able
to fully answer our second research question, for which we would require further case
studies and experiments. However, as we mentioned above, the performance benefits of
our approach increases with the size of the used feature model. Based on our evaluation
results, we can further assume that a well-structured feature model increases the overall
performance for decision propagation.

All in all, the evaluation results met our expectations. Yet, we were surprised by some
of our results, both negatively and positively. A minor disappointment was the appli-
cation of multi-threading, whose performance benefits stayed behind our expectations.
We assumed a directly proportional performance benefit with an increasing number of
threads. However, the real measured values only indicated a performance benefit by
at most half the expected amount. By contrast, a positive surprise were the moderate
initialization times of our approach and the extremely good compression rates of most
feature graphs. Initially, we suspected a high computational effort for the feature-graph
construction and restructuring and a large amount of required memory space. However,
compared to other configuration tools, our configuration assistant performs quite well
in its initialization phase and by using certain compression techniques it is possible to
effectively reduce the feature-graph size.

In conclusion, we can say that our configuration assistant is a real benefit for the inter-
active configuration process of large feature models. Although we could only implement
it prototypically, in the context of this thesis, our evaluation showed the potential of
its core concept. Thus, we look forward improve both the configuration assistant and
our feature-graph data structure in future work.



8. Future Work

In this chapter, we suggest several topics that can build upon our contributions in this
thesis. On the one hand, we discuss multiple concepts that can be used to enhance
our configuration assistant and the feature graph. On the other hand, we propose
other possible applications for our feature graph, where we assume it can be useful. In
addition, we point out related questions that we are interested in and that could be
subjects of further research.

8.1 Feature-Graph Improvements

In Chapter 4, we described how we realized the configuration assistant and, within it,
the feature-graph data structure. However, we can think of several improvements that
might lead to an even faster performance.

Editing Feature Models

For a faster initialization phase of our configuration assistant, we save an already com-
puted feature graph and use it consistently for each configuration process. However,
when the corresponding feature model changes, the computed feature graph becomes
obsolete. In our current implementation, we then have to recompute the entire feature
graph. As our results in Chapter 5 show, the initial computation requires some time
for larger feature models (i.e., in our evaluation up to 1 minute). In order to avoid a
recomputation of the feature graph, we require a mechanism to adapt it, when there are
changes in the feature model. Thus, we can raise the question, whether it is possible to
efficiently adapt a feature graph for certain changes in the feature model. Furthermore,
we can generalize the question to arbitrary feature-model changes.

Transitive Reduction

In Chapter 3 we introduced the restructuring strategy of transitive reduction for the
feature graph. We assume that such an approach would be even faster and is capable
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of compensating a higher constraint coverage to a certain extent. Presumably, the
selection algorithm would require more time for traversing the feature graph, than with
precomputed transitive edges. However, due to the thesis’ time constraints we were not
able to evaluate this approach. Nevertheless, we are interested in the performance of
our configuration assistant using transitive reduction and the corresponding selection
algorithm. Furthermore, when we realize both strategies, there are two competing
implementations, which raises the following question. Is one strategy outperforming
the other in every case or does the performance dependent on the individual feature
model?

Detect Strong Connections

In Chapter 3, we pointed out that the more weak connections are in the feature graph
the more time our configuration assistant would need to finish the decisions propa-
gation. With the result from our evaluation, we could confirm this assumption (cf.
Chapter 5). We also pointed out that we use a rather simple approach of finding strong
connections among cross-tree constraints. For each cross-tree constraint, we transform
the corresponding propositional formula to CNF and add strong connections for all
2-CNF clauses. With this method, we might overlook strong connections that are not
explicitly stated in the feature dependencies. Thus, we require more sophisticated ways
of determining strong connections.

A possible method to find more strong connections is the application of the atomic-set
analysis. However, the determination of atomic sets requires much computational effort
and, thus, would drastically increase the time required for the initialization phase of
the configuration assistant. Hence, we ask the following question. Is there an efficient
way to find all or, at least, most of the possible strong connections in a feature model?

Alternative Complex Propagation Tests

For our evaluation, we realized our approach with a complex-propagation-test imple-
mentation based on FeatureIDE. However, there exist also other approaches to imple-
ment the complex propagation test, which may lead to a faster overall performance of
the configuration assistant. Thus, it is reasonable to evaluate our approach with other
implementations of the complex propagation test. As we can see from the results of our
evaluation, S.P.L.O.T. mostly outperforms FeatureIDE in terms of required computa-
tion time. Hence, we would like to implement and evaluate a combination of S.P.L.O.T.
and our approach.

Similar to the implementation of different restructuring strategies for the feature graph,
we would like to know if there is a best implementation for the complex propagation
test. If there is no implementation that provides an adequate performance for all feature
models, it raises the following question. Is it possible to efficiently estimate the most
suitable complex-propagation-test implementation for each feature model?
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8.2 Feature-Graph Applications

We used the feature graph to improve the performance of the interactive configuration
process. However, we can also imagine other application that can benefit from such a
data structure. We assume that our feature graph can be used for visualization purposes
and as basis for other feature-model analyses.

Feature-Model Visualization

Since, the feature graph is a directed graph, we assume that it is well suited to visualize
feature models, such as feature diagrams do. Thus, we are interested, if there is a
convenient way of representing a feature graph to a developer to illustrate the direct
and indirect dependencies of all features. If so, it could be used for manual analyses
and traversal in large feature models, which are both helpful for maintenance purposes.
Thus, the resulting question is the following. How can a feature graph be used to
visualize feature dependencies and thereby support an SPL developer?

Feature-Model Analyses

We already mentioned that the results of the atomic-set analysis can be used to im-
prove the feature graph. However, it may also be possible to utilize the feature graph
to improve the performance of the atomic set analysis. Since, we are pre-computing
certain feature dependencies, these information can be used to reduce the number of
satisfiability tests in a SAT-based implementation of the atomic-set analysis. It might
even be possible to implement an iterative process for mutual computation of atomic
sets and the feature graph in a way that both benefit from the other. Therefore, we
raise the following, last question. In which way can a feature graph be used to support
feature-model analyses?
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Model #Features #Groups #Constraints Constraint
Alternative OR Coverage (%)

Dell 46 8 0 110 80.4
BerkeleyDB1 76 8 4 20 42.1
BerkeleyDB2 119 3 1 68 81.5
Violet 101 1 11 27 66.3
EShopSplot 287 0 39 21 11.8
EShopFIDE 326 0 39 21 10.4
Automotive1 2,513 407 43 2,833 50.9
Automotive2 17,365 1,165 111 948 6.5
Splot1001 1,120 62 75 100 8.4
Splot1002 1,096 64 72 100 8.7
Splot1003 1,104 61 67 100 8.6
Splot1004 1,090 56 67 100 8.8
Splot1005 1,103 78 56 100 8.9
Splot1006 1,109 62 76 100 8.7
Splot1007 1,107 74 67 100 8.3
Splot1008 1,106 75 60 100 8.4
Splot1009 1,106 61 65 100 8.4
Splot1010 1,106 62 75 100 8.6
Splot2001 2,223 140 121 100 6.7
Splot2002 2,230 132 139 100 7.1
Splot2003 2,223 129 134 100 6.6
Splot2004 2,212 141 128 100 6.9
Splot2005 2,236 145 136 100 7.1
Splot2006 2,219 131 140 100 6.7
Splot2007 2,204 131 111 100 6.7
Splot2008 2,242 132 155 100 7.0
Splot2009 2,206 133 114 100 7.2
Splot2010 2,229 139 127 100 7.0
Splot5001 5,545 339 336 150 5.3
Splot5002 5,523 291 352 150 5.2
Splot5003 5,519 322 322 150 5.4
Splot5004 5,556 343 340 150 5.3
Splot5005 5,543 350 324 150 5.3
Splot5006 5,514 349 317 150 5.4
Splot5007 5,503 316 327 150 5.4
Splot5008 5,524 327 328 150 5.3
Splot5009 5,529 316 334 150 5.1
Splot5010 5,518 326 317 150 5.4
Splot10001 11,065 676 617 100 2.4

Table A.1: Statistical values for used feature models.
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Model
Initialization Time (in ms)

CA1 CA2 CA4 FeatureIDE SplotBDD SplotSAT

Dell 5 5 5 12 9 9
BerkeleyDB1 10 9 9 19 24 21
BerkeleyDB2 13 13 13 28 15 14
Violet 9 8 9 17 14 10
EShopSplot 21 17 18 39 86 18
EShopFIDE 22 17 16 42 111 20
Automotive1 1,430 1,143 1,056 1,396 218,663 1,410
Automotive2 98,039 81,966 69,784 53,003 - 598,512
Splot1001 316 262 245 312 176,912 135
Splot1002 296 247 221 288 110,841 145
Splot1003 313 261 238 299 530,893 145
Splot1004 323 269 244 296 388,923 138
Splot1005 331 278 255 301 173,477 151
Splot1006 314 261 241 300 627,256 141
Splot1007 327 274 250 313 113,109 139
Splot1008 301 244 219 296 1,901,977 157
Splot1009 315 260 237 303 363,395 143
Splot1010 335 284 259 298 133,441 144
Splot2001 1,389 1,162 1,084 1,141 297,261 598
Splot2002 1,538 1,299 1,230 1,077 163,243 645
Splot2003 1,210 978 904 1,022 339,935 581
Splot2004 1,267 1,036 957 1,023 597,840 726
Splot2005 1,326 1,086 1,006 1,124 330,369 693
Splot2006 1,532 1,293 1,218 1,054 160,823 613
Splot2007 1,157 928 864 1,035 822,147 666
Splot2008 1,351 1,112 1,028 1,067 2,392,786 600
Splot2009 1,059 840 769 946 296,490 583
Splot2010 1,315 1,087 1,015 1,068 329,165 694
Splot5001 4,490 3,593 3,401 4,769 - 3,782
Splot5002 8,217 6,769 6,338 5,955 - 6,370
Splot5003 9,023 7,831 7,386 6,007 - 6,562
Splot5004 8,542 7,388 6,880 5,969 - 6,658
Splot5005 6,934 5,790 5,285 5,929 - 7,508
Splot5006 9,514 8,265 7,748 6,106 - 7,063
Splot5007 7,747 6,458 5,934 6,141 - 6,185
Splot5008 7,737 6,576 5,997 6,126 - 6,597
Splot5009 7,936 6,664 6,134 6,258 - 6,039
Splot5010 9,607 8,381 7,861 6,071 - 6,669
Splot10001 43,958 39,267 34,781 26,291 - 50,659

Table A.2: Time required by each configuration tool for its initalization phase.
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Dell 2 0 3 1 0 0 0 0 0 2 0 3

False 2 0 3 0 0 0 0 0 0 2 0 5
True 2 0 4 1 0 1 0 0 0 2 0 2
Random(∅) 2 0 3 1 0 0 0 0 0 2 0 4

BerkeleyDB1 15 0 19 4 0 1 1 0 0 36 0 9
False 3 1 10 1 0 2 1 0 1 2 0 8
True 2 0 29 1 0 1 0 0 0 2 0 4
Random(∅) 15 0 19 4 0 1 0 0 0 36 0 17

BerkeleyDB2 10 0 23 4 0 3 1 0 0 9 0 22
False 4 0 17 4 0 5 0 0 0 4 0 12
True 4 1 30 1 0 2 0 0 0 7 1 35
Random(∅) 10 0 24 4 0 2 1 0 0 9 0 21

Violet 13 1 65 3 0 0 0 0 0 3 0 7
False 13 1 42 0 0 0 0 0 0 2 0 11
True 3 1 96 0 0 0 0 0 0 1 0 3
Random(∅) 12 1 58 3 0 0 0 0 0 3 0 8

EShopSplot 26 5 683 3 0 5 60 1 285 6 0 26
False 21 6 320 1 0 5 25 0 37 4 0 21
True 26 5 1,165 3 0 6 51 3 614 3 0 19
Random(∅) 18 5 565 1 0 5 60 1 205 6 0 38

EShopFIDE 22 6 739 2 0 7 57 2 301 5 0 18
False 14 7 357 1 0 7 26 0 38 5 0 23
True 22 6 1,245 2 0 8 55 3 645 2 0 19
Random(∅) 18 6 616 2 0 8 57 2 220 4 0 13
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Automotive1 776 238 106,697 826 227 108,191 162,375 2,491 1,699,066 590 103 49,544

False 505 173 43,716 812 104 26,317 94,051 558 170,966 420 46 11,651
True 776 283 156,939 812 319 176,868 151,080 2,233 2,026,185 590 160 88,713
Random(∅) 687 257 119,437 826 259 121,390 162,375 4,681 2,900,047 426 102 48,268

Automotive2 * 66,762 62,239 7,248,604 * 508,729 499,464 7,491,963 - - - 2,762 105 921,950
False * 63,705 61,486 7,255,410 * 507,927 505,594 7,583,921 - - - 2,434 170 2,251,878
True * 65,883 63,618 7,252,527 * 508,729 505,867 7,588,011 - - - 2,762 73 253,516
Random(∅) * 66,762 61,614 7,237,876 * 508,076 486,930 7,303,958 - - - 2,606 74 260,457

Splot1001 175 49 15,142 73 12 4,232 102,639 2,754 1,004,708 152 41 13,325
False 130 37 5,654 55 6 983 99 4 210 98 23 3,514
True 175 61 27,171 71 18 8,286 102,304 5,513 2,425,874 152 59 26,191
Random(∅) 160 50 12,603 73 13 3,428 102,639 2,747 588,041 143 40 10,270

Splot1002 176 51 14,108 75 15 4,242 44,869 981 317,409 108 23 6,404
False 121 45 8,138 66 11 1,959 4,449 308 43,466 103 19 3,526
True 176 58 21,243 74 19 6,997 44,869 1,620 638,415 107 27 9,950
Random(∅) 147 50 12,943 75 14 3,771 44,585 1,016 270,346 108 22 5,737

Splot1003 154 61 17,059 80 18 5,209 402,356 6,776 1,918,316 131 38 11,148
False 137 61 7,772 78 18 2,296 195,801 2,896 234,616 118 33 4,251
True 154 61 27,890 79 19 8,639 400,505 6,898 3,456,157 131 43 19,629
Random(∅) 154 60 15,516 80 18 4,694 402,356 10,535 2,064,177 130 37 9,564

Splot1004 164 58 18,895 79 16 5,581 173,317 6,398 1,893,554 159 45 15,722
False 129 54 9,005 76 14 2,346 142,304 5,927 735,002 134 32 5,332
True 163 63 30,390 79 20 9,719 173,218 6,604 3,282,484 159 59 28,341
Random(∅) 164 56 17,291 79 15 4,679 173,317 6,664 1,663,176 147 44 13,495
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Splot1005 149 45 10,312 88 13 3,166 101,070 1,179 303,295 135 34 8,182

False 116 41 5,786 63 9 1,345 247 6 692 112 24 3,339
True 149 44 13,448 87 14 4,413 99,796 1,364 488,406 134 40 12,212
Random(∅) 143 49 11,703 88 15 3,741 101,070 2,167 420,787 135 37 8,996

Splot1006 182 59 16,562 91 17 5,052 479,197 8,454 2,782,326 144 43 12,554
False 120 55 9,433 59 14 2,403 1,911 180 24,753 121 33 5,693
True 182 59 23,115 91 19 7,478 465,208 10,836 4,789,527 144 49 19,331
Random(∅) 159 64 17,139 77 19 5,276 479,197 14,346 3,532,700 143 47 12,638

Splot1007 153 57 13,694 78 19 4,625 45,867 548 108,388 138 45 10,852
False 151 52 8,689 76 17 2,873 44,588 863 134,742 138 39 6,477
True 137 61 17,930 77 20 6,107 5,226 150 59,880 131 49 14,354
Random(∅) 153 58 14,465 78 20 4,896 45,867 633 130,543 138 47 11,725

Splot1008 160 58 16,570 93 23 6,736 898,950 302,839 4,041,079 148 39 11,519
False 128 48 8,621 85 16 2,943 724,342 5,660 764,107 124 28 5,101
True 160 70 27,128 92 30 11,753 898,950 889,052 8,001,471 148 54 20,832
Random(∅) 147 57 13,962 93 22 5,512 891,581 13,806 3,357,659 130 34 8,626

Splot1009 193 53 15,857 109 17 5,285 292,851 5,105 1,780,808 190 42 13,121
False 121 46 7,564 66 11 1,871 344 7 615 118 30 4,996
True 193 60 24,774 109 22 9,086 292,065 7,559 3,658,590 190 54 22,268
Random(∅) 159 55 15,235 84 17 4,900 292,851 7,751 1,683,220 154 43 12,100

Splot1010 157 41 9,479 80 11 2,579 52,568 301 101,575 138 35 8,757
False 113 27 2,152 61 6 518 16 2 234 106 18 1,460
True 157 53 19,586 80 14 5,204 51,259 643 256,888 138 53 19,343
Random(∅) 131 42 6,700 76 12 2,016 52,568 257 47,604 138 34 5,468
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Splot2001 650 202 106,677 451 78 44,787 246,302 2,613 1,717,759 556 170 96,987

False 514 156 41,042 362 42 11,076 6,759 101 21,989 498 92 24,281
True 578 248 189,040 451 118 90,418 233,104 4,828 3,906,315 544 255 194,129
Random(∅) 650 202 89,950 447 73 32,869 246,302 2,911 1,224,975 556 162 72,553

Splot2002 957 195 88,595 495 68 31,669 95,791 1,623 943,186 581 138 66,639
False 485 181 47,497 348 59 15,462 676 87 17,693 457 101 26,565
True 957 211 139,771 488 79 52,543 93,356 3,422 2,272,364 574 181 119,769
Random(∅) 656 193 78,517 495 65 27,003 95,791 1,360 539,501 581 131 53,583

Splot2003 699 242 151,631 753 102 66,590 277,916 3,049 2,319,419 458 121 78,214
False 539 202 63,557 386 73 23,136 537 31 7,231 436 93 29,501
True 681 275 258,029 394 126 118,815 277,916 4,922 4,780,227 455 150 141,059
Random(∅) 699 250 133,309 753 108 57,820 277,082 4,193 2,170,801 458 120 64,084

Splot2004 692 245 135,552 541 133 73,735 399,527 2,812 2,390,917 510 153 88,433
False 527 236 65,122 496 129 35,587 7,111 489 90,076 469 133 36,650
True 656 260 226,320 540 143 124,611 399,527 7,321 6,816,335 494 182 158,542
Random(∅) 692 238 115,216 541 126 61,009 392,398 627 266,342 510 145 70,109

Splot2005 931 218 118,029 548 97 56,101 234,657 2,665 1,717,720 599 209 119,133
False 512 167 39,636 492 56 13,383 3,221 137 21,809 547 138 32,669
True 702 264 220,836 546 134 112,544 228,160 4,050 3,637,719 598 286 239,036
Random(∅) 931 222 93,615 548 100 42,378 234,657 3,807 1,493,633 599 203 85,694

Splot2006 633 206 94,188 383 66 31,850 91,800 983 550,421 508 131 63,011
False 465 195 55,131 244 52 14,735 1,325 30 8,120 412 102 28,817
True 614 216 140,559 383 81 52,624 89,700 1,606 1,055,650 492 163 106,336
Random(∅) 633 206 86,874 383 66 28,191 91,800 1,313 587,495 508 127 53,880
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Splot2007 988 207 133,378 468 82 57,193 582,804 173,330 3,625,967 504 131 92,983

False 479 170 47,331 360 50 14,016 842 58 12,183 432 77 21,385
True 988 247 247,583 463 115 115,415 * 567,862 425,285 7,229,859 504 194 194,036
Random(∅) 687 204 105,220 468 80 42,148 582,804 94,647 3,635,860 499 121 63,529

Splot2008 956 230 150,538 430 88 61,130 2,106,644 701,488 4,980,964 531 151 103,977
False 514 193 72,858 369 56 21,318 1,307,254 5,225 1,369,153 444 109 41,128
True 693 278 263,805 412 124 117,964 * 2,106,644 1,120,224 7,841,572 510 214 202,600
Random(∅) 956 220 114,953 430 84 44,109 2,085,719 979,014 5,732,168 531 129 68,203

Splot2009 620 166 76,181 339 51 24,886 240,857 77,877 3,353,362 471 112 55,083
False 419 126 28,602 228 26 6,045 799 73 12,781 343 64 14,536
True 620 190 128,617 308 65 44,341 * 230,649 226,239 7,239,654 471 154 104,446
Random(∅) 558 181 71,325 339 61 24,273 240,857 7,318 2,807,652 456 117 46,267

Splot2010 722 186 97,149 524 71 40,456 182,578 689 469,348 623 153 87,266
False 469 149 28,906 316 45 8,901 709 9 1,383 426 99 19,293
True 722 236 204,157 523 105 91,106 182,578 1,309 1,177,494 623 228 197,433
Random(∅) 608 174 58,384 524 63 21,361 179,022 748 229,168 604 133 45,072

Splot5001 2,644 1,073 985,222 2,293 457 436,579 - - - 1,952 493 463,505
False 2,371 1,016 502,946 2,249 383 190,047 - - - 1,952 443 219,428
True 2,567 1,168 1,633,818 2,208 554 775,285 - - - 1,781 578 808,767
Random(∅) 2,644 1,035 818,902 2,293 433 344,405 - - - 1,856 457 362,321

Splot5002 3,249 1,207 1,699,190 5,720 790 1,239,173 - - - 3,442 1,014 1,532,622
False 2,942 945 537,172 3,347 343 195,127 - - - 2,973 622 353,488
True 3,047 1,416 3,057,141 5,339 1,119 2,416,896 - - - 3,392 1,397 3,015,787
Random(∅) 3,249 1,259 1,503,258 5,720 907 1,105,496 - - - 3,442 1,025 1,228,593
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Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Splot5003 3,026 1,133 1,127,008 5,345 671 667,388 - - - 3,278 939 969,619

False 2,939 1,045 524,722 5,345 624 313,350 - - - 3,255 799 401,355
True 2,696 1,186 1,786,257 3,969 703 1,059,519 - - - 2,748 1,117 1,682,889
Random(∅) 3,026 1,167 1,070,046 5,317 687 629,296 - - - 3,278 900 824,615

Splot5004 3,415 1,250 1,540,107 5,864 967 1,291,224 - - - 3,549 1,035 1,357,664
False 3,047 1,088 544,316 5,266 694 347,182 - - - 3,176 760 380,148
True 3,198 1,434 2,831,010 5,834 1,332 2,628,958 - - - 3,519 1,369 2,701,887
Random(∅) 3,415 1,227 1,244,996 5,864 875 897,534 - - - 3,549 976 990,958

Splot5005 3,818 1,343 1,709,376 6,647 1,232 1,595,739 - - - 4,061 1,102 1,475,103
False 3,599 1,089 542,519 6,526 921 459,028 - - - 3,965 785 391,104
True 3,701 1,504 3,102,131 6,554 1,419 2,926,606 - - - 4,026 1,390 2,866,836
Random(∅) 3,818 1,437 1,483,478 6,647 1,356 1,401,584 - - - 4,061 1,130 1,167,371

Splot5006 3,200 1,163 1,289,228 5,114 691 790,159 - - - 3,155 905 1,087,126
False 2,972 1,031 535,206 4,749 580 301,345 - - - 3,047 637 330,955
True 3,041 1,349 2,383,182 4,180 866 1,530,988 - - - 2,897 1,264 2,233,261
Random(∅) 3,200 1,109 949,297 5,114 625 538,144 - - - 3,155 813 697,163

Splot5007 3,408 1,407 1,830,278 5,522 1,082 1,514,747 - - - 3,701 1,258 1,716,218
False 3,166 1,277 739,755 5,071 823 476,547 - - - 3,388 1,019 590,543
True 3,375 1,653 3,400,197 5,509 1,518 3,121,566 - - - 3,595 1,657 3,407,865
Random(∅) 3,408 1,292 1,350,882 5,522 906 946,129 - - - 3,701 1,099 1,150,247

Splot5008 3,413 1,251 1,492,908 5,902 913 1,179,150 - - - 3,528 1,074 1,384,742
False 2,998 1,052 578,799 5,479 619 340,661 - - - 3,307 717 394,361
True 3,413 1,441 2,686,314 5,888 1,271 2,369,048 - - - 3,525 1,495 2,786,327
Random(∅) 3,304 1,259 1,213,612 5,902 850 827,742 - - - 3,528 1,010 973,538



80
A

.
A

p
p

en
d
ix

Model
FeatureIDE (in ms) SplotSAT (in ms) SplotBDD (in ms) CA1 (in ms)
Max ∅

∑
Max ∅

∑
Max ∅

∑
Max ∅

∑
Splot5009 3,466 1,358 1,596,608 5,458 940 1,187,515 - - - 3,807 1,357 1,736,957

False 2,982 1,293 505,872 3,396 767 300,057 - - - 3,029 1,077 421,172
True 3,282 1,476 3,073,879 5,168 1,171 2,439,119 - - - 3,807 1,741 3,626,307
Random(∅) 3,466 1,306 1,210,074 5,458 882 823,369 - - - 3,797 1,254 1,163,392

Splot5010 4,045 1,370 1,778,267 5,870 914 1,308,038 - - - 4,094 1,105 1,511,933
False 3,180 1,126 530,462 3,349 528 248,699 - - - 2,662 803 378,454
True 4,045 1,564 3,347,494 5,870 1,235 2,642,244 - - - 4,068 1,416 3,029,596
Random(∅) 3,897 1,420 1,456,847 5,865 980 1,033,173 - - - 4,094 1,095 1,127,749

Splot10001 * 13,992 6,152 9,429,971 * 48,342 14,374 10,071,199 - - - * 17,880 6,194 8,985,031
False 13,181 4,864 2,928,597 44,547 5,851 3,522,395 - - - 17,880 3,942 2,373,088
True * 13,810 8,369 18,002,079 * 47,655 31,112 18,014,344 - - - * 16,959 9,972 18,000,842
Random(∅) 13,992 5,224 7,359,238 48,342 6,160 8,676,859 - - - 17,330 4,669 6,581,164

Table A.3: Decision-propagation times for evaluated configuration tools.
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Model
CA2 (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

Dell 3 0 3 21 0 5
False 2 0 3 2 0 4
True 3 0 3 3 0 3
Random(∅) 3 0 3 21 1 8

BerkeleyDB1 11 0 8 30 0 17
False 5 1 11 2 0 8
True 2 0 3 30 0 32
Random(∅) 11 0 10 6 0 12

BerkeleyDB2 7 0 18 6 1 30
False 3 0 10 5 1 19
True 4 0 25 6 1 46
Random(∅) 7 0 20 5 1 25

Violet 19 0 10 42 0 12
False 2 0 12 2 0 11
True 1 0 1 1 0 2
Random(∅) 19 0 18 42 0 23

EShopSplot 6 0 27 12 0 30
False 4 0 20 11 0 34
True 3 0 23 3 0 20
Random(∅) 6 0 40 12 0 37

EShopFIDE 26 0 23 5 0 19
False 26 0 40 4 0 19
True 2 0 21 2 0 25
Random(∅) 3 0 9 5 0 15

Automotive1 348 63 30,296 266 50 24,044
False 285 29 7,464 203 23 6,022
True 348 97 53,767 266 77 42,694
Random(∅) 291 63 29,659 217 49 23,416

Automotive2 1,757 83 731,869 1,266 71 634,596
False 1,690 135 1,787,553 1,166 118 1,572,406
True 1,739 57 198,422 1,121 43 152,352
Random(∅) 1,757 59 209,634 1,266 50 179,032

Splot1001 128 25 8,268 93 19 6,295
False 128 16 2,407 40 10 1,601
True 98 36 16,028 93 28 12,771
Random(∅) 99 25 6,369 81 17 4,514
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Model
CA2 (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

Splot1002 81 14 3,914 61 9 2,749
False 81 12 2,184 42 8 1,518
True 78 16 6,058 60 11 4,263
Random(∅) 74 13 3,502 61 9 2,466

Splot1003 89 23 6,781 67 16 4,854
False 73 20 2,586 60 14 1,867
True 85 26 11,976 67 18 8,545
Random(∅) 89 22 5,782 64 16 4,150

Splot1004 98 27 9,502 83 19 6,770
False 77 19 3,254 61 13 2,299
True 95 35 17,054 83 25 12,082
Random(∅) 98 26 8,200 83 19 5,931

Splot1005 99 20 5,011 81 14 3,563
False 68 14 2,049 47 10 1,454
True 95 25 7,530 73 17 5,377
Random(∅) 99 22 5,454 81 16 3,858

Splot1006 104 26 7,601 91 18 5,395
False 71 20 3,455 54 14 2,414
True 93 30 11,747 77 21 8,390
Random(∅) 104 28 7,602 91 20 5,382

Splot1007 110 27 6,657 82 20 4,788
False 110 24 4,011 68 17 2,844
True 90 30 8,776 66 21 6,263
Random(∅) 102 29 7,185 82 21 5,257

Splot1008 94 24 7,021 75 17 4,958
False 73 17 3,140 49 12 2,237
True 93 33 12,689 70 23 8,922
Random(∅) 94 21 5,235 75 15 3,716

Splot1009 104 25 7,928 105 18 5,645
False 91 18 3,064 55 13 2,165
True 104 32 13,454 83 23 9,585
Random(∅) 101 26 7,268 105 18 5,187

Splot1010 86 22 5,431 68 15 3,828
False 66 11 942 45 8 657
True 83 32 11,929 63 23 8,404
Random(∅) 86 21 3,422 68 15 2,424
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Model
CA2 (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

Splot2001 339 101 57,867 248 71 40,529
False 287 55 14,477 198 38 10,121
True 339 152 115,805 248 106 81,169
Random(∅) 329 97 43,319 240 67 30,297

Splot2002 353 83 40,198 251 58 28,178
False 275 61 16,165 208 43 11,433
True 343 109 72,176 251 76 50,514
Random(∅) 353 79 32,253 250 55 22,588

Splot2003 279 72 46,643 212 50 32,729
False 270 56 17,753 184 39 12,411
True 275 89 84,083 193 63 59,133
Random(∅) 279 71 38,095 212 50 26,645

Splot2004 300 91 52,670 252 63 36,697
False 277 78 21,723 208 55 15,187
True 299 109 94,621 225 75 65,753
Random(∅) 300 86 41,666 252 60 29,151

Splot2005 366 125 71,169 305 88 50,053
False 326 83 19,646 233 58 13,843
True 364 170 142,762 270 119 100,103
Random(∅) 366 121 51,101 305 85 36,214

Splot2006 302 78 37,623 237 55 26,855
False 242 60 17,138 163 43 12,127
True 302 98 63,608 237 70 45,662
Random(∅) 300 75 32,125 228 53 22,777

Splot2007 302 77 54,747 246 54 38,371
False 246 46 12,796 163 31 8,863
True 302 113 113,741 235 79 79,815
Random(∅) 299 72 37,704 246 50 26,436

Splot2008 317 90 61,766 240 63 43,655
False 270 66 24,900 187 45 17,287
True 316 126 119,435 234 89 85,066
Random(∅) 317 77 40,963 240 54 28,612

Splot2009 287 66 33,065 230 47 23,158
False 216 35 8,410 134 27 6,148
True 287 92 62,737 224 64 43,522
Random(∅) 279 71 28,048 230 50 19,804
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Model
CA2 (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

Splot2010 361 91 51,866 271 64 36,623
False 262 59 11,472 188 41 8,030
True 361 135 117,268 271 95 82,753
Random(∅) 360 79 26,858 255 56 19,087

Splot5001 1,290 332 313,330 1,103 262 246,664
False 1,180 297 147,177 988 235 116,550
True 1,233 391 547,627 997 308 430,625
Random(∅) 1,290 309 245,187 1,103 243 192,818

Splot5002 2,454 710 1,074,666 2,026 537 814,100
False 1,800 431 245,348 1,489 328 186,563
True 2,454 982 2,120,438 2,026 745 1,608,638
Random(∅) 2,446 716 858,214 1,991 539 647,101

Splot5003 2,321 669 691,215 1,908 501 517,897
False 2,289 568 285,628 1,892 424 213,340
True 1,945 798 1,201,833 1,497 597 900,116
Random(∅) 2,321 640 586,185 1,908 480 440,235

Splot5004 2,517 725 950,723 2,094 545 714,918
False 2,187 534 267,390 1,649 402 201,277
True 2,517 959 1,893,996 2,068 722 1,424,967
Random(∅) 2,501 681 690,785 2,094 511 518,512

Splot5005 2,805 762 1,020,249 2,230 578 774,688
False 2,710 545 271,851 2,074 411 204,694
True 2,791 961 1,982,078 2,171 731 1,508,840
Random(∅) 2,805 781 806,818 2,230 591 610,531

Splot5006 2,297 634 760,926 1,840 469 562,297
False 2,028 450 233,735 1,593 338 175,520
True 2,049 884 1,561,524 1,544 653 1,153,310
Random(∅) 2,297 569 487,521 1,840 417 358,061

Splot5007 2,571 875 1,192,851 2,050 649 885,225
False 2,445 710 411,133 1,858 525 304,305
True 2,554 1,151 2,366,466 2,037 855 1,759,193
Random(∅) 2,571 765 800,954 2,050 565 592,179

Splot5008 2,576 754 971,007 2,087 559 721,063
False 2,346 505 277,992 1,692 374 205,716
True 2,571 1,047 1,950,775 2,034 778 1,449,528
Random(∅) 2,576 710 684,254 2,087 527 507,947
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Model
CA2 (in ms) CA4 (in ms)

Max ∅
∑

Max ∅
∑

Splot5009 2,757 944 1,209,948 2,095 698 895,938
False 2,160 746 292,064 1,659 549 214,799
True 2,718 1,214 2,529,590 2,095 900 1,874,737
Random(∅) 2,757 871 808,192 2,051 645 598,279

Splot5010 2,816 760 1,039,521 2,169 563 772,361
False 1,843 556 261,960 1,346 410 193,437
True 2,816 974 2,084,668 2,169 726 1,553,118
Random(∅) 2,811 750 771,935 2,140 554 570,529

Splot10001 * 14,103 4,603 8,404,833 9,546 2,711 5,555,055
False 12,814 3,149 1,895,748 8,274 2,042 1,229,628
True * 14,103 6,888 18,000,143 9,389 3,663 12,011,160
Random(∅) 14,010 3,773 5,318,608 9,546 2,429 3,424,379

Table A.4: Decision-propagation times for CA2 and CA4.
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Model
#Visited Connections #SAT Calls

none strong weak CA1 CA2 CA4

Dell(∅) 22 19 152 69 74 75
False 9 1 252 114 116 119
True 30 30 50 25 28 29
Random(∅) 24 20 153 69 75 76

BerkeleyDB1(∅) 693 47 148 54 56 58
False 292 58 54 23 24 26
True 1,316 33 165 34 34 34
Random(∅) 656 47 161 63 65 68

BerkeleyDB2(∅) 239 50 1,053 330 362 375
False 236 67 281 145 145 148
True 244 42 1,602 451 514 501
Random(∅) 239 48 1,090 341 374 392

Violet(∅) 3,810 53 201 64 64 65
False 2,083 69 186 25 25 25
True 6,300 22 300 76 76 76
Random(∅) 3,683 55 187 68 69 71

EShopSplot(∅) 25,409 141 983 315 324 337
False 13,112 200 350 111 114 115
True 47,554 57 1,257 268 272 284
Random(∅) 23,767 146 1,043 356 368 383

EShopFIDE(∅) 28,612 176 1,043 292 300 308
False 14,873 232 327 111 111 111
True 52,112 90 1,396 256 270 280
Random(∅) 26,985 181 1,104 329 337 345

Automotive1(∅) 624,771 1,639 375,307 90,071 100,233 106,326
False 239,397 1,830 82,879 20,181 22,971 24,590
True 741,831 1,530 697,209 165,777 183,254 194,151
Random(∅) 669,490 1,625 370,395 89,102 99,273 105,312

Automotive2(∅) 84,869,670 10,887 238,882 105,157 114,770 115,557
False 195,930,049 1,908 952,273 434,987 460,217 464,113
True 71,265,392 12,248 152,842 66,061 76,260 77,689
Random(∅) 68,626,986 12,157 134,323 56,701 63,613 63,776

Splot1001(∅) 54,701 519 140,565 49,710 55,336 57,411
False 31,893 591 40,860 15,176 17,421 18,123
True 72,932 345 324,407 114,694 126,188 130,362
Random(∅) 55,465 537 126,543 44,635 49,847 51,800
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Model
#Visited Connections #SAT Calls

none strong weak CA1 CA2 CA4

Splot1002(∅) 124,422 414 73,348 27,169 29,586 30,195
False 74,992 446 42,310 16,021 17,650 18,113
True 195,587 337 125,664 45,351 49,132 49,992
Random(∅) 120,799 422 69,802 25,997 28,318 28,910

Splot1003(∅) 123,081 619 128,976 44,967 49,018 51,411
False 66,900 716 54,898 19,015 20,656 21,708
True 187,261 415 247,454 87,053 95,406 99,907
Random(∅) 121,749 637 121,577 42,278 46,013 48,279

Splot1004(∅) 89,858 583 167,683 64,729 70,780 72,704
False 65,077 693 61,054 24,054 26,532 27,274
True 113,421 439 349,164 129,086 139,846 144,013
Random(∅) 90,061 589 155,208 60,783 66,644 68,391

Splot1005(∅) 64,466 522 105,346 37,998 41,429 42,871
False 44,643 592 38,083 14,547 15,850 16,380
True 63,115 425 146,998 53,349 58,687 61,219
Random(∅) 67,995 527 109,615 39,348 42,817 44,228

Splot1006(∅) 100,882 490 154,719 55,575 60,152 62,430
False 72,528 572 68,356 25,043 27,067 27,955
True 111,658 362 233,406 85,177 92,781 96,782
Random(∅) 103,812 498 155,999 55,730 60,228 62,450

Splot1007(∅) 78,038 587 138,165 49,531 54,564 57,200
False 51,925 672 81,149 28,414 31,142 32,716
True 101,131 393 180,764 62,639 68,728 71,530
Random(∅) 78,541 606 140,568 50,866 56,107 58,893

Splot1008(∅) 99,877 573 117,380 43,167 47,126 48,768
False 62,789 645 58,532 22,460 24,817 25,673
True 139,833 442 259,917 93,220 101,969 105,475
Random(∅) 99,399 582 103,432 38,277 41,704 43,166

Splot1009(∅) 74,808 562 151,253 55,264 60,159 62,849
False 45,618 654 57,404 21,959 23,921 24,828
True 94,948 387 272,553 98,748 108,137 113,101
Random(∅) 76,317 577 146,678 53,568 58,203 60,811

Splot1010(∅) 31,887 408 80,009 29,555 32,997 34,055
False 13,163 484 16,963 6,545 7,401 7,614
True 52,660 233 224,321 85,232 94,638 97,119
Random(∅) 31,545 425 66,465 24,111 26,989 27,952
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Model
#Visited Connections #SAT Calls

none strong weak CA1 CA2 CA4

Splot2001(∅) 232,996 1,096 499,937 182,624 200,411 208,269
False 158,929 1,231 137,702 53,337 58,741 61,040
True 270,218 1,080 1,238,006 437,285 479,327 498,859
Random(∅) 239,137 1,077 437,299 161,729 177,537 184,376

Splot2002(∅) 250,829 1,031 340,179 131,175 145,212 150,895
False 180,287 1,133 150,002 59,739 66,190 68,692
True 308,395 639 715,336 270,316 299,196 310,608
Random(∅) 252,992 1,080 309,349 119,891 132,719 137,977

Splot2003(∅) 642,991 1,164 447,312 161,382 176,236 184,610
False 295,705 1,264 187,859 68,359 75,216 78,927
True 1,122,032 984 913,780 330,680 361,384 378,638
Random(∅) 621,032 1,178 412,810 148,670 162,214 169,886

Splot2004(∅) 456,972 1,313 465,367 178,250 195,031 203,078
False 265,365 1,521 223,150 84,612 92,518 96,633
True 737,088 934 949,858 370,306 406,376 421,769
Random(∅) 442,220 1,341 424,988 161,848 176,893 184,370

Splot2005(∅) 171,883 1,355 608,688 220,036 241,191 251,051
False 92,403 1,508 197,859 73,053 79,886 83,215
True 200,622 979 1,462,881 538,483 593,310 616,625
Random(∅) 180,340 1,392 534,794 191,459 209,388 218,094

Splot2006(∅) 294,217 1,205 349,616 129,403 141,432 149,169
False 221,230 1,264 173,004 64,563 70,600 74,507
True 354,859 1,258 651,561 241,635 264,175 278,594
Random(∅) 296,275 1,186 328,728 121,504 132,780 140,042

Splot2007(∅) 393,331 1,333 491,943 173,400 187,200 194,994
False 211,267 1,582 134,449 48,812 53,423 55,414
True 653,114 957 1,307,437 454,669 487,317 508,591
Random(∅) 380,378 1,354 415,610 147,287 159,477 165,991

Splot2008(∅) 445,663 1,170 514,602 184,742 203,150 211,426
False 284,494 1,221 246,119 92,811 103,437 107,538
True 695,718 1,009 1,314,711 458,395 498,007 518,829
Random(∅) 430,849 1,188 425,998 154,455 170,627 177,508

Splot2009(∅) 242,264 910 305,267 113,751 125,273 129,154
False 115,868 1,036 82,142 32,712 34,533 37,388
True 318,934 641 651,835 239,579 262,814 270,923
Random(∅) 250,552 934 284,693 106,287 117,473 120,820
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Model
#Visited Connections #SAT Calls

none strong weak CA1 CA2 CA4

Splot2010(∅) 160,040 1,519 377,835 136,171 148,093 153,516
False 91,119 1,706 115,757 42,871 46,641 48,321
True 303,320 1,004 1,248,284 443,908 482,373 500,109
Random(∅) 147,647 1,574 276,440 100,432 109,289 113,283

Splot5001(∅) 1,431,471 2,034 1,171,537 441,230 481,584 502,027
False 819,696 2,424 650,038 245,254 267,448 279,188
True 2,444,359 1,597 2,397,960 900,714 984,937 1,025,611
Random(∅) 1,364,619 2,042 1,054,050 397,312 433,381 451,903

Splot5002(∅) 1,790,574 3,154 3,343,119 1,247,737 1,358,871 1,417,132
False 834,311 3,623 813,414 317,580 349,427 363,462
True 2,470,373 2,478 7,644,137 2,829,502 3,077,077 3,216,515
Random(∅) 1,836,651 3,189 3,047,900 1,139,136 1,240,744 1,292,847

Splot5003(∅) 1,277,021 3,344 2,209,961 797,120 874,675 909,141
False 694,026 3,669 1,001,705 364,896 400,702 415,684
True 1,626,052 2,712 4,274,598 1,528,712 1,675,153 1,745,120
Random(∅) 1,316,015 3,395 2,067,231 747,225 820,258 852,054

Splot5004(∅) 1,570,051 3,087 2,847,898 1,035,187 1,119,253 1,162,645
False 806,951 3,526 935,283 346,633 377,101 391,133
True 2,538,671 2,195 6,943,366 2,507,897 2,711,972 2,818,225
Random(∅) 1,535,798 3,163 2,484,090 904,494 977,492 1,015,300

Splot5005(∅) 1,857,081 3,284 3,106,282 1,106,153 1,185,298 1,240,155
False 788,519 3,651 939,674 338,571 363,938 380,475
True 2,918,327 2,463 6,902,176 2,458,997 2,634,566 2,760,024
Random(∅) 1,858,300 3,360 2,834,734 1,008,609 1,080,647 1,130,123

Splot5006(∅) 1,240,798 3,781 2,012,713 739,896 806,277 838,421
False 787,276 4,084 810,990 300,613 328,532 342,722
True 1,960,021 3,087 5,369,906 1,967,214 2,141,134 2,238,065
Random(∅) 1,196,514 3,847 1,653,468 608,557 663,425 687,763

Splot5007(∅) 1,549,766 3,001 3,246,208 1,199,714 1,305,034 1,364,473
False 902,797 3,281 1,387,154 520,975 569,105 594,273
True 2,684,666 2,706 8,371,342 3,031,598 3,281,935 3,432,498
Random(∅) 1,468,445 3,004 2,701,861 1,007,523 1,098,206 1,148,169

Splot5008(∅) 1,408,162 3,391 2,777,770 985,691 1,076,817 1,126,533
False 899,219 3,777 939,584 341,056 374,943 392,002
True 1,914,869 2,320 7,047,231 2,458,296 2,671,188 2,801,443
Random(∅) 1,408,535 3,506 2,372,558 847,697 928,067 969,803
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Model
#Visited Connections #SAT Calls

none strong weak CA1 CA2 CA4

Splot5009(∅) 1,001,662 3,365 3,336,595 1,203,464 1,304,168 1,358,240
False 575,149 4,164 1,014,785 365,704 395,580 411,417
True 1,149,891 2,265 8,878,764 3,190,852 3,456,729 3,604,234
Random(∅) 1,048,043 3,415 2,799,868 1,011,860 1,096,840 1,141,711

Splot5010(∅) 1,803,787 3,655 3,059,741 1,103,057 1,184,043 1,232,366
False 692,081 4,187 896,116 329,246 355,006 370,321
True 3,127,394 2,674 7,368,566 2,633,023 2,825,036 2,940,415
Random(∅) 1,768,470 3,730 2,702,208 977,031 1,048,717 1,091,366

Splot10001(∅) 3,866,194 6,109 8,107,885 2,979,358 3,427,822 3,608,834
False 1,949,125 7,265 2,541,950 932,487 1,000,499 1,041,130
True 5,231,623 3,560 20,115,423 7,272,285 9,578,770 10,303,427
Random(∅) 3,958,134 6,342 7,034,285 2,605,016 2,807,218 2,921,020

Table A.5: Results of the dynamic analysis on all feature graphs.
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Model
#Connections

#Nodes
Size (in byte)

none strong weak (Compressed %)

Dell 2,590 374 2,812 76 5,042 (33.6)
BerkeleyDB1 13,325 1,500 3,671 136 9,409 (24.5)
BerkeleyDB2 24,028 858 20,910 214 23,215 (15.3)
Violet 33,332 1,566 3,518 196 16,939 (17.2)
EShopSplot 320,934 3,216 16,906 584 84,572 ( 9.0)
EShopFIDE 254,162 1,958 12,204 518 105,324 ( 8.7)
Automotive1 14,375,894 195,698 5,106,504 4,436 5,086,553 ( 0.7)
Automotive2 996,174,355 695,346 2,575,295 31,614 250,875,368 ( 0.1)
Splot1001 2,687,005 55,596 1,983,675 2,174 1,248,816 ( 1.6)
Splot1002 2,973,541 63,790 1,322,413 2,088 1,153,524 ( 1.7)
Splot1003 3,034,024 26,488 1,587,824 2,156 1,225,928 ( 1.7)
Splot1004 2,738,043 48,032 1,810,661 2,144 1,212,723 ( 1.6)
Splot1005 2,754,860 71,978 1,787,066 2,148 1,217,676 ( 1.7)
Splot1006 2,757,169 66,760 1,755,671 2,140 1,210,071 ( 1.8)
Splot1007 2,879,573 35,350 1,907,493 2,196 1,271,436 ( 1.7)
Splot1008 2,958,948 29,038 1,583,058 2,138 1,207,465 ( 1.8)
Splot1009 2,875,274 28,688 1,839,722 2,178 1,250,618 ( 1.6)
Splot1010 2,489,295 80,968 1,907,193 2,116 1,184,885 ( 1.7)
Splot2001 11,211,199 115,620 8,156,577 4,414 4,996,237 ( 0.9)
Splot2002 10,888,970 398,746 8,001,948 4,392 4,950,473 ( 0.8)
Splot2003 13,128,464 60,946 5,077,666 4,274 4,689,681 ( 0.9)
Splot2004 12,286,639 73,296 6,216,165 4,310 4,771,038 ( 0.8)
Splot2005 10,888,199 116,370 8,904,875 4,462 5,111,251 ( 0.8)
Splot2006 11,285,974 397,172 6,841,270 4,304 4,757,997 ( 0.8)
Splot2007 11,769,781 66,444 6,073,599 4,232 4,597,382 ( 0.8)
Splot2008 12,059,915 77,808 6,749,993 4,346 4,851,654 ( 0.8)
Splot2009 9,049,995 112,772 5,338,097 3,808 3,738,642 ( 1.0)
Splot2010 11,347,708 87,604 7,995,152 4,408 4,988,491 ( 0.8)
Splot5001 39,969,030 539,128 20,020,242 7,780 15,396,671 ( 0.5)
Splot5002 72,310,755 602,238 46,901,923 10,946 30,270,738 ( 0.3)
Splot5003 70,613,896 1,742,324 48,292,036 10,984 30,479,499 ( 0.3)
Splot5004 72,820,347 720,062 47,283,655 10,992 30,532,648 ( 0.3)
Splot5005 74,445,701 348,354 44,758,301 10,934 30,206,394 ( 0.3)
Splot5006 72,137,339 1,407,498 45,614,219 10,916 30,111,231 ( 0.3)
Splot5007 71,045,123 522,698 48,729,203 10,968 30,389,606 ( 0.3)
Splot5008 71,438,280 362,856 48,495,888 10,968 30,390,393 ( 0.3)
Splot5009 68,102,749 485,608 53,337,407 11,042 30,802,384 ( 0.3)
Splot5010 74,528,787 373,846 44,824,731 10,942 30,246,096 ( 0.3)
Splot10001 389,559,638 967,192 94,441,654 22,022 121,877,300 ( 0.2)

Table A.6: Results of the static analysis on all feature graphs.
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[AKL13] Sven Apel, Christian Kästner, and Christian Lengauer. Language-
Independent and Automated Software Composition: The FeatureHouse
Experience. IEEE Transactions on Software Engineering (TSE), 39(1):63–
79, 2013. (cited on Page 7)

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A Linear-Time
Algorithm for Testing the Truth of Certain Quantified Boolean Formulas.
Information Processing Letters, 8(3):121–123, 1979. (cited on Page 2 and 11)

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas.
In Proceedings of the International Software Product Line Conference
(SPLC), pages 7–20, Berlin, Heidelberg, 2005. Springer. (cited on Page 9

and 14)

[Bat06] Don Batory. A Tutorial on Feature Oriented Programming and the
AHEAD Tool Suite. In Proceedings of the Summer School on Genera-
tive and Transformational Techniques in Software Engineering (GTTSE),
pages 3–35, Berlin, Heidelberg, 2006. Springer. (cited on Page 7)

[BSRC10] David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated
Analysis of Feature Models 20 Years Later: A Literature Review. Infor-
mation Systems, 35(6):615–708, 2010. (cited on Page 13, 14, and 15)

[BSTRC07] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz-Cortés.
FAMA: Tooling a Framework for the Automated Analysis of Feature Mod-
els. In Proceedings of the Workshop on Variability Modelling of Software-



94 Bibliography

intensive Systems (VaMoS), pages 129–134, Limerick, Ireland, 2007. Tech-
nical Report 2007-01, Lero. (cited on Page 64)

[BTRC05] David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Using Con-
straint Programming to Reason on Feature Models. In Proceedings of the
International Conference on Software Engineering and Knowledge Engi-
neering (SEKE), pages 677–682, 2005. (cited on Page 63)

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM/Addison-Wesley, New York, NY,
USA, 2000. (cited on Page 1, 5, 6, and 8)

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Con-
figuration through Specialization and Multi-Level Configuration of Feature
Models. Software Process: Improvement and Practice, 10(2):143–169, 2005.
(cited on Page 1 and 12)

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. Addison-Wesley, Boston, MA, USA, 2001. (cited on Page 1

and 5)

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In
Proceedings of The Third Annual ACM Symposium on Theory of Comput-
ing, pages 151–158, New York, NY, USA, 1971. ACM. (cited on Page 1

and 13)

[CW07] Krzysztof Czarnecki and Andrzej W ↪asowski. Feature Diagrams and Logics:
There and Back Again. In Proceedings of the International Software Prod-
uct Line Conference (SPLC), pages 23–34, Washington, DC, USA, 2007.
IEEE Computer Science. (cited on Page 11)

[Das05] Jürgen Dassow. Logik für Informatiker. Vieweg+Teubner Verlag, 2005. In
German. (cited on Page 10)

[HJ90] Pierre Hansen and Brigitte Jaumard. Algorithms for the Maximum Sat-
isfiability Problem. Computing, 44(4):279–303, 1990. (cited on Page 2)

[HSJ+04] Tarik Hadzic, Sathiamoorthy Subbarayan, Rune M. Jensen, Henrik R. An-
dersen, Jesper Møller, and Henrik Hulgaard. Fast Backtrack-Free Prod-
uct Configuration Using a Precompiled Solution Space Representation.
Proceedings of the International Conference on Economic, 10(1):131–138,
2004. (cited on Page 2 and 63)
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