Otto von Guericke University of Magdeburg

Department of Computer Science

OTTO VON GUERICKE

UNIVERSITAT

MAGDEBURG

Master’s Thesis

Key-Based Self-Driven Compression
in Columnar Binary JSON

Author:
Oskar Kirmis

November 4, 2019

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
M. Sc. Marcus Pinnecke

Institute for Technical and Business Information Systems / Database Research Group



Kirmis, Oskar:
Key-Based Self-Driven Compression in Columnar Binary JSON
Master’s Thesis, Otto von Guericke University of Magdeburg, 2019



Abstract

A large part of the data that is available today in organizations or publicly is provided
in semi-structured form. To perform analytical tasks on these — mostly read-only —
semi-structured datasets, Carbon archives were developed as a column-oriented storage
format. Its main focus is to allow cache-efficient access to fields across records. As
many semi-structured datasets mainly consist of string data and the denormalization
introduces redundancy, a lot of storage space is required. However, in Carbon archives

— besides a deduplication of strings — there is currently no compression implemented.

The goal of this thesis is to discuss, implement and evaluate suitable compression tech-
niques to reduce the amount of storage required and to speed up analytical queries on
Carbon archives. Therefore, a compressor is implemented that can be configured to
apply a combination of up to three different compression algorithms to the string data
of Carbon archives. This compressor can be applied with a different configuration per
column (per JSON object key). To find suitable combinations of compression algo-
rithms for each column, one manual and two self-driven approaches are implemented
and evaluated.

On a set of ten publicly available semi-structured datasets of different kinds and sizes,
the string data can be compressed down to about 53% on average, reducing the whole
datasets’ size by 20%. Additionally, read operations are accelerated by approximately
6.5% on average. This means that the application of key-based compression can reduce
storage costs and increase the query performance. Consequently, this technique should
be used with Carbon archives, especially when working with large datasets.
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1 Introduction

Motivation

The amount of data that is available in organizations or on the internet continues
to grow. The majority of that data is not accessible through traditional database
interfaces, though, but through web APIs like REST [Ric07], either because the data
is provided by third party webservices or because an organization itself has decided to
use a service-oriented I'T architecture approach like microservices. While each service
itself may be using one or more traditional database management systems (DBMS),
these are not directly exposed and the data is serialized to data exchange formats like
JSON [Bral4] or XML [BPSM™08] at the interfaces of the service.

However, these formats are designed to be used as exchange formats and are therefore
focused on properties like being human readable and writable or easy — not fast — to
parse instead of efficiency, both in terms of storage and processing performance. That
results in a large overhead when reading the datasets. Also, storing a document in its
original, record-oriented structure can lead to bad caching behavior when accessing the
same attributes across many records. Both aspects make exchange formats unsuitable
for directly running analytical workloads on them. Nevertheless, without being able to
analyze it properly, especially for large datasets, the data often becomes worthless. For
that kind of tasks, DBMS have been optimized, e.g. for their use in data warehouse
applications. One of these optimizations is the use of column-based storage layouts.
These have become popular because they can achieve higher performance when data is
required from only a small portion of columns for a query’s execution, which is typical
for analytical workloads [AMHO0S].
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That leaves a gap in the workflow: semi-structured data that is available in an exchange
format needs to be loaded into a database with a column-oriented storage engine. This
requires either a manual conversion of the input data into an — often relational — model
by the user or the database is able to accept the semi-structured data and the storage
engine converts it automatically into a columnar layout which is than used for storage
and query execution. The latter approach is obviously more convenient from the user’s
perspective, but also allows the storage engine to perform more optimizations as it gets
more information on the original structure of the data. The conversion to a columnar
layout can either be performed at runtime, depending on the queries being executed on
the database (dynamic approach), e.g. by using adaptive vertical partitioning [SLCT19],
or during the import of a dataset (static approach).

The Carbon (“Columnar Binary JSON”) framework was created to implement the static
approach [Pin19al. Tts longtime goal is to be used as a DBMS’ storage engine for the
scenarios described above. It currently provides tools to import JSON documents to its
own, column-oriented storage format, convert it back to JSON or to execute analytical
queries. But it still lacks some features of modern storage engines, such as transparent,

lossless compression®.

This technique aims to allow more data to be stored on the same hardware storage
system and to accelerate queries that are limited by the I/O performance of the system
[WKHMOO]. The latter often applies to analytical queries, which makes it interesting
for the usage in Carbon. However, some part of the data might be better compressible
than others and which compression algorithm performs best depends on the input to
be compressed. To adapt the compression to the data, many column-oriented storage
engines like the ones used by Amazon Redshift [Amab] or Kudu [Thel9a] allow the

compression to be manually configured on a per-column basis.

While this can work pretty well, it requires some deep understanding of databases, com-
pression techniques and the data that needs to be stored. As the same problem exists
throughout many other database topics like suitable index creation, partitioning etc.,
self-driving database technologies are one focus of research in the database community
[Cam19] and recently became more mainstream, with large DBMS manufacturers mas-
sively promoting their systems to be self-driving and to run “autonomously” [Orab].
The users will therefore expect the DBMS to take care of such low-level details like
applying suitable compression techniques automatically depending on their use cases.

!The basic compression framework already exists, but there is no working compression implemented
so far [Pin19d].
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Thesis Goals

This thesis’ purpose is to transfer the approach of speeding up I/O-bound operations
and saving storage space through lightweight compression from the relational data
model to the columnar data model for semi-structured data as implemented in Car-
bon. While much research of the database community is dedicated to compressing
numerical values in databases, all work in this thesis will be focused on strings, as they

make up the largest part of the data in typical semi-structured datasets.

Reasearch Question
What is the effect of autonomous (textual) compression applied to a columnar semi-

structured data model with respect to storage space and query performance?

Goals

In our thesis, we aim for the following:

(a) Setup of a powerful, yet small set of basic but representative compression tech-
niques as building blocks

(b) Design a working technique for combination of different compression building
blocks to construct new (higher-order) compression techniques towards a richer
search space for self-driven compression. This especially includes exploitation of
synergy effects, such as merging of redundant prefix tables.

(¢) Construction and evaluation of a decision component for an optimizer that chooses
the most reasonable compression technique, which may include higher-order com-
pression techniques

To verify and evaluate the results of these analyses, the goal is to integrate the ideas in
the Carbon framework and benchmark them using real-world datasets that origin from
publicly available web APIs.

Thesis Structure

This thesis is structured as follows:

Chapter 2
The next chapter provides an overview of the Carbon framework, lossless data compres-

sion in general and a brief review of the most popular algorithms and their application
in popular DBMS.
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Chapter 3

The third chapter focuses on the individual algorithms that have been selected for the
use in the Carbon framework as well as their implementation and integration. Addi-
tionally, the combination of the algorithms into one single, yet configurable compression

algorithm and its key-based application is described.

Chapter 4

Chapter 4 discusses different approaches on how the algorithms from the previous chap-
ter can be selected to perform best on the input data and how this process can be
optimized in terms of runtime performance.

Chapter 5
The approaches and implementations from the previous two chapters are evaluated in
chapter 5. The evaluation setup and procedure is described and the compression and

runtime performance results of the individual components are presented and discussed.

Chapter 6

The last chapter summarizes the findings and compares it to the goals set in Chapter 1
and describes the effects of the use of compression techniques in the Carbon framework.
It will also mention where further research may be required and what could be optimized

in the implementations presented in this thesis.

Definitions

This section provides definitions for some terms that will be used throughout the whole
thesis but may be defined differently by other researchers.

Definition 1 (Lossless data compression). Lossless data compression aims to reduce
the size of a given uncompressed message by encoding it in a different way, preserving

the same information. The result of this operation is a compressed message.

Definition 2 (Decompression). Decompression is the process of restoring the uncom-
pressed message from a given compressed message.

Definition 3 (Compressor). A compressor is a function that takes an uncompressed
message, performs a compression algorithm on that message and returns a compressed

message.

Definition 4 (Decompressor). A decompressor is a function that takes a compressed
message, performs a decompression algorithm on that and returns the uncompressed
message. For lossless data compression, the message restored is exactly the same mes-

sage that has been compressed by the corresponding compressor.
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Definition 5 (Compression Ratio). The compression ratio describes the ratio between
the size of a compressed message and its uncompressed size.

size(compressed message)

compression ratio = —
size(uncompressed message)

A compression ratio less than one therefore indicates a reduction of the message in size
through the compression process.



2 Background

This chapter will briefly describe the Carbon framework [Pinl9al, present basic com-

pression techniques and popular compression algorithms and finally reviews their use
in various DBMS.

2.1 The Carbon Archive Format and Framework

In this section the goals and use cases of the Carbon framework and the Carbon archives
are described first (Section 2.1.1). Then the archives’ basic structure is explained in
Section 2.1.2 as well as the format’s differences to other serialization formats for semi-
structured data (Section 2.1.3).

2.1.1 Goals and Use Cases of the Carbon Archive File Format

The Carbon archive file format is a binary file format to store columnar data and is
developed, specified and maintained by Marcus Pinnecke [Pin19c]. It is designed to
support read-intensive (“read-mostly” [Pin19b]) workloads, like analytical queries, on
the data. The reference implementation, libcarbon [Pinl19a], at the time of writing, is
only capable of converting between JSON [Bral4] and Carbon archives. Therefore, a
typical application would be to run analytical queries on large, static JSON datasets
like the Microsoft Academic Graph [SSST15] or dumps of REST-APIs [Ric07]. The
main goal of the project, however, is to use the Carbon archive format as a storage
backend for NoSQL in-memory databases [Pin19b].

Because of its use cases, even though the typical source of Carbon archive files are
JSON files, it does not compete with JSON as it is not designed as a data exchange
format. This is also true for various binary representations of JSON like BSON[Mon09]



16 2 Background

or UBJSON[Kal], which are designed as exchange formats, not for analytical tasks, and
are therefore record-oriented instead of column-oriented like Carbon archives. A more
detailed comparison of these formats with Carbon archives can be found in Section 2.1.3.

In addition to the Carbon archive file format (“Carbon archives”), there is a separate,
row-oriented Carbon file format. They have fundamentally different design goals, as the
Carbon archives are designed to serve analytical workloads, whereas the Carbon (non-
archive) files are designed to work as a key-value-store. Both may be used together
to serve different needs of a database backend, but for this thesis, only the Carbon
archives are considered because these are designed for analytical and therefore often
more I/O-intensive tasks.

2.1.2 Basic Structure of a Carbon Archive File

A Carbon archive file is divided into two parts: the record table and the string table.

String Table

[ 1001 name
{ 1002 age
"name": "Bob", 1003 height
"age": 25,
"height": 1.8 1004 Bob
1, 1005 Alice
{
"name": "Alice", 1006 Mallory
"age": 26, Record Table
3 "height": 1.7 type: ObjectArray
t " - N colname: 1001 type: TextArray
name": "Mallory", values: [1004, 1005, 1006]
"age": 24,
"height": 1.75 colname: 1002 type: Int8Array
ks values: [25, 26, 24]
] colname: 1003 type: FloatArray
values: [1.8, 1.7, 1.75
(a) Example columnar JSON document (b) Simplified Carbon archive structure

Figure 2.1: Example of a columnar JSON document and its corresponding Carbon
archive representation

The record table stores all properties grouped by JSON object key (column) and data
type — and therefore column-wise — as research has shown that column-oriented storage
systems are better suited for analytical workloads than classic row-oriented designs (e.g.
[AMHO8], [IGN*12]). The whole record table only contains fixed-length values for fast
processing and iteration. Variable-length values (e.g. strings) are represented as fixed-
length references to the string table [Pin19b]. As for the typical use cases mentioned in
Section 2.1.1, the string values take up most of the space, so the record table is typically
only a small part of the whole file and therefore should fit into main memory.



2.1. The Carbon Archive Format and Framework 17

The string table maps the record table’s string references to their actual values [Pin19b].
It does not contain duplicates, meaning that the strings are deduplicated and identical
strings are represented by the same reference in all parts of the record table. For
datasets containing a lot of identical strings, this encoding can already reduce the
size of the Carbon archive significantly. As the entries are stored as tuples of the form
< reference,value > (additional meta data is left out here for simplification), the order
of the entries can be changed without breaking the lookup of the strings in the table.

The file format in general stores an indicator on how the string table is compressed. It
also provides a flexible framework to implement compressors. In the beginning of this
thesis, the only options implemented were no compression, which just stores the strings
as they are, and plain huffman coding [Huf52], but the latter was designed to be a
demonstration of the compression framework and is not ready to be used in production
[Pin19d].

Due to the strict separation of the two parts of the file, when used as a database storage
backend as described in Section 2.1.1, the record table can be loaded into the memory
and the strings are only fetched from the disk when needed. This design allows many
operations to be performed with very little disk access, even when the file itself exceeds

the main memory size.

2.1.3 Differences to other Serialization Formats

There are specifications other than Carbon, defining how semi-structured documents
can be encoded in an efficient way. However, they differ in their design goals and

therefore in the resulting properties.

¢ BSON

While Carbon performs a transformation into a columnar storage layout, BSON
[Mon09], as used by MongoDB [Mon], is just a binary encoding of the same
document structure. It extends the JSON type specification by more specialized
types like timestamps and JavaScript code blocks, while Carbon extends the JSON
types only by the (custom) binary data type and specialized numerical ones.
BSON’s design goals, according to its specification, were to create a lightweight
(space-efficient) format, that is easily traversable and fast to encode and decode.
It was not designed to perform analytical queries on the data.

e UBJSON
UBJSON [Kal] is designed as a universal, space-efficient, easy and fast to parse
representation of JSON documents. It supports the same types as JSON, how-
ever, it differentiates between different numerical types (e.g. signed/unsigned,
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integers/float). It shares these properties with Carbon. Another commonality is
them both being marker-based formats and using strongly-typed arrays. But in
comparison to Carbon, UBJSON lacks support for custom binary fields and does
not store variable-length values separated from fixed-length ones. A more detailed

comparison is available the Carbon at specification page [Pin].

e Smile
The Smile [Fas13] format originates from the Jackson project [Fas] and is designed
to be fully JSON compatible but very space-efficient [Fas17|. Efficient traversal of
the document is explicitly listed as a “non-goal”, as the Jackson Project provides
only sequential APIs for all of its backends. Smile keeps the document structure
as it is (as opposed to Carbon), but uses different compression techniques to
reduce the amount of required space. Like Carbon, it allows deduplication of
identical strings (called “shared strings” in the specification), but with two major
differences: Firstly, no explicit dictionary is set up, instead, back-referencing is

used. Secondly, the feature is completely optional.

There are many other formats, e.g. CBOR [BH13] and MessagePack [Fur(8], but they
all aim to serve as an alternative to JSON by representing the data in the same way

without any transformation to a columnar layout.

2.2 Lossless Data Compression Algorithms

This section starts in Section 2.2.1 with the description of basic (non-database-specific)
data compression algorithms which are still the building blocks of most modern general
purpose compressors that are presented afterwards in Section 2.2.2. Finally, in Sec-
tion 2.2.3, the most common data type-specific encoding schemes that aim to either
support compression or that already compress the values on their own will be discussed
as a bridge to Section 2.3.

2.2.1 Basic Data Compression Algorithms

Data compression algorithms try to reduce redundant information in a given input, often
called message. That can be either done by replacing sequences of symbols (recurring

patterns) or by representing the symbols using less space.

The most simple implementation of the first approach is run length encoding, where
consecutively repeated values are replaced by the value and the number of its occur-
rences, e.g. “aaabbbb” would be represented by “3a4b”. Run length encoding is fairly
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limited for compression of natural language text, but it is suitable for some special
applications and often combined with other compressors.

To encode recurring patterns that contain multiple characters (as opposed to run length
encoding), dictionary encoding can be used, where frequently occurring sequences are
stored in a separate space, e.g. at the beginning of the file, as a so called “dictionary”
that maps these sequences to shorter replacements like integers from one to the number
of entries stored in the dictionary. The message is then kept as it is, except for the
sequences defined in the dictionary. They get replaced by their shorter replacements
which leads to a more space-efficient representation. An in most cases even more space-
saving and therefore in text compression more widely used alternative to dictionary
coding, is back-referencing. Instead of separately storing a dictionary, it uses references
within the text. The first time the algorithm encounters a sequence, it is kept as it is.
When detecting the sequence a second time, it inserts a marker, referencing back to the
starting position where it has seen the text before and the length of the text to replace.
A major challenge of this approach is to efficiently find these recurring sequences and
to encode the back-referencing markers in a space-efficient manner. Solutions to these
challenges are described in [ZL77] and [RPE81].

To represent symbols in a more compact form, entropy encoders do not store them as
fixed-length (e.g. 8 bit) symbols. Instead, in Huffman coding, they are represented
by a variable-length code per symbol. Huffman coding uses a prefix code and assigns
the codes depending on the probability of the symbols’ occurrences with frequently
occurring (more probable) symbols getting assigned shorter codes than less probable
ones. The exact method of creating the codes is described in Huffman’s paper [Huf52].

Another approach is used by arithmetic coding [RL79], which assigns one code to the
whole message or block by recursively subdividing the interval from zero to one n times
(with n being the length of the message/block) into ranges that are proportionally sized
to their represented symbols’ frequencies. The resulting interval is the one that is con-
tained in all intervals that correspond to the symbol to be encoded at each level. That
interval is then encoded in binary form. In terms of compression ratio (see Definition 5:
Compression Ratio), arithmetic coding is at least as good as Huffman coding and better
in some cases [WNCR87]. It can represent the data more compact compared to Huffman
coding if the probability of some symbols in the message is very high. The reason is
that Huffman replaces one symbol in the original message with one variable-length code
in the output and this code can obviously not be shorter than one bit, while arithmetic
coding assigns one code to a whole chunk of the input message and can therefore achieve
a representation with less than one bit per symbol on average. For both, Huffman and
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Symbol | Alphabet | Index

B|A/N|JA|NA AIB|A|NJAIN N ABN 2
A|{N/AINJA B AINJA|IB]JA|IN N NAB 0
NIA|N|A|B|A AINIA|N|IA|B B NAB 2
A/N|A|B|A|N BIA|N[A|NJA A BNA 2
NIA|B|A|N|A NIA|IB|A|NJA A ABN 0
A/B|A|NJA|N NIA|INJA|BJA A ABN 0
(a) Initial BWT matrix (b) Sorted BWT matrix (c) MTF on BWT output

Figure 2.2: Burrows-Wheeler-Transform and Move-to-front coding applied to the mes-

sage “BANANA”

arithmetic coding, variations with dynamic updates of the symbols’ probabilities exist
[Knu85].

As arithmetic coding was partly covered by patents for some time, range coding [Mar79]
is often used instead which basically follows the same principle. Because both involve
CPU-expensive division operations, finite state entropy coding [Coll3] was developed
which is based on the asymmetric numerical systems theory [Dud13] and achieves the
same compression ratios as arithmetic coding but only with additions, shifts and bit-

mask operations, which can be executed significantly faster by CPUs [LR81].

A completely different approach that is not compressing data itself but transforms the
data into a better-compressible form for the algorithms described above, is Burrows-
Wheeler-Transformation [BW94] (or BWT for short) in combination with move-to-front
coding (or MTF) [BSTWS86]. The BWT is a reversible transformation that tries to group
the same characters of a message closely together. For a message of the length n, anxn
matrix is set up. The first row contains the symbols of the message in their original
order and every following line is (circularly) shifted left by one symbol. The lines are
then sorted in lexicographical order. The output of this method is the last column
of the matrix (output message) and the position of the first occurrence of the output
string’s first symbol in the original message. BWT is demonstrated on the example
message “BANANA” in Figure 2.2a and Figure 2.2b. The result is < NNBAAA,3 >.

As the output string of the transform has the same length as the input message, there
is no space-saving achieved by applying BW'T itself. In fact, as the index of the first
symbol of the input has to be stored in addition to the message, the output is even
larger than the input. But due to the grouping of the symbols by BWT, MTF can be
applied effectively: MTF uses a dynamic alphabet initialized with the symbols of the
original message in lexicographical order. Whenever the algorithm encounters a symbol,
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its current index in the alphabet is written instead of the symbol. The alphabet is then
updated by removing the character from its current position and moving it to the first
place of the alphabet. As BWT has grouped the same characters closely together, the
emitted indexes tend to be small, which means that in the output message (the indexes)
the chance of encountering low values is higher. That can be exploited by arithmetic or
Huffman coding. Also, when the same characters were grouped directly together, the
output will contain sequences of zeros which can be encoded using run length encoding.
This behavior can also be observed when applying MTF to the “BANANA” example
from above which results in < 202200, 3 >, as shown by Figure 2.2c. In general, the
longer the message is that is encoded with BWT and MTF, the more effective the
algorithm becomes.

2.2.2 Modern Data Compression Algorithms

The modern compression algorithms are mainly based on variations and combinations
of the algorithms explained in Section 2.2.1. The most common algorithms will be
described briefly ordered by their release date.

2.2.2.1 Deflate

The deflate algorithm was originally developed by Phil Katz in 1989 for the ZIP file
format [PKW19]. The algorithm as well as the bitstream format were standardized in
1996 via IETF RFC 1951 [Deu96a]. It combines back-referencing within a window of at
most 32 KiB with Huffman coding. For most implementations, a compression level can
be specified that influences how much effort is spent on finding the longest matching
string to reference. That allows a user-defined trade-off between compression speed and
ratio.

The popular zlib [IGA06] library implements the same-named format which is just the
deflate bitstream with two bytes of header and four bytes of checksum added. The gzip
format [Deu96b] also embeds the deflate bitstream.

The popularity of deflate today is more likely due to it being one of the first standardized
algorithms/bitstream formats as technically there are algorithms like Zstandard [CK18]
(see below) that are performing better in nearly every benchmark (e.g. [SB18]) with
respect to all important criteria: compression ratio, compression and decompression
speed. Applications of deflate include lossless images (PNG [Bou97]), network data
(HTTP with GZIP compression [Res15]), documents (PDF [Int17a]) and much more.

2.2.2.2 bzip2

The bzip2 compressor was created by Julian Seward in 1996. It splits the data to be
compressed into blocks and then applies the Burrows-Wheeler-Transformation, move-
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to-front coding, run length encoding and Huffman to it (see Section 2.2.1). bzip2 is the
successor of bzip, whose development had stopped because of patent issues due to its
use of arithmetic coding.

In most benchmarks, bzip2’s compression ratio is significantly better than deflate’s
(e.g. gzip), but worse than LZMA’s (see below) while the runtime performance of all
three behaves inverted to the compression ratio ([Her16], [SB18]). The original bzip2
compressor provides a compression level setting that influences the size of the blocks
in which the input data is split. As mentioned in Section 2.2.1, larger blocks to which
BWT is applied to usually lead to better compressible outputs and therefore improved
compression. The influence on the runtime is measurable yet not very high, but the

memory consumption increases noticeably with higher compression levels.

bzip2 is mainly used to compress single files or tar archives [Fre] in Linux/UNIX envi-
ronments.

2.2.2.3 LZMA

The Lempel-Ziv-Markov-Algorithm (LZMA), developed by Igor Pavlov since 1998, can
be seen as an enhanced version of the deflate algorithm. It uses back-referencing (a
LZ77 [Z177] derivation), range coding and Markov chains to more accurately estimate
the symbols’ probabilities as their context (previous symbols) is respected. Another
change compared to deflate that can lead to better compression ratios is the increased
sliding window size of up to 4 GiB. These changes combined make LZMA one of the
best-compressing algorithms regarding compression ratio ([Her16], [SB18]). In terms of
runtime, the algorithm is slower than many others but very asymmetric as decompres-
sion can be up to 20 times as fast as the compression process. That property is useful
for scenarios where data is only compressed once and distributed to many clients that
decompress it. Like for deflate compressors, a compression level setting influencing the
back-reference search is often implemented to empower the user to trade compression

ratio for runtime performance.

There is no official specification of the LZMA bitstream and algorithm, but a draft
version by Pavlov exists [Pav15]. In Linux/UNIX operating systems, LZMA is often
used with the zz file format, for which a specification is available [Tuk09].

LZMA'’s main application is in archive formats like 7z [Pav], for which it was originally
designed. Due to its asymmetric runtime behavior and good compression, one impor-
tant application is the compression of operating system packages, e.g. for Arch Linux
(pacman [Arc]) and Slackware (slapt-get [Woo]), as well as the distribution of source
code packages.
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2.2.2.4 LZ4

The LZ4 [Cola] compressor was developed by Yann Collet in 2011 and is designed for
very high compression and decompression speed. It is based on LZ77 (back-referencing),
using a very simple bitstream format [Colb]. Tt compresses &~ 5 — 8x as fast as gzip
(at gzip’s lowest compression level) and decompresses ~ 10x as fast [Herl16]. The
compression ratio is worse than gzip’s/deflate’s in common scenarios but there exists
a mode called LZ4_HC (“LZ4 High Compression”). In this mode, LZ4 achieves similar
compression ratios as deflate but at lower compression speed, while the decompression

speed does not change compared to standard LZA4.

Due to its high speed (or low computational resource requirements), its main application
is in I/O performance enhancement, e.g. as a transparent compressor for databases (see
Section 2.3) or in filesystems like ZFS [Ric] or SquashF'S [Loul3].

The snappy [Goob] compressor was released at about the same time and shares its focus
and basic design. As LZ4 provides higher compression/decompression speed at nearly
the exact same compression ratio, snappy will not be covered separately.

2.2.2.5 Brotli

The Brotli compressor and bitstream format [AS16] were developed in 2013 by Jyrki
Alakuijala and Zoltan Szabadka. It uses a derivation of LZ77 algorithm (back-referencing)
and Huffman coding that respects, like LZMA, the context of the symbols for a better
estimation of the symbols’ probabilities. Additionally, due to some improvements to the
data format, some space-savings were achieved. The original Brotli (C-)implementation
[Gooa] supports compression levels from 1 to 11 that have significant impact on the com-
pression ratio and runtime performance. In the authors’ benchmark [AKSV15], when
using compression level 1, it is slightly faster than zlib’s deflate implementation while
still beating it in terms of compression ratio. When using the highest level (11), it
achieves a slightly better compression ratio than LZMA while being significantly slower
(=~ 8x) than LZMA and approximately 200 times slower than compression level 1 —
but only for compression, decompression only drops by =~ 10 to 20%. Therefore, the
algorithm is very scalable.

It was originally developed for the Web Open Font Format 2.0 [LL18]. With the growing
support for Brotli in webservers and browsers, it is mainly used as HT'TP encoding
(instead of gzip/deflate) to deliver static web content like CSS frameworks or JavaScript

libraries.
2.2.2.6 Zstandard

Another compression algorithm developed by Yann Collet is the 2015 released Zstan-
dard [CK18] (often called “zstd”). While LZ4 was focussed on high runtime performance
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only, Zstandard was designed for deflate-comparable compression ratios at higher com-
pression and decompression speeds. Like LZ4 and deflate, it is based on LZ77 but
with a large window for back-reference search (up to 2 GiB vs. deflate’s 32 KiB).
For entropy coding it uses Huffman coding for literals and finite state entropy (FSE)
coding for sequences. A unique feature is the ability to work with previously created
dictionaries, which is useful when many small standalone messages (e.g. files) usually
containing similar content have to be exchanged over the network, because there might
be no recurring patterns within one message but across the messages.

As FSE is significantly faster than arithmetic coding and the whole algorithm was
designed for modern CPU (mostly branchless, optimized for out-of-order execution), the
compression/decompression runtime performance is much higher than deflate’s [SB18].
Like most other compressors, the reference implementation [Fac] allows to specify a
compression level (fastest: —5, best-compressing: 22) and has a great influence on
the runtime performance and compression ratio, making it one of the most scalable

compression algorithms.

With Zstandard being officially standardized by RFC 8478 as a HI'TP content encod-
ing scheme, it could be used for compressing HT'TP payloads. However, at the time of
writing, none of the major browsers (Microsoft Edge, Mozilla Firefox, Google Chrome)
support it. Its compression/decompression speed also makes it suitable for transpar-

ent file system compression like in BTRFS [Lina] and for database applications (see
Section 2.3).

2.2.3 Compressing and Compression-supporting Encoding

Schemes for Same-Type Value Sequences

While the algorithms presented in Section 2.2.2 are designed to compress text or binary
data without knowing its structure, this part will explain methods that help to compress
lists of same-typed values, e.g. entries of a column in a database. Not all approaches
described here are applicable to all data types and some do not even compress the data

but transform it, so general purpose compression algorithms can compress them well.

One approach already described in Section 2.2.1 to encode numerical values is run length
encoding. Given an ordered list of values, identical, consecutive entries will be replaced
by the number of consecutive occurrences and the value itself (but only once). For
example, this can be useful when importing sales containing a date field into a data
warehouse: all sales of the same day will likely be stored sequentially, so 100.000 dates
of sales of the same day could be represented by <100000, "2019-05-04"> instead of
100.000 values. When the order of the entries does not matter (which is rarely the case
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in database scenarios), then sorting the values before applying run length encoding can
dramatically increase the compression ratio.

It might not often be the case that the consecutive values are identical, but they might
be close together. In a sales table, storing an order number that increases by one
with every row would not profit from run length encoding in any way. In this case,
however, delta coding could be applied: instead of storing the absolute values, only the
difference to its predecessor is stored (except for the very first value). In the order
number example, all values following the first one would be one, as the order number
always only increases by one. A list of ones could then be compressed very well using
run length encoding. If the differences are not always constant but in a limited range,
then compressing the values using Huffman coding or similar approaches can reduce
the amount of space required. Just like for run length encoding, if there is a possibility
to sort the values before, that could greatly improve the compression ratio. One major
drawback of delta coding is that to decode a value, all previous values have to be

decoded first. That can be limited if not just the first entry is stored as an absolute
3
decode an entry at a randomly chosen position. Also, for many analytical workloads,

value but every n-th one, too. In that case, on average % entries have to be read to
many consecutive entries have to be read, such that the predecessor values are known
anyway.

A variation of delta coding is frame of reference coding [GRS98] (FOR). Instead of
storing the difference to the direct predecessor, a reference value is selected for a chunk
of data and all entries within that chunk are stored relative to that reference value.
This value can be either an existing entry or an additionally stored one. This technique
is useful when the data cannot be sorted because the order of the entries has to be
preserved but the values only vary within a certain range. Like for delta coding, this
results in smaller values that can be stored in a more compact form. The patched frame
of reference variation is more resistant against outliers as values that differ from the
reference value more than a given threshold are encoded as absolute values instead of
relative to the reference value [ZHNBOG].

To enable better compression of numerical values using general purpose compression
algorithms, the bitshuffle algorithm can be applied. Instead of storing the bits for the
first value, then for the second and so on, the bits are stored according to their position:
first all most significant bits are written for all values of the block, then the second-most
significant and so on. This does not compress the data, but this representation can be
compressed much better, e.g. by LZ4 (see Section 2.2.2), when the values only vary by
a small amount (see example at Figure 2.3).
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Decimal | 24 23 22 21 20
6 1 0

1

1 0 1
1 1 1
1 0 0

o O O O

0
) 0
7 0
4 0

Figure 2.3: Bitshuffle example: Binary representation of the sample values {6,5,7,4}
using 5 bit each. Reading the table top to bottom, left to right, leads to eight zeros in
a row, followed by five ones, which makes them easily compressible.

The encodings discussed so far were all related to numerical values. To store repeated
values of any type (e.g. strings), dictionary encoding can be applied. This is pretty
similar to the dictionary encoding for text compression described in Section 2.2.1: all
distinct values are stored in a dictionary that maps them to a (shorter) replacement, e.g.
integers. To encode a list of values, the replacements instead of the original values are

stored. For long, repeated values, this encoding can lead to significant space-savings.

A special encoding for string types is front coding [WMB99] (also called prefiz encoding
or incremental encoding). Like delta coding, it encodes a value relative to its prede-
cessor: for each value to encode, it stores the length of the common prefix with its
predecessor followed by the remaining part of the string (see Figure 2.4 for an exam-
ple). The same restrictions and solutions as for delta coding apply to them : to decode
a value, all values that share at least one symbol in the prefix have to be decoded. This
problem can be solved by storing a full value (with no common prefix) every n entries.
The effectiveness of front coding can be increased if the values can be sorted before

applying front coding.

Original Value Common Prefix Length | Remaining Value
https://www.google.com 0 https://www.google.com
https://www.github.com 13 ithub.com
https://www.ovgu.de 12 ovgu.de
https://en.wikipedia.org 8 en.wikipedia.org

Figure 2.4: An example of encoding URLs using front coding. The encoded version
could be stored using 58 bytes instead of 87 (saving = 33%).

If there are many values that share common prefixes in a list, but due to their order,
none or not many of them occur consecutively and the order cannot be changed, front
coding will not provide good compression. A solution to that problem can be a variation
of dictionary encoding: common prefixes are stored in a dictionary and whenever such
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a prefix occurs, the entry in the dictionary is referenced, followed by the remaining
value (see Figure 2.5 for an example). With more entries encoded, the effectiveness will
increase as the values in the dictionary only have to be saved once. This encoding has

no prevalent name, but for rest of this thesis, it will be called prefix dictionary coding.

Value ‘ Prefix ID ‘ Rem. Value

https://www.google.com 1 google.com
Prefix ‘ 1D http://www.mit.edu 0 mit.edu
https://www. | 1 https://www.ovgu.de 1 ovgu.de
http://www. 2 http://www.apache.org 0 apache.org

(a) Dictionary for URLs (b) Encoded URLs using the dictionary of Figure 2.5a

Figure 2.5: An example of encoding URLs using prefix dictionary coding. The encoded
version could be stored using 63 bytes instead of 80 (saving ~ 21%).

2.3 Compression in Databases

This section explains the motivation (Section 2.3.1) and requirements (Section 2.3.2)
for data compression in databases and describes the two main approaches of how it is
implemented in DBMS in Section 2.3.3 and Section 2.3.4. It closes with an overview of
other applications of data compression in DBMS in Section 2.3.5.

2.3.1 Motivation for Compression in Databases

The reason for the application of data compression techniques in general is to reduce
the amount of data to be either transferred or to be stored. This can have several
effects.

On the one hand, as databases may grow very large, storage costs can become an im-

portant economic factor which makes data compression attractive for economic reasons.

On the other hand, query execution performance is very important. While compression
algorithms always introduce some computational overhead, it is worth analyzing what
the real bottlenecks of database management systems are. As summarized in Table 2.1,
data that is only present in main memory, but not in the CPU cache, takes significantly
longer to load, both in terms of latency and throughput (bandwidth). This effect is even
more conspicuous if the data has to be fetched from the SSD or HDD storage, which
adds some orders of magnitude in latency and bandwidth, depending on the storage
technology used. As the faster memory systems, that are closer to the CPU, have
less capacity, compression can help keeping more data close to the CPU, e.g. in main



28 2 Background

memory, and therefore reduce the number of HDD/SSD accesses required [RHS95].
Back in 2000, Westermann et al. demonstrated performance gains of up to 55% for
I/O-intensive queries of the TPC-D benchmark [WKHMO0O0]. While storage systems
have improved a lot since then, many database operations today are I/O-bound and
compression can accelerate them. Even with the rise of main memory database systems,
data compression can still reduce the query execution time as many operations are
memory-bound [Bro19].

Memory ‘ Latency ‘ Bandwidth ‘ Capacity ‘ Price (EUR per GiB)
L1 Cache Ins 1 TB/s 32 KB n.a. standalone
L2 Cache dns 1 TB/s 256 KB n.a. standalone
L3 Cache 40ns | > 400 GB/s 8—-32MB n.a. standalone
Main Memory 80ns 100 GB/s 1—-1024 GB ~ 4
NVMe SSD 90ps 3 GB/s | 256 — 2048 GB ~ 0.15
HDD dms 210 M B/s | 500 — 8000 GB ~ 0.03

Table 2.1: Memory and storage latencies and bandwidth according to [Brel6], [XSGT15]
and [Seal6]. All numbers reflect the state of technologies as of 2015/2016 for better
comparability. “Price” reflects the approximated market price as of 2019.

To sum this section up, data compression can positively affect two parameters of a
database system: storage consumption and query performance. It allows to trade com-
puting power for data access time to make best use of the hardware.

2.3.2 Requirements for Data Compression in Databases

As the motivation for the use of compression described in Section 2.3.1 has two aspects,
namely storage savings and query performance enhancement, the requirements resulting
from each will be discussed separately in this section. Afterwards, the relationship
between the requirements will be discussed.

When focussing on storage savings, the main aspect for data compression algorithms to
consider is optimizing the compression ratio (see Definition 5: Compression Ratio). In
most cases that means trading more computation for less storage, but this does not scale
very well: in an examplatory benchmark, improving the compression ratio by ~ 16%
increases the time required for the compression by 770%' [Herl6]. From a storage
optimization perspective, requiring 16% less space may be worth the computational
overhead.

lzz compressor with default options: r = 0.184, compression time: 32.2s; zz compressor with

“extreme” options: 7 = 0.155, compression time: 280s
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With respect to query performance, the requirements for data compression algorithms
are more complex to define. Ideally, during query execution, all available resources are
used equally, so the system is neither I/O-bound nor compute-bound. As explained in
Section 2.3.1, data compression allows the system to trade computational resources for
I/O and can therefore be used as a tool to balance them. While the compression could
be done in real-time or when the system is not under high load (e.g. through table
reorganizations [[BM]), decompression has to be performed in real-time, so lightweight
(de-)compression algorithms need to be used. But it is not possible to define in general,
how much computational effort should be spent on data compression to speed up the
data access, as it heavily depends on the available hardware resources and the workloads
(queries). On a system with a slow HDD and a fast CPU, reducing the amount of data
to be fetched from the disk might be worth spending more compute power on data
compression than on a system with a slower CPU but a fast SSD as its primary data
storage. Also, for queries including heavy computations, the database system might
be already compute-bound without any data compression algorithms involved, so their
application would slow down the system. On the other hand, a query that has to
sum up a certain value for billions of records will most likely be I/O-bound and data
compression may help loading more records using the same 1/O resources in the same
time which would result in lower query execution times. All these considerations lead to
the requirement that the data compression of a database system has to be configurable
with respect to the consumption of computational resources.

Regarding recent research on self-driving databases (e.g. as summarized by Campero
[Cam19]) the latter configuration could be done by the database management system
itself, e.g. by automatically analyzing the bottlenecks during the most frequent queries
and then tune the compression settings for them. However, it cannot decide how im-
portant storage savings are to the administrator compared to system performance, as

that is mostly an economic decision.

For that reason, we can conclude that a lightweight data compression algorithm that
can be configured by the administrator of the database system according to his or her

own preferences is required.

2.3.3 Page-based and File-based Compression

Although most database management systems basically share the five-layer-architecture
[H&05] (see Figure 2.6), they have come up with different strategies on how to integrate
compression into their architecture: it is often either performed at page-level or at file-
level. The reason why it is often not integrated on higher levels of abstraction is most
certainly because it would be a less generic solution, as it would have to be implemented
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on top of the record logic for different data types. Because of that, implementing it on
the lower levels of the architecture can result in a cleaner code base. The drawback is
that some structural information and meta data is not available that might be exploited
by the data compression algorithms. The lack of this database-specific information
results in the usage of non-database-specific, general purpose compression algorithms,
as the examples below will show. For that reason, some vendors have developed more
specific solutions that are presented in Section 2.3.4.

‘ Tables, views, tuples ‘

2 A

‘ Records ‘

¥ A

‘ Physical records ‘

v A
‘ Pages ‘
A

¥

‘ Files ‘

Figure 2.6: Objects in (R)DBMS mapping hierarchy, adapted from [H&05]. While the
uppermost layer is specific to relational systems, the rest of this architecture also applies
to other types of DBMS.

Relational Database Management Systems

The following list of open source and commercial RDBMS products is not exhaus-
tive, but contains the most popular ones and also represents the variety of possible
approaches to page- and file-based compression:

e MySQL/MariaDB with InnoDB storage engine

MySQL and MariaDB (a fork of MySQL) support two mechanisms for page com-
pression. The legacy one, although called “compressed row format”, is not oper-
ating at physical record-level, but at page-level. It compresses the data using a
derived LZ77 algorithm [ZL77] (zlib [IGA06]) while keeping the compressed and
the uncompressed page in memory. Which of them is evicted first is decided de-
pending on the workload. For I/O-bound operations, it starts with the eviction
of the uncompressed pages, for CPU-bound operations, it evicts the compressed
pages first. To avoid re-compressing a page for every small change, an uncom-
pressed “modification log” is kept and only if that grows over a defined limit, the
logged changes are applied and the page gets re-compressed [Oral8al.

The new page compression, also present in both systems, is called “InnoDB page
compression”. The approach differs in two aspects: only uncompressed pages are
kept in memory and more compression algorithms are supported (zlib [IGA06],
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LZO [Obe], LZ4 [Cola], LZMA2/XZ [Tuk09], bzip2 [Sew19] and snappy [Goob]).
It is also referred to as “transparent page compression” in the documentation.

e PostgreSQL
The PostgreSQL DBMS does not support page compression, but there are com-
mercial distributions that have it on their roadmap [Pos]. Instead of page com-
pression, tablespaces can be created on file systems that offer transparent com-
pression (like ZFS or BTRFS) [Stel3] and therefore “support” some kind of file-
level compression. Other techniques supported by PostgreSQL are described in
Section 2.3.4.

e Microsoft SQL Server
While Microsoft SQL Server offers a feature called “page compression” [Micl6a],
it actually consists of two passes of compression where only the second one is a
generic, page-level compression. Details of the algorithm are not public, but the

documentation states that a dictionary-based compression is used.

e Oracle Database
From Oracle 9i Release 2 onwards, “block compression” (a block in Oracle ter-
minology is comparable to a page in other DBMS) is supported for bulk load
operations and from Oracle 11g onwards, it is also available for all other opera-
tions. Details of the algorithm are not public, except that it is dictionary-based.
Like for MySQL and MariaDB, updates to pages do not immediately trigger a
re-compression, but they are logged uncompressed until a certain threshold is

exceeded [Oraal.

NoSQL Database Management Systems
NoSQL DBMS also offer various compression methods. Due to some peculiarities re-
garding their storage backends, these can be implemented much easier by some of them:

e MongoDB with WiredTiger storage engine
The WiredTiger storage engine used in current MongoDB releases supports “block
compression” [Mon18¢| (like for Oracle Database, “blocks” are the same as pages)
using snappy [Goob] and zlib [IGA06] compression algorithms.

e Apache Cassandra
Apache Cassandra supports the compression of “chunks” (which are again compa-
rable to pages) of a user-configurable size. As the tables are immutable/append-
only, complex update mechanisms like in MySQL/MariaDB or Oracle Database
are not needed [Thel6]. When reading the “chunks”, only the uncompressed data



32 2 Background

is passed to the higher levels of the DBMS (as opposed to the legacy page com-
pression in MySQL/MariaDB). As compression algorithms, either one of the pre-
packaged algorithms (LZ4 [Cola], snappy [Goob], deflate [Deu96a] or Zstandard
[CK18]) can be selected or even a user-defined implementation can be supplied.

e CouchDB
CouchDB implements compression at file-level. As it uses an append-only ap-
proach like Apache Cassandra, update/re-compression mechanisms are not re-
quired. It supports snappy [Goob] and deflate [Deu96a].

While these DBMS, both relational and NoSQL, have been selected to represent dif-
ferent approaches, most other DBMS also support some kind of page-level or file-level

compression.

2.3.4 Compression at Physical Record-level

While the algorithms described in Section 2.3.3 can help reducing a database’s size,
they do not take specific knowledge of the structure of the data into account (e.g. data
types). Operating directly on the values knowing the data-type allows for more effi-
cient implementations of compression — both in terms of compression ratio and runtime
performance. That is why some vendors implement data type-specific compression in
their systems.

One common pattern is the compression of textual data that exceeds a defined thresh-
old. For example, in PostgreSQL that technique is called “TOAST” (“The Oversized
Attribute Storage Technique”) and originally resulted from limitations of the internal
design of the system that would not allow to store attributes larger than the system’s
page size [Thel9c]. It uses a custom, LZ77-like [ZL77] algorithm with some optimiza-
tions from LZ4 [Colal, called “PGLZ”. Oracle Database offers a similar approach, called
“Advanced LOB Compression” [Chrl8], for its “Large Object” types (also called “Se-
cureFiles”) that is meant to store documents, images and other files in the database.
As for other Oracle compression techniques, details of the algorithm are not public.
The documentation states that the compression is only applied when the data to be
stored would actually benefit from the compression. Additionally, Oracle Database of-
fers deduplication when the exact same value (e.g. image) occurs more than once in a
column.

Microsoft SQL Server’s “page compression” feature is, as mentioned in Section 2.3.3,
actually not just a generic page compression but performs two passes of compression
per page. In the first pass, for every column, prefix compression is applied to the
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physical records [Micl6a]. The second pass is described in Section 2.3.3. Additionally,
Microsoft SQL Server also supports a data type-specific compression feature called
“row compression”. Examples include storing small integer values using only one byte
while the column’s data type is actually a fixed-length multi-byte integer and removing
trailing padding from fixed-length binary/char column values (and therefore storing
them as variable-length values). Aside from that, the “row compression” feature does
not include any text compression. The documentation provides a comprehensive list of
how the different data types are affected [Micl6b].

Many databases, not just NoSQL ones, support storing and processing JSON [Bral4].
This support has finally been standardized in SQL:2016 (ISO/IEC TR 19075-6:2017(E)
[Int17b]). While it may be easy to read and write for humans, JSON was never designed
as a storage format for documents, as it is neither space-efficient nor fast to parse or to
traverse. To reduce the amount of required space and to increase query performance,
some vendors do not store JSON in its original, plain-text form. MongoDB converts
the data to a binary representation called BSON [Mon]. Similarly, PostgreSQL offers
a data type called “jsonb” [Thel9d], that also uses a binary representation of the data.
However, both are not designed to be space-efficient, though, but to allow indexing and
to be fast to process, including efficient traversal of the document. To overcome the
space-efficiency issue in PostgreSQL, the ZSON extension [AKS16] can be enabled. It
applies a dictionary-based compression to the document keys and string values.

On column-oriented data storage, data compression can be even more effective than on
row stores as data from the same column (and thereby most likely from the same real-
world domain and same data type) is stored consecutively. That increases the chance
of recurring patterns, which is the basis for many data compression algorithms. Apache
Kudu offers different column encoding schemes depending on the column’s data type
as shown in Table 2.2.

Data Type Run length | Bitshuffle ‘ Prefix ‘ Dictionary | Default
integer types v v Bitshuffle
floating point types v Bitshuffie
decimal 4 Bitshuftle
boolean v Run length
string types v v Dictionary

Table 2.2: Apache Kudu column encoding schemes, according to [Thel9a]

Amazon’s data warehouse service Redshift, which is based on an older PostgreSQL
version (8.0) with a column-oriented storage engine [Amab], provides some different
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column encoding schemes [Amac] (while also supporting dictionary and run length
encoding): delta-coding and “mostly encoding”, which is a variation of variable-length
integer coding [Amaa].

Apache Kudu and Amazon Redshift both additionally apply a general purpose com-
pressor like Zstandard [CK18] or LZ4 [Cola] at page-level.

2.3.5 Other Applications of Data Compression in DBMS

The application of compression is not limited to the actual data storage of DBMS.
Some auxiliary data structures are stored without passing the architecture presented
and visualized in Figure 2.6, with the journal (also called “write ahead log”) being
the most prominent one. As the speed at which these can be written also has a major
impact on the systems overall (write) performance, the motivation for data compression
is basically the same as described in Section 2.3.1. For example, PostgreSQL [Thel9b],
MariaDB [Mar] and MongoDB [Mon18a] all support these techniques, with MongoDB
having it enabled by default (with the snappy compression algorithm [Goob]). As many
systems use the journal for replication purposes, a compressed journal can increase the
replication speed.

Another application of compression concerns the communication of the client with the
DBMS server to reduce the amount of data that needs to be sent over the network.
As most DBMS systems allow secure connections via TLS, the TLS protocol’s own
compression mechanism [Hol04] could be used, but that is not recommended because
since the “CRIME” attack [RD12] it has to be considered insecure and was therefore
removed in TLS version 1.3. MySQL supports connection compression via Zstandard
[CK18] and zlib [IGA06] in recent versions, although it is disabled by default [Oral8b].
The PostgreSQL community is discussing the introduction of compression in the next
version of the PostgreSQL wire protocol [Urb14]. Also, MongoDB’s use of BSON in the
wire protocol [Mon18b] can be seen as some sort of compression, although it was never

intended to be very space-efficient.



3 Carbon Archive Compression

In Section 2.1 the Carbon archive format and framework was described. While it
provides an interface for implementing compression of the string table, there was no
fully-working compression implemented at the time of writing. This chapter presents
how the compression framework was extended in preparation of Chapter 4, both in
terms of its general structure and in terms of the supported compression algorithms.

3.1 The Carbon Compression Interface

The existing Carbon framework already contains a lean interface that allows to imple-
ment compressors (in more recent versions also called “packers”) for the string table (see
Section 2.1.2). It has no assumptions on how the compression algorithms themselves
work, but it defines the order in which the functions are called (inversion of control) and
the structure in which the compressed data as well as additional meta data generated
by the compressor (like Huffman code tables) is stored (see Figure 3.1).

The procedure for serializing the string table is as follows: When writing the table,
the framework will first instantiate the compressor and request it to write the meta
data section. It does that with a specific offset, so that after the meta data section
was written, it can add the string table header that contains the size of the meta data
section that is not known before. For each entry in the string table, the compressor’s
method to encode a single string is called and writes the encoded string to the memory
buffer. Again, an offset of the size of the entry header is kept, that is written after the
encoding (compression) of the string has completed as it includes the encoded string’s
length. Once all strings are written, the string table header is updated once again with
the total length of the string table. Storing the sizes of the entries as well as the total
size of the string table allows to iterate the table very fast without decoding every entry.
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String Table Header

Meta Data

Entry Header 1
Encoded String 1

Entry Header n

Encoded String n

Figure 3.1: Layout of the serialized string table of a Carbon archive file. The compressor
only controls the parts in bold print, the headers are automatically generated by the
compression framework.

While the encoding process encodes the whole string table at once, the decoding pro-
cedure must support reading individual entries as the string table can be larger than
the memory of the decoding machine (for the use cases of Carbon archives, see Sec-
tion 2.1.1). Therefore, when loading a Carbon archive file, the compressor is requested
to only decode the meta data section of the string table and keep it in memory. When
an entry is requested by its ID, the table is searched for it by only decoding the fixed-
length headers that contain the ID and once the entry has been found, the compressor

is called to decode that specific entry.

This puts some restrictions on the compression algorithms that can be used: methods
that only perform well when applied to larger amounts of data or that require decoding
whole blocks of data are not suitable for the application in Carbon archives. For that
reason, algorithms that work on lists of values (like the ones described in Section 2.2.3)

instead of large single values or blocks are preferable.

To enable the implementation of the methods in the following sections of this chapter
as well as the ones in Chapter 4, the interface was slightly extended:

e When instantiating a compressor, the document can be passed. This allows a

more efficient resource allocation.

e To allow the compressor to prepare internal data structures, the interface has
been extended to include an additional preparation step that is called between

the instantiation of the compressor and writing the meta data section.

e An options framework was introduced so a compressor can define arguments it
wants to accept. The command line tool (carbon-tool) was modified to accept
the arguments via the command line (--compressor-opt key wvalue) and pass
them to the compressor.
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e The framework keeps track of the column a string value originated from and passes
it to many of the compressors functions. The usage of these values is explained
in Section 3.4.

All modifications presented in this section do not influence the file format and are there-
fore fully compatible with existing Carbon archives. The changes to the compression
framework were kept as small as possible to allow the techniques, presented in this
chapter and the following one, to be implemented while keeping the interface’s lean

nature.

3.2 Compression Building Blocks

This section will briefly describe the compression algorithms that have been added to
the Carbon framework because they were considered suitable for the compression of the
string tables according to the requirements as stated in Section 2.3.2 and Section 3.1.

3.2.1 Huffman Coding

The Carbon library already includes a Huffman encoder, but the decoding was not
implemented at the time of writing, as mentioned in Section 2.1.2. As stated in Sec-
tion 2.2.1, arithmetic and finite state entropy coding can beat Huffman in terms of
compression ratio, but both are not designed to allow random access (at least not with-
out sacrificing compression ratio) which makes them not suitable for the application on
Carbon archives’ string tables.

To increase the performance, the Huffman implementation was rewritten and now pro-
vides a more flexible interface as it is not coupled with the Carbon compression interface
anymore. Instead, it can work on any string input. This allows the integration of Huff-
man coding into other algorithms. It also includes an adaptive form of Huffman coding,
which has two advantages:

e No code table is required. While standard Huffman coding usually inspects either
the whole text or some samples beforehand to estimate the symbols’ probabilities
of occurrence and stores the generated codes in a meta data section, adaptive
Huffman coding does not need to do this. It starts with defined initial probabilities
(e.g. for an alphabet of n different symbols P(s) = 1) and updates them when

the entries are being read, so no code table needs to be stored.

e Changing probabilities are reflected. When the probabilities of certain symbols
change in the data (e.g. between the beginning and the end), the Huffman tree
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adapts to this (and therefore the codes do). That can lead to better compression

ratios.
There are also two main drawbacks of this approach:

e The runtime performance of adaptive Huffman is significantly worse than using
static probabilities. The impact of rebuilding the codes depends on how often the
update is performed.

e The whole message needs to be decoded up to the point that is of interest. This
makes random access of entries nearly impossible, which is required for a Carbon
archive’s string table (see Section 3.1). The probabilities could be resetted every
n values and would lead to only 7 values to be decoded on average, but that

would significantly reduce the compression ratio.

One important thing to consider that is not actually a drawback of adaptive Huffman
but weakens the code table overhead argument is the fact that with larger (or more)
entries encoded, the relative impact of storing the additional code table drops. For
these reasons, the adaptive version is currently not in use for compressing the string

table, but a non-adaptive Huffman encoder is used.

To keep the overhead introduced by the code table as low as possible, the codes are
stored ordered by code length, so the length does not have to be stored for each code, but
only once for each code length that occurs in the code table. The length, encoded using
fixed-length 8 bit integer, is followed by tuples of the symbol (as fixed-length 8 bit char-
acter) and the code. The very first byte of the table indicates the number of entries in the
table. For example, the code table containing the codes < a,1 >,< b,01 >, < ¢,00 >
would be stored as

3, 1, a, 1 2, b,01, ¢, 00
~—~— ~— ——
Total number of symbols Code length  symbols of code length 1  Code length  symbols of code length 2
8 bits 8 bits 9 bits 8 bits 20 bits

resulting in a seven byte overhead. The code table supports up to 256 symbols which
is sufficient because all strings are — for performance reasons — interpreted as an array
of bytes without considering multi-byte character encodings.

3.2.2 Front Coding/Incremental Coding

While Huffman removes per symbol redundancy, front coding as described in Sec-
tion 2.2.1 helps removing redundant prefixes. With the algorithm requiring the de-
coding of its predecessors, it does not provide real random access of the entries and
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therefore seems to contradict the requirement from Section 3.1. But as the encoder can
be configured to encode every n-th entry to not be encoded relative to its predecessor by
simply setting the common length(s) to zero and encoding the whole string, a constant

time access'

can still be guaranteed while not having a big impact on the compression
ratio. Another advantage over block-based compressors is that the encoder operates
on entry-level. Because of that, it can be implemented within the existing compressor

framework.

The implementation for the Carbon library extends the basic approach to not just
encode common prefixes but it is also capable of encoding common suffixes. Therefore,
the algorithm’s alternative name incremental encoding is more suitable in this case.

As the Carbon string table does not rely on the order of the entries but stores the ID,
by which they are referenced in the document, in the entry headers, the table can be
sorted. That can noticeably improve the compression ratio because the values with the
longest common prefixes (or suffixes if sorted starting from the values’ end) are stored

consecutively.

The common prefix and suffix lengths are encoded as a fixed-length 8 bit integers
each, allowing them to each represent up to 255 characters. As the storage structure
of the string table (see Section 3.1) is optimized to iterate forward and no reference
to the previous entry is stored in the entry header, an additional pointer back to the
previous entries’ header has to be stored within the encoded string to allow accessing

the predecessor entry. The layout is visualized in Figure 3.2.

Relative Back Ref [ Common Prefix Length | Common Suffix Length Remaining String

1 - 10 bytes 1 byte 1 byte n bytes

Figure 3.2: Incrementally encoded entry storage layout

To save space, the (relative) back-reference is a 7 bit variable-length encoded unsigned
integer. This means that while the most significant bit is set, the next byte is part of
the encoded value. As a result, values of up to 127 can be encoded using only one byte
while still allowing values up to 2%4. When the encoder is configured to only encode
either common prefixes or common suffixes, the other (unused) value is of course not
stored.

Lconstant in the number of entries encoded incrementally (also called delta chunk length of n), not

in the length of the individual values
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3.2.3 Prefix/Suffix Dictionary Coding

The incremental encoder will always find and remove the longest common prefixes or
suffixes when the entries are sorted. But as the values can only be sorted either from
the beginning or from the end, incremental encoding will only be optimal for removing

either common prefixes or suffixes.

Prefix dictionary coding as explained in Section 2.2.1 does not have this problem. It
stores the most common prefixes in a separate dictionary. When encoding a string, the
longest matching prefix is looked up in the dictionary and the prefix is replaced by the
prefix’s ID in the dictionary. In contrast to incremental encoding, the prefix dictionary
encoder allows real random access as the encoding and decoding of the prefix does not
depend on other entries.

The same technique can be used to encode suffixes (“suffix dictionary coding”). Tech-
nically, the encoder could be extended to support encoding prefixes and suffixes, but
for reasons explained in Section 3.3 that would never be used.

The dictionary is set up in the preparation step of the encoder, analyzing all strings
that have to be encoded. It does so by setting up a trie [Fre60] using one node per
symbol and also stores the number of visits (“count”) in the node (see Figure 3.3a). To
avoid running out of memory, the trie is pruned by removing all nodes with a count
less than m after every n insertions, where n is set to a fixed value in the current
implementation. In the end, all nodes with a count less than the minimum support,
which is also configurable, are removed. To avoid removing too many nodes in the
pruning phase, m should be smaller than the minimum support. Once all strings have
been added to the trie, the nodes on a path are joined together as long as they share
the same count (see Figure 3.3b).

These joined nodes are then put in a priority queue (with the count being the priority)
because the dictionary size is limited to 2'6 prefixes for implementation reasons and it
should include the most frequent ones as they lead to more space savings than less often
occurring prefixes. Another effect of that is, that more frequent prefixes are assigned
with smaller IDs. As the IDs are encoded as 7 bit variable-length integers (just like the
back-reference in the incremental encoder, Section 3.2.2), smaller IDs require less space
so it is preferable to assign small IDs to the most frequently used dictionary entries.

To reduce the size of the dictionary, the prefixes are encoded recursively, such that
prefixes that share a common prefix themselves are replaced by a reference to the
common prefix that is stored in the dictionary anyway. In tests, this approach reduced
the size of the dictionary by up to 90%. For performance reasons, the expanded form
of table is kept in memory during encoding or when a Carbon archive is loaded.
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(ttp://, 2)

(a) Trie with one node per symbol (b) Trie with nodes joined by count

Figure 3.3: Example of tries constructed from a set of URLs. While (a) allows faster
insertions, the trie shown in (b) can be encoded efficiently as a dictionary.

Full Prefix ‘ ID ‘ Prefix ID | Remaining Prefix
http 1 0 http

ftp:// 2 0 ftp://

https:// | 3 1 s://

http:// | 1 !/

Figure 3.4: Recursively encoded prefix dictionary for URLs (the gray columns are not
stored and were just added for better understanding)

As a result of the additional storing of the dictionary and its limited size, the approach is
mostly less efficient for removing prefixes than the incremental encoder approach when
the entries are sorted (or suffixes, when sorted from the entries’ ends), as in that case
the incremental encoder will always remove the longest common prefix? while prefix
dictionary coding, especially for larger documents, might use a shorter prefix, which
matches more entries.

3.2.4 Unsuitable Inputs for the Compressors

Not every input can be compressed to a shorter output — otherwise it would be pos-

sible to compress every input message to just one bit. Therefore, some inputs can be

2In our implementation, an additional assumption is that the common length is < 255 characters
long as the common prefix/suffix lengths are encoded as fixed-length 8 bit integers
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considered “unsuitable” for a compressor: when the input leads to a compression ratio
> 1, applying the compressor is not useful. For each of the algorithms presented so far
in this section, the unsuitable inputs are described in the following overview:

e Huffman encoder

The only overhead the Huffman encoder produces is the code table. Theoretically,
Huffman coding can create larger outputs when the predicted probabilities are not
correct. But as we can analyze the complete input beforehand, we have accurate
statistics available. Therefore, the Huffman coding only has to compensate for
the code table and there are only two reasons why it cannot achieve that: the
symbols are either near-equally distributed (which rarely happens in practice) or
the input to compress is not long enough so the savings are not as high as the
overhead of the code table.

e Incremental encoder
The compression ratio for incremental encoding will be > 1 if the common prefix
(or suffix) length on average is less than ~ (1 + [logias(1)]) - (14 755) (with d
being the maximum number of incrementally encoded entries and [ the average
encoded entry length). This threshold results from the per entry overhead that
needs to be added to encode

— the common prefix length: an 8 bit fixed-length integer = 1 byte

— the back-reference: storing the length of the encoded version of the previous
string as 7 bit variable-length integers = [logi2s(l)] bytes

— an absolute value every d entries, not saving any space, so the average prefix
length removed in the remaining d — 1 entries needs to reduce the size at
least by the total overhead added by the encoding.

When using incremental encoding for both, prefix and suffix removal, the costs
for the back-reference can be shared between the two as it only needs to be stored

once.

e Prefix/suffix dictionary encoder
For prefix or suffix dictionary coding, the overhead per entry is at least one byte
to encode the dictionary entry to use (which can be zero indicating there is no
matching entry in the dictionary), so the input needs to have an average common
prefix length of at least one byte to save any space. The actual amount is higher,
though, because it needs to compensate for the extra amount of space that the
dictionary takes. This size is hard to predict because it depends on many proper-
ties of the entries in the dictionary: the amount of entries, their length and how
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well can they be compressed using the recursive encoding.

If prefix dictionary coding is enabled although it cannot compress any prefixes,
the overhead is much lower compared to the incremental encoder (1 byte vs.
~ (1+ [logias(1)]) - (1 + 715) bytes per entry).

3.3 Higher-Order Compression

The algorithms that have been implemented for the Carbon framework (see Section 3.2)
all have their advantages and drawbacks as explained in the corresponding sections.
But more importantly, they reduce different kinds of redundancy: the entropy en-
coder (Huffman) reduces the redundancy in the representation of individual symbols,
the incremental encoder does so efficiently on consecutive entries and the prefix /suffix

dictionary approach reduces the redundancy across the whole string table.

Original Value l Huffman (hex encoded) l Incremental l Suffix Dictionary

2019-08-15T01:23:45+0100 | 53216c3cd4£fd77cd9c9d0 | 0,0,2019-08-15T01:23:45+0100 | 0,2019-08-15T01:23:45
2019-08-15T07:06:05+0200 | 53f6dfd7811dd1bac2950 12,2,7:06:05+02 1,2019-08-15T07:06:05
2019-08-15T10:22:33+0100 | 563216c3cd3bd2fef793a 11,2,10:22:33+01 0,2019-08-15T10:22:33
2019-08-15T12:34:56+0200 | 53216c3cd35fd37e1fc950 | 12,2,2:34:56+02 1,2019-08-15T12:34:56

Figure 3.5: Comparison of Huffman coding, incremental coding and suffix dictionary
coding when applying them to a list of ISO formatted date strings. Meta data like code
tables or dictionaries is left out.

The reduction of different types of redundancy is the reason why nearly all algorithms
described in Section 2.2.2 combine different approaches to achieve better compression
ratios, so there is little reason to assume this effect to be different for a Carbon archive’s
string table. To achieve that, a compressor that is able to combine the algorithms from
Section 3.2 was developed. As it can be configured which of the algorithms to use
(see Table 3.1), it has been called the configurable compressor. The compressor options
can be set as described in Section 3.1 using the newly introduced compressor options
framework.

The compressor first removes common prefixes and suffixes with incremental or dic-
tionary coding, if these options are enabled. It can use each of the two algorithms
to remove prefixes and suffixes, but prefix dictionary coding is used for at most one
of them, because incremental encoding on sorted entries will perform better than pre-
fix dictionary coding as explained in Section 3.2.3. Technically, the dictionary coding
approach can only be applied to prefixes, but the compressor provides an option to
reverse each string, and therefore common suffixes can also be removed using the prefix
dictionary encoder. After removing common prefixes and suffixes, the remaining part
can be compressed using Huffman coding, if enabled.
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Compressor option Values Description

refix none mpression mmon prefix

f No co ession of commo efixes
prefix-dict | Use prefix dictionary coding for common prefixes
incremental | Use incremental coding for common prefixes

suffix none No compression of common suffixes

incremental | Use incremental coding for common suffixes

huffman true Use Huffman coding to compress the remaining text
false Do not apply Huffman coding
reverse true Reverses the strings to allow suffix dictionary cod-
ing using the prefix dictionary encoder
false Do not reverse the strings
delta_chunk_length |n € N Maximum number of entries that are encoded in-

crementally if the incremental encoder is used

Table 3.1: List of the most important options for the configurable compressor

The choice between the different algorithms in the configurable compressor allows it to
be adapted to the data it has to compress, as the compression performance of the two
prefix/suffix removal algorithms depends on the input’s characteristics. But also the
ability to disable individual steps completely (prefix removal, suffix removal, entropy
coding) in the compressor is important to increase its overall compression ratio, because
disabling the application of compressors on inputs that are not suitable for them (see
Section 3.2.4) ensures that the encoded output is at least not longer than the input.

Original Value ‘ Prefix/Suffix removal with Huffman entropy coding
2019-08-15T01:23:45+0100 | 0,0,2019-08-15T01:23:45 | 0,0,0x99f£35b8a6bbccOe5d0
2019-08-15T07:06:05+0200 | 12,1,7:06:05 12,1,0xe8d632
2019-08-15T10:22:33+0100|11,0,10:22:33 11,0,0x7890£ff
2019-08-15T12:34:56+0200 | 12,1,2:34:56 12,1,0x70fb8ac

Figure 3.6: Example of combined application of algorithms (prefix: incremental encod-
ing, suffix: suffix dictionary, entropy coder: Huffman) on a list of ISO formatted date
strings (see previous example at Figure 3.5). The result is 27 bytes long instead of 96
(savings: ~ 72%) without Huffman code table and the suffix dictionary, but these will
grow less than linearly with the number of entries.

3.4 Key-based Column Compression

A Carbon archive usually contains more than one column, because the objects in the
source JSON documents likely contain more than one property. While technically not
required, it is likely that the values of one column originate from the same domain,



3.4. Key-based Column Compression 45

e.g. phone numbers or hyperlinks. Assuming the values to be from the same domain
it is also likely that they have similar structure or characteristics. As the compression
performance of the compressor described in Section 3.3 depends on using a suitable
configuration with respect to the input data’s structure and characteristics, the group-
ing of values by column can be exploited to use a better performing configuration for
different subsets of the values instead of using one configuration for all entries.

The Carbon archives, however, consist of only one single string table. Additionally, the
compression framework initially did not provide any information on the column a string
originally belonged to. With changes to the internal document structure of the Carbon
framework and the compressor interface (see Section 3.1), the origin of the strings is
available to the compressor. To achieve a per-column compression, a proxy compressor
is introduced: while implementing the normal compressor interface, it internally sets up
a list of compressor instances (hereafter called “column compressors”) — one per column

— and acts as proxy that coordinates the instances.

In the prepare step, it first sorts all entries by their origin, so all entries belonging to
the same column are grouped together, and calls the prepare function of each column
compressor, passing only the subset of entries originating from the column the column

compressor instance is responsible for.

After the preparation, the meta data section is written. The proxy compressor stores
the number of column compressors (n) and writes n 64 bit integers representing zero
as placeholders that will later be replaced by the file position at which the encoded
values of each column compressor start. This is necessary to allow random access
for decoding, because in that process the proxy compressor needs to determine which
column compressor was used to encode an entry at a given file position. The offsets are
followed by a section that stores the type of column compressor used and how many
entries belong to that column. Currently, the same compressor — the one described
in Section 3.3 — is used, but the approach can easily be extended to support different
column compressors. Having written the proxy compressor-specific data, each column

compressor is requested to write the meta data it needs.

The next step in serializing the string table is the encoding of every entry. As the
entries have been sorted in the preparation step, all values belonging to one column are
passed to the proxy compressor’s encoding function consecutively by the compression
framework. The proxy compressor forwards the encoding request to the column com-
pressor that is responsible for encoding the values of the column the value originated
from. When the first entry of a column has to be written, the current file position is
used to update the offset placeholder in the meta data section indicating where the
responsibility of the current column compressor starts, which is required for decoding
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String Table Header
Meta Data

Column Count | Offset 1| .. |Offset n| Type 1 |..| Typen

Column Compressor 1 Meta Data

Column Compressor n Meta Data

Entry Header 1

A

Offset Col. 1

Encoded String 1 from Column 1

Entry Header 4

Encoded String i from Column 1

Entry Header ¢ + 1

Offset Col. 2

A

Encoded String 1 from Column 2

Entry Header i + j

Encoded String j from Column 2

Figure 3.7: Storage layout of the string table when using the proxy compressor

as described above. The full storage layout resulting from that process is visualized in
Figure 3.7.

When a Carbon archive with a string table compressed by the proxy compressor is read,
the proxy compressor is instantiated. When parsing the meta data section, it creates
the correct amount of column encoders of the specified types and requests each one to
read their meta data. Together with the offsets for the first entry of each column, the

structure is kept in memory.

Whenever a string needs to be decoded, the correct entry is searched as described in
Section 3.1. Once found, the proxy compressor compares the entry headers file position
with the columns’ offsets and determines how many of them are less or equal than
the file position. When n offsets are smaller or equal, the n-th column encoder is
responsible for the decoding of the entry and the decoding request is forwarded to that

column compressor.

With the approach presented in this section, it is possible to encode different entries
of the Carbon archive’s string table grouped by column with different compressors or
configurations within a single string table.

3.5 Merging of Similar Configurations

Using one compressor per column can improve the compression as explained in Sec-

tion 3.4. However, documents with many columns and only a few entries per column
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create a large overhead as the meta data (e.g. Huffman code tables and prefix dictio-
naries) has to be stored for every column. Combining the columns containing similar
values can help to improve the compression ratio, especially when encoding similar val-
ues incrementally (see Figure 3.8). Also, some columns may be from the same domain:

in a table that stores orders, the two columns “order date” and “delivery date” will likely

share the same optimal compressor configuration (see Section 3.3).

Value ‘ CPL

“order date” (Chunk 1)
2019-08-22T21:15:44+0200 0
2019-08-23T06:15:20+0200 9
2019-08-23T19:15:36+0200 11
2019-08-23T21:35:41+0200 11
“delivery date” (Chunk 2)
2019-08-23T09:31:23+0200 0
2019-08-23T11:43:30+0200 11
2019-08-23T19:38:02+0200 12
2019-08-23T20:17:39+0200 11

(a) Incremental encoding (prefix only)
separated for “order date” and “delivery
date”. The total common prefix length
(CPL) is 65.

Value ‘ CPL

Combined Column (Chunk 1)
2019-08-22T21:15:44+0200 0
2019-08-23T06:15:20+0200 9
2019-08-23T09:31:23+0200 12
2019-08-23T11:43:30+0200 11
Combined Column (Chunk 2)
2019-08-23T19:15:36+0200 0
2019-08-23T19:38:02+0200 14
2019-08-23T21:35:41+0200 11
2019-08-23T20:17:39+0200 12

(b) The values from Figure 3.8a with in-
crementally encoded prefixes, but both
columns combined. The total common
prefix length (CPL) is 69.

Figure 3.8: Example showing that sometimes data can be compressed better when the
columns are combined using the incremental encoder. For better comparability, the
delta chunk length (see Section 3.2.2) is set to 4.

To reduce the overhead that is introduced by splitting up the data column-wise, columns
that share similar compressors are combined to one single column, so they are com-
pressed by the same column compressor. The analysis of which columns can be merged
has been integrated in the preparation step of the proxy compressor (see Section 3.4).
All column compressors are compared with each other and if there is a sufficient sim-
ilarity, the columns are merged. This is achieved by updating the references that are
used to keep track of the origin (column) of an entry in the internal data structures that
are used to manage the string values within the Carbon framework: when combining
column A and column B, the references of B’s entries are set to a value referencing
column A. This operation is not limited to two columns, as the combined column can
be merged again with another one. Theoretically, all columns can be combined into a

single one.
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To decide whether to merge two columns or not, their column compressor configuration’s
(see Section 3.3) similarity is computed. The configurations are considered similar, if
all of the following conditions are satisfied:

e The prefix removal algorithm (incremental encoder, prefix dictionary, none) is the

same for both configurations.

e The suffix removal algorithm (incremental encoder, none) is the same for both

configurations.

e When incremental encoding is used, both configurations must sort from the same
direction (by prefix or by suffix).

e Both use Huffman coding or they both do not.

e In case of Huffman coding: the difference of the average bit length of the combined
column compared to the separate encoding must be below a certain threshold.
After some experiments, this has been set to a fixed value of 0.25 bits.

e The configurations belong to the same merge group.

These criteria are based on a few observations that will be described in the following
paragraphs.

The most obvious observation is that merging two columns with both compressors
configured to not perform common prefix removal or both not performing common
suffix removal, no compression ratio is sacrificed by merging as there was no compression
before. Due to merging them, however, there could be common prefixes or suffixes in
the resulting entry set that have not been there before, so the application of common
prefix or suffix removal would be beneficial. But as this would require analyzing the
combined column’s entries again, this is not done in the current implementation.

The incremental encoding for a sorted column does not sacrifice any compression per-
formance when it is merged with a second column that is also sorted by the same
end of the entries (prefix or suffix), even if the data from the two columns does not
share a common structure. The reason for this is, that the sorting always groups the
longest common prefixes or suffixes together and for each string, the one that shares
the longest common prefix/suffix will still be in the list when the data of both columns
is put together. The compression performance could even improve as the example in
Figure 3.8 demonstrates, because there could be longer common prefixes or suffixes in
the combined entries.
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When two configurations performing incremental encoding on the non-sorted end of
the values (e.g. merging incrementally encoded prefixes while the entries are sorted
by suffix) are merged, then the compression can become much worse. In the example
shown in Figure 3.9, the different time zones result in only half the savings because
the incremental encoder for the individual columns was only very effective as all values
ended with the same time zone offset. To avoid these situations, there could be two
different strategies:

e Forbid merging two configurations that use incremental encoding at the non-
sorted end. This approach avoids the negative effects of the example shown in
Figure 3.9, but the benefits of merging columns as described in the beginning of
this section, especially for incremental encoders as shown in Figure 3.8, will also
be lost.

e Automatically switch to prefix/suffix dictionary coding when merging two columns
that use incremental encoding at the non-sorted end. In experiments, this proved
to be an effective strategy, because using incremental encoding on a non-sorted
end usually makes sense only when all values end with the same suffix. Therefore,
the prefix/suffix dictionary would be only very small, so the main drawback of
prefix/suffix dictionary coding as described in Section 3.2.3 becomes negligible.

Because of the benefits gained at low operational costs, the second strategy is used.

Merging configurations with dictionary encoding at the same end theoretically does not
lead to big losses in compression performance, because in the best-case scenario the two
dictionaries share a lot of common entries and therefore the size of the dictionary for
the combined entry set is smaller than the sum of the two dictionary sizes. In the worst
case, the resulting dictionary will be as large as both individual dictionaries combined,
but the entries will still be there and can be used. In practice, the dictionary has an
entry limit (see Section 3.2.3), so there can be situations where not all entries of both
dictionaries can be stored. But due to sorting the extracted common prefixes/suffixes
stored in the dictionary by frequency, only the least-frequently used entries would be
removed in that case, not leading to significantly less savings. Also, in the experiments,
the dictionaries rarely grew so large that this was really an issue. On the other hand,
the savings achieved by using a combined dictionary were significant.

Whether the combination of two columns that are configured to be compressed using
Huffman coding leads to less effective encoding — for Huffman coding that means a
higher average bit length per symbol — depends on how similar the distributions of
characters in the entries of the two columns are. The average bit length can be computed



50 3 Carbon Archive Compression

Value ‘ CSL Value ‘ CSL
“order date” (Chunk 1) Combined Column (Chunk 1)
2019-08-22T21:15:44+0200 0 2019-08-22T21:15:44+0200 0
2019-08-23T06:15:20+0200 ) 2019-08-23T06:15:20+0200 )
2019-08-23T19:15:36+0200 5) 2019-08-23T09:31:23+1345 0
2019-08-23T21:35:41+0200 ) 2019-08-23T11:43:30+1345 5
“delivery date” (Chunk 2) Combined Column (Chunk 2)
2019-08-23T09:31:23+1345 0 2019-08-23T19:15:36+0200 0
2019-08-23T11:43:30+1345 ) 2019-08-23T19:38:02+1345 0
2019-08-23T19:38:02+1345 ) 2019-08-23T20:17:39+1345 )
2019-08-23T20:17:39+1345 5) 2019-08-23T21:35:41+0200 0
(a) Incremental encoding of the suffix for (b) The values from Figure 3.9a with in-
“order date” and “delivery date” when crementally encoded suffix (while sorted
sorted by prefix (e.g. because prefixes are by prefix), but both columns combined.
incrementally encoded, too). The total Due to mixed time zones, the total com-
common suffix length (CSL) is 30. mon suffix length (CSL) is 15.

Figure 3.9: Example showing that merging incrementally encoded columns sorted by
the opposite end (prefix/suffix) can lead to much worse compression ratios. For better
comparability, the delta chunk length (see Section 3.2.2) is set to 4.

using only the absolute symbol frequencies and the resulting code table. This allows
the comparison between the average bit length for each individual column and the
average bit length that is achieved by Huffman coding of the combined column that is
predicted using the sum of the absolute symbol frequencies and the resulting code table.
Therefore, a fast and exact prediction of the compression performance for the combined
column is possible. A big saving that is especially important for scenarios with many
columns that do not contain a lot of entries, is that the overhead for Huffman coding

is reduced as only one code table needs to be stored instead of two.

To allow a column compressor’s configuration to control the merging behavior, merge
groups can be configured. A merge group is an integer value stored with the column
compressor’s configuration. Only columns with compressor configurations of the same
merge group can be combined. The minimum value, 0, forbids merging at all, so once
one of the two columns that are evaluated has a merge group of 0, the columns will
not be merged, no further checks are made. Merge groups can be used to override the
frameworks default behavior, but their comparison is just an additional condition that
has to be satisfied — if at least one of the other conditions listed above is not met, the

columns will not be combined.
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Compression

In Chapter 3 a configurable compressor was introduced, that can be applied with differ-
ent configurations for each column through the proxy compressor (see Section 3.4). This
chapter deals with the challenge of finding a suitable configuration for these compressors
automatically to adapt it to each column’s data.

4.1 Motivation and Big Picture

The configurable compressor as described in Section 3.3 can be used to adapt the
compression algorithms to the data from the string table to achieve better compression
ratios. However, configuring the compressor correctly requires the user to know about
the available options and to have some basic understanding of the dataset. When using
the proxy compressor from Section 3.4, the user needs to configure many compressors

— one per column — which makes it a very time-consuming task.

The solution to that problem is to automatically detect a suitable compressor configu-
ration. To do that, the proxy compressor was extended to support the optimization of
the configuration based on a column’s entries. Therefore, a generic optimizer interface
was introduced to allow different optimization mechanisms to be implemented. These
implementations are presented in Section 4.3.1, Section 4.3.2 and Section 4.3.3. The
implementation can be selected at runtime by using the compressor options framework:
the proxy compressor provides an option that can be used to specify the optimizer.

The optimizer is basically a function that takes a column’s values, an optimizer-specific
option set and a sampling configuration (see Section 4.2) and returns a configuration
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for the configurable compressor with some additional information like a merge group
(see Section 3.5) and the statistics used for the Huffman encoder if it is enabled in the
configuration. The optimizer function is called in the proxy compressor’s preparation
step between the column-wise splitting of the data and the merging of the columns

based on their compressor’s configuration. This is visualized in Figure 4.1.

E4>|mries Column 1 Optimize Config for Column 1 I_C_F_C_l—l_\onElghrieoslﬁénn
Entries Column 2 s . Entries & Merge columns
Split entries /—>| Optimize Config for Column 2|—cmg—cam\> based on

by column configuration

similarity
Entries Columnn N Optimize Config for Columnn otﬂlgl;tn%su&rénm A

Figure 4.1: Integration of optimizers into the proxy compressor

4.2 Input Data Sampling

Irrespectively of how an optimizer decides what compressor configuration to use for a
given list of strings, it always has to perform some kind of analysis on them. When
analyzing all entries, the optimizer will take longer the larger the number of entries is.

2017-07-05T12:11:10
2017-07-05T12:11:11
2017-07-05T12:11:15
...few thousand left out...

S OI8-0B-19T07 - 36 25 ' 2017-07-05T12:11: 10
0160F 12TO7:35:49 ,f§¥?zyn%. 2018-05-12T07 : 35: 49
i Ity 5 018-05-12T07: 35: 52

2018-05-12T07 : 35: 52 ,
2019-09-08T20: 05 : 22

...few thousand left out...
2019-09-08T20:05:22
2019-09-08T20:05:25
2019-09-08T20:05:28

Figure 4.2: Incremental encoder sampling example: While the original dataset has an
average common prefix length of &~ 18, for the sampled data it is only ~ 7.7. Even
when drawing more entries, this effect would still have a large impact.

To get a meaningful estimation of the entries’ properties, it might not be necessary
to consider all of them. Instead, using a representative subset of values can be suffi-
cient and dramatically reduce the amount of effort which has to be spent on finding



4.2. Input Data Sampling 53

a proper configuration. The different optimizer implementations all support sampling
with exactly the same options. Sampling is enabled by default, but can be turned off.

The standard approach for sampling would be to randomly draw a fixed number of
values from the full set of entries. While this is fine for the estimation of properties
that are independent of the predecessors or successors of an entry, like Huffman or
prefix/suffix dictionary coding, it can heavily underestimate properties like the average
common prefix/suffix length for sorted incremental encoding. Figure 4.2 shows an
example of this effect.

To circumvent that issue, the entries are sorted first and then n blocks of m consecu-
tive entries instead of n - m individual values are randomly drawn from the full set of
entries. Therefore, m — 1 values per block still have the predecessor they would have
when the non-sampled set would be considered, such that properties which depend on
their predecessors like the average common prefix/suffix length (see Figure 4.3 for an
example) can be estimated much more precisely. Let cpl(v,,vp) be the common prefix
length of v, and v, and v, ; the j-th value of the i-th block. Then the optimizer can

compute:

n m—1

1
lovgest = m Z Z cpl(vij, vije1)

i=1 j=1

As a result, 4,4 st 15 a pretty accurate estimation of the average common prefix length
as long as enough blocks are drawn. The same can be done for the suffixes, too. The
number of blocks as well as their length can be configured through the compressor
options framework. By default, 16 blocks with a length of 16 entries each are used, be-
cause they performed well in experiments: lower values led to less accurate estimations,
while higher values did no significantly improve them (see Section 5.3.4).

The sampling is only applied when the total number of entries is greater than a cer-
tain threshold, which is set to n - m (block count - block length) by default, but it is

configurable.

One drawback of sampling the entries randomly is that the resulting file may not be
reproducible, e.g. when converting a JSON[Bral4] document to a Carbon archive file
twice, they might use different configurations for some columns’ compressors. That
should happen very rarely, though, because even if different entries are selected during
sampling, they should share the same structure and properties. But if the problem
occurs and this behavior is unacceptable for some reason, the sampling can be made
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2017-07-05T12:11:10
2017-07-05T12:11:11
2017-07-05T12:11:15
...few thousand left out...

o 2017-07-05T12:11:10
2018-05-12T07: 35:45 block-wise
sampling 2017-07-05T12:11:11

2018-05-12T07:35:49
- 2019-09-08T20:05:22

2018-05712T07:35:52 | (m=n=2) [3019-09-08T20:05:25
...few thousand left out...

2019-09-08T20:05:22
2019-09-08T20:05:25
2019-09-08T20:05:28

Figure 4.3: Incremental encoder block-wise sampling adapted from the example shown
in Figure 4.2: l,,4 ~ 18 for all entries, lqyg cst = 18.

deterministic by using a fixed random seed. However, this is not part of the current

implementation.

4.3 Compression Optimizers

To find a good configuration for the configurable compressor for a given input, an
optimizer is used as described in Section 4.1. This section will present three optimizers
that have been implemented and follow different approaches: optimizing by trying all
possible configurations (Section 4.3.1), by using a cost model (Section 4.3.2) or by
following user-defined rules (Section 4.3.3).

4.3.1 Brute Force Optimizer

The easiest-to-implement approach to find the best compressor configuration for a given
set of values is the brute force approach: trying out every combination of parameters
as configurations and compress the values using them all, finally taking the one that
produces the best compression ratio.

The implementation considers all options defined in Table 3.1 except for the delta chunk
length which is set to a fixed value, as it only allows to adjust the trade-off between

runtime performance and compression ratio:

e The prefix encoder options P = {none, incremental, prefix-dict }

e The suffix encoder options S = {none, incremental }
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e The binary string reversal option R = {true, false}

e The Huffman option H = {true, false}

Each configuration c is therefore a tuple from the search space C = P x S x R x H.
As the brute force optimizer evaluates all ¢ € C, it has to search through |C| = 24
configurations.

The evaluation of a configuration is done by creating a compressor with the configuration
to evaluate and perform the compression with either the whole set of entries to analyze
or just the sampled ones, if sampling is enabled. As the compressor interface is designed
to always work on memory buffers, a block of memory is temporarily allocated where
the compressor is requested to write its meta data and all of the encoded strings to.
The number of bytes written to that chunk of memory can be interpreted as the result

of the function that the optimizer tries to minimize.

Because the real compression functions are used — instead of models or approximations
— the brute force optimizer returns the optimal compressor configuration (e.g. the one
with the best compression ratio) for the given data when no sampling is used.

The main drawback of the brute force optimizer is its runtime performance: compressing
all strings with 24 compressors can be a very compute-intensive task. This is becoming
much worse if more options were added to the configurable compressor. The impact
of this drawback is significantly reduced by using sampling, though. Also, because the
configurations can be evaluated independently, the process could be heavily parallelized.
The current implementation does not do this, because when the amount of strings
to analyze — especially when using sampling — is small, then the overhead of multi-
threading and the coordination of the threads is likely higher than the performance

gains.

4.3.2 Cost-based Optimizer

The cost-based optimizer has been designed as a faster alternative to the brute force
optimizer. Section 4.3.2.1 presents the general idea. The details of the model that has
been implemented and its inputs are explained in Section 4.3.2.2 and Section 4.3.2.3.

4.3.2.1 Approach

Instead of running the compressor on the given dataset to find the best-compressing
configuration, a model is used to predict the compression performance of a configuration.

The quality of a prediction when using a cost-based approach depends on how well the
cost model describes the real algorithm’s behavior. This approach therefore has one
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major drawback: in contrast to the brute force optimizer from Section 4.3.1, it does
not guarantee to find the best-compressing configuration. The advantage, however, is

its much better runtime performance.

The cost model optimizer calculates some properties of the values to be compressed.
These are only computed once and are then used to estimate the savings for each

configuration without performing any calculations involving the input strings again.

4.3.2.2 Properties to Consider

In order to perform a reliable cost estimation, the relevant properties have to be com-
puted based on the input values. They need to reflect what the compression algorithms
would do. This section will describe them and explains, how they are computed.

e Average common prefix & suffix length, sorted by prefix
The optimizer computes the average common prefix and suffix length when the
input values — the sampled ones or all — are sorted by their prefix. This leads to
two inputs for the cost model:

lpp ... prefix length when sorted by prefix
lps ... suffix length when sorted by prefix

e Average common prefix & suffix length, sorted by suffix
The optimizer computes the average common prefix and suffix length when the
input values are sorted by suffix. Similar to the prefix-sorted ones, we get the
properties

lsp ... prefix length when sorted by suffix
lss ... suffix length when sorted by suffix

e Costs for Huffman coding
As described in Section 3.2.1, the only overhead — and therefore the costs — when
applying Huffman coding is the code table. To calculate the costs, the code table
is generated from the estimated symbol frequencies (see below on how these are
estimated) and then serialized like it would be done by the Huffman compressor.
As a result, we get

he ... The costs for applying Huffman coding (the code table size)

e Savings when using Huffman coding
The savings when applying Huffman coding can also be computed without having
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to actually apply Huffman compression to the input values. Again, this requires
the estimated symbol frequencies whose retrieval is described below. Using these,
the code table is set up and the average bit length (hy) that would result from
applying Huffman coding is computed. This allows to calculate the estimated

savings (assuming [; is the total length of the input values):

hs = (1 — %) -l; ... Estimated savings for applying Huffman

For the last two properties listed above, the symbol frequencies need to be estimated.
This could be done by simply analyzing the input data. But the probabilities might not
reflect the actually encoded strings, because the common prefixes and the suffixes will
be removed. This can distort the distribution of symbols, resulting in codes that are
not optimal for the actually encoded text. To correct this, the optimizer assumes that
the compressor will always remove the longest common prefix and the longest common
suffix within the whole entry set (or the sampled one). Therefore, to estimate the entries
more accurately, the optimizer first removes the longest common prefixes and suffixes
and builds the Huffman codes using the remaining texts. An example of this difference
is shown in Figure 4.4.

https://www.google.com https://www.google.com
https://www.bing.com https://www.bing.com
https://www.yahoo.com https://www.yahoo.com
(a) Original dataset (b) Dataset with dictionary-encoded pre-
fix & suffix

Figure 4.4: When encoding the right hand side value set with a Huffman encoder
based on the symbol frequencies of the left hand side set, the average bit length is 4.8
bits/symbol; when based on the right side set it is 3.2 bits/symbol.

The cost model’s input is a tuple of the six calculated properties explained above
(< lppslps,lspy ls.s, hey hs >). Additionally, the total entry count N is available to the
model.

4.3.2.3 Cost Model

The cost model is a function that maps a compressor configuration to a score using
the properties explained in Section 4.3.2.2. This score is a measure for the savings
compared to the uncompressed data, so the goal of the optimizer is to maximize it.

To estimate a compressor configuration from the search space (as defined in Sec-
tion 4.3.1), the effect of configuration options is evaluated using the cost model inputs.
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The effects are estimated independently for prefix removal algorithm (s,), suffix re-
moval algorithm (s,) and entropy encoder (s.), where currently only Huffman coding
is supported. The total amount of savings is the sum of these three:

Stotal = Sp + Ss + Se

The individual savings are estimated as:

e Prefix/suffix not removed
When not applying any prefix or suffix removal, no savings can be achieved.
However, there are also no costs introduced. Therefore the savings assigned for

prefix /suffix removal is zero:
s,=0 or s,=0

e Incremental encoding for the sorted end
The application of the incremental encoder on the sorted end (e.g. incremental
prefix encoding when the values are sorted by prefix) will result in the estimated
common prefix/suffix length [, ,, (for prefixes) or [ ; (for suffixes) minus 2.5 bytes
per entry to roughly approximate the costs described in Section 3.2.4. Due to
that, the estimated savings are computed as:

Sp=(lpp—25)-N or ss=(;5s—25)-N

e Incremental encoding for the non-sorted end
When applying incremental encoding on the non-sorted end (e.g. prefix encoding
when the values are sorted by suffix), the average common prefix/suffix length is
estimated as [, (for prefixes) or [, (for suffixes). Just like in the sorted case,
this leads to:

Sp=(lsp—25)-N or ss=_(lps—25)-N

e Prefix dictionary
When using prefix dictionary coding, it is assumed that it performs — independent
of the sort order — as well as the incremental encoder in the sorted case, but at
higher fixed costs as it needs to store the dictionary, too. As a result, experiments
showed that 4 bytes per entry reflect the real costs pretty well (see Section 5.2.2),
leading to:

sp=(pp—4)-N or s;=(;s—4)-N
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¢ Entropy coding using Huffman encoder
As the costs for applying Huffman coding (h.) as well as the savings that will be
achieved by applying it (hs) can be predicted pretty well, the estimated savings
are:

Sh:hs—hc

The string reversal option that is required to enable suffix dictionary coding (see Sec-
tion 3.3 for a detailed explanation) of the compressor does not save any space itself and
does not lead to costs, but it needs to be included in the cost model: when the strings
are reversed, the prefixes become the suffixes and vice versa, so [, and [, s are swapped
as well as [, s and [ .

The search space as described in Section 4.3.1 contains 24 possible combinations that can
be quickly evaluated using the formulas above. But as the decision of whether to enable
the entropy encoder or not is independent from the other computations, the Huffman
encoder options is simply enabled by comparing its costs and savings (hs > h. — enable
Huffman encoding, otherwise disable it). As a result, the Huffman option is not part of

the search space anymore, reducing its size to 12 combinations.

4.3.3 Rule-based Optimizer

The rule-based optimizer allows the user to precisely configure the compression behavior
of the system. Section 4.3.3.1 presents the general idea, whereas Section 4.3.3.2 and
Section 4.3.3.3 describe how the rules are defined and evaluated.

4.3.3.1 Approach

The brute force (Section 4.3.1) and the cost-based approach (Section 4.3.2) use different
ways to decide, what configuration to choose. But both share the same basic idea: the
computer analyzes the data and finds a configuration without any user interaction. For
some scenarios, however, the user of the system might want to be able to override this
behavior and define his or her own compressor configurations for certain columns or

types of information.

To serve this need, the rule-based optimizer allows the user to specify rules, when to

apply which configuration. Two strategies were considered for the implementation:

e Specifying rules by column name
The configurations are assigned to certain column names. These rule sets can
be evaluated very fast, because only the keys need to be compared to find a
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matching configuration. The major drawback of this approach is that it is not
very flexible: once a column is renamed or unknown datasets are encountered,
the rules will not match anymore. There is also the possibility of false positives
in rule matches, when a name is not unique or has different meanings in different
contexts/domains.

e Defining rules by value patterns
The rules can be matched by the values. This means, that patterns have to be
defined that need to be compared with the values. The advantage compared to
the first approach is, that the rules can be applied independently of the column
names, so changes to the structure or unknown datasets can be handled better. As
it requires more than a simple comparison of the column names, the computational
effort is much higher, though.

Because the latter approach is more general and the computational resources required
can be reduced through sampling (see Section 4.2) and other measures (see Section 4.3.3.3),
it has been implemented instead of the name-based approach.

4.3.3.2 Rule Definitions

The proxy compressor (Section 3.4) accepts an option for the rule-based optimizer called
rule-based.filename, allowing the user to provide a file containing rule sets.

Each rule definition consists of four components:

e Name
The rule name can be chosen by the author and has no influence on the optimizer
itself. It must be unique across the rule set file. The name will be logged in debug
output and therefore mainly serves troubleshooting purposes when developing or
optimizing rules.

e Pattern
The patterns the values are compared against are expressed as POSIX regular
expressions [Thel8|. The pattern has great influence on the performance of the
optimizer: the evaluation of regular expressions can require huge computational
resources in some cases. To analyze a regular expression’s performance, debugging
them using tools like RegexBuddy [Goy| might help.

e Merge group
To control which configurations can be merged, a merge group can be configured
that follows the rules from Section 3.5. When the merge group is not specified,
merging is disabled.
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e Compressor options

A rule has to specify the compressor options for the configurable compressor.
They are applied when the rule matches. The available options are explained in
Section 3.3. The current implementation only supports the configurable compres-
sor, but the approach can be easily extended to support any other compressor.
It obviously only makes sense for compressors whose behavior can be changed by
options, though.

The rules are defined in a plain text, line-based key-value format. Listing 4.1 shows an

example of how a single rule can be defined. To define multiple rules, the definitions

are simply concatenated.

When a rule named default is found, it is handled slightly different than the other rules:
instead of matching a pattern, it is always applied when none of the other rules match.

[ I N

phone.
phone.
phone.
phone.
phone.
phone.

pattern=\+7[0-9\s\(\)\-/1{8,}
merge_group=3
option.prefix=incremental
option.suffix=none
option.huffman=true

option.reverse=false

Listing 4.1: Example rule definition for telephone numbers

4.3.3.3 Rule Matching

The naive approach of matching the rules to the values is simple: for all rules, the

values to analyze are compared against the rule’s pattern and the number of matches

is stored. This can lead to three different situations, that are evaluated in the order
defined below:

1. If at least one rule has matched, take the rule matching most values. If two rules

match exactly the same number of values, the rule defined furthest up is used.
Therefore, the order in which the rules are defined in the rule set file can matter,
which allows the user to express the precedence of rules.

. If no rule has matched any value but a default rule is defined, return the config-

uration defined for the default rule.

. If no rule has matched any value and no default rule is defined, return a configu-

ration with no compression algorithms enabled (for the current implementation,

this means prefix=none, suffix=none, huffman=false).
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The drawback of this approach is that in each case all values have to be compared against
all rules. To reduce the amount of regular expression comparisons, two different early

out strategies could be implemented:

e Global early out

A minimum support criteria is introduced that can be specified by the user. It is
a value greater than zero and less or equal than one. The first rule which matches
at least the specified fraction of values (e.g. if the minimum support is .75 and
1000 values have to be analyzed, then at least 750 must match the rule’s pattern),
the rule is returned without checking the following rules. When rules that match
very often are defined before rules that are less likely to match, this can save a
lot of computation. The main drawback is, that it does not guarantee to find the
best-matching rule: when the minimum support is set to .75 and a rule matches
78% of the values, it will be returned, even if there may be a rule defined after
that one that would have matched 100% of the entries.

e Per-rule early out
Just like for the approach described above, a minimum support is defined. But
in this case it defines the minimum support a rule needs to get to be accepted
at all: when the minimum support is set to .75 and 1000 values are evaluated,
the best-matching rule is not considered a match when it only matches 700 values
(which means the default rule or a configuration with all algorithms disabled is
returned). This can drastically speed up the evaluation of rules, because during
their evaluation, the optimizer permanently checks, if it is theoretically impossible
to achieve this minimum support: when it has evaluated > 25% of the values and
not a single one has matched, it does not continue the evaluation because even if
this rule would be the best-matching one, it would get a support < 75% so it will
be ignored anyway. When the rules are defined in a way that they should match
(nearly) all values, the minimum support can be set very high (e.g. to .95), which
means that rules that do not match a single value will only evaluate the first 5%
of values and then abort. This approach guarantees to find the best-matching
rule, as long as it matches at least the fraction of values defined by the minimum

support criteria.

The current implementation uses the second approach as it finds the best-matching
rules. Requiring a minimal support to accept a rule can also be desired behavior: a
rule that “accidentally” matches 2 out of 1000 entries might be the best-matching rule,
but it might not be really suitable, so it actually should fall back to the default rule.
The second approach also adapts better to the content to be analyzed: the more entries
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match the pattern (e.g. the more likely it is that a rule could be the best-matching
one), the more computational effort is spent on analyzing it.

Theoretically, both approaches could be combined. But that would mainly emphasize
the drawbacks of both methods: it would not always find the best-matching rule and
it would reject rules below the per-rule minimum support criteria. For this reason, if
an additional speedup is required, using sampling might be the better choice.

Besides these strategies whose application may influence the rules that are going to be
selected, another optimization close to the per-rule early out approach is used that does
not change the outcome: instead of or in addition to using a fixed minimum support,
the highest matching score is used to determine when to abort the evaluation of a rule.
For example, when a previous rule has matched 70% of the entries, the evaluation of
the following rules is aborted when the algorithm can determine that this score cannot
be achieved anymore, e.g. when > 30% of entries have been evaluated but no entry
matched so far.

4.4 Caching Optimizer Results

When many similar datasets or datasets containing different records but from the same
domain are processed (or even the same dataset is processed multiple times), the opti-
mizers still have to decide for each dataset and each column, what compressor configu-

ration to use. This is unnecessary when the properties of the columns do not change.

To avoid this, a configuration cache file can be specified using the config-cache com-
pressor option. It will be loaded before the optimizer is called and if it does not exist,
it will be created. Before calling the optimizer for a column, the cache is checked for
an entry that was previously created for a column of that name. If an entry is found,
the configuration will be loaded from the cache and the optimizer has not to be called
and therefore the whole process is accelerated, as the time for retrieving the configu-
ration from the cache is negligible. If no cached configuration is found for a column,
the optimizer is called and the configuration it returned is added to the cache, so next
time a dataset with that column name is processed (and the same cache file is used),
the entry is taken from the cache.

The cache file is in a binary format, containing the column name the configuration was
used for, the merge group, the configuration options as well as the symbol (character)
frequencies that were calculated for the Huffman compressor component. The latter
is required as it influences the calculation of the similarity of two configurations in
the merging process as described in Section 3.5, but it is later recalculated when the
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actual compression is performed so it matches the symbols’ frequencies in the currently
processed column.

While this cache can achieve a huge performance benefit, using the same cache for
datasets that share column names but with a different kind of entries, the configuration
loaded from the cache may not be suitable. For that reason, it is up to the user to use the
same cache file only for datasets with similar properties. For that reason, configuration
caching is not enabled by default.



5 Evaluation

In this final chapter, the implementations from Chapter 3 and Chapter 4 are bench-
marked using a set of JSON [Bral4] files that have been selected to represent the
relevant use cases for the Carbon archive files as described in Section 2.1.1.

5.1 Benchmarking Setup

In preparation of the following sections, this one describes how the implementations are
benchmarked.

5.1.1 Datasets

The evaluation of the approaches presented in the previous chapters can only be real-
ized against a concrete collection of datasets, because the performance of compression
algorithms heavily depends on the data that needs to be compressed (see Section 3.2.4).
It is important, though, that this selection represents the actual use cases of the system

to allow conclusions on its performance in real-world scenarios.

Carbon archives are designed to handle analytical queries on columnar datasets which
most likely origin from JSON files (see Section 2.1.1). Therefore, columnar JSON
datasets with different properties are used for the evaluation. They are taken from
different, public sources. Some of them, like (parts of) the GitHub API dump and the
Microsoft Academic Graph are also considered for comparability as they have been used
in the past to benchmark the Carbon archives [Pin19b].
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The datasets used for the evaluation are:

e GitHub API dump
The GitHub code hosting platform provides a public REST API[Ric07] to retrieve
nearly all (public) information on projects hosted there. From that API, data on
~ 25000 projects has been collected into one JSON file. It contains 46 properties
per project, of which most are URLs that share a common structure (e.g. prefix
and suffix). The file is &~ 103 MiB in size.

e Microsoft Academic Graph (MAG) [SSST15]
The Microsoft Academic Graph is a dataset that contains meta data on scientific
publications and their relations (e.g. citations). It consists of (relatively) long
and short natural language texts (e.g. publication title and abstract) as well as
URLSs and UUIDs [Int96]. Only a subset of the whole Microsoft Academic Graph
is used. It contains ~ 50000 records, resulting in a file size of ~ 88 MiB.

e Datasets containing mainly short texts
Four datasets were taken from different cities’ open data portals. They contain
records of short natural language strings like names and localized dates, numbers
as strings of digits, telephone numbers and e-mail addresses. They have been
selected for the evaluation as they are good examples of very short columnar data

that can be found in many databases, e.g. of the public administration.

Statistical data on the households of the city of Wesel in 2007!, ~ 550 KiB
— List of employees of the city of Geldern?, ~ 35 KiB

Sociological data of districts of the city of Diisseldorf 2015°, ~ 60 KiB
— Schools in the city of Bottrop?, ~ 25 KiB

The datasets are called short-1 to short-4 in this chapter.

e Datasets containing mainly long texts
Three datasets were taken from different cities’ open data portals and one from
the job offering portal of the state of North Rhine-Westphalia. They all have in
common that they mainly contain longer texts (natural language).

Thttp://data.geoportal-wesel.de/ OPENDATA /Statistik /Haushalte/HH_in_ WP /HH_in_WP.json
Zhttps://www.geldern.de/de/system/-preview-text /&srcl=json-mitarbeiter
3https://opendata.duesseldorf.de/api/action/datastore/search.json?resource_id=
cObf3217-f60e-4397-9d80-b52ed6af807a
4https://www.offenesdatenportal.de/dataset/33640643-21f7-46e6-81c3-b368b2af897h /resource/
69979535-2e9¢-4991-bdc6-04c492e¢b3232 /download /schulen.json


http://data.geoportal-wesel.de/OPENDATA/Statistik/Haushalte/HH_in_WP/HH_in_WP.json
https://www.geldern.de/de/system/-preview-text/&src1=json-mitarbeiter
https://opendata.duesseldorf.de/api/action/datastore/search.json?resource_id=c0bf3217-f60e-4397-9d80-b52ed6af807a
https://opendata.duesseldorf.de/api/action/datastore/search.json?resource_id=c0bf3217-f60e-4397-9d80-b52ed6af807a
https://www.offenesdatenportal.de/dataset/33640643-21f7-46e6-81c3-b368b2af897b/resource/69979535-2e9c-4991-bdc6-04c492eb3232/download/schulen.json
https://www.offenesdatenportal.de/dataset/33640643-21f7-46e6-81c3-b368b2af897b/resource/69979535-2e9c-4991-bdc6-04c492eb3232/download/schulen.json
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— Event calendar of the city of Kleve®, ~ 25 KiB
— Public sector job advertisements in North Rhine-Westphalia®, ~ 2 MiB
— Points of interest of the city of Moers’, ~ 90 KiB

— Public suggestions for the reduction of noise pollution in the city of Cologne®,
~ 2.5 MiB

For the rest of this chapter, these are named long-1 to long-4.

As the compression only operates on the Carbon archives’ string tables, a relevant prop-
erty of a dataset is the amount of string data in relation to the structural information
and the meta data: datasets in which the string data makes up a larger part of the
total size can be better compressed than the ones where structural and meta data takes
up more space. Figure 5.1 visualizes how much of each file is actually string data when
importing the datasets into uncompressed Carbon archives. The amount of string data
is calculated by subtracting the file size of a Carbon archive using a “compressor” that
“compresses” every input string by returning an empty string from the file size of a

Carbon archive using no compression.
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Figure 5.1: The amount of data taken up by the actual string data in relation to the
total (uncompressed) Carbon archive file size

The datasets with fewer, longer strings result in a higher string data to dataset size
ratio as the meta data and structural information required for long strings is the same
as for shorter ones. Additionally, when the same strings occur frequently, they are only

Shttps://www.kleve.de/www/event.nsf/apijson.xsp/view-event-month?compact=false
Shttps://www.stellenmarkt.nrw.de/openNRW Jobs /search.json
Thttps://www.moers.de/www /verzeichnis- 13.nsf/apijson.xsp/view-list-plain
8http://offenedaten-koeln.de/sites/default /files /lap-koeln-2010-2011-alle-vorschlaege.json


https://www.kleve.de/www/event.nsf/apijson.xsp/view-event-month?compact=false
https://www.stellenmarkt.nrw.de/openNRWJobs/search.json
https://www.moers.de/www/verzeichnis-13.nsf/apijson.xsp/view-list-plain
http://offenedaten-koeln.de/sites/default/files/lap-koeln-2010-2011-alle-vorschlaege.json
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stored once in the string table but the structural information (e.g. the references to the
string) does not change in size. The latter is the main reason why the dataset “short-
1”7 contains so little string data. But even with this small string table, the dataset is
interesting for the evaluation, as any overhead introduced by compression algorithms
becomes more relevant and may even increase the dataset’s size. A good compression
algorithm should detect and avoid this by not applying the compression.

The total size of the uncompressed datasets is ~ 253 MiB, with ~ 142 MiB being string
data. This means, that even the best compressor could reduce the datasets size by at
most ~ 56%, which would mean that the string data is compressed to close to nothing

which is practically impossible.

Therefore, to judge the compression performance of a compression algorithm itself,
the reduction in size should be compared to the amount of string data. To evaluate
the system as a whole, e.g. if the achieved space savings are worth the additional
computational resources spent on compression, the whole compressed dataset’s size
must be compared to the total uncompressed dataset’s size as this is the amount of

storage that is relevant to the user.

5.1.2 Environment

All benchmarks in this thesis are executed on the same server to ensure that the results
of different benchmarks are comparable. The machine has an Intel® Core™ i7-4770
server processor running at up to 3.4 GHz and 32 GiB of main memory at a clock speed
of 1600 MHz. The server uses RAID level 1 (mirroring) with two Western Digital WDC
WD2000FYYZ-0 (2 x 2 TB, 7200 rpm).

It is running a 64 bit Ubuntu 18.04 operating system based on a Linux kernel in version
4.15. The project’s source code is built using the clang compiler [The| version 8.

The measurement of resource is performed by executing the carbon-tool from the
Carbon framework with GNU Time [Gor]. The sum of the reported time the CPU spent
in system and user mode is used as a measurement for the computational resources.
For the evaluation of memory consumption, the largest amount of memory the process
required — the maximum resident set size (often called maxRSS or VmHWM for “virtual
memory high water mark” in the operating systems proc file system) — is used, as this
information is the most relevant to judge how much memory a system needs at least to
perform the operation that is being evaluated.

To achieve more stable results for the runtime performance analyses, the benchmarks
are executed five times. The final runtime is the average of the measured values, ig-
noring the highest and the lowest measurement to compensate for caching effects or
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short interruptions by system tasks. To reduce the influence of the operating systems
filesystem cache on the 1/O performance, the system’s caches are flushed before each

benchmark execution.

5.2 Isolated Building Block Investigation

While the effects of the implemented compressors were already discussed theoretically
in Chapter 3, this section is presenting the results when evaluating them in the context
of the datasets described in Section 5.1.1. The evaluated compressors are all part of
the configurable compressor (see Section 3.3) and are applied to the whole string table
(in contrast to the key-based application as described in Section 3.4).

5.2.1 Huffman

The Huffman compressor is an entropy coder that is — unlike the incremental or prefix
dictionary encoder evaluated in Section 5.2.2 and Section 5.2.3 — not parameterized,
so the results presented do not depend on any inputs except for the datasets and
no parameters have to be optimized. The benchmarks are run by enabling only the
Huffman compressor component of the configurable compressor (see Section 3.3) and

no prefix or suffix compression.

As described in Section 3.2.4, the Huffman compressor works best when some sym-
bols occur much more frequently than others, so datasets consisting mainly of URLs
or strings of limited alphabets (like phone numbers or UUIDs) should achieve better
compression ratios than others.
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Figure 5.2: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when using the Huffman compressor, ordered by string data compression
ratio

Figure 5.2 might seem to contradict this assumption, as datasets containing a lot of
natural language text (the ones prefixed with “long-") achieve better string data com-
pression ratios. But in fact, the compression ratio for the worst compressed datasets is
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influenced negatively through the overhead Huffman coding introduces, the code tables.
The smaller the input is, the larger is the relative overhead and the datasets where the
compressor performs worse are mostly the ones with least string data (short-1: ~ 2.5
KiB, short-2: ~ 8 KiB short-4: ~ 6 KiB, long-1: ~ 50 KiB, long-3: ~ 17 KiB).
The only exception in this case is the dataset short-3, which only contains ~ 3 KiB of
string data, but the majority of that are digits so they are compressed very well by the
Huffman encoder and the limited alphabet with short variable-length codes additionally
leads to a smaller code table size.

This effect is reflected in Figure 5.3: while the datasets containing more strings of
limited alphabets like phone numbers and dates (the datasets prefixed with “short-")
have smaller code tables, the impact of adding ~ 130 bytes to a small dataset like
short-1 is much larger than the overhead of ~ 500 bytes on the github dataset, which

contains = 30000 times as much string data as short-1.
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Figure 5.3: Sizes of the Huffman code tables for each dataset in bytes

It is important to note, though, that even the dataset with the worst compression ratio
still achieves a reduction by 24% in size for the string data it contains. As the amount
of string data in this dataset is very small in relation to the total dataset’s size, this
has nearly no effect, but none of the datasets becomes larger through the compression
process. Regarding the whole dataset’s compression ratio, the dataset achieving the
best result (long-2) is reduced to about 69%. The pure string data of the github
dataset is even compressed to ~ 60% of its original size.

The compression introduces a computational overhead which grows approximately lin-
early with the amount of string data to be compressed, at least for the larger datasets.
The import of the JSON datasets takes about 15 to 25 milliseconds per megabyte
longer. For the smaller datasets, other effects like reduced 1/O operations lead to the
process completing slightly faster (about one percent) than without compression en-
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abled. Due to additional data structures that need to be kept in the RAM, the memory
consumption slightly increases by ~ 64 KiB.

For the decompression process, the results are much less consistent between the datasets:
while one dataset (mag) requires significantly longer to decode (~ +14%) compared to
the uncompressed scenario, the other ones complete faster (= —3% to —6%). The result
is reproducible and is related to the different distribution of the symbols’ code lengths
as well as more (computationally expensive) memory re-allocations being required. The
latter issue could be solved or at least reduced by fine tuning the implementation.

The same behavior can be observed for the memory consumption: for all smaller
datasets, the required memory does not change noticeably (£5 KiB, for github: ~ 30
KiB), except for the mag dataset: its memory consumption increases by more than 500
KiB compared to the processing of the uncompressed version, because of the way the

memory is allocated during the decoding process.

5.2.2 Prefix Dictionary

The prefix dictionary compressor is evaluated by enabling only this component of the
configurable compressor described in Section 3.3. In contrast to the Huffman compressor
benchmarked in the previous section, the prefix dictionary compressor requires one
parameter to be set: the minimum support required to accept a dictionary entry (see
Section 3.2.3). Therefore, the influence of this parameter is analyzed first to find the
optimal setting with respect to the compression ratio. In the second part of this section,

the optimal configuration is further analyzed regarding its performance.
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Figure 5.4: Average compression ratio (CR) of the string data (black) and the sum of

the compressed string data size (gray) depending on the minimum support

The minimum support parameter defines, how many entries need to share a given prefix
to include it in the dictionary. To find the best setting, all datasets are compressed with
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minimum support values ranging from 1 (include all prefixes) to 15 (require a prefix to
be shared by at least 15 entries). The result is visualized in Figure 5.4.

For both, the average compression ratio and the sum of the file sizes of the compressed
datasets, the minimum is reached at a minimum support of 4. This is also very con-
sistent across all datasets. The reason for this behavior is that the optimal minimum
support should reflect the costs of including an entry in the dictionary. When the pa-
rameter is chosen too small, e.g. smaller than the costs, some prefixes may be included
in the dictionary that require more space than they are saving. On the other hand,
when using a minimum support above the costs, some prefixes may not be included
although they would save more space than they take. For the rest of this chapter, the

minimum support is set to 4.

Using this configuration, the compressor achieves some very good compression ratios
for some datasets and no compression at all for others (see Figure 5.5).
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Figure 5.5: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when using the prefix dictionary compressor, ordered by string data
compression ratio

For most smaller datasets, there are not enough common prefixes to achieve any com-
pression. Also, larger datasets containing long texts do not benefit very much from
this approach. In contrast, datasets containing many similar URLs or phone numbers
from the same region can be compressed very well, with the github dump being a
very good example: most of its values start with https://api.github.com/repos/ or
https://api.github.com/users/ which is replaced by one single byte referencing a
dictionary entry, leading to a string data compression ratio of ~ 46% (which results in
a dataset of ~ 71% of the original size).

The computational overhead the compressor introduces during the import of the JSON
files is higher for datasets with larger dictionaries, as during the compression process,
the best-matching (e.g. the longest) prefix from the dictionary has to be found for
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each string table entry. Especially for the github dataset the compressor introduces a
large overhead of about 55 milliseconds per megabyte of string data, because nearly all
prefixes share the same first 20 to 30 characters (protocol, host and path of the URLs,
see above), so each comparison takes longer. A positive aspect of this effect is that the
computational overhead is usually higher for datasets where the compression results are
better, which is also reflected in the benchmark: the datasets with the largest overhead
(in milliseconds per megabyte of string data) are: github (= 55), mag (=~ 30) and
long-3 (= 20).

As only entries are kept in the dictionary that actually compress the dataset (due to
the choice of the minimum support parameter), larger memory overheads are mostly
observed for datasets where the compression leads to good results: the largest memory
overhead can be observed for the github dataset. It is only ~ 80 KiB, though.

When decoding the compressed datasets back to the JSON format, the runtime overhead
is very low — except for the github (= 2.5%) dataset it is actually negative (e.g. &~ —8%
for the mag dataset). The reason why the decoding process is so fast is that the prefix
dictionary is read and decoded once and then kept in memory, such that the decoding
of every string requires only the access of a given position in an array. While the
decoding itself is very fast, the compression leads to less data being read from the hard
drive and less memory to be allocated and that — for most datasets — overcompensates
the additional time required for decompression. The overhead observed for the github
dataset results from the decoding of the prefix dictionary which contains many entries.
As the prefix dictionaries are encoded recursively (see Section 3.2.3), they require some
computation to restore the original, uncompressed form. For all datasets, except the
Microsoft Academic Graph (mag), slightly less memory (~ 10 KiB) is required than
for the processing of the uncompressed versions. For the mag dataset, in the current
implementation a lot more memory (= 500 KiB) is required when the compressor is
used due to the same implementation issues as described in Section 3.2.1, which is not

a conceptual problem, though.

5.2.3 Incremental Encoding

Just like the prefix dictionary compressor, the incremental encoder implemented as part
of the configurable compressor is influenced by one important parameter, whose effect
on compression and runtime performance is evaluated first. This parameter, the delta
chunk length (d), defines the maximum number of consecutive entries that need to be
evaluated to decode a single entry (see Section 3.2.2). For example, with a delta chunk
length of 10, up to 9 consecutive entries can be encoded relative to their predecessor
before one uncompressed string (which therefore does not depend on its predecessor) is
stored.
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Figure 5.6: Average compression ratio (CR) of the string data (black) and the sum of
the compressed string data size (gray) depending on the delta chunk length

As visualized by Figure 5.6, with larger values for the delta chunk length, the compres-
sion ratio improves. This is a consequence of less uncompressed reference strings being
stored when the delta chunk length increases. As already mentioned in Section 3.2.4,
the number of uncompressed strings (given that the input strings actually share a com-

mon prefix) can be estimated as ~ %= (with n being the number of input strings). The

measurements as shown in Figure 5.6 support this assumption.

Increasing the delta chunk length does not negatively influence the compression time
as every string has to only be compared to its predecessor, independently of the delta
chunk length. The compression time does even slightly decrease for higher values as the
output file becomes smaller and therefore less memory is needed and less data has to
be written to the storage. As the difference between the smallest value (d = 2) and the
highest value (d = 30) is less than 0.6 percent, the effect is nearly negligible, though.
The same applies to the memory consumption.
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Figure 5.7: CPU time (black) and memory consumption (gray) of the incremental
prefix encoder (both relative to the uncompressed datasets) depending on the delta
chunk length
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In contrast, for the decompression, the time and memory consumption increases linearly
with the delta chunk length (see Figure 5.7), as on average d“ strings have to be kept in
memory and to be decoded (assuming that the values share a common prefix). Due to
the smaller size of the compressed Carbon archives, the memory consumption and the
decompression time are lower compared to the uncompressed archives for small delta
chunk lengths. The memory consumption surpasses the uncompressed datasets’ one for
d = 8 and the decompression time the one for the uncompressed datasets for d = 86.

The evaluation of the delta chunk length parameter shows that there is no optimal value
to use but it depends on how important the decoding speed and memory consumption
is compared to the compression ratio. This decision has to be made for each system
individually that uses the algorithm. This can also be seen as an advantage as it allows

to tune the system to the users needs.

For that reason, statements on the compression ratio always require the delta chunk
length to be specified. But one general observation is that the delta chunk length
approach achieves better compression ratios (for d > 6) than the prefix dictionary
method because it does not need to store a separate dictionary. For example, using d =
30, the github dataset’s string data can be compressed to ~ 37.5% (prefix dictionary:
~ 47%). As both approaches exploit the common prefixes of strings, the datasets that
achieve the highest compression ratios are the same as for the prefix dictionary approach
(see Figure 5.8).
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Figure 5.8: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when using the incremental prefix compressor with a delta chunk length
of 30, ordered by string data compression ratio

The configurable compressor does not only include the option to compress the prefix
incrementally, but also the suffix at the same time. Enabling both does only slightly
influence the time required for compression or decompression (about +1%), because the
only change is an additional memory compare/copy operation of the size of the common
suffix. As the strings are sorted by their prefix, the compression effect is smaller even
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if there are a lot of common suffixes and the additional overhead (at least one byte
per entry) can lead to much worse compression ratios compared to the datasets with
only the prefix incrementally encoded. The results for d = 30 visualized in Figure 5.9
show that the effect of incrementally encoding both ends of the strings ranges from an
overhead of up to ~ 18% (short-3) to an improved compression ratio of ~ 28.5% (—8.5
percentage points) for the github dataset’s strings.
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Figure 5.9: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when using the incremental prefix & suffix compressor with a delta
chunk length of 30, ordered by string data compression ratio

5.2.4 Combined Algorithms

While Section 5.2.1 to Section 5.2.3 only benchmarked individual components of the
configurable compressor, this section focuses on combining the approaches as described
in Section 3.3.

The configurable compressor allows different combinations of the parameters to be used,
but this section will focus on applying all three approaches benchmarked earlier in this
chapter together, which leaves one configuration: using a prefix dictionary, encoding
suffixes incrementally and apply Huffman coding to the remaining part of the strings.
The entries are sorted from their end to make the incremental encoding as effective as
possible. This does not influence the prefix dictionary as the order of entries does not
matter for that approach. As a result of Section 5.2.2, a dictionary minimum support
of 4 is used and to make the compression ratios comparable to ones shown in Figure 5.8

(Section 5.2.3), a delta chunk length of 30 is used for the incremental encoder.

This leads to significantly better compression ratios for most of the datasets compared to
only using a single approach, especially for the larger ones as the overhead introduced by
each approach is smaller compared to the datasets’ sizes (see Figure 5.10). The github
dataset’s string data is compressed down to 19% of its original size (-9 percentage points
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Figure 5.10: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when combining prefix dictionary (minimum support of 4), incremental
suffix encoding (d = 30) and Huffman coding, ordered by string data compression ratio

compared to incremental prefix and suffix compression) which leads to a compression
ratio of ~ 55% for the whole Carbon archive. Also, the Microsoft Academic Graph’s
(mag) string data gets far better compressed compared to its best-compressing single
approach (Huffman compression), achieving a compression ratio of ~ 53% instead of
~ 67% (whole archive file: &~ 72% vs. ~ 81%). The only two datasets that are increased
in size when applying the compression compared to their uncompressed versions (short-
3: & +4%, short-1: ~ +1%) contain very little string data and therefore the overhead
of the Huffman code table and the prefix dictionary have a greater impact than the
savings achieved by the compression algorithms.

The computational and the memory overhead are close to the overheads measured in
Section 5.2.1 to Section 5.2.3 combined, which was to be expected as the algorithms
are applied one after the other. The same can be observed for the decompression
process: the sum of the (partly negative) overheads of the three approaches is close to

the overhead of the combined approach.

5.3 Key-based Column Compression Optimization

The previous section, Section 5.2, evaluated the compression and runtime performance
of the individual components of the configurable compressor as well as their combined
application. The configurations were, however, always applied to the string table as a
whole, in contrast to the key-based application as described in Section 3.4. The reason
for that is, that — as explained in Section 4.1 — defining a suitable configuration for each
column manually is not realistic for real-world applications. Instead, the configuration
has to be determined by the system itself, using one of the configuration optimizers
introduced in Section 4.3.1, Section 4.3.2 and Section 4.3.3.
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5 Evaluation

5.3.1 Brute Force Optimizer

The brute force optimizer is guaranteed to find the best configuration for each indi-

vidual column, so it will be evaluated first to serve as a baseline for Section 5.3.2 and
Section 5.3.4.
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Figure 5.11: Compression ratios (CR) of the string data only (black) and the whole
datasets (gray) when applying key-based compression using the brute force optimizer,
ordered by string data compression ratio

Two main observations can be made based on the results visualized in Figure 5.11:

e The compression ratios are better than for each single configuration evaluated

in Section 5.2, for all datasets. The github dataset, also being the one getting
compressed better than the others in the previous benchmarks, achieves a com-
pression ratio of ~ 52% as the string data is compressed down to ~ 13% of its
original size. Even the worst string data compression ratio is still ~ 65%.

No dataset becomes larger than its non-compressed version after applying the
compression. That is to be expected, because a configuration not performing any
compression is also evaluated by the optimizer and in case the data cannot be
compressed without creating some overhead, the configuration that does not apply
any compression will be selected automatically. The only overhead introduced is
the meta information required by the proxy compressor as described in Section 3.4.
In case only none-compressing configurations are selected (so no space can be
saved), all columns will be merged together and lead to an overhead of only 3
bytes for the whole dataset in the worst-case scenario.

Also, there is no configuration that is chosen much more often than others, which

supports the assumption that different compressors should be used for different inputs

and none of them is generally superior to the others. On the short-2 dataset, for

example, the optimizer chooses 6 different configurations for 12 columns.
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In Section 4.3.1, it was already expected that the brute force approach would add a lot of
overhead. That is confirmed by the measurements: using column-wise compression with
the brute force optimizer adds an overhead of about 22% compared to the process with
compression disabled. The actual compression, however, only introduces an overhead of
~ 2%, so the optimizer itself is responsible for the remaining 20%. The largest overhead
introduced by the optimizer is for the Microsoft Academic Graph (mag) with ~ 150%,
most likely because of the application of Huffman compression to many longer texts.
The amount of memory required during the optimization phase is below the memory
required when performing the compression, so the optimizer does not increase the peak

memory required.

While the optimizer does not directly influence the decompression performance, the
configurations it selects do so. Compared to compressing the whole dataset with a
single compression configuration instead of a key-based compression (see Section 5.2.4),
the decompression is accelerated by 6.5% on average. The only outliers are the github
dataset that decompresses ~ 7% slower and the mag dataset whose decompression time
is reduced by ~ 22%.

5.3.2 Cost Model Optimizer

As it was expected in advance and confirmed in Section 5.3.1, the brute force optimizer
introduces a lot of overhead. To circumvent this, the cost-based optimizer was intro-
duced in Section 4.3.2 as a faster alternative. While it does not guarantee to find the

optimal configurations, it should require much less time for selecting a good one.
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Figure 5.12: Compression ratios (CR) of the string data using the cost-based optimizer
(black) and the brute force optimizer (gray) when applying key-based compression,
ordered by the cost-based optimizer’s string data compression ratio

In most cases, the cost model seems to be pretty accurate according to Figure 5.12. For
the majority of datasets, the difference in the compression ratio between the brute force
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optimizer and the cost-based one is very small or even zero. The two datasets where
the largest differences can be observed, short-1 and short-3, are very small ones — so
while the difference seems pretty large, it is actually less than 1 KiB in absolute terms
in both cases. For the github dataset, which is pretty large, the absolute difference in
size between the two optimizers is ~ 4.6 MiB (string data compression ratio 12.7% vs.
18.8%). However, the compression ratio is smaller for all datasets except one (short-
4) compared to the combined compressor from Section 5.2.4 and for all datasets the
compression ratio is less than one, which means no dataset becomes larger than the

uncompressed version.
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Figure 5.13: Speed up of the optimization process (without actual compression) when
using the cost-based optimizer as opposed to the brute force optimizer; one means
identical performance

The big advantage of the cost-based optimizer over the brute force approach can be
seen in Figure 5.13: the optimizer phase is 7.5x as fast as the brute force optimizer
on average, ranging from identical runtime to a 29.7x speed up. While the brute force
optimizer introduced an additional overhead of ~ 20% to the import (excluding the
compression itself) as compared to the process with compression enabled, the cost-
based optimizer adds only ~ 2.7% on average.

5.3.3 Rule-based Optimizer

The brute force and cost-based optimizer do not depend on any user configuration.
However, the rule-based optimizer’s performance — both runtime and compression per-
formance — fully depends on the rules defined by the user. In contrast to the parameters
of the incremental encoder and the prefix dictionary compressor, the variety of rules
that can be defined is much larger. It is also impossible to prove that a rule set is
optimal in terms of the regular expressions used for matching.
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Regarding the compression ratio, it will (theoretically) always be possible to define a
rule set returning the optimal configuration by constructing the regular expression as
(entryOlentryl]|...|entryN) which will guarantee to match exactly the entry set it
should.

It therefore does not make sense to benchmark the datasets with an example rule set

as it would actually benchmark the rule set, not the optimizer.

5.3.4 Impact of Sampling Strategies

In Section 4.2 the idea of using only a subset of the entries for each column to determine
which compression configuration to use was described. Using only a small, yet repre-
sentative entry set should reduce the workload of the optimizer, resulting in a better

runtime.

The sampling is based on blocks instead of individual entries and therefore depends on
two parameters: the block length and the block count. Both are evaluated by using
the brute force optimizer with sampling enabled, setting one of the two parameters to
a fixed value and varying the other one.

With more blocks (but a fixed block length of 16), the compression ratio improves (see
Figure 5.14), as entries from more parts of the dataset are more likely to represent
the full set of entries correctly. While the effect is measurable, the difference in the
compression ratio between the highest (32) and the lowest (4) value used is only about
0.1%. The impact on the runtime is much higher (& 3.5 seconds vs. ~ 60 seconds),
as it increases close-to-exponential in the beginning, most likely due to CPU caching
issues, as perf [Linb] reports increasing cache misses. The reason the curve flattens for
higher values is that the number of entries used for the sampling process exceeds the
amount of entries (per column) of many datasets, in which case all entries will be used
but not more.
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Figure 5.14: Influence of the sampling block count on the compression ratio (CR) of
the string data (black) and the optimizer runtime in seconds (gray)
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The influence of the block length (using a fixed block count of 16) on the compression
ratio is larger, but still very small with ~ 0.3% difference between the highest (32) and
the lowest (4) block length evaluated (see Figure 5.15). The impact is higher because
the common prefix and suffix lengths are better represented in longer blocks and this
property is important to find the best prefix and suffix compressor for the column. The
runtime of the optimizer increases from ~ 6 seconds to about a minute. It does so
almost linearly, except when using 32 entries per block. This is again likely due to CPU
caching issues, according to perf.
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Figure 5.15: Influence of the sampling block length on the compression ratio (CR) of
the string data (black) and the optimizer runtime in seconds (gray)
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While the two diagrams show the results when using sampling with the brute force
optimizer, the behavior of the cost-based optimizer is the same. Knowing that the
influence of both parameters is very small on the compression ratio but very high on

the runtime performance, small values should be used.
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Figure 5.16: Speed up of the optimization process (without actual compression) when
using sampling in the brute force optimizer (black) and the cost-based optimizer (gray)
as opposed to them with sampling disabled; one means identical performance; block
length: 16, block count: 16

Figure 5.16 shows that the sampling achieves a speed up for all datasets. Especially the

brute force optimizer benefits from the sampling regarding runtime performance: on
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average, the optimizer phase is &~ 145% faster (taking only about 40% of the time). The
larger the amount of records in the dataset is, the more effective becomes the sampling
(github: 7.8% speed up, mag: 4.3x), as the amount of entries selected is not going to
be higher than block length x block count (per column) and this is independent of the
total number of entries. As a result, the ratio of total entries to the number of entries
used with sampling enabled is higher and therefore the runtime benefit.
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Figure 5.17: String data compression ratios (CR) when using the brute force optimizer
with sampling disabled (black) and with sampling enabled (gray); block length: 16,
block count: 16
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Figure 5.18: String data compression ratios (CR) when using the cost-based optimizer
with sampling disabled (black) and with sampling enabled (gray); block length: 16,
block count: 16

As the evaluation of the parameters has already shown, increasing the number of en-
tries for sampling beyond a certain point does not improve the compression ratio very
much. Consequently, it comes as no surprise that considering all entries in the opti-
mizer (no sampling) does not lead to much better results compared to optimizer with
sampling enabled. For the brute force optimizer in the example configuration visualized
in Figure 5.17, the largest difference regarding the compression ratio for a dataset is
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0.13%. For the cost-based optimizer (Figure 5.18), the average difference is ~ 0.44%,
the largest is 2.9% — on the dataset with the smallest string dictionary (short-1).

5.4 Real-world Comparison: Deflate and Zstandard

The algorithms discussed in Section 3.2 did not include some very common ones like the
deflate algorithm [Deu96a] or Zstandard [CK18], as they do not allow random access to
the individual entries and would require to decode all the data (or chunks) for reading a
single entry. If used to compress individual entries, the algorithms would perform poorly
and very likely introduce a lot of overhead as they are not designed to be used on very
short inputs. They are therefore more suitable for the use in page-based compression as
described in Section 2.3.3 if Carbon was used with an additional buffer manager. It is,
however, still interesting to compare these two widespread general purpose compression

algorithms to the implementation of the column compression discussed in this thesis.

To simulate the use of these algorithms on the whole string table, the strings are ex-
tracted from string dictionary and then compressed with the zstd and zip command
line tool, where the latter is configured to use the deflate method. Both wrap the
data in a lightweight container format, so some bytes are added on top of the actual

compressors output, but the results are used for a rough comparison only.
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Figure 5.19: Comparison of the compression ratios (CR) for the string data achieved by
Zstandard (black), deflate (dark gray) and key-based compression with the brute force
optimizer (light gray)

As expected, Zstandard and deflate compress the data better than this thesis’ algorithm
(see Figure 5.19) as they use back-referencing over large distances instead of string
directories (as in prefix dictionary) that needs to be stored separately to allow random
access. Additionally, they do not just remove redundancy in the prefixes and suffixes
but in all parts of the string, which pays off especially for long natural language texts.
That can be observed in the diagram, too: the differences in the compression ratios
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between deflate/Zstandard and our implementation are larger for the datasets that
contain long natural language strings (Long-*). For other datasets, like github or mag,
the differences are much smaller.

5.5 Interpretation and Consequences

In Section 5.2 and Section 5.3, the individual parts of the implementation of column
compression in the Carbon framework have been evaluated. This section interprets the

results and summarizes the key findings.

One assumption made in Chapter 1 is that different inputs may be compressed best
with different compression algorithms. The measured compression performances of the
various algorithms in Section 5.2.1 to Section 5.2.3 for the different datasets support
this assumption: which algorithm performs best, depends on the dataset, and none
of the algorithms is generally superior to the other ones. The improvement of the
compression ratios when applying different compressor configurations per column, e.g.
using the brute force optimizer, also indicates that this assumption is correct.

The configurable compressor from Section 3.3 supports combining the algorithms be-
cause of the assumption that they could exploit different types of redundancy to reduce
an input in size. This is supported by comparing the results from the individual algo-
rithms (Section 5.2.1 to Section 5.2.3) to their combined application (Section 5.2.4) as
the latter achieves better compression ratios. Additionally, the brute force optimizer in
many cases returned configurations with more than one compression algorithm enabled.
As that optimizer is guaranteed to find the best configuration, this is also a supporting
argument for the hypothesis mentioned above.

When the brute force optimizer was introduced in Section 4.3.1, it was expected to be
slow due to compressing all columns with all possible configurations. With a runtime
overhead of up to 150%, this was confirmed. To speed up the optimization process, two
strategies were presented in Section 4.2 and Section 4.3.2: the application of sampling
and using a cost-based optimizer.

The sampling approach proved to accelerate the optimization process — especially for
large datasets, where it matters most — by up to a factor of 7.8 at nearly no costs in
terms of compression performance: The differences in the compression ratios achieved
with and without samplings are far below one percentage point on average for the
cost-based optimizer. For the brute force approach the largest difference is only ~ 0.1
percentage point. The sampling should therefore be enabled by default.

Instead of — or in combination with — sampling, the cost-based optimizer can be used
to speed up the optimization process. Even with sampling disabled, it is about 7.5x as
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fast as the brute force approach on average and nearly up to 30x for one dataset. The
compression performance, on the other side, is notably worse for some datasets. Because
of that, speeding up the optimization process through sampling should be preferred
over the cost-based approach. If the runtime performance is still not acceptable, both

approaches can be combined.

In comparison to general purpose compression algorithms (Zstandard and deflate) that
are not suitable for compressing a Carbon archive’s string table (see Section 5.4), the
compression ratios achieved by this thesis’ implementation are worse. However, for
datasets containing no or few long natural language text entries, the implementation
can keep up pretty well.

The performance overhead introduced by the application of the actual compression
algorithms is about 2% on average. As the Carbon archives are designed to be rarely
written and updated, but to be read very often, that should be acceptable. However,
the decompression performance is more important. The datasets compressed with key-
based compression using the brute force optimizer can be converted back to JSON
format ~ 6.5% faster on average, but there is one outlier where the decompression
time increased by ~ 13%. These numbers may change in favor of compression on
systems with lower I/O performance, e.g. when accessed through network storage
systems, as less data has to be read and transferred. Also, for datasets that exceed the
systems memory size, larger parts of the string table can be kept in memory when it is
compressed. This can massively accelerate read operations. Due to issues with the tools

of the Carbon framework when importing large datasets, this could not be evaluated.
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Conclusion

Compression techniques are used in databases to reduce storage costs and to increase
their performance. Therefore, this approach was transferred to a column-based storage
format for semi-structured data, namely the Carbon framework [Pin19a], to analyze if
and how it can benefit from the application of compression techniques.

Due to the design of the framework, compression is applied to the string table of the
datasets. As this table needs to provide random access, algorithms that fulfill this
requirement have been selected and implemented: incremental encoding, prefix dictio-
nary compression and Huffman coding. Each algorithm performs well in terms of the
compression it achieves on certain datasets, but no algorithm performed better than an
other one on all datasets that were used in the evaluation. The algorithms have also
been chosen because they address different types of redundancy in the data, so they

can be combined to improve the compression.

In order to achieve the best compression, both aspects have to be considered: algorithms
may need to be combined and the right algorithms have to be chosen for a given input.
As a consequence, a configurable compressor has been developed that allows to choose,
which algorithms to apply and to combine. As a dataset may contain different types
of (string) entries, the decision which algorithms to use should not be performed on
dataset-level but on a more fine-grained basis, so the strings of a dataset are grouped
according to the column (JSON object key) they origin from and for each column a
suitable combination of compression techniques can be used.

Because configuring the compression for each column manually would require the user
to spend a lot of time and also requires the user to know the different compression
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algorithms very well, the framework should decide on its own, which configuration to
use. It thereby provides a better user experience and potentially also an improved
compression performance. From the two self-driving approaches (“optimizers”) that
have been implemented, the brute force optimizer provided better results compared to
the cost-based one, but it also takes much longer to find a configuration. By sampling
the input strings, however, this drawback can be mitigated while nearly no compression
performance needs to be sacrificed. For that reason, the brute force optimizer with
sampling enabled should be used by default and only in scenarios where the runtime
performance is so important that the brute force approach is unacceptable, the cost-
based optimizer should be considered. For repeated imports of similar datasets, the
configuration cache should be used, which further mitigates the drawbacks of the brute
force approach for such use cases. If the user wants to change the behavior of the
optimizers for any reason, he or she can still take over control by specifying what

configurations to apply using the rule-based optimizer.

The goal of saving storage space was reached with the implementation being able to
compress the string data of certain datasets down to about 12%, leading to about 50%
savings for the whole dataset. On average, the string data was compressed down to
~ 53%, saving about 20% of storage space for the dataset. The second goal of applying
compression, increasing the read performance, was mostly reached: on average, the
datasets could be converted back to JSON 6.5% faster as compared to uncompressed
datasets. On the other hand, there were outliers with up to 13% longer processing times.
The compression may become more effective for datasets that are frequently queried
and do not fit into memory, which would render the operating systems filesystem cache
less useful, but due to compression, larger parts of the datasets could be kept in memory;,
which could help avoiding disk accesses and increase the read performance.

As the techniques presented in this thesis can reduce the amount of storage required for
Carbon archives while accelerating read operations at the same time, the integration
into the official Carbon framework should definitely be considered.

Future Work

While the results look promising so far, there is still room for improvement regarding
different aspects of the algorithms that have been implemented:

e Although the compression is working very well for shorter strings, the compression
of longer texts could be improved, e.g. by using back-referencing within longer
texts or by applying dictionary compression not only to prefixes but also within
the entries.
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The incremental encoder could be improved by encoding the strings incrementally
based on their successor instead of their predecessor. That would require minor
changes to the compression framework, but using this technique the additional
reference to the previous entry could be removed and the offset encoded in the
string table entry’s header could be used instead. That would save 1-2 bytes per
entry.

The Huffman compressor currently uses a naive tree-based decoding algorithm
which is pretty slow. Faster and more memory efficient ones exist [HCYLYF99]
and should be used to increase the read performance on compressed datasets.

The cost model could be improved and thereby the cost-based optimizer compres-
sion ratios. To achieve that, the behavior of the compressors has to be modeled
more accurately without making it too computationally expensive. In this case,
it could be used as the default instead of the brute force optimizer and further

reduce the key-based compression overhead.

The runtime of the brute force optimizer could be improved by introducing an
early out strategy like for the rule-based compressor. Currently, when a compres-
sor configuration is evaluated, the strings are compressed one after the other to
a chunk of memory until all strings (or the sampled ones) have been compressed.
Instead of always compressing all strings, optimizer could stop once the size of
the resulting memory buffer becomes larger than the smallest configuration found

so far.
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