
University of Magdeburg

Faculty of Computer Science

Bachelor Thesis

Implementing a Relational Algebra
Translator into the SQLValidator

environment

Author:

Max Hartmann

2022-05-25

Advisors:

Prof. Dr. Gunter Saake

OvGU - Institut für Technische & Betriebliche Informationssysteme (ITI)

Dr.-Ing. David Broneske

DZHW - Abteilung Infrastruktur & Methoden Kommissarische Abteilungsleitung

M.Sc. Victor Obionwu

OvGU - Institut für Technische & Betriebliche informationssysteme (ITI)

Hartmann, Max:
Implementing a Relational Algebra Translator into the SQLValidator environment
Bachelor Thesis, University of Magdeburg, 2022.

Abstract

The database language SQL is one of the most widely used languages when it comes
to relational database systems and has become an industry standard around the
world. Therefore, mastering the language is an essential skill that universities need
to teach their tech students in database courses. In order to understand the query
language part, aside from practical SQL, the underlying mathematical foundation,
relational algebra, must be taught and applied as well. To teach practical SQL
skills in a compact way, the Otto-von-Guericke University Magdeburg provides a
web-based tool called SQLValidator to their students. Unfortunately, it does not
yet have the functionality to offer relational algebra exercises in the same manner,
resulting in an incomplete online learning experience for students.

For this reason a relational algebra extension was developed for the SQLValidator
environment of the database course. This extension allows students to apply and
internalize relational algebra concepts in a task-based learning environment that fits
seamlessly into the already established learning platform. To facilitate the input
of special characters a virtual keyboard was integrated. The translation process
is performed by a special parser framework. Furthermore, the syntactic analysis
of the input is taken into account, while existing SQLValidator components are
provided with interfaces for the realization of semantic analysis which is already
implemented for SQL related tasks. To be able to test the extension on real problems,
two task sheets, which were previously worked on offline in exercise groups, were
translated and tested on the system. Not many complications occurred during this
test procedure. This evaluation shows that this extension can have the potential to
be used in a live environment for students.

iv

Acknowledgement

Hereby I would like to thank my supervisor M.Sc. Victor Obionwu for the good
supervision and keeping morale high during my bachelor thesis. Furthermore I would
like to thank Dr.-Ing. David Broneske for the constructive criticism and scheduled
meetings. Lastly, my thanks go to Professor Dr. Gunter Saake for allowing me to
do this work at his chair of databases.

vi

Contents

List of Figures ix

List of Tables xi

List of Code Listings xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Structure and goal . 2

2 Background 3
2.1 JavaScript and jQuery . 3
2.2 Backus-Naur-Form . 5
2.3 Regular Expressions . 6
2.4 Relational model for database management 8
2.5 SQL . 9
2.6 Relational Algebra . 11

2.6.1 Operations and their translation to SQL syntax 12
2.7 SQL Validator and its architecture 14

3 Related Work 17
3.1 Tools . 17

3.1.1 Relational Algebra Interpreter 17
3.1.2 RelaX - relational algebra calculator 18
3.1.3 RA: A Relational Algebra Interpreter 18
3.1.4 RA (radb) . 18

3.2 Papers . 19
3.2.1 Implementation of Relational Algebra Interpreter using an-

other query language . 19
3.2.2 RAPT: Relational Algebra Parsing Tools 19
3.2.3 Relational Algebra Interpreter 20

4 Concept 21
4.1 Requirements . 21

4.1.1 Workflow of SQL tasks . 21
4.1.2 Adaption to SQLValidator environment 22
4.1.3 Additional input symbols and deviations of notation 24

4.2 Architecture of relational algebra extension 24

viii Contents

4.3 Workflow of relational algebra tasks 25
4.4 Error handling . 27

4.4.1 Syntax validation . 27
4.4.2 Semantic verification . 27

4.5 Conclusion . 28

5 Implementation 29
5.1 Technologies . 29

5.1.1 Languages . 29
5.1.2 Development environments . 29
5.1.3 Libraries, essential frameworks and tools 30

5.2 Virtual on-screen keyboard . 30
5.2.1 Used parameters . 30
5.2.2 Feature interaction with CodeMirror 32
5.2.3 Workaround for feature interaction 32

5.3 Translating relational algebra via ra-to-sql 33
5.3.1 Backus-Naur form of contextfree grammar 33
5.3.2 Translation patterns for SQL in sql scope.js 34
5.3.3 Debugging structures and provided interfaces 35

5.4 String processing . 35
5.4.1 Input processing . 35
5.4.2 Translated statement string processing 36
5.4.3 Error handling . 37

5.5 Conclusion . 38

6 Evaluation 39
6.1 Testing translated tasks on SQLValidators backend 39
6.2 Possible adaptations . 40
6.3 Evaluate core requirements . 41

6.3.1 Syntax validation . 41
6.3.2 Semantic verification . 41
6.3.3 Workflow changes . 41

6.4 Conclusion . 43

7 Conclusion and future work 45
7.1 Conclusion . 45
7.2 Future work . 45

A Appendix 47
A.1 Backus-Naur form of ra-to-sql framework 47
A.2 Transformation patterns for SQL in sql scope.js 52
A.3 Test on exercise sheet 9 - task 1 . 55

Bibliography 59

List of Figures

2.1 Excerpt of basic components of a Backus-Naur-Form after [Bac63] . . 5

2.2 Special characters in regular expressions in JavaScript [MDN22d] . . 7

2.3 Excerpt of advanced searching with flags in JavaScript [MDN22d] . . 7

2.4 SQL language representations with a selection of important commands 9

2.5 Selection, projection and join schematic depicted oriented to [Saa18] . 12

2.6 Error classes according to [OBH+21, p. 4] 15

4.1 Activity diagram about the current SQL task workflow 22

4.2 Snippet from the task . 22

4.3 Possible user interface of a relational algebra task including table view 23

4.4 Virtual on-screen keyboard for faster and more convenient input . . . 24

4.5 Adapted domain model diagram of most important components . . . 25

4.6 Activity diagram about relational algebra task workflow 26

4.7 Derived error classes for parser error codes 28

5.1 Snippet of debug messages when clicking on “Translate Query” button 35

6.1 Architecture of SQLValidator according to [OBH+21] 42

6.2 Adjusted architecture of SQLValidator with Relational Algebra Trans-
lator . 42

x List of Figures

List of Tables

5.1 Main components (top) and important files of the build process (bot-
tom) . 33

5.2 Alternative operator names . 36

5.3 Matching keywords to error classes within the error lookup dictionary 37

A.1 Exercise sheet 9 task 1 a) . 55

A.2 Exercise sheet 9 task 1 b) . 55

A.3 Exercise sheet 9 task 1 c) . 55

A.4 Exercise sheet 9 task 1 d) . 56

A.5 Exercise sheet 9 task 1 e) . 56

A.6 Exercise sheet 9 task 1 f) . 57

A.7 Exercise sheet 9 task 1 g) . 58

List of Code Listings

2.1 Assigning, passing and returning a function in JavaScript 4
2.2 RegExp construction with flags . 7
2.3 Creation, altering and dropping of a specific Students table 10
2.4 Inserting, updating and deleting data from the previous Students ta-

ble example (Listing 2.3) before line 13 10
2.5 Granting and revoking rights to use certain operations 10
2.6 Some SELECT queries for reference 11
5.1 Settings of the implemented virtual on-screen keyboard 31
5.2 Repositioning the keyboard on scrolling through window 31
5.3 Code to work around the feature interaction 32
5.4 Solving the “AS” problem with MariaDB 36
5.5 Regular Expression for detecting atomic tables 37
A.1 Basic structure of relational algebra statement 47
A.2 Basic operations . 48
A.3 Set operations . 49
A.4 Expression additions and boolean operations 50
A.5 Term and factor extension . 51
A.6 SQL patterns for set operations . 52
A.7 SQL patterns for joins, selection, projection and rename 53
A.8 SQL patterns for atomic table handling 54

xiv List of Code Listings

1. Introduction

1.1 Motivation

In modern software engineering, nearly every software interaction requires some sort
of database. Any type of data can be stored in tables which later can be queried to
find specific tuples in a database. In order to access the data and setup or manip-
ulate a database within the relational data handling idea mentioned above, there is
a commonly used database language called Structured Query Language (SQL). Due
to the widespread use of SQL, it is a core skill for any aspiring software developer to
know its fundamentals. However, to fully understand relational database systems, it
is unfortunately not enough to solely know SQL. In order to get a deeper understand-
ing of the topic, it is also necessary to get a grasp of relational algebra in addition
to SQL. Relational algebra is a theoretical foundation for relational databases that
represent a mathematical form of queries. Since learning this fundamentals can be
hard for students, it is highly convenient to create a system that can check the in-
put and provide you some error messages for an improved learning experience. For
this reason and for supporting students, its highly useful to provide a web tool to
students in which they can learn SQL and relational algebra in an integrated way.
This approach also has the advantage that it hides most technical and infrastructure
related necessities behind the frontend so students can fully concentrate on learning.
To round up the learning experience with this system, it provides functionalities in
a structured and task focused manner.

The SQLValidator is an online learning platform for students of the Otto-von-
Guericke-University Magdeburg which provides an extensive training ground for
solving SQL related tasks. In order to cover the whole teaching content digitally
that the “Datenbanken 1” course provides for its students, the SQLValidator is cur-
rently missing one feature: relational algebra task handling. These kind of exercises
are currently solved by hand on a sheet of paper which was sufficient enough in an
analog learning environment like the exercise groups the students had to physically
attend. Nowadays, due to practicability and convenience reasons, a digital version
would be a modern solution approach. It allows better individual task monitoring

2 1. Introduction

for the course supervisors, fit thematically neat into the existing environment and
adds an automated control of the solutions.

1.2 Structure and goal

This thesis goes through some basic theories behind the translation process, ad-
dresses related works, goes into detail about the concept with its implementation,
and evaluates the system on some already existing tasks. The translator will read a
relational algebra statement as an input made with the help of a virtual on-screen
keyboard and performs three basic steps.
At first, after the input phase is done, the translator performs a basic syntax val-
idation on the entered query. After that, the semantic verification of the current
SQLValidator is performed. This will handle the type checking of the input and ver-
ify the column references in a SQL manner after the translation took place. Lastly,
the query gets evaluated by using the database engine of the validator. So in total
the relational algebra syntax will be validated right after the input, following the
translation to SQL to get it semantically verified in order to evaluate that query by
executing it on the validators database. Thus, the central goal of this thesis is the
implementation and evaluation of a relational algebra extension.

2. Background

This chapter gives some brief insights about fundamental techniques and theories.
At first some programming related basics with a brief introduction for some theo-
retical computer science concepts like Backus-Naur-Form or regular expression are
addressed. Subsequently, the relational model for database management will be
discussed before coming to the core topics this thesis is about: SQL and relational
algebra in combination with the SQLValidator.

2.1 JavaScript and jQuery

“JavaScript is a lightweight, interpreted, or just-in-time compiled programming
language with first class functions” [MDN22a].
The just-in-time compilation allows the developer to compile the JavaScript code
during the execution of a program rather than before it. This behaviour fits seam-
lessly into any environment in web development, such as the PHP one of the SQL-
Validator, and allows calling functionalities without an overhead “compiling time”
on page loading. Thereby JavaScript runs on the client side of the web, which affects
the behaviour of the web page on the occurrence of an event [MDN22b]. Besides its
use case as a scripting language for web pages, many non browser environments like
Node.js, Apache CouchDB and Adobe Acrobat also use it.
First-class functions describe a behaviour in which functions are treated as vari-
ables. So it is possible that a function can be assigned as a value to a variable,
can be passed as an argument to another function or can be returned by another
one [MDN22c]. That is the core mechanic behind widely used callback functions
in JavaScript. Following Listing 2.1 shows some code examples for these features
[MDN22c]. This usage of functions allows to invoke some characteristics or func-
tionalities for custom objects or variables later on in the same code fragments. It
enables the addition of features to a later assigned object so to say.

4 2. Background

1 // ------------------------Assigning ------------------------

2 const temp = function () {

3 console.log("Assigning");

4 }

5 temp(); // invoke it using the variable

6 // output: Assigning

7
8 // ------------------------Passing ------------------------

9 function addPrefix () {

10 return "SQL";

11 }

12 function callName(prefix , suffix) {

13 console.log(prefix () + suffix);

14 }

15 //Pass ’addPrefix ’ as an argument to ’callName ’ function

16 callName(addPrefix , "Validator");

17 // output: SQLValidator

18
19 // ------------------------Returning ------------------------

20 function process () {

21 return function () {

22 console.log("ITI");

23 }

24 }

25 //using a variable

26 const myFunc = process ();

27 myFunc ();

28
29 //using double parenthesis

30 process ()();

31 // output of both: ITI

Listing 2.1: Assigning, passing and returning a function in JavaScript

All in all, JavaScript can function as a procedural and as an object oriented lan-
guage. The procedural characteristics derive from the structuring in functions and
calling those series of code. On the other hand it is object oriented because objects
are created programmatically by attaching methods and properties to otherwise
empty objects at run time, as opposed to class definitions in languages like C++
or Java. “Once an object has been constructed it can be used as a blueprint (or
prototype) for creating similar objects” [MDN22b].

“jQuery is a fast, small, and feature-rich JavaScript library” [Fou22]. The simpli-
fied access to DOM elements of a HTML script, their manipulation, extended event
handling, animation and Ajax across different browsers are its key features. Ajax,
for example, handles loading of data from a server without refreshing of the web
page and is heavily used in the SQLValidator. The jQuery library also allows the
integration of plugins. With its jQuery UI extension, it offers several more func-
tionalities such as user interface interactions, effects, widgets and themes. The used
virtual on screen keyboard is such a plugin designed with jQuery UI properties.

2.2. Backus-Naur-Form 5

2.2 Backus-Naur-Form

The Backus-Naur-Form is a metalinguistic notation that is used to describe com-
putational processes. It was introduced in the “Revised report on the algorithmic
language ALGOL 60” [Bac63]. The paper presents three language representations:
the reference language, which is the committees working and defining language,
the publication language, used for communication processes and the hardware rep-
resentation, that is a condensed set of the reference language that uses the limited
numbers of character that are restricted by any standard input device. Furthermore,
the syntax focuses just on the reference representation of the language so that all
objects that are defined within it are represented by a given set of symbols.
“The basic concept used for the description of calculating rules is [an] arithmetic
expression containing as constituents numbers, variables and functions” [Bac63, p.
6]. These expressions in combination with arithmetic rules are self-contained units
of the language. This explicit formulas is also called assignment statements. In
order to express characteristics like iterative repetitions of computing statements,
certain non-arithmetic statements and statement clauses are added. The formation
of compound statements with begin and end is a representation for that. Labels are
also allowed for that purpose.

⟨basic symbol⟩ ::= ⟨letter⟩|⟨digit⟩|⟨logical value⟩|⟨delimiter⟩

⟨letter⟩ ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|
U|V|W|X|Y|Z

⟨digit⟩ ::= 0|1|2|3|4|5|6|7|8|9

⟨logical value⟩ ::= true | false

⟨delimiter⟩ ::= ⟨operator⟩|⟨separator⟩|⟨bracket⟩|
⟨declarator⟩|⟨specificator⟩

⟨operator⟩ ::= ⟨arithmetic⟩|⟨relational⟩|⟨logical⟩|⟨sequential⟩

⟨sequential⟩ ::= go to | if | then | else | for | do

. . .

Figure 2.1: Excerpt of basic components of a Backus-Naur-Form after [Bac63]

The Figure 2.1 shows an explicit grammar in Backus-Naur-Form. It defines a basic
symbol within the reference language symbol set as a symbol of the sets of letters,
digits, logical values and delimiters which are further specified below it. In order
to answer the question, if a certain symbol is in the allowed character set, one can
resolve the basic rules one after another and check if it occurs in one of them. If that
is the case one can categorize the searched symbol as a basic symbol. That describes

6 2. Background

the process of using the assignment rules of a Backus-Naur-Form rudimentarily.
All in all it is a very abbreviated way to depict context-free grammar narrowed down
to symbol formalism. It is context-free because there is a finite number of steps you
can take to resolve the rules separately. The fixed set of sequential operators is also
restricting the number of repetitions to a denumberable amount in itself.

2.3 Regular Expressions

Stephen Cole Kleene described 1951 in his research “Representation of Events in
Nerve Nets and Finite Automata” [Kle51] the behaviours of predefined events in
nerve nets like definitiveness and “regular events” to transform the theoretical con-
cept of finite automata algebraically from it, which is the foundation of theoretical
computer science to this day. He described a regular expression over a finite alphabet
Σ and following theorems about it to depict the formation of a regular expression:

• ∅ for denoting the possible empty set of Σ

• ε for denoting the empty string for a set with no content

• literal character for denoting a set of a single character in Σ containing only
one element

In addition to the core definition of a regular expression, he constructed operations
on it to form more complex structures. Given two regular expressions Q and R,
following operations produce regular expressions:

• concatenation (QR): denotes a set of strings as a result by concatenating an
accepted expression of the set Q and one of the set R in this particular order

• alternation (Q|R) or (Q∨R): denotes the union of the sets Q and R combining
both element lists

• Kleene star (Q*): denotes the smallest superset of Q that contains ε and is
closed under string concatenation [Kle51, pp. 49-53]. This results in a set of
all strings that can be created by concatenating any finite number (including
zero) of strings from Q.

The concept of regular expressions is mainly being used today for matching character
combinations in strings in a compact manner. Especially in JavaScript exist certain
additional patterns and character only for this purpose (see Figure 2.2). A classic
regular expression, constructed after the rules mentioned above, can be extended
with character classes, assertions, quantifiers, unicode property escapes, groups and
ranges [MDN22d]. Specifically the character classes were used, for filtering specific
characters in the input string like]; quantifiers, like ∗ in normal regular expressions;
and ranges, to search for multiple characters in the same string using | to distinguish
them from one another; the most. JavaScript also allows characters like ρ that are
not in the ASCII-character set to form an own character class.

2.3. Regular Expressions 7

Figure 2.2: Special characters in regular expressions in JavaScript [MDN22d]

To include flags like Figure 2.3 with a regular expression one have to declare them
like one of the both options in Listing 2.2 show. The flag will become an integral
part of the expression and cannot be added or removed any further later on.

1 const re = /pattern/flags;

2 const re = new RegExp(’pattern ’.’flags’);

Listing 2.2: RegExp construction with flags

Flags add extra functionalities like global searching and case-sensitivity to regular
expressions. They can be used separately or together in any order. The commonly
used g flag for example is used to find every occurrences of a certain character set
within the whole string instead of only detecting the first appearance. To find every
occurrence of a word or phrase disregarding its spelling in the original string, the i
flag was considered. Such functionalities allow condensed input syntax processing
and syntax error handling.

Figure 2.3: Excerpt of advanced searching with flags in JavaScript [MDN22d]

8 2. Background

2.4 Relational model for database management

Edgar Frank Codd, the founder of the relational database concept, presented in
his paper “Relational databse: a practical foundation for productivity” [Cod07] the
practical approach most database systems are still using today. The design goal of
this concept was to fulfill his three objectives: [Cod07, Motivation]

1. data independence: Provide a sharp and clear boundary between the logical
and physical aspects of database management.

2. communicability : Keep the overall model simple, so that all kinds of users
and programmers could have a common understanding of the data, and could
therefore communicate with one another about the database.

3. set-processing : To introduce high-level language concepts to enable users to
express operations upon large chunks of information at a time and thereby
providing the foundation for set-oriented processing.

In the relational model data is addressed by value, rather than by position, which
replaces positional addressing by totally associative addressing. The model struc-
tures data in tables, which allows unique addressing of every datum by means of
the relation name, primary key value, and attribute name. Tables portray thereby
the conceptual representation of relations even though they miss out on mapping
n-ary relations altogether. This construct enables users as well as programmers ”to
leave it to the system to (1) determine the details of placement of a new piece of
information that is being inserted into a database and (2) select appropriate access
paths when retrieving data” [Cod07, p. 394]. Furthermore the relational model is a
data model consisting of its three integrated parts that define it as such: [Cod07, p.
396]

1. structural part : domains, relations (of assorted degrees), attributes (becoming
columns of tables), tuples, candidate keys, and primary keys

2. manipulative part : algebraic operators (like select, project, join etc.) which
transform relations into relations

3. integrity part : entity integrity and referential integrity

These sectors are strongly coupled to one another, which let the evidence arise that
their behavioural properties are pinned down in such a sharp demarcation that they
not allow infinitely many possibilities or endless speculations to occur.

2.5. SQL 9

2.5 SQL

The Structured Query Language, also known as SQL, is a standard language for
relational databases [Saa18]. Its design is conceptually based on natural spoken
English combined with programming language formalism to generate formally un-
ambiguous statements. Based on that trait, SQL combines multiple representations
in one another to depict the whole use case of relational database management.

Figure 2.4: SQL language representations with a selection of important commands

In the following paragraphs the different representations and their keywords will be
described before referring one key aspect to relational algebra (see Listing 2.3). Be-
fore any operations can be made one need to define the table beforehand. For this
and other table defining purposes the Data Definition Language (DDL) representa-
tion includes keywords like create, alter or drop in combination with table. The
create command allows the user to design the table to their desires, set datatypes
for their columns, set keys (for highlighting uniquely records and setting up table re-
lations over columns) or define necessary column entries by using not null. Alter
grants editing functionalities to the previous created table. Drop deletes columns in
combination with alter or the whole table including its data dictionary entry when
used independently.

10 2. Background

1 CREATE TABLE Students

2 (

3 StudentId int primary key ,

4 FirstName varchar (20) NOT NULL ,

5 LastName varchar (20) NOT NULL ,

6 Faculty varchar (5) NOT NULL ,

7 Address varchar (40) NOT NULL

8);

9 ALTER TABLE Students ADD Degree varchar (2);

10 --adds "Degree" column

11 ALTER TABLE Students DROP Address;

12 --deletes "Address" column

13 DROP Students;

14 --deletes whole table

Listing 2.3: Creation, altering and dropping of a specific Students table

The Data Manipulation Language (DML) representation includes keywords like
update, delete and insert to change isolated tuples as long as their integrity
conditions are not violated (see Listing 2.4). To fill the table with data in form
of one or more tuples the insert command is applied. Update is used to change
parts of one or more tuples. In order to get rid off a tuples content in a table entry
the delete is applicable. However, an insert operation must not violate the key
conditions, an update must not result in a foreign key relationship violation and a
delete does not entail various integrity violations.

1 INSERT INTO Students

2 values(’218679 ’,’Max’,’Hartmann ’,’INF’);

3 --note that it is not mandatory to fill out the "Degrees" part

4 --therefore "Degrees" for this tuple will be NULL

Listing 2.4: Inserting, updating and deleting data from the previous Students table
example (Listing 2.3) before line 13

The Data Control Language (DCL) representation includes keywords like grant or
revoke to generate a system in which users can get hierarchically authorization
assignment of read and write access on the table with its content (see Listing 2.5).
In order to allow the user access on certain operations on the database management
system, SQL provides the grant command. To revert those accesses one can use
the command revoke.

1 GRANT select , update ON TABLE Students TO ExaminationOffice;

2 --grants group "ExaminationOffice" the use of select & update

3 REVOKE update ON TABLE Students TO ExaminationOffice;

4 --revokes the select privileges from "ExaminationOffice" group

Listing 2.5: Granting and revoking rights to use certain operations

Lastly, the most important representation of SQL for relational algebra purposes,
the Query Language (QL) (see Listing 2.6), will be featured. It describes the main
purpose of databases, which is to lookup stored data in a sorted manner. The stan-
dard form of a select statement (shown in line 1 of Listing 2.6) consists of a column

2.6. Relational Algebra 11

calling and referencing part to the according table initiated with a from, and of a
where clause followed by different conditions.
SQL offers various formalism to nuance the column definition part of a query.
The ∗ placeholder replaces the column names by expressing every existing column
from a table or condition. In order to filter duplicates of tuples effectively be-
yond set oriented formalism the keyword distinct exists. The condition of the
where command allows to combine a query over multiple tables that stand in a
relation to each other. It adds also set-oriented functionalities by using keywords
like natural join, left outer join or right join. There is also an implicit
cross join according to the mathematical concept of the cartesian product of tables
(see line 7 of Listing 2.6). As a result tuples are queried over both tables in which
the tuples of the first table get combined with tuples from the second table. If in
both tables columns with the same name exist, SQL creates two columns accord-
ingly e.g. Students.StudentId and Courses.StudentId when both Students and
Courses have a “StudentId” column. In addition, SQL also allows logical operators
like and, or, not, any, all and many more. For relational algebra purposes the
focus on and, or and not is sufficient.

1 SELECT column1 , ..., columnN FROM table_name WHERE condition;

2 --standard form for a complete SQL statement

3
4 SELECT * FROM Students where StudentId > 2000;

5 --outputs every data about students with a StudentId > 2000

6
7 SELECT * FROM Students , Courses;

8 --outputs cross join of both tables with every column

9 --assuming "Students" & "Courses" have the same column "StudentId"

Listing 2.6: Some SELECT queries for reference

2.6 Relational Algebra

The so called “relational algebra” includes basic query-related operations for tables,
which allow the calculation of new result tables from stored database tables in order
to extract specific data from a database. It is the concept on which the QL repre-
sentation with its query statements is build upon. In mathematics, an algebra is
defined by a range of values and operations defined on them. In a database context,
the tables of database queries correspond to the values meanwhile the operations are
functions that are calculating the query results [Saa18, chapter “Grundoperationen:
Die Relationenalgebra”]. Since all operations have tables as input and calculate a
new table as a result, these operations can be combined arbitrarily (and allow com-
plex queries by nesting them). The core concept of tables are relations, which are
sets of tuples with named attributes. Some operations are therefore obvious: classic
set operations on set of tuples, such as forming the union or intersection set, and
renaming attributes. In order to map every query arbitrarily one needs three more
Operations: the projection, the selection and the join (see Figure 2.5).

12 2. Background

Figure 2.5: Selection, projection and join schematic depicted oriented to [Saa18]

2.6.1 Operations and their translation to SQL syntax

Firstly, the selection operation is considered. The operator symbol is σ. This op-
eration is used to select rows of tables on the basis of a selection predicate. The
selection predicate is shown lowered to the right of the σ.

σStudentId>2000(Students)

Usually simple conditions occur in the form of selection predicates. They compare
attribute values with constants or attribute values with one another. Selection
predicates are in SQL syntactically represented by the condition after the where

keyword. The simple structure of the selection predicates is therefore translated
one-by-one.

The projection is used to select columns by specifying an attribute list. As an
operator symbol π is used. The attribute is again shown lowered to the right of the
operation symbol with attribute names separated by commas.

πLastName(Students)

Since relations are sets of tuples, the projection automatically removes duplicates.
Therefore the distinct keyword is used after the select in the translation process
later on to match this characteristic syntactically.

The join operation links tables via columns with the same name, by merging two
tuples together if they have the same values. As an operator symbol the ⋊⋉ is used.
This operation is also called the natural join because it appears to be very intuitive
to join same-named columns because they usually have the same meaning.

Students ⋊⋉ Courses

To join both tables the column “Student.Id” is being used. If one of the columns is
a key attribute of its table then every resulting tuple is unique. “Dangling tuples”,
which are tuples that do not have a corresponding partner, disappear from the
resulting table. The above mentioned operations can be combined to formulate
more complex queries like:

πFirstName,LastName(σStudentId>2000(Students) ⋊⋉ σChair=′DBSE′(Courses))

2.6. Relational Algebra 13

To transform the ⋊⋉ operator syntactically correct to SQL one has to insert a
natural join between both operands or generally speaking, relations.

Sometimes the customization of attribute names comes in handy. Therefore the
rename operation exists with β as its symbol. This operation is useful when both
respected attributes in the relations depict the same meaning but are named differ-
ently. This could help in the example below to change the column name “Name”
from Seminar to the new name “LastName”, so that further operating would be
easier with Studygroup.

βLastName←Name(Seminar)

When translating this operation to SQL it is very natural to use the as keyword to
change the respective name of the column name entered beforehand.

Set operations like union, intersection and difference are frequently used across re-
lational algebra expressions.
The union r1 ∪ r2 of two relation r1 and r2 results in the entirety of both tuple sets.
It can only occur if the attribute sets of both relations are the same.

Studygroup ∪ βLastName←Name(Seminar)

In order to translate this to SQL the union keyword unionizes both operands to-
gether.

The intersection r1∩r2 as the second set operation results in tuples that are included
in both relations at the same time.

14 2. Background

Studygroup ∩ βLastName←Name(Seminar)

It is translated to intersect and is used in the same way as union syntactically in
SQL.

Lastly the third set operation difference r1 − r2 eliminates tuples from the first
relation, that also occur in the second one.

Studygroup− βLastName←Name(Seminar)

Its SQL translation is used in the same way as the other set operations using the
except keyword.

2.7 SQL Validator and its architecture

The SQLValidator from [OBH+21] is a webbased interactive tool to teach SQL and
lets students practice on a live system. Students are able to solve SQL related tasks
by sending their suggestion for a possible solution to a database. Then they will get
instant feedback regarding errors in their query they need to fix. The SQLValidator
uses a client-server architecture where user roles such as students, exercise instructors
and administrators interact with the database system using a web interface via a
PHP server. In addition to that core purpose of this environment, it also serves as a
tool for teaching evaluation of according courses at the Otto-von-Guericke University
Magdeburg via polls.

To evaluate the input from the students the SQLValidator implements a validation
module that generates a relational table according to the natural representation of a
database query and compares it to the solution disregarding to the different output
every language feature generates. This procedure allows to evaluate all respective
language features from the DDL (Data Definition Language), the DML (Data Ma-
nipulation Language) and the QL (Query language) which may be required by the
question. Therefore the students can use every mentioned language feature hence

2.7. SQL Validator and its architecture 15

the system works independently from them, assuming that students do not cheat by
manually selecting the expected solution instead of the desired language construct.

There are four feedback levels the students input can get classified by after submit-
ting an answer to the system: positive/negative feedback which is indicated by color
codes (green, yellow, red), a hint, a reference solution and the students (partially)
correct solution. Occurring errors are divided into four different error classes. First
the SQL query is checked for syntax errors before the table name gets checked with
a subsequent examination of column counts, order and name. After that different
parts of the database associated components get checked [OBH+21, see Figure 2.6].
The Foreign Keys (with their name, reference label and reference column),the table
(with respecting row count, their order and table content), the schema (with its
column count CT, data type, isNull, isDefault and column Name errors) and con-
straints (with its constraint count, primary key, foreign key, general key and unique
errors) represent the error classes thereby.

Figure 2.6: Error classes according to [OBH+21, p. 4]

16 2. Background

3. Related Work

This chapter, turns the attention to related work. Here, the focus is on the one hand
on various tools that implement relational algebra translators or interpreters, and
on the other hand on studies that address the implementation of such tools.

3.1 Tools
To start this chapter off, three tools that pursue the same goal as this work will be
addressed. In addition, the evolution of the “RA: A Relational Algebra Interpreter”
approach to the RADB tool is taken into account.

3.1.1 Relational Algebra Interpreter

The Relational Algebra Interpreter [Raj22] from Naveen Rajshekhar is an open
source project written in Java. Similar to the approach this thesis introduces, the
relational algebra handling is done by a context-free grammar.

The translation is performed in three steps. First, the lexical analysis is executed
together with the parsing step. In lexical analysis, rules are set up to describe the
linguistic transfer meanwhile parsing the expression constructs a tree structure that
stores the parsed relational algebra statement.
Phase two of this tool is the semantic check. Some steps are performed depending
on the operation. For atomically occurring tables, it is checked whether they exist
in the database or not. With set operations, on the other hand, the number of
columns and data types of the tables are checked for equality. The attributes of the
projection are verified whether they occur in the schema of the subquery. With the
rename, it is examined again whether the attribute list has the same size as that
of the schema of the subquery. Finally, the select checks if the datatypes of the
left and right operands are the same and if the used table exists in the database.
Furthermore all attribute references in the select condition must be present in the
schema of the subquery.
The third and last phase represents the query translation with the respective exe-
cution on the database. For this purpose, a connection to the MySQL database is
established and the generated SQL query is sent.

18 3. Related Work

3.1.2 RelaX - relational algebra calculator

The RelaX - relational algebra calculator [Kes22] from Johannes Kessler, of the
University Innsbruck, is a web based tool to test relational algebra statements on
fixed or self added databases. It comes with a feature-rich intuitive interface whose
user experience is further elevated by keyboard shortcuts. Tables and column names
can be displayed in the left margin. After selecting them from the drop down
menu via a mouse click, respective names get inserted conveniently to the cursor
position. The output not only shows the relational algebra expression, but also
prints a matching tree structure with associated table view. Additionally, one can
download the entered request or view the history of the entered statements. All in
all, it is a performant and well-rounded system to practice relational algebra online.

3.1.3 RA: A Relational Algebra Interpreter

RA: A Relation Algebra Interpreter [Yan22] is a simple relational algebra interpreter
from Jun Yang written in Java, released 2014. It is built on top of a SQL-based
relational database system. The system implements relational algebra queries by
translating them into SQL queries and executing them on the underlying database
system through JDBC. For this purpose it supports DB2, MySQL, PostgreSQL and
SQLite database schemes. This system has some known limitations, which led to
developing a new revised tool in Python called RA (radb).

Limitations were for example in the error message output, which had little to no
meaning regarding the query, or in connection with some database schemes where
the interpreter could not produce a result whenever identically named attributes
occurred. Furthermore, RA may signal an error whenever it has trouble determining
how to name the attributes of a result relation. This error behaviour is database
type dependent.

3.1.4 RA (radb)

The new RA (radb) tool [Yan17] from Jun Yang is a simple relational algebra in-
terpreter written in Python 3. This system is also built on a SQL-based relational
database system. The main difference between this new tool to the RA: A Rela-
tional Algebra Interpreter is that the relational algebra query is again translated
into SQL and checked on the database system, but this time with the help of the
SQLAlchemy toolkit. It also relies solely on a SQLite system this time, which again
allows database connections to custom databases.

By restricting to one database system type, some previously named limitations are
bypassed. Thus identically named attributes are manageable and error signals are
more controlled. Also, error messages themselves are more optimized and specific.
Consequently, the biggest sources of errors of the previous version are actually elim-
inated or avoided.

3.2. Papers 19

3.2 Papers

The second part of this chapter is devoted to brief insights at a selection of scientific
papers.

3.2.1 Implementation of Relational Algebra Interpreter using an-
other query language

Ratnesh Litoriya and Anshu Ranjan designed in their paper “Implementation of
Relational Algebra Interpreter using another query language” [LR10] from 2010 a
system, written in Java, that compiles relational algebra to SQL to execute it on a
relational database system. This tool gets a relational algebra statement as an input,
performs lexical and syntactic parsing where in case of an error the user receives a
notification.

The design process of the interpreter was split up into five consecutive phases. At
the beginning, the already mentioned “lexical analysis” is carried out. To do this,
the character stream that makes up the source program is read from left to right
and is grouped into tokens, i.e. strings that have a common meaning. The second
phase, the“syntax analysis”, involves grouping the tokens of the source program into
grammatical phrases that are used by the compiler to create the output. Afterwards,
the “code generation” phase is started in which the target code is generated and
can be executed directly on the machine. This code “execution” represents the
next phase. Only statements that are lexically and syntactically correct get to be
converted into the target language, in this case SQL. Finally, “error handling is
performed, which detects and reports lexical or syntactic errors that have occurred.

With the help of JLex and JCup, the authors performed the lexical and syntactic
analysis of the input query. JLex scans the particular relational algebra input,
divides it into various lexemes, and checks whether the query matches the concerned
regular expressions. JCup, on the other hand, analyses the input query but checks
whether the query follows the context free language. After both of these routines
specific errors get reported. If no errors are detected, the relational algebra gets
translated to SQL which is then executed on the database as previously mentioned.

Overall, this work can be considered similar in terms of methodology and goal.
However, the semantic checks with JCup are more thorough and the general control
flow is more stringent regarding each check before the conversion is performed.

3.2.2 RAPT: Relational Algebra Parsing Tools

Olessia Karpova and her workgroup of the Department of Computer Science of
the University of Toronto, designed RAPT: Relational Algebra Parsing Tool and
described their results in the associated paper[KDHP15] in 2015.

RAPT uses a syntactic and semantic understanding of relational algebra to trans-
form input statements into a variety of outputs, including LATEX formatted queries,
parse tree diagrams, and executable SQL statements. It provides two grammars for
the parsing process:

▷ a core grammar with the five primitive operators σ, π,×,∪ and −,

20 3. Related Work

▷ an extended grammar that adds ⋊⋉, θ and ∩
Additionally, RAPT supports the assignment operator, renaming of attributes and
relations. To facilitate semantic analysis along the parsing process, the tool relies
on a collection of decorated abstract syntax trees. This analysis is necessary for
resolving names of relations and attributes. In order to identify and report common
errors RAPT uses semantic information from a nodes children, its operator and a
user-provided database schema.

The system was used for the exercise of a third year database class of over 350
students. It was primarily utilized as a debugging aid for relational algebra tasks
students had to work on, which could visualize made mistakes, but also fully au-
tomated the grading process of the associated assignments. This paper is relevant
because it uses a different approach to implement a similar system and has already
tested it in a live environment.

3.2.3 Relational Algebra Interpreter

In their paper “Relational Algebra Interpreter” [AdV14], Tamim Alkhalifah and
Denise de Vries presented a system that implements five different relational op-
erators for relational algebra queries, translates these statements into SQL, and
executes them on a database. The web application is written in Visual C#.NET
while the technology to identify the terminals, non-terminals and the grammar is
based on Irony.

This paper follows the same five phases of interpreter definition like Section 3.2.1.
Once again a parse tree of some sort is used to split up the relational algebra ex-
pression into terminal and non-terminal symbols. Interior nodes represent the non-
terminals, the children of each node represent the replacement of the associated
non-terminal in one step of the derivation, meanwhile the leaf nodes themselves are
labelled by terminals. In the underlying grammar, terminals are described as atomic
elements with which the sentence of a language may be constructed. The five opera-
tors π, σ,∪,∩ and − are therefore defined as terminals. Non-terminals are elements
which are only used in the derivation of a sentence. They get to be replaced by more
specific components, either terminals or other non-terminals. With these constructs
in mind the grammar was gradually build.

Overall, this design approach is not a bad idea, but is inadequate due to some
inconveniences. It lacks operations like product or join, only general errors are
reported that do not fit the specific cause whatsoever and it just supports nesting
of operations with one level of nesting. Those deficiencies reduce the general benefit
immensely.

4. Concept

This chapter will go into detail about the concept of the relational algebra translation
process to SQL. First, an overview over the requirements with the general workflow
of a student solving SQL tasks, the adaptation of the translation system to the
current SQLValidator state and formalism adaptation is given. Afterwards, the
architecture of this extension is featured, the workflow of the relational algebra
translation process is established before pointing out how the three requirements
regarding error handling and query evaluation are conceptualized.

4.1 Requirements

In the following existing structures are featured to extrapolate the behaviour of the
relational algebra extension. The idea is to provide interfaces that can be imple-
mented to the already existing workflow and are easily adaptable.

4.1.1 Workflow of SQL tasks

In order to understand how the translation extension should be implemented similar
to the SQLValidator environment, one should have a look at the current system
beforehand. From a technical perspective the basic workflow of a student doing his
tasks is simplified in Figure 4.1 in form of an activity diagram. It is divided into the
two swim lanes Frontend and Backend to depict mechanisms that are happening
while a student works on his SQL task. At the beginning a student enters his solution
approach to the specific task he previously selected. After confirming the input, the
backend behaviour gets invoked to check the solution the student provided. There
are only two outcomes for that process: the suggested solution is correct, then the
student gets a notification, that the solution was right and the task is solved, or the
suggested solution is wrong which has a detected error with a matching class called
in the backend. This will then send a notification with the remarks about the input
to the student. With the previously suggested solution and the new information
about the errors in it, the student works on a new approach to the tasks problem.
This cycle repeats itself until the student solved the task successfully. There is also

22 4. Concept

a real life case in which the student does not contribute a proper solution to the task
within a certain time span at all which then result in not getting a voting point for
this particular task. This case is not depicted in the activity diagram whatsoever.
The mentioned backend activities are highly narrowed down. Normally there are a
lot more of database, server and program interactions working together to result in
the depicted activities.

Figure 4.1: Activity diagram about the current SQL task workflow

4.1.2 Adaption to SQLValidator environment

The Figure 4.2 shows the user interface (UI) a student has to interact with in order
to do his SQL tasks.

Figure 4.2: Snippet from the task

4.1. Requirements 23

At the top you can see the task name “Meier’s Orders” with its task description
followed by a table the students have to perform the task on. Below that is an
input field where the solution approach can be entered and checked with the “Check
Query” button. It would be highly convenient if the relational algebra tasks would
follow same patterns and UI behaviours in order to keep the user experience the
same. In order to do that, additional behaviour was added to the viewTask.tpl.php,
which defines this page in particular. The idea is that when a tutor or admin creates
a task, that the type of task has to be selected. If the relational algebra option will
be selected then the new behaviour and controls are added to the view in Figure 4.2.
This control sequence will be part of the section Future work.
The relational algebra tasks can have two appearances that are pretty similar to
the UI in Figure 4.2. They also have a task name and description but appear with
or without a displayed table. In order to provide the necessary symbols a standard
keyboard does not provide naturally, there is a virtual on-screen keyboard to fill in
this gap (shown in Figure 4.3).

Figure 4.3: Possible user interface of a relational algebra task including table view

In Figure 4.3 one can see an additional “Translate Query” button. This button
provides the interface for future implementations and invokes the translation process
of the relational algebra expression. In future implementations this functionality
could be invoked by the check query button for relational algebra tasks making
the button therefore obsolete. More improvements of this conceptualized idea are
part of Future work. Further functions and behaviours are described in Debugging
structures and provided interfaces.

24 4. Concept

4.1.3 Additional input symbols and deviations of notation

For practical purposes, complementing the translation framework and to avoid over-
loading of operators for precise statement expression, some operator behaviours are
restructured with their notation. Instead of lowercasing the condition for the selec-
tion, projection and renaming operation after the associated operator symbol, square
brackets are wrapped around the condition. Furthermore the use of underscores in
names is forbidden because it defines an alternative operation that is not further
implemented. The rename operation got an additional change on top. Instead of
assigning a new column name with the ← operator an argument list replaces it. To
adjust to a classic list order it enlists the old Name before the new one. Thus allows
to rename more columns at once by separating each new renaming condition with a
comma. Accordingly, an even number of arguments is assumed.

βnewName←oldName(TableName)

β[oldName, newName](TableName)

In order to simplify the input process for the users the virtual keyboard provides
additional and common used symbols. These symbols will be pasted on the current
cursor position in the input field and will be translated later on.

Figure 4.4: Virtual on-screen keyboard for faster and more convenient input

4.2 Architecture of relational algebra extension

The relational algebra extension consists basically of two parts: the JavaScript in
the viewTask.tpl.php that combines the frameworks, performs some error detec-
tion while slightly changing framework mechanisms and the frameworks themselves.
For now, the frameworks are focused before highlighting certain implementations of
the JavaScript in Implementation.
As in Figure 4.5 depicted, the frameworks act independently from the base
viewTask.tpl.php and are just connected over the added script, therefor forming
the “Relational algebra extension” frame. The green highlighted abstract classes de-
scribe any visible interactable object on the frontend. Red containers illustrate there-
fore both used frameworks virtual keyboard framework [SGc22] and
ra-to-sql framework [Jav22] with their most important components or derived
features. The attribute lists for the abstract classes consist of four different groups
to describe their behaviour to each other additionally: provides, represents, allows
and task end. These control flow describing attributes mostly illustrate the use
for the end-user. In order to grasp their different meanings one goes through the
diagram beginning at the CodeMirror input area that was already provided from
the SQLValidator system. It allows the student to enter any desired key on their

4.3. Workflow of relational algebra tasks 25

keyboard to do the common input. To perform a Relational Algebra statement in-
put that represents the solution to a task a student wants to formulate, additional
symbols have to be added via the virtual keyboard that provides the mentioned ad-
ditional relational algebra characters. After that the parser provides the translation
process in combination with its dependant sql_scope.js, which provides direct
SQL transformation rules, and the Backus-Naur form in ra.jison, which provides
the transformation rules of the relational algebra staments. Both components of the
parser will be featured in Implementation. To illustrate the overall control flow the
parser allows two options: on error and flawless, therefor implying the status of
the translation. “On error” the hint output area will provide the student with hints
about their made mistakes meanwhile “flawless” recognizes a correct and error free
translation to inform the student in the solution message output.

Figure 4.5: Adapted domain model diagram of most important components

4.3 Workflow of relational algebra tasks

Similar to the activity diagram that depicts the Workflow of SQL tasks, the adapted
version for the relational algebra tasks will be highlighted in this section. Figure 4.6
illustrates the workflow on top of the SQL task workflow depicted at the bottom.
To understand landing in the adjusted SQL part, one have to have a look at the new
initial node first. Right after the initial node the fork node allows the activity to
split up into two simultaneous actions: enter keyboard character and enter relational
algebra character. In order to enter relational algebra character in the frontend of
the application, the virtual keyboard“accept event”action fires and allows therewith
special symbols like the attached note mentions.
After the forked actions in the frontend are joined into the relational algebra solution
approach, the student should’ve entered the task related input, sending it to the

26 4. Concept

backend and waiting for a system result. The relational algebra parser in the backend
will then try to translate the input statement. If there are errors regarding relational
algebra statement integrity, the system will detect the translation error type and
sends it to the connector A. Connector A results in an output of a (relational algebra)
specified hint which then leads to a new task approach for the student with his new
hint about his mistakes regarding relational algebra integrity. If, on the other hand,
the relational algebra parser translates the statement correctly, connector B gets
triggered.

Figure 4.6: Activity diagram about relational algebra task workflow

This connector will start a similar routine to the Figure 4.1. The translation will
result in a SQL statement, that then will be entered in the “enter SQL expression”
action. For visualization purposes this action is still in the frontend of the subdia-

4.4. Error handling 27

gram but it will not be a part of it anymore. This control flow was not adapted in
order to show the similarity of Figure 4.1 and Figure 4.6. Subsequently, the solution
gets checked on the SQL level and can either generate a SQL related cause of error
with according error type, which gets send to connector A, where the student can
work on the new approach with the custom hint, or the student gets the output that
the task is successfully solved. The bottom part of this figure has therefor pretty
much the same interpretation but follows a slightly improved activity flow as the
Activity diagram about the current SQL task workflow.

4.4 Error handling

Lastly, details about the way relational algebra errors are handled will be described.
Therefore, this problem is divided into syntax validation, highlighting syntax level
analysis, and semantic verification, describing type checking and verification of valid
column references. Figure 4.6 already illustrated that the error detection is split up
into the relational algebra part and the SQL part (both resulting in connector A).
The relational algebra part will be handle by Syntax validation meanwhile the SQL
part will be in the Semantic verification. Query evaluation is then performed by the
same system as it was before and will not be mentioned any further.

4.4.1 Syntax validation

In order to check the correctness of the relational algebra input, two mechanisms
intertwine. Whenever a syntax error of any sort occurs, the parser is unable to trans-
late the relational algebra statement and throws a specific exception, thus defining
the first mechanism. This exception needs to be classified and put into corellation
with the students solution approach input, therefore defining the second mechanism.
In order to generate fitting hints for the input, error classes were designed similar
to the idea of [OBH+21] depicted in Figure 2.6. The Figure 4.7 illustrates three
main categories the above mentioned relational algebra structure can be split up in:
operator, attribute and context.

Assuming the structure of a relational algebra is Operator [Attribute](Context) every
part can result in an error. Missing starting and closing parenthesis are mentioned
in the according encapsulation blocks for attribute and context. On a higher level
missing an operator, an attribute or context are depicted. The context can also be
a relational algebra expression itself, therefore is subject to the same error classifi-
cation. Set operations are deliberately omitted here from the syntax error analysis
because they can not result in any technical problem regarding only the translation
process to SQL. Their error potential is more of a semantic kind.

4.4.2 Semantic verification

As the Figure 4.6 suggests SQLValidator mechanisms are still used to perform the
semantic verification. Just correctly translated relational algebra statements will be
forwarded to the system, therefore excluding the occurrence of syntactical mistakes.
Column references as well as type checking are already verified for SQL tasks (see
Figure 2.6). In conclusion, the translation process results in a SQL statement so that
the whole semantic analysis is exactly the same as for SQL tasks, therefor following
existing behaviours extensively explained in [OBH+21].

28 4. Concept

Figure 4.7: Derived error classes for parser error codes

4.5 Conclusion

In order to get a grasp of the whole relational algebra translation idea, small insights
about already existing mechanisms and workflows of SQL tasks were provided be-
fore adapting the concept to it. Furthermore, the architecture and workflow of the
translation extension were highlighted before discussing important key features re-
garding common mistakes students could run into when using the new relational
algebra system. The next chapter will go into detail about the technical background
and further implementations made to realize the explained concept.

5. Implementation

This chapter lays the focus on the technical realisation and problems that occur while
implementing the above outlined Concept. At first, used technologies are presented
before discussing the main frameworks virtual keyboard [SGc22] and ra-to-sql

[Jav22] in greater detail. In the end the implementation progress of added code
fragments is retrospectively discussed.

5.1 Technologies

To realise the concept, one has to have a look at used tools and technologies first.
Furthermore special libraries with new file formats are presented.

5.1.1 Languages

The programming language used here has been chosen because it allows proper
access to the used frameworks and therefore allow the extension of the SQLValidator
project for a relational algebra translator. This addition runs solely on JavaScript for
connecting the frameworks with one another, get the input from the DOM handler
and performing the translation in the end. Additionally, a bit HTML was used for
adding some control structures that simplify further implementations later on.

5.1.2 Development environments

Primarily PHPStorm 2021.1.2, a JetBrains IDE, was used because it supports the dif-
ferent languages used in the SQLValidator, like PHP or JavaScript, which is pretty
neat when it comes to inspecting already existing mechanisms. It also provides
tools like convenient syntax highlighting, error detection, code references, project
wide searches as well as refactoring methods.
In order to compile the code fragments XAMPP [Apa22], a popular development en-
vironment for PHP by Apache, was used. XAMPP provides an easy to install Apache
distribution that generates a local web server on which Apache, MariaDB, PHP and
Perl (=XAMPP, X stands for cross platform) are preconfigured for a comfortable
development experience.

30 5. Implementation

5.1.3 Libraries, essential frameworks and tools

Essentially all used frameworks operate through jQuery, a small JavaScript library.
As already stated in Section 2.1, jQuery also provides an UI extension, which is also
used in the virtual keyboard framework. Especially the event handling, HTML
document traversal and manipulation are an essential part in this implementation.
These functionalities are also essential in the ra-to-sql framework as well as in the
virtual keyboard framework.
The ra-to-sql framework provides the needed tools to parse any relational alge-
bra statement into a SQL statement excluding semantic checks on any database
schema. This comes in handy because this step is already performed in the SQL-
Validator environment, therefore representing a minimal but fitting solution for this
implementation problem.
In order to provide additional needed characters for relational algebra statements
the virtual keyboard framework is part of the implementation. Additionally, the
framework grants convenient customizations and animations to level up the user
experience when using it later on in the live SQLValidator environment.

5.2 Virtual on-screen keyboard

This section will focus on how the virtual keyboard framework, by Jeremy Sat-
terfield and current maintainer Rob Garrison, was implemented rather than how
it operates in general. Therefore some design choices and tweaks made along the
implementation process are highlighted.

5.2.1 Used parameters

As the repository of this framework might suggests, there are a bunch of options to
customize or specialize the virtual keyboard. Besides different design themes pro-
vided by jQuery UI, there are countless functionalities solely for the behaviour of
the keyboard such as pop-up animations, language, displaying or input preferences.
On top of that, extensions are implemented that support alternative keys, simulate
typing, autocompletion and many more features.
In the following paragraph parameters, that were chosen for the keyboard, are in-
spected and the reason, why some of these were set, analysed (see Listing 5.1). After
detecting the element and invoking the .keyboard() function on it, it starts with
the“layout: ’custom’”setting which allows to use the below listed customLayout.
Besides the normal configuration, shift and meta key sets would have been possible,
which are not suitable for the purpose here. The disabled “usePreview” prevents
displaying a preview window above the keyboard for the input process before in-
serting it into the desired input field. This behaviour would be confusing to use
in combination with the normal keyboard the students use too. In order to deny
minimizing the keyboard the “alwaysOpen” configuration is activated.
In general, the pressed keys are added to a string that represents the sequence of
them. To set the order in which the pressed keys are added to the string the “rtl”
parameter is set to false, therefore pasting the pressed key from left to right to
the input string. This follows natural input behaviour. Some keys on the stan-
dard input devices of the user can trigger certain events on the virtual keyboard.

5.2. Virtual on-screen keyboard 31

This mechanism can result in loosing the input focus, which harms the use signifi-
cantly. Therefore this feature is deactivated by setting the parameters “stayOpen”,
“autoAccept” and “autoAcceptOnEsc” as they are. To reposition the keyboard on
window resize the “reposition” parameter is set true.

1 $(function () {

2 $(’#codeMirrorInput ’).keyboard ({

3 layout: ’custom ’, // generate custom keyboard layout

4 customLayout: { //β is later transformed to ρ for ra-to-sql

5 ’normal ’: [’β π σ ∪ ∩ - × ▷◁ [()]’]

6 },

7 usePreview: false ,

8 alwaysOpen: true ,

9 rtl: false ,

10 stayOpen: true ,

11 autoAccept: false ,

12 autoAcceptOnEsc: false ,

13 reposition: true ,

14 lockInput: true , // prevents direct input , see 5.2.3

15 preventPaste: false , // prevents direct input , see 5.2.3

16 position: {

17 of: "#keyboardWrapper",

18 my: "center bottom",

19 at: "center bottom",

20 at2: "center top",

21 collision: "fit"

22 }

23
24 //here is the entry point for the code listed in the listing 5.2.3

25
26 });

Listing 5.1: Settings of the implemented virtual on-screen keyboard

The SQLValidator uses another framework for optimizing the code input process
called CodeMirror. This framework interferes with the virtual keyboard frame-
work, which will be discussed in Section 5.2.2. For this purpose, the usage of the
“lockInput” and “preventPaste” keyword will be highlighted later on.
In order to position the keyboard above the input field the “position” parameter
group is modified. The “of” parameter attaches the keyboard to an according wrap-
per meanwhile every other configuration in this group changes the offsets towards
it. There is also a code fragment, that reacts to scroll events to reposition the key-
board based on the position of the wrapper. This fragment is shown in Listing 5.2.
Implementing this was necessary for updating the position when bigger tasks need
more top space of the viewTask page or the size of the input field changes.

1 $(window).scroll(function () {

2 $(’#codeMirrorInput ’).getkeyboard ().redraw ();

3 });

Listing 5.2: Repositioning the keyboard on scrolling through window

32 5. Implementation

5.2.2 Feature interaction with CodeMirror

As already mentioned in the previous chapter, a feature interaction of CodeMirror
and the virtual keyboard framework was encountered during the implementa-
tion. This behaviour is shortly explained in advance. CodeMirror is an open-source
JavaScript framework that provides any project with a versatile text editor popu-
larly used for code inputs [Com22]. However, it pastes the configured and modern
text area input field, which is used for the solution input, on top of the plain input
field of the standard HTML document. Normally the virtual keyboard would
paste its pressed keys in the preview window or, if this option is disabled like in this
case, in the standard input field it is attached to.
So the main problem was, that there is no option to paste the input made by the
keyboard into the overlying CodeMirror text area, therefore excluding the additional
character set from contributing to the relational algebra statement input. In order to
overcome this problem a solution was designed that avoids relying on general stan-
dard pasting of the virtual keyboard string by defining a certain callback method
and avoiding the acceptance routine the virtual keyboard framework provides.

5.2.3 Workaround for feature interaction

The implementation idea is to use a provided callback method called change which
performs the attached function whenever a change is happening to the keyboard or
its string. Before considering this type of implementation one need to think of other
events that can trigger the callback. That is the point where additional parameters
in line fourteen and fifteen in the Listing 5.1 on the previous page were defined.

1 // ------following code is part of the keyboard configuration ------

2 //this gets called on every user interaction with keyboard

3 change: function (event , keyboard , el) {

4 insertTextAtCursor(keyboard.$preview.val());

5 }

6
7 ///hidden field only for virtual keyboard & paste into CodeMirror

8 function insertTextAtCursor(text) {

9 const doc = window.editor.getDoc ();

10 const cursor = window.editor.getCursor ();

11 var lastInput = text.split("").reverse ().join("").substr (-1);

12 var position = {

13 line: cursor.line ,

14 ch: cursor.ch

15 }

16 doc.replaceRange(lastInput , position);

17 }

Listing 5.3: Code to work around the feature interaction

The parameter “lockInput” prevents any direct input into a preview window if it
were configured otherwise, while the “preventPaste” keyword prevents any other
content that is not virtual keyboard related from entering the input field. Defining
the “lockInput” option was necessary because changes on the preview mode can be
later implemented that would result in undesired behaviour for the change callback.

5.3. Translating relational algebra via ra-to-sql 33

In the Listing 5.3 the change callback method calls insertTextAtCursor with the
current value of the keyboard representing the input string. Whenever this string
changes, the method gets called. The function insertTextAtCursor locates the
CodeMirror editor with the respecting cursor position and pastes the desired char-
acter into the editor field, on pressing a virtual keyboard key. Note that the input
is not pasted in the underlying element anymore, due to the parameter changes ear-
lier in this section, but is rather redirected with the callback method to the cursor
position of the CodeMirror editor.

5.3 Translating relational algebra via ra-to-sql

The following paragraphs will focus on the use of the ra-to-sql framework, some
core components and adaptations that were made to transform relational algebra
statements to SQL flawlessly. In order to understand this library one has to have a
quick overview of the main components first. To shorten the mention of the semi-
relevant mechanisms, they are reduced down in the following table:

File component Function
src/grammar/ra.jison contains the definition of the grammar
src/sql scope.js contains the transformation for converting to SQL
src/ra-to-sql.js is the entry point of the library

src/ra.js is the RA parser, which is built automatically by using
the Jison parser generator [Con22]

dist/ra-to-sql.js is the JavaScript library, which is bundled using the Web-
pack bundler [KEL+22]

Table 5.1: Main components (top) and important files of the build process (bottom)

Therefore generated components from the build process are pictured, because chang-
ing the Backus-Naur form or SQL translation patterns result in the need to build
a new parser file with the Jison parser generator. Additionally, certain necessary
adjustments regarding input adaptations will be featured in Section 5.4.

5.3.1 Backus-Naur form of contextfree grammar

In this framework a Backus-Naur form represents the foundation of the whole trans-
lation. The here used Backus-Naur form can be found in the Appendix - Backus-
Naur form of ra-to-sql framework . When using the standard implementation of this
grammar the same compatibility problem arises every time when nesting more than
one statement.
After investigating the rule systems and the translation to SQL the problem could
be narrowed down: some rules followed a mixed up order of commands. That let
the suspicion arise that the grammar is mostly left linear instead of right linear
which leads to the mix up of special character orders when following the “Oper-
ator [Attribute](Context)” structure. A right linear construct is needed for certain
rules that follow the mentioned pattern because resolving them in the manner of
A ⇒ xB would fit the layered resolving process the best. B as a non-terminal

34 5. Implementation

symbol represents thereby the modular “[Attribute](Context)” part whereas x as
a terminal symbol is defined as an Operator and is therefore fixed. At first this
should not be a problem because it still translates keywords separately. However,
the translation order is important when having nested statements. In order to trans-
late nested statements correctly one has to translate the inner statement first before
translating the outer ones.

σStudentId>2000(σLastName=′Meier′(Students)

To illustrate this specific solution concept, one considers the above example. For
translating purposes one has to translate the inner part σLastName=′Meier′(Students)
to SELECT Students WHERE LastName=’Meier’ first before adapting it to the con-
text of σStudentId>2000(Context) resulting in

1 SELECT DISTINCT * FROM (

2 SELECT DISTINCT * FROM Students WHERE LastName=’Meier’)

3 AS SEL2 WHERE StudentId >2000

This pattern shares the same layering characteristic as the relational algebra state-
ment, nesting the LastName selection in the StudentId selection. The effectiveness
of this translation approach will be discussed in Evaluation.

5.3.2 Translation patterns for SQL in sql scope.js

In order to provide correct translation structures, the parser follows the rule sys-
tem of the grammar and transfers them to the SQL patterns. The most relevant
SQL translation patterns can be found in the Appendix - Transformation pat-
terns for SQL in sql scope.js . If one has a closer look on these translation pat-
ters, a distinct code fragment stands out from all the different functions. The pat-
tern AS ${getNewId("CONTEXT")} serves a very specific purpose when nesting
queries. It helps formulating a specific query as a subquery before conjoining them
with the outer queries, therefore avoiding errors by nested queries. However, this
pattern is always executed which leads to a MariaDB error in the SQLValidator
system for the outermost layer. This error is prevented by string processing, later
discussed in Section 5.4.2.
In addition, the basic implementation of the rename operation was not implemented
properly. To fix this issue a helpRename function was created as you can see in
Listing A.7. This construct iterates through every attribute in the attribute list, al-
ternates between “,” and “AS” before applying the pattern to the respective column.
However, it is assumed that the number of arguments is even and thus a unique
assignment is made. If this is not the case, an undefined is included in the SQL out-
put. This can also be filtered accordingly with string processing and is mentioned
as a part in Future work.

5.4. String processing 35

5.3.3 Debugging structures and provided interfaces

Along the implementation process it was necessary to check different stages and
results of the translation process. For this purpose three paragraph tags were added
to the general structure of the viewTask page: testing, userMistake and errorOutput.
They are used to output different strings along the process. The testing field outputs
the translated SQL query if no mistakes were found in the relational algebra input.

Figure 5.1: Snippet of debug messages when clicking on “Translate Query” button

As Figure 5.1 illustrates, userMistake displays the custom hint the student gets when
finding flaws in the task input. It consists of the custom hint message and a position
where the error occurred. In this example the custom hint message suggests the
student to correct the attribute because it found none and to look on position three
of his input as the position part proposes. CodeMirror offers different possibilities
to mark or highlight text in the input area. Possible improvements of this type are
discussed in Future work. The errorOutput holds the parser error message provided
from the framework. Future implementations can dispense with these three displays
and perform necessary forwarding of data types in the backend. Therefore, their
implementation also represent interfaces at the same time.

5.4 String processing
This section focuses only on necessary adjustments of string processing of any sort.
Most of the changes are made to the translated SQL statement and only a few are
made to the relational algebra expression before being translated.

5.4.1 Input processing

Slight direct changes from the user input are necessary to make it compatible with
the ra-to-sql framework. The framework itself uses ρ instead of β for the renaming
operation. To adapt to this change, the following regular expression is implemented:

1 // change every β appearance to ρ globally

2 // ignore case sensitivity

3 userInput = userInput.replace (/β/gi, "ρ");

Note that the framework offers multiple operator appearances for some operators.
They could be added manually in the input string but are not helpful in the learn-
ing process whatsoever. The abstraction level to the real appearance of relational
algebra statements would be simply too enormous. Alternative operator names are
illustrated in the Table 5.2 on the following page.

36 5. Implementation

Operation Intended use Alternative
Rename ρ[a, b](A) Ren[a,b](A)
Projection π[a, b](A) Proj[a,b](A)
Selection ρ[Condition](A) Sel[Condition](A)
Cartesian Product A×B A x B
Natural Join A⋊⋉B A |x| B
Union A∪B A U B
Intersection A∩B A INT B

Table 5.2: Alternative operator names

More direct input processing is not necessary at this point.

5.4.2 Translated statement string processing

As already mentioned in Section 5.3.2 there is a MariaDB error in the SQLValidator
system for the outermost layer when translating nested relational algebra state-
ments. In order to get rid of this a routine, called inputCleaning, was implemented
that counts the number of opening and closing parentheses with the help of the
countSymbol function. If the last closing parenthesis is found the rest of the string
is cut off.

1 //help function for counting symbol occurences

2 function countSymbol(str , find){

3 return (str.split(find)).length - 1;

4 }

5
6 //Crop the last known "AS [operation name]" in string

7 function inputCleaning(input){

8 var parenthesisNum = countSymbol(input , "(");

9 for(let i = 0; i < input.length; i++){

10 if(input.charAt(i) == ")") {

11 parenthesisNum = parenthesisNum - 1;

12 }

13 if (parenthesisNum == 0) {

14 input = input.slice(0,i+1);

15 break;

16 }

17 }

18 return input;

19 }

Listing 5.4: Solving the “AS” problem with MariaDB

With this pattern the parentheses, that are wrapped around the SQL statement,
could also be removed but they do not harm the semantic meaning of the query
whatsoever and are accepted by the SQLValidator “Check Query” functionality just
fine.

5.4. String processing 37

There is also an additional case in which the SQL query needs further process-
ing. After getting rid of the standard SELECT DISTINCT * FROM that was wrapped
around every query, there was a case left that was still in need of this code snippet:
the atomic table name. If this case would not be considered, table names without
certain operations would not be translated to SQL whatsoever.

1 // whenever there is no operator symbol user --> add prefix

2 if (userInput.search (/(ρ|π|σ|∪|∩|-|×|▷◁|\[|\(|\) |\])/g) == -1) {

3 raExpression = "SELECT DISTINCT * FROM ".concat(raToSql.

getSql(userInput));

4 }

5 else {

6 raExpression = raToSql.getSql(userInput);

7 }

Listing 5.5: Regular Expression for detecting atomic tables

For this purpose the regular expression mechanism of JavaScript was used once
again, illustrated in Listing 5.5. This code fragment searches for any operator symbol
in the relational algebra input globally and whenever none of these appear in the
whole string the “SELECT DISTINCT * FROM” snippet gets printed out in front of it.

5.4.3 Error handling

In the Syntax validation there was mentioned that the relational algebra translation
extension will only handle syntactic errors by itself, leaving the semantic mistakes to
the already existing SQLValidator routines. The seven described errors in Figure 4.7
are therefore listed as an attribute with the respective parser error in a dictionary.

Error class Relevant parser error components
missingOperator NEWLINE, ;, IDENTIFIER, (, PROJ, REN, SEL
startingAttribute [
closingAttribute),], -, COMMA, +, *, /, >, <, <=, >=, =, <>, OR, AND
missingAttribute IDENTIFIER, (, -, NUMBER, STR
startingParenthesis (
closingParenthesis), UNION, INTERSECTION, PRODUCT, NATURAL,

NATURAL1, -
missingRelation IDENTIFIER, (, PROJ, REN, SEL

Table 5.3: Matching keywords to error classes within the error lookup dictionary

To get a simpler overview of the assignment of the error classes and their correspond-
ing parser errors, Table 5.3 was created. It represents only the essential components
of the parser error message, which are also recognized as missing in the most com-
mon problems. Note that only the most common mistakes are part of this error
detection routine, which are derived as syntactic error classes. Total mixed up in-
puts, incorrect bracketing and gibberish answers are not part of that process. For
further improvements and design ideas see Future work.

38 5. Implementation

5.5 Conclusion

Besides various difficulties along the implementation process the result is still con-
densed to its bare functions. The overall implementation follows strictly the concept
design ideas, be it regarding the facilitated input via the virtual keyboard, the simple
relational algebra parser or the consideration of syntactic errors.

Attaching the script directly to the specific task page also matches the integration
goal of fitting seamlessly into the SQLValidator environment. Provided interfaces
also allow easier adaptations for future implementations and improvements. The
decision to use plain JavaScript instead of more complicated structures in combi-
nation with AJAX, like the rest of the SQLValidator does, was made based on the
versatility of JavaScript and jQuery. There was simply no need for AJAX because
its main purpose revolves around asynchronous gradual updates to web pages which
are not necessary when triggering an event by a button click and leaving the rest
to the SQLValidator system. In order to evaluate the quality of the translation and
possible inconveniences, following Chapter 6 will do into detail about it.

6. Evaluation

This chapter revolves around the quality of the translation by testing out sample
tasks of a specific exercise sheet. Furthermore, translation patterns are examined
for their differences from the standard solution. The quality of the syntax validation
and semantic verification is also discussed.

6.1 Testing translated tasks on SQLValidators backend

In order to get a glimpse at the quality of the translation process, a Test on exercise
sheet 9 - task 1 was performed on the system. The goal was to observe whether the
solution developed for the tasks were semantically consistent with the translation
from the parser or not. First of all, however, it should be taken into account that
relational algebra keywords do not have a fixed translation in SQL. Moreover, the
semantic meanings are important regardless of the composition or the keywords
themselves in the statements over which they were generated.
The performed test on the relational algebra extensions is intended to show only the
differences in possible answers from the set of all correct SQL translations and is
not a representative sample. Nevertheless, the generated results show that different
keywords still yield the semantically same meaning. For this purpose, a total of
three specific examples is considered:

▷ task 1d) for the UNION keyword,
▷ task 1e) for the NATURAL JOIN keyword,
▷ task 1f) for the EXCEPT keyword with statement nesting.

As the Table A.4 shows, the results differ a lot from one another. The parser
interprets the queries by themselves and joins them together afterwards with the
UNION keyword representing the ∪ operation. On the other hand, only one binary
operation is performed in the solution, which sets both attributes in relation to
each other. To infer this solution, several steps are merged into each other. It
is recognized that two selections, that refer to the same table, are to be united,
which is also accomplished in the WHERE condition. So instead of uniting two se-
lection queries, only the attributes of the queries are set in relation to each other.

40 6. Evaluation

The projection of the “Date” does not have to be wrapped around the union of both
selections and can simply be placed in front of it.
Thus, both variants represent the same semantic sense, but the translation com-
bines complete queries and the provided solution combines only the most important
components of the queries. The standard solution to this task also has the semantic
knowledge of the selections to use the same table. By leaving the semantic checking
to the SQLValidator and not doing it separately in the relational algebra translator,
such distinctions arise.

Table A.5 suggests a similar inconvenience. By translating the relational algebra
statement with the provided extension tool, it results in cascaded NATURAL JOINs
from Customer to Product. The NATURAL JOIN keyword joins the tables together
based on same named columns, but the extension does not know about the similar-
ities between Cid, Pid and Oid the standard solution uses.
Accordingly, the example solution exploits semantic knowledge about the tables of
the task again to achieve an optimal result. In this case, both solutions would only
be semantically equivalent if corresponding columns, over which the composite is to
be performed, are also named the same. Renaming respective columns with β or in
the task would have the same effect.

Finally, the last example from Table A.6 highlights the semantic dependency of the
standard solution compared to the nested translation of each component. Once
more, there is a huge difference between the translation and the intended solu-
tion. The translation uses the EXCEPT keyword over nested queries representing the
NATURAL JOIN, while the provided solution does not even perform a join. This is be-
cause it has been recognized that the Customer and Orders have the same relevant
column, so you only need to query this commonality with NOT IN.

All in all, it can be stated that the translation schemes translate correctly, but with-
out a direct semantic context they tend to be deeply convoluted and extraordinary
long. Therefore making it a straight forward but not highly aware or intelligent
algorithm. In addition, some edge cases tend to mess with the understanding of
error causes.

6.2 Possible adaptations

The main problem of the parser is based on the pattern itself. In the current sam-
ple tasks, mentioned in Section 6.1 on the previous page, the standard solution
approach is to interpret the query made by the relational algebra statement and
create a matching SQL query. However, this procedure does not represent the ap-
proach from the relational algebra extension. The relational algebra translator will
convert every query gradually and combines them with certain keywords for the
respecting operation. This discrepancy arises from performing the semantic check
just in the SQL stage. Would the same semantic mechanisms apply to relational
algebra expression before translation, there would be no edge cases. To avoid edge
cases, adaptations to the tasks where they occur, could also be an option. Further
optimization suggestions are mentioned in the Section 7.2.

6.3. Evaluate core requirements 41

6.3 Evaluate core requirements

Finally, the translators behaviours regarding syntactic validation and semantic ver-
ification are discussed again. In particular, the extent to which these concepts have
been taken into account and whether direct extensions or improvements can be
imagined will be focused.

6.3.1 Syntax validation

The mechanism of looking up errors in an error class dictionary is an obvious
solution. This way, the most common errors are covered, even if it is not possi-
ble to manually reproduce every possible error type that should be mentioned in
the dictionary. That basically describes the biggest flaw in this implementation. An
error can not be classified if there is no error class for it in the dictionary. Either
one extends the dictionary in the future with the new error classes or one consid-
ers self-adapting data types, which generate error indications themselves. Spelling
mistakes of database related names are checked from the SQL task backend and are
therefore always detected.

6.3.2 Semantic verification

Semantic integrity of the relational algebra statements themselves is also checked
through the error lookup dictionary to some sort. Mistakes like mixing up attribute
and condition of a relational algebra statement are part of it. However, column
references as well as semantic commonalities between tables with their respective
columns are not considered in my implemented solution approach. They are checked
later on, but are not a part during or previous to the translation, resulting in long,
query-based translations to SQL. So an interpreter extension would take care of
that. However, when avoiding edge cases or providing adapted tables the translator
works just fine without direct semantic context understanding.

6.3.3 Workflow changes

The relational algebra extension made also couple workflow changes. To grasp those
changes, the previous structure of the SQLValidator needs to be reviewed. Therefore,
the focus is set exclusively on the user behaviour part.
The user submits a query to the PHP Server via the Web Interface. Afterwards, the
PHP Server executes the query on the task-specific database copies of the master
database. The result is then compared with the result from the master database.
Error messages are then returned to the user via the Web Interface. This structure
in Figure 6.1 on the following page represents the workflow for SQL tasks.

42 6. Evaluation

Figure 6.1: Architecture of SQLValidator according to [OBH+21]

In order to grasp the semantic error difference once more, an adjusted version of
the diagram (Figure 6.2) for relational algebra tasks was created. The meaning for
tutors and administrators is the same, so again only the user part will be discussed.
Basically, the procedure is the same, but this time the Relational Algebra Translator
is interposed. User queries are sent to the translator instead of directly to the PHP
Server and are syntactically analyzed. Afterwards, the translated SQL query is
forwarded to the server, as long as the provided interface has been linked. From
there, semantic errors regarding the translated SQL expression are finally returned
to the user.

Figure 6.2: Adjusted architecture of SQLValidator with Relational Algebra Transla-
tor

6.4. Conclusion 43

These graphics show once more, that semantic context is not part of the translation
process and is only performed on the translated SQL query on the PHP Server. It
can also be observed that the path of the input from the user to the verification
at the PHP Server becomes longer. However, the processing time should not be
significantly higher, since the connecting JavaScript is kept minimal and does not
perform any time-consuming tasks. All in all, it can be stated that the translation
could be done quickly despite the additional components.

6.4 Conclusion

This chapter gave a hint about edge cases and how the translator performs compared
to the standard solution approach. Furthermore, the limitations of the implemen-
tation were discussed while the differences between the relational algebra translator
and an interpreter were presented. Therefore, the relational algebra extension is
classified more as a translator due to its lack of semantic understanding.

44 6. Evaluation

7. Conclusion and future work

Finally, the chapters get briefly retrospectively reviewed and point out possible
places for future work.

7.1 Conclusion

In this thesis, the conceptual design and implementation of a relational algebra
translator for the SQLValidator is addressed. The SQLValidator is an online teaching
and learning tool that is intended to support university students in learning SQL.
However, it lacks relational algebra, that is already taught at the Otto-von-Guericke
University but is not a part of the SQLValidator yet.

At the beginning essential backgrounds are explained to understand the used con-
cepts. For this purpose languages like JavaScript or SQL were introduced together
with more theoretical context like Backus-Naur form, regular expressions, relational
database management, relational algebra and the SQLValidators architecture. The
related works chapter presents similar tools and papers that had similar procedures
in implementing such a translator. Subsequently, the conceptual design is presented
in chapter 4. The initial focus was on the requirements for the system integration,
before the general design of the extension and its error analysis were discussed.
Thereupon, the implementation of the individual components is discussed in detail,
before highlighting special processing of the input. Finally, the system was tested
in the evaluation on some sample tasks and selected solutions were discussed with
the respective weakness of the implementation.

7.2 Future work

The implemented solution approach leaves some interfaces open for improvement.
So far, administrators and tutors cannot yet distinguish between relational algebra
and SQL tasks. Therefore, such a distinction in the tutor menu would be very help-
ful. In addition, only the interfaces for the translator have been provided, i.e. the
complete integration into the SQLValidator is still pending.

46 7. Conclusion and future work

Furthermore, a separate error code can still be made for an odd number of attributes
in the Rename operation. It is also conceivable to add an error class for missing
apostrophes in specific attributes. Both last mentioned changes are optional.
Furthermore, an interface for the error position is given, which can be used for error
highlighting in CodeMirror. In addition, one could adapt the error detection gener-
ally to a dynamic data type, or implement a similar system to the error detection of
the SQL tasks. It should also be possible to functionally outsource the JavaScript
or align it with different AJAX components.
All in all, the biggest implementation should be the addition of a relational alge-
bra interpreter which, just like the SQL tasks, interprets the semantics of the tasks
context and points out specific errors.

A. Appendix

A.1 Backus-Naur form of ra-to-sql framework

Click here to get back to where this context was mentioned.

1 ra_program

2 : ra_sentences EOF

3 { return $1 }

4 | ra_sentences sentence_separators EOF

5 { return $1 }

6 | sentence_separators ra_sentences sentence_separators EOF

7 { return $2 }

8 | sentence_separators ra_sentences EOF

9 { return $2 }

10 ;

11
12 ra_sentences

13 : ra_sentence

14 { $$ = new Array($1); }

15 | ra_sentences sentence_separators ra_sentence

16 { $1.push($3); $$ = $1; }

17 ;

18
19 sentence_separators

20 : sentence_separator

21 | sentence_separators sentence_separator

22 ;

23
24 sentence_separator

25 : NEWLINE

26 | ’;’

27 ;

Listing A.1: Basic structure of relational algebra statement

48 A. Appendix

1 ra_sentence

2 : IDENTIFIER ’<-’ ra_expression

3 { $$ = { type: ’identifier ’, value: { id: $1, expression:

$3.value} }; }

4 | IDENTIFIER ’(’ field_list ’)’ ’<-’ ra_expression

5 { $$ = { type: ’identifier ’, value: { id: $1, expression:

$6.value , fields: $3 } }; }

6 | ra_expression

7 { $$ = { type: ’expression ’, value: $1 }; }

8 ;

9
10 ra_expression

11 : ’(’ ra_expression ’)’ { $$ = {id: yy.getNewId(’GROUP ’), value

: $2.value }; }

12 | tableName { $$ = {id: yy.getNewId(’ID’), value: $1 }; }

13 | projection { $$ = {id: yy.getNewId(’PROJ’), value: $1 }; }

14 | selection { $$ = {id: yy.getNewId(’PROJ’), value: $1 }; }

15 | union { $$ = {id: yy.getNewId(’UNION’), value: $1 }; }

16 | intersection { $$ = {id: yy.getNewId(’UNION’), value: $1 }; }

17 | product { $$ = {id: yy.getNewId(’PROD’), value: $1 }; }

18 | natural { $$ = {id: yy.getNewId(’PROD’), value: $1 }; }

19 | theta { $$ = {id: yy.getNewId(’PROD’), value: $1 }; }

20 | subtraction { $$ = {id: yy.getNewId(’SUBS’), value: $1 }; }

21 | rename { $$ = {id: yy.getNewId(’REN’), value: $1 }; }

22 ;

23
24 tableName

25 : IDENTIFIER

26 { $$ = yy.getSingleTable($1); }

27 ;

28
29 projection

30 : PROJ ’[’ field_list ’]’ ’(’ ra_expression ’)’

31 { $$ = yy.getProjection($6.value , $6.id, $3); }

32 ;

33
34 rename

35 : REN ’[’ field_list ’]’ ’(’ ra_expression ’)’

36 { $$ = yy.getRename($6.value , $6.id, $3); }

37 ;

38
39 selection

40 : SEL ’[’ bool_expression ’]’ ’(’ ra_expression ’)’

41 { $$ = yy.getSelection($6.value , $6.id, $3); }

42 ;

Listing A.2: Basic operations

A.1. Backus-Naur form of ra-to-sql framework 49

1 union

2 : ra_expression UNION ra_expression

3 { $$ = yy.getUnion($1.value , $3.value); }

4 ;

5
6 intersection

7 : ra_expression INTERSECTION ra_expression

8 { $$ = yy.getIntersection($1.value , $3.value); }

9 ;

10
11 product

12 : ra_expression PRODUCT ra_expression

13 { $$ = yy.getProduct($1.value , $3.value); }

14 ;

15
16 natural

17 : ra_expression NATURAL ra_expression

18 { $$ = yy.getNaturalJoin($1.value , $3.value); }

19 ;

20
21 theta

22 : ra_expression NATURAL1 ’(’ bool_expression ’)’ NATURAL2

ra_expression

23 { $$ = yy.getTheta($1.value , $7.value , $4); }

24 ;

25
26 subtraction

27 : ra_expression ’-’ ra_expression

28 { $$ = yy.getSubtraction($1.value , $3.value); }

29 ;

Listing A.3: Set operations

50 A. Appendix

1 field_list

2 : e {$$ = new Array($1)}

3 | field_list COMMA e

4 {

5 $1.push($3);

6 $$ = $1;

7 }

8 ;

9
10 e

11 : e ’+’ e

12 { $$ = $1 + ’+’ + $3; }

13 | e ’-’ e

14 { $$ = $1 + ’-’ + $3; }

15 | e ’*’ e

16 { $$ = $1 + ’*’ + $3; }

17 | e ’/’ e

18 { $$ = $1 + ’/’ + $3; }

19 | ’-’ e %prec UMINUS

20 { $$ = ’-’ + $2;}

21 | ’(’ e ’)’

22 { $$ = ’(’ + $2 + ’)’; }

23 | NUMBER

24 { $$ = Number(yytext); }

25 | IDENTIFIER

26 | STR

27 { $$ = "’" + $1 + "’" }

28 ;

29
30 b_e

31 : e bool_operator e

32 { $$ = yy.getBooleanOperation($1, $2, $3); }

33 ;

34
35 bool_operator

36 : ’>’

37 | ’<’

38 | ’<=’

39 | ’>=’

40 | ’=’

41 | ’<>’

42 ;

43
44 bool_expression

45 : factor

46 | factor bool_op bool_expression

47 { $$ = yy.getBooleanExpression($1, $2, $3); }

48 ;

49
50 bool_op

51 : OR

52 | AND

53 ;

Listing A.4: Expression additions and boolean operations

A.1. Backus-Naur form of ra-to-sql framework 51

1 term

2 : factor

3 | factor AND factor

4 { $$ = yy.getAnd($1, $3); }

5 ;

6
7 factor

8 : TRUE

9 | FALSE

10 | b_e

11 | ’!’ factor

12 { $$ = yy.getNot($2); }

13 | ’(’ bool_expression ’)’

14 { $$ = ’(’ + $2 + ’)’; }

15 ;

Listing A.5: Term and factor extension

52 A. Appendix

A.2 Transformation patterns for SQL in sql scope.js

Click here to get back to where this context was mentioned.

1 function getNot(input) {

2 return "NOT " + input;

3 }

4
5 function getBooleanExpression(op1 , b_e , op2) {

6 return ‘${op1} ${b_e} ${op2}‘;

7 }

8
9 function getBooleanOperation(op1 , operation , op2) {

10 return op1 + operation + op2;

11 }

12
13 // original versions of following commands are commented out

14 function getUnion(sentence1 , sentence2) {

15 // return ‘(${getTableFromSentence(sentence1)} UNION

16 //${getTableFromSentence(sentence2)}) ‘;

17 return ‘(${getTableFromSentence(sentence1)} UNION ${

getTableFromSentence(sentence2)}) AS ${getNewId("UNION")}‘;

18 }

19
20 function getIntersection(sentence1 , sentence2) {

21 // return ‘(${getTableFromSentence(sentence1)} INTERSECT

22 //${getTableFromSentence(sentence2)}) ‘;

23 return ‘(${getTableFromSentence(sentence1)} INTERSECT ${

getTableFromSentence(sentence2)}) AS ${getNewId("INTERSECT")

}‘;

24 }

25
26 // Except is dialect , for more info see [Smi02]

27 function getSubtraction(sentence1 , sentence2) {

28 // return ‘(${getTableFromSentence(sentence1)} EXCEPT

29 //${getTableFromSentence(sentence2)}) ‘;

30 return ‘(${getTableFromSentence(sentence1)} EXCEPT ${

getTableFromSentence(sentence2)}) AS ${getNewId("SUB")}‘;

31 }

32
33 function getProduct(sentence1 , sentence2) {

34 // return ‘(SELECT DISTINCT * FROM ${sentence1}, ${sentence2 }) ‘;

35 return ‘(SELECT DISTINCT * FROM ${sentence1}, ${sentence2 }) AS

${getNewId("PROD")}‘;

36 }

Listing A.6: SQL patterns for set operations

A.2. Transformation patterns for SQL in sql scope.js 53

1 function getNaturalJoin(sentence1 , sentence2) {

2 // return ‘(${getTableFromSentence(sentence1)} NATURAL JOIN

3 //${sentence2 }) ‘;

4 return ‘(${getTableFromSentence(sentence1)} NATURAL JOIN ${

sentence2 }) AS ${getNewId("NAT")}‘;

5 }

6
7 function getTheta(sentence1 , sentence2 , condition) {

8 // return ‘(${getTableFromSentence(sentence1)} JOIN

9 //${sentence2} ON ${condition }) ‘;

10 return ‘(${getTableFromSentence(sentence1)} JOIN ${sentence2} ON

${condition }) AS ${getNewId("NAT")}‘;

11 }

12
13 function getSelection(table , alias , condition){

14 // return ‘(SELECT DISTINCT * FROM ${table} WHERE ${condition }) ‘;

15 return ‘(SELECT DISTINCT * FROM ${table} WHERE ${condition }) AS

${getNewId(’SEL’)}‘;

16 }

17
18 function getProjection(table , alias , fieldList){

19 // return ‘(SELECT ${fieldList} FROM ${table }) ‘;

20 return ‘(SELECT DISTINCT ${fieldList} FROM ${table}) AS ${

getNewId(’PROJ’)}‘;

21 }

22
23 // allows alternating , and AS in renaming process

24 function helpRename (fieldList) {

25 var solutionString = "";

26 if(fieldList.length %2 == 0) {

27 for (let i = 0; i < fieldList.length; i++) {

28 if (i % 2 == 0) {

29 solutionString = solutionString.concat(fieldList[i],

" AS ");

30 } else

31 solutionString = solutionString.concat(fieldList[i],

", ");

32 }

33 return solutionString.substr(0, solutionString.length -2);

34 }

35 //if not even number of arguments returns undefined

36 //ToDo: error handling for undefined in SQL output

37 }

38
39 function getRename(table , alias , fieldList){

40 return ‘(SELECT ${helpRename(fieldList)} FROM ${table}) AS ${

getNewId(’REN’)}‘;

41 // return ‘(SELECT DISTINCT ${fieldList.map(x => ‘null as

42 //${x}‘).join(’,’)} WHERE 1=2 UNION SELECT DISTINCT * FROM

43 //${table}) AS ${getNewId(’REN ’)}‘;

44 }

Listing A.7: SQL patterns for joins, selection, projection and rename

54 A. Appendix

1 function getSingleTable(tableName) {

2 return ‘##${tableName }##‘;

3 }

4
5 function getTableFromSentence(sentence) {

6 return ‘SELECT * FROM ${sentence}‘;

7 }

Listing A.8: SQL patterns for atomic table handling

A.3. Test on exercise sheet 9 - task 1 55

A.3 Test on exercise sheet 9 - task 1

Task: πoid(Line item)

Reformulation: π[oid](LineItem)

Note: underscores forbidden, better: CamelCase

SQL-Translation: (SELECT DISTINCT oid FROM LineItem)

Solution: SELECT DISTINCT oid FROM LineItem;

Table A.1: Exercise sheet 9 task 1 a)

Task: πName(Dealer ⋊⋉ Orders)

Reformulation: π[Name](Dealer ⋊⋉ Orders)

Note:

SQL-Translation:
(SELECT Name FROM (
SELECT * FROM Dealer NATURAL JOIN Orders)

AS NAT1)

Solution:
SELECT Name FROM Dealer, Orders
WHERE Dealer.DID = Orders.DID

Table A.2: Exercise sheet 9 task 1 b)

Task: πDid(Dealer)− πDid(Offers)

Reformulation: π[Did](Dealer)− π[Did](Offers)

Note: ”SELECT * FROM” to ”unite” both query results

SQL-Translation:

(SELECT * FROM (
SELECT Did FROM Dealer)

AS PROJ1
EXCEPT

SELECT * FROM (
SELECT Did FROM Offers)

AS PROJ2)

Solution:
SELECT Did FROM Dealer WHERE Did
NOT IN(SELECT Did FROM Offers);

Table A.3: Exercise sheet 9 task 1 c)

56 A. Appendix

Task: πDate((σDate<01.03.2003(Orders)) ∪ (σDate>01.05.2003(Orders)))

Reformulation: π[Date]((σ[Date < ‘01.03.2003‘](Orders))∪
(σ[Date > ‘01.05.2003‘](Orders)))

Note: apostrophes are necessary

SQL-Translation:

(SELECT Date FROM (
SELECT * FROM (
SELECT DISTINCT * FROM Orders
WHERE Date<’01.03.2003’)

AS SEL1
UNION

SELECT * FROM (
SELECT DISTINCT * FROM Orders
WHERE Date>’01.05.2003’)

AS SEL2)
AS UNION1)

Solution:
SELECT Date FROM Orders WHERE
Date<’01.03.2003’ OR Date>’01.05.2003’;

Table A.4: Exercise sheet 9 task 1 d)

Task: Customer ⋊⋉ Orders ⋊⋉ Line item ⋊⋉ Product

Reformulation: Customer ⋊⋉ Orders ⋊⋉ LineItem ⋊⋉ Product

Note: underscores forbidden, better: CamelCase

SQL-Translation:

(SELECT * FROM (
SELECT * FROM (
SELECT * FROM Customer
NATURAL JOIN

Orders) AS NAT1
NATURAL JOIN
lineItem) AS NAT2

NATURAL JOIN
Product)

Solution:

SELECT * FROM Customer, Orders, LineItem, Product
WHERE Customer.CID = Orders.CID
AND Orders.OID = LineItem.OID
AND LineItem.PID = Product.PID;

Table A.5: Exercise sheet 9 task 1 e)

A.3. Test on exercise sheet 9 - task 1 57

Task: Customer − πCid,Name(Customer ⋊⋉ Orders)

Reformulation: Customer − π[Cid,Name](Customer ⋊⋉ Orders)

Note:

SQL-Translation:

(SELECT * FROM Customer
EXCEPT

SELECT * FROM (
SELECT Cid,Name FROM (
SELECT * FROM Customer
NATURAL JOIN

Orders)
AS NAT2)

AS PROJ3)

Solution:
SELECT * FROM Customer WHERE Cid
NOT IN (SELECT Cid FROM Orders);

Table A.6: Exercise sheet 9 task 1 f)

58 A. Appendix

Task:
(Customer × Product)− πCid,Name,P id,Label(Customer ⋊⋉
Orders ⋊⋉ Line item ⋊⋉ Product)

Reformulation: (Customer × Product)− π[Cid,Name, P id, Label]
(Customer ⋊⋉ Order ⋊⋉ LineItem ⋊⋉ Product)

Note: exceptionally long through multiple natural joins

SQL-Translation:

(SELECT * FROM (
SELECT DISTINCT * FROM Customer, Product)

AS PROD3
EXCEPT

SELECT * FROM (
SELECT DISTINCT Cid,Name,Pid,Label FROM (
SELECT * FROM (
SELECT * FROM (
SELECT * FROM Customer
NATURAL JOIN

Order) AS NAT8
NATURAL JOIN
LineItem) AS NAT11

NATURAL JOIN
Product) AS NAT14

)
AS PROJ16)

Solution:

SELECT * FROM Customer, Product
WHERE (Cid, Name, Pid, Label)
NOT IN (
SELECT Customer.Cid, Name, Product.Pid, Label
FROM Customer, Orders, LineItem, Product
WHERE Customer.Cid = Orders.Cid
AND Orders.Oid = LineItem.Oid
AND LineItem.Pid = Product.Pid

);

Table A.7: Exercise sheet 9 task 1 g)

Bibliography

[AdV14] Tamim Alkhalifah and Denise de Vries. Relational algebra interpreter.
International Conference on Advanced Information and Communication
Technology for Education, 2014. (cited on Page 20)

[Apa22] Apache. Xampp installers and downloads for apache friends, 16.05.2022.
https://www.apachefriends.org/de/index.html. (cited on Page 29)

[Bac63] J. W. Backus. Revised report on the algorithmic language algol 60. The
Computer Journal, 5(4):349–367, 1963. (cited on Page ix and 5)

[Cod07] E. F. Codd. Relational database: a practical foundation for productivity.
In ACM Turing Award Lectures, page 1981. Association of Computing
Machinery, New York, 2007. (cited on Page 8)

[Com22] CodeMirror Community. Codemirror versatile text editor, 30.04.2022.
https://codemirror.net/. (cited on Page 32)

[Con22] GitHub Contributers. Github - zaach/jison: Bison in javascript,
17.05.2022. https://github.com/zaach/jison. (cited on Page 33)

[Fou22] JS Foundation. jquery api documentation, 25.04.2022. https://api.
jquery.com/. (cited on Page 4)

[Jav22] Javier Rebagliatti. ra-to-sql - npm, 16.05.2022. https://www.npmjs.
com/package/ra-to-sql. (cited on Page 24 and 29)

[KDHP15] Olessia Karpova, Noel D’Souza, Diane Horton, and Andrew Petersen.
RAPT: Relational Algebra Parsing Tools. In Valentina Dagienė, Carsten
Schulte, and Tatjana Jevsikova, editors, Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Educa-
tion, page 334, New York, NY, USA, 2015. ACM. (cited on Page 19)

[KEL+22] Tobias Koppers, Johannes Ewald, Sean Larkin, Kees Kluskens, and
GitHub Contributers. Github - webpack/webpack: A bundler for
javascript and friends. packs many modules into a few bundled assets.
code splitting allows for loading parts of the application on demand.
through ”loaders”, modules can be commonjs, amd, es6 modules, css,
images, json, coffeescript, less, ... and your custom stuff, 17.05.2022.
https://github.com/webpack/webpack. (cited on Page 33)

https://www.apachefriends.org/de/index.html
https://codemirror.net/
https://github.com/zaach/jison
https://api.jquery.com/
https://api.jquery.com/
https://www.npmjs.com/package/ra-to-sql
https://www.npmjs.com/package/ra-to-sql
https://github.com/webpack/webpack

60 Bibliography

[Kes22] Johannes Kessler. Relax - relational algebra calculator, 31.03.2022. https:
//dbis-uibk.github.io/relax/landing. (cited on Page 18)

[Kle51] S. C. Kleene. Representation of events in nerve nets and finite au-
tomata. Research Memorandum, 15.12.1951. https://www.rand.org/
content/dam/rand/pubs/research memoranda/2008/RM704.pdf. (cited

on Page 6)

[LR10] Ratnesh Litoriya and Anshu Ranjan. Implementation of relational al-
gebra interpreter using another query language. In 2010 International
Conference on Data Storage and Data Engineering, pages 24–28. IEEE,
2010. (cited on Page 19)

[MDN22a] MDN contributors. Javascript | mdn, 23.04.2022. https://developer.
mozilla.org/en-US/docs/Web/JavaScript. (cited on Page 3)

[MDN22b] MDN contributors. About javascript - javascript | mdn, 24.04.2022.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About
JavaScript. (cited on Page 3 and 4)

[MDN22c] MDN contributors. First-class function - mdn web docs glossary: Defini-
tions of web-related terms | mdn, 24.04.2022. https://developer.mozilla.
org/en-US/docs/Glossary/First-class Function. (cited on Page 3)

[MDN22d] MDN contributors. Regular expressions - javascript | mdn, 24.04.2022.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Regular Expressions. (cited on Page ix, 6, and 7)

[OBH+21] Victor Obionwu, David Broneske, Anja Hawlitschek, Veit Köppen, and
Gunter Saake. Sqlvalidator – an online student playground to learn sql.
Datenbank-Spektrum, 21(2):73–81, 2021. (cited on Page ix, 14, 15, 27, and 42)

[Raj22] Naveen Rajshekhar. Relational-algebra — bitbucket, 22.05.2022. https:
//bitbucket.org/naveenraj16/relational-algebra/src/master/. (cited on

Page 17)

[Saa18] Gunter Saake. Datenbanken: Konzepte und Sprachen. mitp Verlags,
Frechen, 6. auflage edition, 2018. https://learning.oreilly.com/library/
view/-/9783958457782/?ar. (cited on Page ix, 9, 11, and 12)

[SGc22] Jeremy Satterfiel, Rob Garrisson, and other contributors. Github -
mottie/keyboard: Virtual keyboard using jquery, 16.05.2022. https:
//github.com/Mottie/Keyboard. (cited on Page 24 and 29)

[Smi02] Ian Smith. New except, intersect and minus operators. Rdb Journal
- technical corner, May 2002. https://download.oracle.com/otndocs/
products/rdb/pdf/tech archive/except intersect minus ops.pdf. (cited

on Page 52)

[Yan17] Jun Yang. Radb 3.0.4 documentation, 2017. https://users.cs.duke.edu/
˜junyang/radb/. (cited on Page 18)

https://dbis-uibk.github.io/relax/landing
https://dbis-uibk.github.io/relax/landing
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
https://bitbucket.org/naveenraj16/relational-algebra/src/master/
https://bitbucket.org/naveenraj16/relational-algebra/src/master/
https://learning.oreilly.com/library/view/-/9783958457782/?ar
https://learning.oreilly.com/library/view/-/9783958457782/?ar
https://github.com/Mottie/Keyboard
https://github.com/Mottie/Keyboard
https://download.oracle.com/otndocs/products/rdb/pdf/tech_archive/except_intersect_minus_ops.pdf
https://download.oracle.com/otndocs/products/rdb/pdf/tech_archive/except_intersect_minus_ops.pdf
https://users.cs.duke.edu/~junyang/radb/
https://users.cs.duke.edu/~junyang/radb/

Bibliography 61

[Yan22] Jun Yang. Ra: A relational algebra interpreter, 22.05.2022. https://
users.cs.duke.edu/˜junyang/ra2/. (cited on Page 18)

https://users.cs.duke.edu/~junyang/ra2/
https://users.cs.duke.edu/~junyang/ra2/

62 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 25.05.2022

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 Motivation
	1.2 Structure and goal

	2 Background
	2.1 JavaScript and jQuery
	2.2 Backus-Naur-Form
	2.3 Regular Expressions
	2.4 Relational model for database management
	2.5 SQL
	2.6 Relational Algebra
	2.6.1 Operations and their translation to SQL syntax

	2.7 SQL Validator and its architecture

	3 Related Work
	3.1 Tools
	3.1.1 Relational Algebra Interpreter
	3.1.2 RelaX - relational algebra calculator
	3.1.3 RA: A Relational Algebra Interpreter
	3.1.4 RA (radb)

	3.2 Papers
	3.2.1 Implementation of Relational Algebra Interpreter using another query language
	3.2.2 RAPT: Relational Algebra Parsing Tools
	3.2.3 Relational Algebra Interpreter

	4 Concept
	4.1 Requirements
	4.1.1 Workflow of SQL tasks
	4.1.2 Adaption to SQLValidator environment
	4.1.3 Additional input symbols and deviations of notation

	4.2 Architecture of relational algebra extension
	4.3 Workflow of relational algebra tasks
	4.4 Error handling
	4.4.1 Syntax validation
	4.4.2 Semantic verification

	4.5 Conclusion

	5 Implementation
	5.1 Technologies
	5.1.1 Languages
	5.1.2 Development environments
	5.1.3 Libraries, essential frameworks and tools

	5.2 Virtual on-screen keyboard
	5.2.1 Used parameters
	5.2.2 Feature interaction with CodeMirror
	5.2.3 Workaround for feature interaction

	5.3 Translating relational algebra via ra-to-sql
	5.3.1 Backus-Naur form of contextfree grammar
	5.3.2 Translation patterns for SQL in sql_scope.js
	5.3.3 Debugging structures and provided interfaces

	5.4 String processing
	5.4.1 Input processing
	5.4.2 Translated statement string processing
	5.4.3 Error handling

	5.5 Conclusion

	6 Evaluation
	6.1 Testing translated tasks on SQLValidators backend
	6.2 Possible adaptations
	6.3 Evaluate core requirements
	6.3.1 Syntax validation
	6.3.2 Semantic verification
	6.3.3 Workflow changes

	6.4 Conclusion

	7 Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	A Appendix
	A.1 Backus-Naur form of ra-to-sql framework
	A.2 Transformation patterns for SQL in sql_scope.js
	A.3 Test on exercise sheet 9 - task 1

	Bibliography

