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Böttgerstr. 49
01129 Dresden
stefhaas@st.ovgu.de

08. Dezember 2011



Contents

List of Figures iv

List of Tables v

List of Source Code Listings vii

List of Acronyms viii

1 Introduction 1

1.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7

2.1 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Separation of Concerns . . . . . . . . . . . . . . . . . . 10

2.1.2 Crosscutting Concerns . . . . . . . . . . . . . . . . . . 11

2.1.3 Domain Engineering . . . . . . . . . . . . . . . . . . . 12

2.1.4 Implementation of Software Product Lines . . . . . . . 16

2.2 Static Program Analysis . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Approximation . . . . . . . . . . . . . . . . . . . . . . 21



CONTENTS ii

2.2.2 Control Flow and Data Flow Analysis . . . . . . . . . 22

2.2.3 Slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.4 Properties of Slicing Algorithms . . . . . . . . . . . . . 26

2.3 The PUMA Parser . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Concept 30

3.1 Selection of an Existing Feature . . . . . . . . . . . . . . . . . 32

3.2 Mapping to Source Code Entity . . . . . . . . . . . . . . . . . 34

3.3 Slicing Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Classification . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 The Relevant Control Mechanisms in C . . . . . . . . . 43

3.3.3 Determining Control Flow . . . . . . . . . . . . . . . . 50

3.3.4 Storing the Results . . . . . . . . . . . . . . . . . . . . 58

3.4 Processing the Results . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Visual Representation . . . . . . . . . . . . . . . . . . 59

3.4.2 Source Code Transformation . . . . . . . . . . . . . . . 61

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Implementation 67

4.1 Setting the Scene . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Using the PUMA Framework . . . . . . . . . . . . . . . . . . . 68

4.2.1 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS iii

4.2.2 The Semantic Database . . . . . . . . . . . . . . . . . 71

4.3 Putting it All Together . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Prepare Required Data Structures . . . . . . . . . . . . 72

4.3.2 Traversing the AST . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Using the Results . . . . . . . . . . . . . . . . . . . . . 74

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Evaluation 79

5.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Problems and Future Work 87

6.1 Problems Concerning Approximations . . . . . . . . . . . . . . 87

6.1.1 Dependency Resulting from Variable Manipulation . . 88

6.1.2 Increasing Accuracy of Control Flow Information . . . 90

6.2 Parsing Problems . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Related Work 94

8 Conclusion 97

Citations 99



List of Figures

2.1 An idealized overview of the process . . . . . . . . . . . . . . . 16

2.2 Operation levels of the PUMA framework . . . . . . . . . . . . 29

3.1 The main analysis phases and their generated output. . . . . . 31

3.2 CIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 AST by PUMA . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Feature Commander . . . . . . . . . . . . . . . . . . . . . . . 77



List of Tables

2.1 Variability mechanisms . . . . . . . . . . . . . . . . . . . . . . 19

3.1 List of control statements in C . . . . . . . . . . . . . . . . . . 45

5.1 Properties of the three open source projects. . . . . . . . . . . 80



Listings

3.1 Mapping parameter to according code object (Grep). . . . . . 36

3.2 Initial instruction in the form of a single variable and its code
branch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Beispielcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Single variable in comparison conditions. . . . . . . . . . . . . 42

3.5 Conditions with complex condition expression. . . . . . . . . . 43

3.6 Single variable if-else-statement. . . . . . . . . . . . . . . . 46

3.7 Negated single variable condition. . . . . . . . . . . . . . . . . 47

3.8 Example for handling switch-statements. . . . . . . . . . . . . 48

3.9 Possible scenarios for use of feature variables within iterative
statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 Relevance of other variables . . . . . . . . . . . . . . . . . . . 53

3.11 Relevance of other variables . . . . . . . . . . . . . . . . . . . 54

3.12 Loop scenario with . . . . . . . . . . . . . . . . . . . . . . . . 56

3.13 Relevance of other variables . . . . . . . . . . . . . . . . . . . 58

3.14 Before removal of case sensitivity. . . . . . . . . . . . . . . . . 64

3.15 After removal of case sensitivity. . . . . . . . . . . . . . . . . . 64

3.16 Before removal of case sensitivity (if). . . . . . . . . . . . . . 65



LISTINGS vii

3.17 After removal of case sensitivity (if). . . . . . . . . . . . . . . 65

4.1 Example of the featvars file for a set of variables in the grep
project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Source code example (grep). . . . . . . . . . . . . . . . . . . . 70

4.3 Structure of the file annotations.xml for a project named
”Grep”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Example of ignored feature code as a result of static variability
that is resolved by PUMA automatically. . . . . . . . . . . . . 81

5.2 Example of problematic function call resulting in false depen-
dency investigation. . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Example of dependency on data values. . . . . . . . . . . . . . 89

6.2 Compile-time variability that is not parsable by the prototype. 92

6.3 Difference in function definition syntax between original C and
ANSI C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Acronyms
AST . . . . . . . . . . . . . Abstract Syntax Tree
CIDE . . . . . . . . . . . . Colored Integrated Development Environment
FC . . . . . . . . . . . . . . . Feature Commander
FTP . . . . . . . . . . . . . File Transfer Protocol
IDE . . . . . . . . . . . . . Integrated Development Environment
IRC . . . . . . . . . . . . . . Internet Relay Chat
OCaml . . . . . . . . . . . Objective Caml



Chapter 1

Introduction

Software engineering aims to increase efficiency in the program development

process. Generally methods of modularization within software development

are considered to decrease the complexity and, therefore, increase maintain-

ability and reuse of a programs source code. Concepts like separation of

concerns describe universal guidelines to be considered in software develop-

ment to handle complexity. Additionally, frameworks, like domain engineer-

ing, were created to provide a general methodology for actively incorporating

variability into development efforts. Further, concrete methods, i.e. software

product lines, evolved that introduce tools and techniques to incorporate

such variability within source code.

While actual development tools and programming languages could not al-

ways support the goals and demands of these approaches, efforts were made

to adjust and enhance existing technologies accordingly. New programming

paradigms, i.e. aspect oriented programming, emerged to encapsulate cer-

tain fragments, called concerns, within a program that would otherwise be

scattered throughout the code, even though, they theoretically form a single

functionality, idea or related structure within the application.

Yet, for developers it is not always possible to account for all potentially

relevant software variants. Features or concerns are sometimes added at later

times in a manner that contradicts to the initial architecture of the software.

These incoherent changes worsen the overall structure of software throughout
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its evolution [Lehman, 1980]. Therefore, fragments and statements related

to a single concern end up scattered throughout the entire source code. This

renders source code to be less comprehensible and, thus, harder to maintain

or extend [Etzkorn and Davis, 1997]. The identification and classification of

related code pieces during code maintenance or later developments are time

consuming tasks, which often follow repetitive activities. With more code

entangling and no mechanisms to retrieve the true purpose of certain code

fragments developers lose traceability [Gotel and Finkelstein, 1994]. This

means the connection between conceptual features, i.e., represented by a

configuration option, and the actual source code fragments is lost.

The potential of program analysis approaches has been great from the be-

ginning on [Nielson et al., 1999]. Therefore, research efforts created semi-

automatic methods to support developers in these tasks [Chen and Rajlich,

2000]. Other approaches increasingly used static and dynamic analysis meth-

ods to improve the results of these supporting development tools [Eisenbarth

et al., 2003]. Generally, the idea behind these techniques is to automate

partially complex tasks for the developers, i.e., tracing program execution or

data dependencies.

Other approaches present developers with the possibility of creating different

views on existing source code. For instance, visual representation of anno-

tations can increase the comprehension of product-lines up to 43% [Kästner,

2010]. Thus, a reasonable assumption would be that similar visual represen-

tations of feature code within existing software would also increase compre-

hension and, therefore, support development tasks to a certain extent.

The combination of particular static analysis methods and source code pre-

sentation techniques, therefore, have great potential to support developers

during maintenance tasks. Particularly, slicing algorithms are suited to iden-

tify feature related source code parts with a certain accuracy. Additionally,

the results can be displayed in a more comprehensible way by using code

highlighting techniques. Even simpler analysis algorithms can generate ap-
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proximations that are similar to what developers achieve in less efficient

manual approaches.

Generally, these efforts try to increase development efficiency and code com-

prehension. Thus, ideal solutions, which are almost impossible to create due

to the high complexity, would allow the complete automation of these ana-

lytical tasks or even entire code transformations intended to address different

software requirements that arise in the future.

1.1 Goals

The major goals of this work is the improvement of program comprehension

and automatic code transformation for purposes of transforming dynamic

variability into static variability. To achieve this, a subgoal is represented by

recovering traceability links between observed configuration options forming

a feature and actual source code fragments that implement it.

We have to evaluate how static analysis approaches can be used to support

code maintenance tasks and program comprehension. For this, a general

process and according steps for the identification of feature code in existing

source code needs to be developed. Furthermore, to be able to evaluate

the applicability and the necessary amount of work to realize such tools,

a prototype needs to be developed as a proof of concept to show that it

is possible to automate this process to a certain extent. It comprises the

analytical task of the process and it is required to provide an appropriate

visual representation of the results. To evaluate the value and potential of this

particular approach this prototype is to be compared to manual approaches

developers take to execute such an analysis.
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1.2 Contributions

In this thesis we contribute a novel process that starts at the manual selection

of a configuration option, describes necessary manual steps, executes a static

analysis algorithm based on slicing, and, finally, applies the results.

First, we describe the general process, which we divided into four main steps.

Understanding these general steps, which are necessary for the identification

of feature code, helps to define an environment for the actual analysis step.

Within this matter we also determine how dynamic variability is typically

represented in existing source code. All this investigation especially leads to

the development of the steps that precede the actual analysis process.

Then, we focus on the explanation of the main analysis concept, for which

several existing static analysis approaches are combined. We introduce the

idea of applying slicing techniques to the task of locating features in existing

source code, because it seems to be suitable for this kind of analysis. Ad-

ditionally, potential enhancements are determined that can be achieved by

the application of more precise, but also, more complex techniques. Further-

more, an important focus here is the evaluation of the potential of existing

program analysis concepts for this kind of task.

Also, we describe possible scenarios for the application of the analysis results

and provide details on how these can be accomplished with the support of

existing tools. This helps to determine how these results can improve the

development process.

Lastly, to automate the third process step, the analysis algorithm, we design

and implement a prototype. This proof of concept allows us to evaluate

the concept and demonstrate the entire process on real world projects. The

results obtained with this prototype help us to evaluate the two anticipated

improvements of development tasks:
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Increasing efficiency: The analysis process and, especially, the algorithm

are supposed to improve how efficient the developer can be at the in-

vestigation of existing code. Even though, the analysis results do not

provide a complete set of code fragments to represent entire feature

implementing code, the approximation proved to be close to what a

manual execution of this task provides to a developer. For this, we

present case studies conducted with developers, which show that sim-

ilar results can be achieved within a fraction of the time needed when

it is done manually.

Increased level of program comprehension: By providing analysis in-

formation about identified feature code to the developer, we support

development tasks concerned with code maintenance or enhancements.

Highlighted source code statements provide an additional type of infor-

mation during usual assessment of existing source code. We show that

the analysis results can be displayed comfortably with color highlighted

source code.

1.3 Outline

Chapter 2 gives an introduction to basic techniques, concepts and technolo-

gies we use for our thesis. These include software product lines, static pro-

gram analysis, and the code transformation framework, called PUMA.

In Chapter 3 we develop our analysis approach in theory. We describe the

general process and provide detailed discussions about how static analysis

approaches are applied to the actual analysis algorithm.

The implementation of a prototype on the basis of the theories in the preced-

ing chapter is presented in Chapter 4. Here we put the analysis process into

practice and provide scenarios that show how each step can be practically

implemented.
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This prototype is then evaluated in Chapter 5. Here we compare the results

we get to manual investigations. Additionally, we show what improvements

of the development process can be expected by applying the implementation

to real software projects in the form of case studies.

In Chapter 6 we discuss the problems we encountered and provide possible

solutions.

To put this thesis into the context of existing research we cover related work

in Chapter 7.

Lastly, Chapter 8 gives a brief conclusion of this thesis.



Chapter 2

Background

This chapter provides fundamental definitions and descriptions of methods,

technologies, and concepts used within this thesis. This chapter is, therefore,

divided into three major parts, dealing with software development, software

analysis, and special technologies used within our work.

Our analysis deals with the identification of source code elements, represent-

ing dynamic variability, that are affiliated with certain features or concerns

to provide some basic information how these are related to software develop-

ment in general. To accomplish this, we first describe software product lines

and its role within software development (Section 2.1). This section discusses

the idea of separation of concerns (Section 2.1.1), which marks a vital concept

to generally improve the creation of software. Further, we provide additional

insight on that matter by explaining how a certain more problematic kind of

concern, called cross cutting concern (Section 2.1.2), can appear and not be

easily isolated, or separated, respectively. This problem also shares proper-

ties with the problem we want to address with our analysis. To finalize this

section an overview of possible implementation methods for such software

product lines is given (Section 2.1.4). This contributes concrete concepts for

possible code transformations.

Secondly, Section 2.2 displays various possibilities to perform static program

analysis, which is heavily relied on in the concepts discussed here. While this
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type of analysis offers a great variety of ideas to focus on several different

criteria of source code, it also has to deal with the more or less precise results.

Thirdly, the last section of this chapter, Section 2.3, describes a concrete

implementation tool, named PUMA, that we used for the implementation of

the prototype. It will discuss structure and capabilities of the framework in

a general manner because those also define the preconditions that exist for a

possible implementation.

2.1 Software Product Lines

Within the last decades, software products became more diverse and com-

plex, and the fields of application shifted to be more and more intertwined.

This evolvement increased the significance of software engineering and the

application of its concepts and methods to counter problems that arise in

the software development process. Specifically easier software maintenance,

higher readability, and the increasing possibilities for reusing parts of the

software code are the main criteria concerned within the field.

One of the development concepts to address these issues is called software

product lines, which was derived from an existing product line approach

typical for the manufacturing industry and applied to the field of software

engineering. Software product lines are defined by Northrop [2007] as ”a

set of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and

that are developed from a common set of core assets in a prescribed way.”

These software systems, also referred to as variants, are similar in certain

parts but also comprehend different parts for specific purposes.

The shared resources form a software platform [Pohl et al., 2005, p.8,15],

which are also called core assets [Bass et al., 2003, p.354], uniting all similar

features of those products. This incorporates the basic idea of massive soft-
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ware reuse [Van Der Linden et al., 2007] because already created segments

of software can be used again for other variants of the same product line, yet

to be defined.

The idea of reusing software code was not new at the time of bringing this

concept to life. Early discussions on handling program families were already

made by [Parnas, 1976] in the 70s referencing even earlier work done by [Dijk-

stra, 1976]. Later domain engineering was introduced as a framework, which

describes fundamental concepts of how domains within software development

can be identified and how those can be incorporated in models and, lastly,

the implementation. It will be discussed in further detail in Section 2.1.4.

The major difference of a software product line compared to other concepts to

increase reusability and decrease complexity is best expressed by the phrases

with reuse and for reuse [Van Der Linden et al., 2007]. While the former can

be represented in small reuse units, or ad-hoc reuse, i.e. at code level [Van

Der Linden et al., 2007, p.5] by the use of certain programming paradigms,

the latter is a more universal approach involving all aspects of the soft-

ware development process. Massive software reuse and mass customization

are primary aspects being present throughout planning, designing, and im-

plementing the software systems. A constant concern in this concept is a

certain degree of flexibility that needs to be established with the help of ex-

isting software requirements and built into the underlying architecture of the

software product line [Van Der Linden et al., 2007, p.8].

Just like the product line approach for the manufacturing industry the soft-

ware product line concept also produces advantages outside of the design

scope. Increased code reusability directly decreases the time to market span

because a great amount of development and testing has been done already.

This increases quality because more evolved software parts are used. It also

leads to a decreased amount of required staff, administrative tasks, and other

resources, which lastly decreases the cost of a project as well.
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2.1.1 Separation of Concerns

Most concepts in software engineering are based on a simple principle referred

to as separation of concerns. Parnas [1976] and Dijkstra [1976] already dis-

cussed this idea of breaking down software into smaller easier managable

parts, called concerns, to counter problems that arise from the fact that hu-

mans cannot handle several concerns very well at the same time. Apel [2007,

p.7] describes concerns as a ”semantically coherent issue of a problem domain

that is of interest”. These concerns are elemental for the idea of domain en-

gineering as they need to be identified for the design and later symbolize the

very criterias for a software decomposition. Apel [2007, p.8] summarizes the

benefits for the resulting software being designed with appropriate concerns

in mind with better comprehension, easier reuse and maintenance, and more

flexible customization.

On this matter Hürsch and Lopes [1995] distinguish between two different

levels that separation of concerns is applied on. At conceptual level concerns

have to be identified and defined as elemental parts that can be clearly distin-

guished. Whereas, at implementation level these separations are manifested

in an actual physical organization allowing the isolation of the concerns’ code

fragments. The former level acts as the conceptual base for the latter, which

actually marks the physical entity comprising the benefits mentioned earlier

in the form of organized code attributing the appropriate amount of flexibility

for the product line, the actual decomposed program.

Technically this separation of concerns can be accomplished in several ways.

Programming languages allow for the definition of functions, or classes, again

being organized within separate files, packages, or directories. Not always is

it possible to account for every identified concern and project it appropri-

ately within the source code. These cross cutting concerns [Kiczales et al.,

1997] emerge throughout the implementation as ”structural relationship[s]

between the representations of two concerns” [Apel, 2007, p.21]. The mostly

hierachical structures represented within the modularity enabled by most
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modern programming languages are not always compatible with those types

of concerns and need to be addressed within new methods.

With this problem in mind Kästner [2010] proposed the virtual separation of

concerns, a concept ignoring the physical decomposition of certain concerns

within the source code. He rather supplies a set of tools combined with an

appropriate application of annotations to allow on-demand views of concerns

(or features) or even entire variants. A somewhat virtual separation of con-

cerns is established, while the otherwise confounding usage of annotations is

accounted for with automatically generated comprehensible representations.

This approach seems to be especially applicable to source code that was

written and possibly partially annotated without actual focus on readability

or reuse. Less code transformation is necessary later to account for certain

concerns and make them visible. These applications correspond strongly to

what we consider in this thesis. Because our analysis tries to identify source

code entities that belong to a feature or concern, respectively, separation of

concerns describes the global concept that is in our consideration.

2.1.2 Crosscutting Concerns

While separation of concerns provides a general approach to structuring

source code, it cannot provide for a complete decomposition. This means

that not all concerns can be accounted for at the time of modularization

because during implementation several become intertwined. Kiczales et al.

[1997] refers to these as crosscutting concerns because the source code blocks

of one basic software functionality is simply cross cut by code artifacts of

another concern.

The main reason for the existence of such structural breaches lies in the very

nature of certain programming paradigms, or programming languages, re-

spectively. The specific kind of abstraction that is done upon a particular
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piece of software must be compatible with the sort of abstraction mechanisms

offered by a particular programming language in order to allow a complete

decomposition. In example, while a requirement can be decomposed by fea-

tures, the decomposition at code level can be accomplished by objects (in

object oriented paradigm) or functions (in procedural paradigm) [Tarr et al.,

1999].

Additionally, these traditional programming paradigms bear a common limi-

tation, manifested in the hierarchical structured abstraction that only allows

decomposition in one dominant dimension. As a result code representations

of a concern contradicting a specific type of decomposition cannot comply

with the intended structure completely. It becomes scattered throughout im-

plementations of other concerns and tangled in the form of modules consisting

of several representations.

Possible solutions to address crosscutting concerns were provided by Kicza-

les et al. [1997] in the form of aspect oriented programming (AOP), which

describes a paradigm allowing the actual separation of otherwise tangled

concern representations. Additionally, Kästner [2010] proposes methods and

tools that rely on mere annotations within the source code and provide sep-

arated views of programmatically intertwined concerns to the programmer.

Crosscutting concerns need to be considered in this thesis because our anal-

ysis also discovered dynamic variabilities, whose representation in the source

code were scattered throughout several modules. Therefore, descriptions

given here can be used in the attempt to explain these observations.

2.1.3 Domain Engineering

To be able to create a construct like a software product line, a specified

process is needed that comprises all necessary steps. Usual software devel-

opment technologies can be improved by the adoption of reuse [Arango and
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Prieto-Diaz, 1991, p.9]. Reusable software systems and fragments need to be

developed with certain structures in mind to allow for quick and easy cus-

tomization and the demanded reuse for possible future applications within

the same domain. Commonly shared and well defined features need to be

the result of identified and structured requirements, which exist for the soft-

ware family that needs to be developed. To determine these, the developers

start with an analysis of the domain, expressing the results within a domain

model, which again will be used to draft and implement the actual software

product line.

[Czarnecki, 1998, p.44] identifies two relevant elements existing within do-

main engineering, the problem space and the solution space. The former

symbolizes all ”valid system specifications” in a domain, whereas the latter

is manifested within the actual software systems or implementation concepts.

A major intention for Domain Engineering is to support the mapping between

these two spaces, and preferably automatize it to a certain extent. This is not

a trivial process due to a natural discrepancy in objectives set for a system

specification and a concrete software system. While the former aims toward

a direct description of the entirety of a problem, the latter reflects the general

effort of development to create rather granular components that allow for as

many combinations as possible, and, therefore, a higher degree of flexibility.

Just like software can be classified by the area of application, i.e. accounting

systems, production control systems, monitoring systems, etc., also software

parts can be categorized, i.e. by their purpose or role within the software

system, for instance database systems, graphical user interface libraries, etc.

[Czarnecki, 1998, p.33]. This classification builds the basic idea of creating

a domain with its requirements (problem space), and creating the actual

software implementations to perform certain functions (solution space).

A categorization is possible as long as several software systems or parts share

a common set of characteristics. Czarnecki [1998] discusses these ”areas

organized around classes of systems or parts of systems” and refers to them
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as domains. These domains mark the space in which a certain software family

exists with all required knowledge, data, and information that can potentially

be helpful to create a certain degree of reusability. Not only similarities or

commonalities are important within the domain, as they are reflected within

the earlier mentioned core assets. Also the differences need to be a major

concern because they are the focus for future variation points [Bass et al.,

2003, p.360].

Within this particular field of software engineering, an appropriate definition

of the term domain is given by Kang [1990, p.2]:

”Domain: A set of current and future applications, which share

a set of common capabilities and data.”

It respects the consideration of future applications, which can be considered

one of the main concerns of Domain Engineering. The software systems

existing in one domain will be required to fit the needs of several more or

less different application fields, or many different customers, respectively.

To achieve these goals in an ordered manner, Czarnecki [1998, p.33] breaks

Domain Engineering into three major phases, Domain Analysis, Domain De-

sign, and Domain Implementation.

Domain Analysis identifies, gathers, and analyzes knowledge specific for a

certain domain. It marks a systematic approach to reliably capture infor-

mation that is needed presently and may be needed in the future [Arango

and Prieto-Diaz, 1991, p.10] and structure it appropriately. The latter is

mostly accomplished in the form of a domain model, which represents rel-

evant ”common and variable properties of the systems” [Czarnecki, 1998,

p.35]. The variable properties are usually described in the form of a fea-

ture model where all reusable and configurable elements (features) and their

relations or dependencies, respectively, are documented.
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In the next phase, domain design, these domain and feature models are

used to develop a general architecture for the software that is to be im-

plemented. This architecture builds a guideline for the implementation and

gives an overview to the developers. Therefore, it might contain several types

of views to adequately represent necessary elements and their relationships

in appropriate form [Czarnecki, 1998, p.38]. Buschmann et al. [2007] dis-

cussed such an architecture in the context of software product lines, trivially

called product-line architecture. He defined it as a ”software architecture

that serves as a common basis for a whole family of related software prod-

ucts”. It creates a stable foundation comprising the commonalities reaching

across all elements and the set of all configurable features that represent the

resulting variability. One specific configuration, an instance of this architec-

ture, consists of a selected set of those features and describes one possibles

variant in the final implementation [Pohl et al., 2005, p.317].

The architecture needs to be a high-level representation of the software prod-

uct line, addressing all relevant requirements but keeping all descriptions as

far away from an actual implementation as possible. This ensures a flexible

structure to be established from the top [Czarnecki, 1998, p.39]. Flexibility,

here, has two aspects to it. On one hand, the architecture needs to allow for

a certain degree of flexible implementation because certain requirements can

only be met at that level, i.e. performance requirements. Secondly, the flexi-

bility of a software family must also be reflected, therefore, the representation

of variability must be explicitly visible.

The final phase, called domain implementation, transforms the architecture

into a real instance of a software product line. Components are implemented

and tested, and the actual variability needs to be realized within this software

system. This allows for a quick and flexible application engineering in the

future where actual customer tailored software is derived from the product

line. The ideal scenario would allow a direct mapping of future customer

requirements to those that were identified for the domain during the domain
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Figure 2.1: An idealized overview of the interaction of domain engineering
and application engineering processes. [Kästner, 2010, p.9].

analysis (problem space) because they are very likely to be already present

in the product line implementation (solution space) [Kästner, 2010, p.9].

Figure 2.1 shows the framework that is formed by these concepts. The in-

teractions depicted in this overview resemble the ideal scenario mentioned

earlier. Particular approaches and tools for each phase can be applied.

2.1.4 Implementation of Software Product Lines

The decision of implementing a software product line within a company must

be made individually and the benefit needs to be evaluated appropriately.

Aspects that can be considered as beneficial because of the usage of a software
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product line are very diverse and can be found not just within the entire

development process, but also inside organizational properties.

An example for the former are the requirements, which could have already

been covered in preceding work for possible variants in the domain analysis

phase. Even if this was only partially the case, extensive time for analysis

can be saved. This is similar for the modeling phase and, furthermore, the

resulting architecture that has already been established for a similar software

system. Logically, also simple software reuse benefits can be yield due to the

fact that components, which exist already, can simply be reused. Even if a

certain degree of customization, for instance by adjusting parameters, needs

to take place, concrete implementations in the form of data structures and

algorithms can be left untouched. This also includes time for testing that

can be saved directly because tests for certain components have already been

done, or indirectly because tests have already been prepared. This means test

cases have been established before, test processes are defined, and test results

as a basis for comparison do already exist.

On the organizational side experience has been gained, too. Processes are

familiar, results from earlier plannings exist in the form of schedules or bud-

gets, and as a direct outcome of all these prior aspects less workforce and

time is necessary to create other variants.

To be able to actually utilize the benefits to the greatest extent possible the

implementation of an actual software product line differentiates itself from

usual application implementation in the fact that variability needs to be rep-

resented within those software systems in an appropriate manner. The usual

coding of components is accompanied by the concern of representing iden-

tified features from the designed architecture within the final product line.

Therefore, developers have several mechanisms to be utilized for implement-

ing such flexibility.
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Variability

Variability describes the ”ability to change or customize a system” [Babar

et al., 2010]. Variability in software, therefore, refers to any possibility within

a software system or a set of several software systems that allows for a certain

degree of customization. Variants within a software product line, for example,

are created or, rather, generated, by the utilization of specific variability

mechanisms [Northrop, 2007, p.87]. These mechanisms are distinguished

by the specific type of variability, which directly defines another property,

the time, when the variation takes place. Different works within the field

discuss several possible definitions of these types. A certain set of those

were gathered by Jacobson et al. [1997] and include mechanisms that can

commonly be found in many resources. Table 2.1 shows these mechanisms

and also comprises the corresponding property ”Time of Specialization” that

is typical to the individual mechanism type.

This list is similar to the list that Svahnberg and Bosch [2000] established

specifically for architecture-based support for variability in product lines.

It does not contain the ”Uses” and ”Template Instantiation” mechanisms

but adds yet another commonly used type, which they call ”Compile-time

selection of different implementations” [Northrop, 2007, p.69]. This type is

essential to this thesis and will be described in further detail later. There

are many ways of implementing compile time variability, the most common

being the utilization of certain preprocessor directives, such as #ifdef, within

the programming language C and its derivative C++. There are also similar

solutions that were developed for other programming languages such as Java.

A need for a certain variability can be identified at any time during the devel-

opment phase. Just like trivial variation points can be identified right from

the requirements, for example during the domain analysis phase, more covert

ones can arise during the domain definition, or the development phases [Bass

et al., 2003, p.360]. This does not just refer to the initial implementation but

also in later developments that might be necessary for certain variants. Wi-
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Mechanism Time of
Specialization

Type of
Variability

Inheritance At class defini-
tion time

Specialization is done by modifying or
adding to existing definitions.
Example: LongDistanceCall inherits
from PhoneCall.

Extension At requirements
time

One use of a system can be defined by
adding to the definition of another use.
Example: WithdrawalTransaction ex-
tends BasicTransaction.

Uses At requirements
time

One use of a system can be defined by
including the functionality of another
use.
Example: WithdrawalTransaction uses
the Authentication use.

Configuration Previous to run-
time

A separate resource, such as file, is used
to specialize the component.
Example: JavaBeans properties file

Parameters At component
implementation
time

A functional definition is written in
terms of unbound elements that are
supplied when actual use is made of the
definition.
Example: calculatePriority(Rule)

Template in-
stantiation

At component
implementation
time

A type specification is written in terms
of unbound elements that are supplied
when actual use is made of the specifi-
cation.
Example:
ExceptionHandler<Container>

Generation Before or during
runtime

A tool produces definitions from user
input.
Example: Configuration wizard

Table 2.1: Variability mechanisms. [Northrop, 2007, p.88]
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jnstra [2000] describes another mechanism that they utilize in their medical

imaging systems.

The service component frameworks create a scaffolding for customizable soft-

ware products. These frameworks are categorized into two different types.

White-box frameworks share similarities with the earlier mentioned inheri-

tance mechanism because they utilize the concept of dynamic binding, which

means concrete information about the framework’s internals are necessary

for the development.

On the other hand, black-box frameworks mostly put well defined interfaces

to practice. Frameworks’ internals are irrelevant for developers because all

functionalities are held within components that exclusively use these inter-

faces to offer their functionality. The product, which obviously itself can be

considered to be a component within an even larger project, is a composition

of one or more frameworks and several plug-ins that are connected into them.

2.2 Static Program Analysis

While domain engineering provides methods and conventions for systematic

software development, it mostly affects or improves, respectively, the archi-

tectural levels of this process. On the lower levels, concerning concrete im-

plementations and coding details, static program analysis provides tools and

frameworks that allow to check the actual behavior of implemented portions

of the application.

Static analysis, also called compile time analysis, refers to techniques that

predict a program’s behavior before its execution takes place [Nielson et al.,

1999]. In contrast to dynamic analysis, where run-time information is used to

investigate the behavior of a program, this form of analysis relies on compile-

time information only, such as the program code.
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Typical information that is gathered in this process is data flow, which identi-

fies the relationships between data objects and how values are passed among

them. This is also related to the investigation of control flow, which ide-

ally represents all possible orders in which statements of the program are

executed (2.2.2). Thirdly, abstract interpretation can be used to approxi-

mate a program’s behavior through partial evaluation and the creation of

abstract formalization systems (2.2.2). Lastly, an approach called slicing,

which comprises several of the other analysis methods, is used to calculate

a connected portion of the program that affects values at a specific point of

interest (2.2.3).

Application of static program analysis can be found in compiler optimization,

i.e., to reduce redundant computations in the resulting program or eliminate

unnecessary operations. It is also used for program validation, where the

actual behavior of a program’s implementation is compared to the intensions

that were defined priorly to avoid malicious or simply unintended actions

during execution.

The analysis described in this thesis heavily relies on concepts that are part

of static program analysis. Thus, the definitions and explanations provided

here give the reader an overview of the relevant techniques that exist in the

field.

2.2.1 Approximation

The ideal goal of program analysis lies in computing behavior for all possible

inputs and code structures. This is not possible because static analysis takes

place before the actual input is known. In the field of computer science this

problem is known as Rice’s Theorem, which states ”all but trivial properties

about a program are undecidable.” [Andersen, 1994]
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To work around the restrictions of undecidable properties within a program

analysis approaches need to generate approximations. In the area of in-

vestigating control flow of a program this could lead to the application of

assumptions, for example the acceptance of the premise that all source code

statements are actually reachable. While this assumption makes processing

source code easier, it also has the drawback that cases where a fragment of

the code is actually not reachable are also considered during the analysis.

This results in a less accurate representation of the control flow. Of course

this claim is not valid for all programs but for some, which shows that the

accuracy of the results vary [Andersen, 1994].

Approximation will play a role in our analysis algorithm implementation.

Due to time and resource restrictions, simpler algorithms will be used, which

are more likely to generate conservative results.

2.2.2 Control Flow and Data Flow Analysis

During program development interesting questions concerning the program

behaviour can arise. A subset of these questions are concerned with the flow

that is generated during execution of the program [Mossin, 1997]. Flow, here,

refers to the order in which source code entities gain control and, thus, are

processed during run-time. While certain analysis approaches in this area

are concerned with the control flow of expressions or statements (control

flow analysis), others are, i.e., rather focused on the implication it has on

other source code entities, like data items (data flow analysis) or functions

(function call analysis).

A usual depiction and formulation of these relationships are flow graphs [Niel-

son et al., 1999]. Each node represents an elemental block and is connected

to other nodes by edges, which represent the passing of control. Elemental

blocks can, of course, be any of the code objects that are to be investigated

during the analysis. Thus, in a control flow graph, a path within this graph
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represents one possible order in which statements can be executed, while

in data flow analysis a path rather shows the dependencies between data

objects.

For this thesis especially control and data flow approaches were used to de-

fine and implement our analysis algorithm. With focus on configuration

variables data flow analysis supports the process of determining data depen-

dencies throughout a program. Additionally, control flow analysis allows us

to identify what statements are influenced how and, thus, need to be marked

accordingly.

Control Flow

Because each function can directly be identified by its lexical identifier, con-

trol flow can be exactly determined in programming languages that have no

higher-order functions [Midtgaard, 2007]. These are functions that either

take another function as an input or return a function as a result. In more

advanced imperative, functional, or object-oriented programming languages

this information is not directly visible because the actual function call cannot

directly be determined from the application text or source code, respectively

[Midtgaard, 2007, Nielson et al., 1999].

Data Flow

Especially relationships between those items and statements that alter or

rely on them are of value in both directions. On one hand it is desirable to

determine which uses of a variable were influenced by a certain definition.

On the other hand, it can also be of value to identify data definitions that

provide values to a particular data use [Allen and Cocke, 1976]. To further

clarify these relationships, data definitions refer to statements that modify a
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data entity, such as a variable. Accordingly, data uses are expressions that

employ a data item without actually altering it.

Approaches

Theoretical formulations of control and data flow analysis were created in

several different ways. Many similar of these formulations exist because they

are modifications or combinations of each other. An overview of control flow

formulations is given by Midtgaard [2007], which summarizes several research

efforts. The major groups are mentioned and explained here briefly.

The first group considers constraint based approaches. These usually consist

of two phases. Within the first phase, constraints are determined that solu-

tions to the analysis need to satisfy. In the second phase, these solutions are

actually calculated. Depending on the type of constraints, different concrete

formulations were developed, i.e., grammar based analysis, which uses set-

constraints [Heintze and Jaffar, 1990], or closure analysis, in which equation

constraints are extracted and the resulting equation systems are solved [Hen-

glein, 1992, Nielson et al., 1999]. Later, Cousot and Cousot [1995] showed

that these constraint-based approaches mentioned are merely instances of

abstract interpretation.

The second group is called type-based flow analysis. It additionally uses

the inherent information of types that lies in typed higher-order programs

[Midtgaard, 2007] to further approximate the flow of information. A standard

application scenario of type-based flow analysis is type inference, which allows

the automatic deduction of types for data items at compile time.

Thirdly, a formulation can be done in the form of abstract interpretation.

Cousot and Cousot [1977] introduced this formal analysis methodology, which

deducts behavioral information from a system of formal semantics. Generally,

this approach creates an abstract representation of program operations by
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abstracting original objects to a meta level and performing transformations

to create a computable formal analysis system. Thus, the results gained from

an abstract execution of such a created system represent approximate results

of actual computations during the execution of original programs.

A closely related area is described by the name partial evaluation, where

programs are executed by an interpreter with only a part of the input data

provided. Thus, the program code is partially evaluated. Certain variables

in the source code, then, can be resolved to particular values, which leaves a

residual program as a result [Jones et al., 1993]. Partial evaluation can also

be formulated within the context of abstract interpretation Hermenegildo

[1999].

Differentiation

Midtgaard [2007] compares these properties by introducing a measure of

sensitivity that helps to categorize approaches according to the precision

they can achieve. While the first property is mentioned for completeness,

the second categorization is more common and will be used predominantly

later to classify the approaches.

One distinction is based on the fact that an analysis accurately follows the

control flow of a program’s source code, in which case it is referred to as flow-

sensitive. Flow-insensitive concepts, on the other hand, roughly approximate

the control flow by defining assumptions in advance.

A more prevalent distinction separates context-sensitive from context-

insensitive analyses. While the former takes contextual information at the

time of calls into account, the latter does not. Specifically whithin the field

of control flow analysis, these properties are also referred to as polyvariant

and monovariant Midtgaard [2007].
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2.2.3 Slicing

The goal of our analysis is to compute such a slice with respect to configu-

ration variables that are related to a particular feature or concern.

Program slicing is a method for abstracting from program’s source code,

that was introduced by Weiser [1981]. It allows the reduction of a program,

ideally to a minimal extent, with the consideration of a subset of the original

behavior. Thus, a generated slice represents an independent program that

holds a specified behavior of the original application.

This desired behavior is usually reduced to a set of values, that are computed

at a certain point of interest [Tip, 1995]. Thus, to provide a particular

behavior to any kind of slicing algorithm, relevant information needs to be

selected in advance, which is summarized under the term slicing criterion.

For specific programming languages these usually consist of a set of variables

and the location of the point of interest within the source code. The goal of a

slicing algorithm, then, is, to calculate a subset of statements that consists of

all necessary portions of the program that either affect this slicing criterion

or are affected by it.

Finding minimal slices is generally not possible, which is due to the same

reasons that were discussed in static analysis (2.2.1). Because all slicing

algorithms rely on concepts and methods from static analysis, like data flow

and control flow analysis, the resulting approaches can only be as precise as

the methods are that they are based on.

2.2.4 Properties of Slicing Algorithms

Within the field of slicing analysis the distinction between two types of slicing

was established. These are static slicing, which merely relies on compile-time

information for the computation of a slice, and dynamic slicing, which is done
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with the consideration of run-time data. For the latter approach, of course, a

set of predefined input values is necessary to actually execute the code, which

limits the analysis to a certain degree. Harman and Hierons [2001] also men-

tions a less common approach, called conditioned slicing, which represents a

combined approach between dynamic and static slicing.

Another property aims to distinguish between the directions that dependen-

cies within the source code are investigated. In a forward slice all code blocks

and statements remain that are somehow affected by the variable in the slic-

ing criterion. Vice versa, in a backward slice all statements are kept that

have an impact on a particular variable [Tip, 1995].

Lastly, a slice can be characterized by the type of transformation that can

take place. To generate a syntax-observing slice, an algorithm can only re-

move parts of the source code that have been found to not affect the point

of interest, at all. On the other hand, an algorithm can be created that is

allowed to perform any kind of syntactic transformation, which preserves all

desired semantic constraints. This approach is named amorphous slicing.

2.3 The PUMA Parser

The PUMA framework is a major part within our implementation of the

prototype. This section will give a brief introduction to the library itself, its

capabilities, and its role in the analysis process.

PUMA is a code transformation framework, provided as a library, that con-

sists of a parser, a set of data structures that handle file and project man-

agement, and several mechanisms that allow various types of code transfor-

mation. The framework itself was developed in C++ and is freely available

as part of the AspectC++ Project, which is still maintained and enhanced

[Urban et al., 2010].
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The framework is capable of managing entire source code structures by han-

dling them as projects. These projects consist of directories holding the

actual source code files. Within this structure these files are parsed and

the resulting translation units, which are a tokenized representation of a sin-

gle source code file, is kept underneath the file data structures within those

projects. Even though files are the main resource for source code, there are

also other supported possibilities typical for UNIX systems, i.e. Pipe com-

mands.

The essential feature within the PUMA framework is its parsing capabili-

ties. Supporting the languages C, C++, and various dialects, it provides

lexical and syntactical checks before creating the actually abstract syntax

tree (AST). To offer a more complete parsing of these languages, a C prepro-

cessor was also integrated. It supports common substitutions, source code

inclusions, and complex macros.

Of course, methods are supplied to execute common semantic C and C++

checks upon the created ASTs. On top, these methods produce an optional

semantic database, which can be helpful for further analysis.

Beyond these parsing capabilities PUMA provides extensive transformation

tools. These allow for simple token manipulations or even intensive com-

plex transformation of entire ASTs. To further support these actions special

checking mechanisms are included that identify possible transformation con-

flicts.

Urban [2002] gives a great overview of the PUMA framework by identifying

six levels of operation:

The PUMA framework provides a reliable C and C++ parser with a wide

range of extension possibilities. The source code of the framework and ex-

ample implementations for code analysis and transformation are available.

Especially the semantic database or class database, respectively, provides

helpful tools for our analysis. Additionally, code transformation is supported
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Figure 2.2: Operation levels of the PUMA framework [Urban, 2002]

extensively, which is a further goal we have in mind and will be practically

experimented with in the future. Lastly, the potential for C++ parsing is

maintained, even though, this initial work focuses mainly on ANSI C.

Figure 2.2 illustrates the hierarchical levels on which the PUMA framework

was developed. This architecture allows quick modifications and extensions

to be developed to cope with several structures during application use, like

files, statements, items from the semantic database, preprocessor informa-

tion, or transformation functions.
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Concept

The idea in this project is to use a simple conservative slicing algorithm to

identify concerns or features within an existing software system that were

implemented as dynamic variability. The main focus for this analysis, there-

fore, lies on the identification of code branches and significant code depen-

dencies that exist and, thus, represent these features. After this process,

these interdependent code parts can be either displayed or even automati-

cally transformed, i.e., to convert dynamic variability into a static one. To

test and evaluate the theoretical constructs, we designed and implemented

a prototypical analysis tool (see chapter 4). As proof of concept and for

evaluation, we will focus on essential phases discussed in this chapter, solely,

because of the complexity of more complete approaches.

The general analysis process is separated into several phases, where each

requires a certain input and generates a certain output, that again might

represent an input for the next step. This thesis will not explore all of these

in detail simply because some of the phases can be considered as special

research fields of their own. Additionally, not all of them are considered

to be automated, in fact, for certain steps an explanation will be given to

discuss the usefulness, applicability, and limitation of automation.

Generally, first a single code entity needs to be identified, which implements

some kind of control over a particular variability. Then, dependent code

parts are being computed from that, which directly represent either a partial
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or even the complete implementation of that particular feature. Figure 3.1

depicts the individual phases necessary for the analysis.

Figure 3.1: The main analysis phases and their generated output.

Selection of an existing feature: The feature that is going to be identi-

fied within the code needs to be selected by a user or a domain expert.

This feature is represented by an application behavior that can be ob-

served during execution. An example could be an optional encryption

functionality in a server application.

Mapping to a behavior dictating entity: A developer needs to identify

the according code entity that controls the observed behavior of the

program leading to the execution of source code belonging to the fea-

ture that was determined in the first phase. Ideally, this leads to a

single variable holding certain values, which are used to control the ap-

plication’s behavior. This could be a boolean variable within a server

application that holds either the value true during execution when it

is enabled by the user or the value false when it is disabled.

Slicing analysis: In this step all traceability links are identified that con-

nect the selected option to the according variability in the source code.

For this, the priorly determined source code entity, i.e. a variable, is

used to determine dependencies to other source code fragments. These

relationships form the entire feature implementation. Further, state-

ments of this code subset are categorized into three states that are
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supplied for further investigation in later steps. These are belonging to

a feature, not belonging to a feature, and possibly belonging to a feature.

Here an if-statement relying on a previously selected boolean variable

would be considered a part of a feature, because the code block under-

neath is only executed, if the variable holds the value true. Also, a

statement defining this variable would belong to the feature.

Processing the results: All the code fragments that were identified and

marked by the algorithm can now be used for further processing. Gen-

erally, there are at least two possibilities. Logically, the results can

simply be displayed in an appropriate manner, which could be used to

support developers, i.e., by marking interdependent code statements.

With more complicated and complex efforts, they can also be used

for a code transformation algorithm, for instance to allow a (semi-

)automated conversion of dynamic variability into a static variability.

As an example we look at the grep project and its configuration parameters

because this project offers several configuration options, which are not imple-

mented in a centralized manner, but rather scattered throughout the entire

source code. This command line tool takes a text as input from the standard

input and filters it to generate output that matches a certain pattern. A

normal pattern can be a single phrase that is passed as a parameter. Grep

would display all lines of the input text that have the provided word in them.

We will use this command line tool as a continuous example throughout the

phases that are explained in further detail within the next sections.

3.1 Selection of an Existing Feature

Because the analysis in this thesis aims toward locating relevant source code

statements that implement a certain feature, some kind of identification needs

to take place in advance. This task marks a mere selection of a special
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behavior within the software, which can simply be based on observations

being made during the execution of the software itself. This is consistent

with the definition of a feature, which describes it as a part of a piece of

software that is directly visible to a user (2.1).

Generally, any functionality of a software can be part of the selection, but our

experience showed that especially configurable parts of applications tend to

be particularly suitable for this kind of analysis. This is due to the fact that a

trivial method often used to implement a certain degree of configurability, or

variability, respectively, is to employ simple variables that hold special values

at run-time to control the actual behavior according to the configuration.

Obvious examples for this kind of configuration are command line parameters

that are offered to specify or modify the execution of programs intentionally.

This sort of flexibility resembles one kind of dynamic variability, which was

discussed in section 2.1.4. Especially primitive configuration possibilities that

simply switch functionalities on or off proved to be ideal for this analysis, as

their representation within the source code is mostly restricted to two possible

values, just like they are typically held by Boolean variables. Section 3.3.3

further explains why this is helpful to reduce the complexity of the later

analysis.

Command line tools, as widely spread within Linux distributions, offer a

great variety of options in the form of mandatory or optional command line

parameters or values set in configuration files. These often follow gener-

ally prevalent formatting conventions. In many maintained software projects

these parameters, however passed to the application during execution, are

well explained in the associated documentations. Thus, a logical possibility

to identify and select existing features within a software is to scan the docu-

mentation coming with the software for any kinds of configuration possible.

For the grep example a specific behavior, that can be configured by enabling

or disabling it, is case sensitivity. By default grep does consider case sensitiv-

ity, thus, the feature is turned off and the case of the pattern is not ignored
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for the filtering process. The user can enable it by providing the parameter

”-i” in the command line. This selection will be used in the next step.

Grep offers more configuration parameters like ”-c”, which counts the num-

ber of matches, ”-T”, which aligns displayed tabs, or ”-H”, which displays

corresponding file names.

3.2 Mapping to Source Code Entity

A vital step in the discussed analysis process is the identification of essential

source code entities that specifically implement a configuration option, and

thus, dynamic variability. Mostly, this step has to be a manual one. The

selection of a certain feature within an application, which was done in the last

phase, has to somehow be linked to parts of the software’s source code. This

is necessary in order to actually communicate this selection to any potential

analysis tools in later phases. As already mentioned, for that purpose we

would like to use some kind of slicing algorithm, which generally requires the

definition of a slicing criteria as a starting point.

Conditional statements influence the control flow by the evaluation of ex-

pressions, which are mostly comprised of variables. Mostly, because there

are other artifacts that can provide a value, as well, i.e. functions or number

representations directly. These usually rely on variables themselves to actu-

ally hold the values, but resolving those dependencies is more complex and

will be discussed later (see Section 3.3.1). In contrast, variable dependencies

can be observed directly. The mere presence of a variable name in an ex-

pression of a conditional statement creates a dependency of any code branch

created by this statement on that particular variable. The exact nature of

this relationship, though, requires further analytical processes.

This phase seems similar to a usual debugging approach a developer would

go through to locate essential code elements responsible for the software mal-
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function to be analyzed. Source code fragments of interest are singled out by

following code traces that seem significant to a certain application behavior.

The most interesting code parts, therefore, are conditional statements, which

directly alter the control flow of the program based on some condition.

Since it seems logical for a software developer to use variables to handle and

store configuration values during the execution of the program, it is also rea-

sonable to use those directly in such conditional statements. Thus, whenever

a significant branch of source code statements has been found, an analysis

of the conditions under which they are executed would be necessary. Ideally,

these conditions can be resolved to a single variable or a set of interdependent

variables, which not only makes the analysis itself easier but the implications

for further steps, as well. Usually naming conventions that developers follow

to increase maintainability and readability of their source codes give hints

on what option certain variables might be related to. So, any kind of de-

velopment or code documentation would be an appropriate initial source of

valuable information.

Lastly, the source code itself needs to be focused on. As mentioned, partic-

ularly variables seem to be a valid tool for storing and providing values for

later reference - later in the sense of a future point in time of the program

execution.

Throughout our observations we found that a typical shape for representing

configuration in source code are global variables, which store configuration

information or parameters provided by a user. Very often these values are

parsed from whatever source they come from, i.e. the command line, and as-

signed to variables during early stages of the execution. These values usually

do not change during the execution, and because they are quite often needed

at several different parts of the code, providing them globally is a preferred

choice of implementation.

The case sensitivity parameter in Grep is represented in the source code.

Following the execution starting at the ”main.c” file in the main() function
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the determination of passed parameters is done with the help of a certain

function, called get nondigit option(). The code displayed in example 3.1

shows how the parameters are extracted by this function and then evaluated

by the switch-statement on Line 3. The previously selected feature that was

symbolized by the ”-i” is directly represented by the constant on Line 6. As

a result of providing the i-parameter to the application, the value 1, which

corresponds to the value true, is assigned to the global variable match icase

on Line 8, which obviously represents this particular configuration option in

the source code. This feature variable will be focused on in the next analysis

phase and, thus, be provided as the slicing criterion.

Listing 3.1: Mapping parameter to according code object (Grep).

1 prepend default options (getenv (”GREP OPTIONS”), &argc, &argv);

2 [...]

3 while ((opt = get nondigit option (argc, argv, &default context)) != −1)

4 switch (opt)

5 [...]

6 case ’i’:

7 case ’y’: /∗ For old−timers . . . ∗/
8 match icase = 1;

9 break;

10 [...]

Automation of The Process Step

The first two phases of the analysis address the need of certain predefined

criteria that the analysis relies on. Considering automation of the selection

process seems to be impossible because a selection is not a static behavior

but rather relies on the context and the individual choice of a developer.

On the contrary, the mapping of options to code entities seems to be a less

arbitrary task.
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We found an interesting approach, that addresses the particular variability

of program configuration options and describes a static extraction process

to automatically identify it. In their paper Rabkin and Katz [2011] describe

a combination of methods, including call-graph analysis, string matching

approaches, and other heuristics created from observations they made in real

open source projects.

The approach itself is based on identifying a key-value style configuration

and the underlying model of implementation by matching it to programming

patterns that were observed priorly. In a second step the identified options are

then categorized upon their type and provided to the user. The categorization

also address if options are actually used throughout the software or are merely

leftovers from previous software versions.

This analysis is additionally backed with a case study providing results drawn

from a prototype implementation of this approach allowing the analysis of

Java projects. They were able to find 95% of the original program configu-

ration options.

While this implementation was done to analyze Java source code only, the

implication for our work is that a certain degree of automation is possible.

The partial identification of program configuration options could provide an

additional source of selection for program variability. On the other hand, the

mentioned approach extensively supports the identification of specific source

code entities, like variables, which could replace an otherwise manual process.

Designing and implementing this automation for C projects is outside the

scope of this thesis.

3.3 Slicing Analysis

The third phase marks the actual analysis that uses the previously identified

source code objects to calculate an actual conservative slice of the source
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code, ideally, containing all instructions of the code that are somehow de-

pendent on this source object. It is the most complex and most resource

intensive part of the process.

The decision to apply a slicing algorithm for the identification of features

within an existing source code seems quite trivial. A feature is merely im-

plemented by adding instructions to a source code that describe the specific

intended behavior. These instructions ”interact” by processing input and

generating output for each other, therefore, implicit dependencies arise.

Whenever a feature is included within a software, all instructions and code

fragments belonging to this feature need to be executed in the intended or-

der. If the starting point of this particular feature is executed, all necessary

instructions implementing it need to be present for execution, as well. Vice

versa, if a feature becomes obsolete and is either removed or simply switched

off, the initial instruction of this feature is never executed making all depen-

dent code fragments irrelevant because they cannot be executed, either.

An important note on these initial instructions is that they can be directly

related to the objects identified in the previous step. In example, let feat A

be a variable, which has been determined to be an essential variable for the

execution of a certain feature. In this case every single conditional instruction

that includes this variable in its condition can be seen as an initial instruction.

The execution of a specific feature code merely depends on the value that is

assigned to this variable at execution time and the condition itself.

Example 3.2 shows a single variable conditional statement and the two control

branches it is creating. statement list A is only executed if the value stored

in variable feat A renders the expression to be true. In this case the branch

symbolized by statement list B is not executed. Both branches directly

rely on variable feat A and so a direct dependency is formed. Whenever

the initial statement represented by the first line is executed, either of the

compound statements will be executed, as well. Vice versa, no execution
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of either of the branches will take place without an execution of the initial

if-statement.

Additionally, it is obvious that both, statement list A and statement list C,

belong to the same feature. Their execution relies on the same condition,

thus, both of the if-statements can be considered as initial instructions

representing entry points to code blocks related to the particular feature.

Listing 3.2: Initial instruction in the form of a single variable and its code

branch.

1 if(feat A) {
2 [statement list A]

3 }
4 else {
5 [statement list B]

6 }
7 [...]

8 if(feat A) {
9 [statement list C]

10 }

These restrictions and relationships are vital for further implications for the

analysis. On one hand, it shows what additional analysis steps might need

consideration, or more precise, how control flow needs to be determined in

each case. On the other hand, it states what meaning the results of this

analysis have.

For example 3.2 the dependencies described earlier imply that the code in

statement list A belongs to feat A. Further, statement list B cannot

be part of the same concern, in fact, it is only relevant whenever feat A is

not. For this block more contextual information is necessary to do a proper

categorization. The existing form of dependency suggests it is representing

a clear alternative to whatever behavior feat A describes. Suppose, as a

result of this analysis, feat A was identified and is to be discarded from the
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code. The question arises how this would also affect statement list B and

its necessity to remain in the code. These aspects particularly are discussed

in further detail in Section 3.4.2.

3.3.1 Classification

Because different types of dependencies arise during the analysis, we decided

to not only mark but categorize the identified code fragments. Example

3.2 in the last section already showed two types of dependency in a simple

case. A certain code block can be directly linked to a feature, while another

piece of code obviously must not be part of it. This distinction arises from

the if-else-construct in the programming language. Whatever condition

is used within the if-statement will apply to the corresponding compound

statement. Implicitly, to the compound statement belonging to the else-

statement the negation of the condition applies. Thus, actually the condition

or rather the type of condition, is relevant to the subsequent categorization.

In this consideration two main types of conditions can be differentiated, be-

cause they have dissimilar implications on the categorization of the under-

lying code fragments. These types are single variable and multi-variable

conditions. As their names suggest, the distinction is based upon the count

of variables present in a conditional expression. While a categorization in

one case can be made easily, the other does require additional attention.

Clear and Unclear Single Variable Conditions

The analytically simpler type comprises a single variable in the condition.

Thus, the control flow merely relies on a single variable or the underlying

value, respectively. The maximum amount of possible branches at this con-

trol statement depends on the data type stored within the relevant variable.

This variable can either carry a boolean, which would limit the variability at
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this point to two options, i.e. enabling or disabling a certain feature. Or, the

variable carries another data type provided by the programming language,

which would allow for variability with more than two options but is limited by

the size of the actual data type itself. While the former condition type would

simply consist of the variable and the optional unary operation not (”!”),

the latter requires a binary operation , i.e. equals (”==”), and another

comparison operand representing a particular option or a set of those.

Listing 3.3: Beispielcode

1 if(feat A) {...}
2

3 or

4

5 if(feat A>5) {...}

The classification here is not always clear. Both statements show a single

variable condition, though, the different type of usage suggests a different

exercise for implementing variability. The if-statement on Line 1 simply

relies on the boolean value in variable feat A, which makes the affiliation

to feature A obvious. In this case the condition merely consists of a single

variable, whose value is resolved to either true or false. Therefore, in the

example we can categorize the underlying code block to belonging to the

feature. In a case where the condition also comprises the not operator, i.e.

in the expression ”!feat A”, we categorize the code block as not belonging

to the feature.

The expression on Line 5 is a little more complicated. Using a configuration

variable in combination with a comparison operator offers the developer the

possibility to select between several options at that point of the code. It

also opens up the possibility to unite code blocks that are used by several

features. This is displayed in the following scenario.

Suppose a developer wants to create a program with a feature that has sev-

eral variations. These can be configured during execution and, therefore,
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were implemented in a combined manner, because they have certain code

fragments in common. The comparison operator in the control statement’s

condition can be used to create exactly that. A possible application for this

kind of dynamic variability would be the implementation of a logging feature,

which can be configured to operate at several different levels, i.e. displaying

information to a user directly and writing it to a file.

Example 3.4 shows such a scenario with a feature variable logging. De-

pending on the value that it holds, different combinations of the defined

code branches can be executed during run-time. For the value 1 the branch

defined on Line 1 and 5 are executed. For the value 2, Lines 3 and 5 define

the behavior during run-time.

Listing 3.4: Single variable in comparison conditions.

1 if(logging==1) {...} //logging into a file

2 [...]

3 if(logging==2) {...} //logging by displaying to the user

4 [...]

5 if(logging>=1) {...} //logging with both possibilities at the same time

It does not always make sense to group these feature variations together.

Therefore, we decided to also classify these code blocks as unclear or possibly

belonging to the feature, respectively. This classification also seems suitable

considering that the intentions of the developer are not clear at the time of

the analysis. Using a comparison operator can also be used to implement

a simple enabling/disabling mechanism, which would clearly be equal to a

boolean variable. Without further investigation this cannot be determined.

Unclear Multi-Variable Conditions

Multi-variable conditions comprise several different variables and, therefore,

more complex logical expressions. For the analysis to be completed, these ex-
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pressions require more resources and more analytical methods to extract the

implications for the code underneath each conditional strain. Ideally, the ex-

pressions only consist of variables representing feature configurations because

then, the analysis of the condition can implicitly represent the relationship

of these features.

Example 3.5 displays a possible select statement, that uses multiple variables

in the condition. This condition seems to represent parts of the implementa-

tion of a feature A, that do not apply if another feature B is enabled. A more

detailed analysis of the occurrences of such conditions throughout a source

code would suggest a direct dependency between feature A and feature B,

where either feature can only be enabled if the other is disabled.

Listing 3.5: Conditions with complex condition expression.

1 if(feat A && !feat B) {...}

While these conditions are not the major focus in this thesis possible so-

lutions using partial evaluation through abstract interpretation or symbolic

evaluation to enhance the results and increase approximation (see 2.2.2).

We assign corresponding code parts with this property directly to the cat-

egory possibly belonging to feature, because at this point we cannot make

certain claims without further investigation. This classification allows the

code fragments to be marked in a way that in future steps they can be re-

considered manually by a developer.

3.3.2 The Relevant Control Mechanisms in C

Consider a subset of instructions within an application’s source code that

is never reached unless a feature controlling variable holds a certain specific

value. Therefore, this subset of code lines can only be part of the specific

feature implementation, because it is only executed whenever a specific run-
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time configuration exists. A run-time configuration in this case consists of a

set of variables, which hold a specific value at a certain time. For our analysis

this would mean, each source code object, i.e. a variable or a method, that

is only reached during execution whenever certain conditions are being met

can be considered a part of a specific feature implementation.

The main focus for this simple kind of analysis, therefore, lies on source code

statements that create a branch within the execution tree in dependency of a

particular value stored in a relevant variable. In this thesis we only consider

the programming languages ANSI C because the control flow mechanisms

are less complex. Because C++ extends the programming language C by

an object oriented paradigm, the results of the investigation in this thesis

also apply to C++. Yet, to gain more accurate results for the same analysis,

this approach would have to be extended as well to account for the control

mechanisms that are additionally provided by the object oriented paradigm.

The decision to look at this language particularly is related to the number of

existing analysis, parsing, and transformation tools, and especially the great

variety of available applications and their source code. The open-source

community, which greatly implements in C and C++, also provides a good

amount of developer documentation, that is very helpful within all phases of

this analysis process. Lastly, a lot of research that we found to be related to

this kind of work has been done with focus on C and C++, as well.

The programming language C provides the developer with a small set of con-

trol structures that allow for the creation of code branches or dynamic vari-

ability, respectively. These control statements influence the order in which

the statements of the source code are executed [Businger, 1988]. Table 3.1

shows all relevant control statements for this analysis.

The selective statements are particularly interesting because they allow for

a selective behavior of an application relying on specific conditions, which

are directly visible. The iteration statements, on the other hand, seem less

valuable to this analysis because they tend to be less appropriate for selection
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Type Statement Description

selective if
else
else-if

A conditional statement that is followed by a
boolean expression and a statement sequence,
which is also called compound statement. The ex-
ecution of the compound statements merely relies
on the evaluation of the boolean expressions at
run-time. If-statements alone allow for control-
ling the execution a single compound statement.
Combinations with else statements or else-if-
statements, respectively, allow the creation of al-
ternative branches of code.

if
expression

Conditional statements, similar to if-statements,
consisting of expressions, which directly return a
value. These expressions allow two results that
can be returned depending on if the boolean ex-
pression, delimited by a ternary operator, usually
represented by the symbol ’?’, renders to be true,
or false.

switch/case A conditional statement that compares a given
value (i.e. from a variable) to a set of specified
constants. Each constant or sets of them have
statement sequences assigned to them.

iterative while/do A code construct that allows the repetition of a
code sequence until a boolean expression renders
to be false.

for A construct allowing code blocks to be repeatedly
executed for a specified number of iterations. The
number of repetitions can also result from arbi-
trary expressions and statement.

Table 3.1: List of control statements in C. [Businger, 1988]
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purposes by their nature. Nonetheless, they can be used in such way and,

therefore, must be considered.

For similar reasons this thesis’ focus lies on the identification of conditional

statements that evaluate single relevant variables. This restriction not just

makes it possible to reduce the cost of doing the analysis but also makes use

of the inert structural similarity that exists between the general convention

of implementing such variability and this analysis that tries to identify it.

Selective Statements

Certain implications of selective statements were already partially explained

in the previous subsections. Generally, we categorize the statements and

underlying compound statements by the properties the according conditions

show.

If-statements that have a single variable condition can be directly associ-

ated with the particular feature corresponding to the relevant variable. If the

unary operator NOT, ”!”, was found, the relationship of the categorization

is simply negated. Same applies to compound statements underneath the

appropriate Else-statement. In example 3.6 and 3.7 these scenarios are il-

lustrated. Statement list A will be categorized as being part of feature A,

while the statement list B will be explicitly considered as not being part

of that feature.

Listing 3.6: Single variable if-else-statement.

1 if(feat A) {
2 [statement list A]

3 }
4 else {
5 [statement list B]

6 }
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Vice versa, in example 3.7 statement list A will be categorized as not being

part of feature A, while the statement list B is properly considered to be

part of that feature.

Listing 3.7: Negated single variable condition.

1 if(!feat B) {
2 [statement list A]

3 }
4 else {
5 [statement list B]

6 }

Because a direct association becomes more complicated in complex multi-

variable conditions, we applied the third more vague category symbolizing

the state of uncertainty. It allows us to capture the uncertain affiliation and

possibly provide it to additional analysis steps at a later time.

Besides if-statements, we also found the application of switch-statements to

be a common way to create variability. This is specifically applied when sev-

eral alternatives needed to be implemented, which generates more than two

possible code branches. Because there is no naive way of telling apart certain

feature implementations, we categorize the entire switch-statement as being

unclear. This generally makes sense because the switch statement semanti-

cally offers the possibility to create variations of control flow in dependency

of one variable. Therefore, several implementations can be distinguished,

which all relate to a single feature. On the contrary, an interpretation is

possible where only a single case actually represents the implementation of

a feature. This case is not covered in our analysis.

This more accurate representation, though, which accounts for each of the

variations individually, would need some kind of evaluation. This can either

happen on a higher level by comparing the actual names of the constant

variables in the case-statements or by evaluating the actual values, which

is a rather wasteful approach due to the static nature of the constants. The
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latter option would only account for the rare case in which a mix of constant

variables and their direct values is used in several switch-constructs.

Example 3.8 depicts an example of such a switch-case-structure. Our anal-

ysis would mark the entire switch-statement and categorize it as having a

possible feature A affiliation. More precise analyses could identify the rela-

tionships in detail, i.e., that functionY() on Line 5 would belong to both, vari-

ation X and variation Y. Additionally, a possible alternative interpretation is

shown, where the variation X case is handled individually in the if-statement.

This raises the question if feature A is actually the feature in focus or if each

variation represents its own feature.

Listing 3.8: Example for handling switch-statements.

1 switch(feature A)

2 {
3 case variation X:

4 case variation Y:

5 functionY();

6 break;

7 case variation Z:

8 functionZ();

9 break;

10 }
11

12 if(feature A==variation X)

13 {
14 functionX();

15 }

Iterative Statements

The implementation of variability can also be accomplished by the use of

iterative statements. These are usually used to implement repetition but can

imitate the behavior of if-statements, as well, because source code within
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the compound of such iteration statements can be executed when the itera-

tion occurs once or more, or not at all, in cases where value and condition

combinations would result in an iteration count of zero. This kind of flow

control seems less probable because implementing a desired dynamic vari-

ability in such way would render the source code to be less comprehensible.

This seems not to be a general approach a developer would chose but should

be considered, nonetheless.

In the investigated examples we have not found examples of such an appli-

cation. It is, though, possible to create scenarios where this might become

a logical solution. Imagine the implementation of a keep alive functionality

for network connections. Usually, these repeatedly send messages through

the network to sustain a priorly established connection to another peer, that

otherwise would get terminated after a specified time within an idle state.

Similarly, the implementation of a network retry functionality can make use

of the capabilities a for-statement provides. The configuration of the par-

ticular application allows the specification of retry attempts on a failed con-

nection. Is it set to the value 0 the retry feature itself is disabled, is it set to

any positive value, it is enabled and provides the configurable value for the

amount of retry attempts to be made at the same time.

Example 3.9 shows these scenarios where the keep-alive functionality is con-

trolled by the timed feature variable. As long as this feature is enabled

during execution the function is executed repeatedly. The feature variable

retry feature, here, not just enables or disables the particular feature but also

provides another configuration value that defines the number of repetitions

that will take place during execution.
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Listing 3.9: Possible scenarios for use of feature variables within iterative

statements.

1 while(timed feature)

2 {
3 sleep(500);

4 send keepalive message();

5 }
6

7 for(int i=0;retry feature>i;i++)

8 {
9 retry connection();

10 }

In both cases we identify the use of variables in focus within the condi-

tions. We mark the entire code block including the control statement and

the according compound statements. Additionally, we mark those as possi-

ble candidates. A more accurate analysis, though, would suggest a similar

treatment as we propose during the investigation of if-statements and their

conditions.

3.3.3 Determining Control Flow

In order to extract the necessary dependencies between statements it is nec-

essary to determine in which order they are executed and where relevant key

data structures have an impact on the execution. This is done by the appli-

cation of control flow and data flow analysis. Tip [1995] describes a variety

of slicing algorithms based upon several different approaches. Generally all

of those aggregate information in some kind of dependency graph and then

more or less accurately compute a certain slice dependent on a selected slicing

criterion.

While he covers both, forward and backward slicing, our analysis only ap-

plies the former concept. This decision seems logical, because this algorithm
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actually extracts a statement subset of a program that directly or indirectly

relies on a specific variable. Even more restricting is our focus on the control

influence this particular variable has upon certain statements regulating the

mere execution of those. The problem we try to address, therefore, directly

calls for a forward-slicing algorithm.

In his paper Tip [1995] also discusses a major concern several times, the

completeness of a calculated slice. None of the concepts are capable of calcu-

lating a minimal precise subset of statements. Each algorithm described has

a certain limitation and degree of approximation and, therefore, calculates a

somewhat inaccurate slice.

While many suggested algorithms rely on the generation of dependency trees,

information flow graphs, or data flow graphs, our concept does not create

such trees directly. To decrease complexity of the analysis and simplify the

implementation of a prototype we use a simple recursive algorithm. In order

to still gather enough information to generate a slice it needs to traverse the

source codes AST, find relevant variables within conditional statements, and

mark all branches belonging to those statements accordingly.

The path that the algorithm takes to walk the AST follows a naive static con-

trol flow analysis approach. Beginning at one statement which is considered

to be the starting point of the application, i.e. a function named ”main”, the

algorithm follows the trivial code execution path defined by code blocks, con-

ditional statements, and function calls. For this thesis we will only consider

the mentioned entities, even though, there are other more subtle mechanics

that also cause branching in the control flow, such as function pointers. This

makes the approach more conservative, which results in less code being vis-

ited throughout the analysis. Visiting the AST in this manner allows us to

determine possible paths that the execution of the application could follow

and, thus, approximately symbolize the order in which the statements can

occur.



3.3. Slicing Analysis 52

Because we have certain restrictions, i.e. a single variable to focus on, not all

possible paths have to be considered. Code branches, which clearly cannot

be influenced by a particular variable, do not need to be followed during the

tracing of the execution.

Function Calls

For function calls we identified two types, that can exist in two scenarios.

Each combination of type and scenario implies a different behavior for the

analysis to continue. The first type is represented by calls that do not pass

a relevant variable as a parameter. The algorithm does not need to further

investigate the code in the particular function definition because none of

the statements within the definition lie in the scope of the relevant variable,

which makes a dependency impossible.

The second type of function calls passes a relevant variable and, therefore,

needs to be further examined. This is necessary because the relevance of

the variable is passed on to one of the arguments defined for the function.

Because of the expansion of the scope, it is possible that control statements

in the definition rely on the particular variable, now embodied in a local

variable within the function body.

Example 3.10 illustrates several function calls, where each has a different

relationship to the relevant variable feat A. The definition of function1()

on Line 3 does not need to be visited for dependencies on this variable because

these statements do not lie within the scope of the variable. On the contrary,

because the feature variable is passed on Line 4 the definition of function2()

needs to be visited with the local variable in focus that the relevant variable

was passed to. This will identify the conditional statement on Line 12 to

be part of the feature implementation. Additionally, implications arising

from this kind of variable use will be discussed in in the next paragraph.

Lastly, the function calls on Line 7 and 8 are occurring within a code branch
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whose execution completely relies on the value in feat A. Besides applying

the analysis rules that were just explained another concern arises, which will

be discussed now.

Listing 3.10: Relevance of other variables

1 int feat A,b;

2

3 function1(b);

4 function2(feat A);

5 [...]

6 if(feat A) {
7 function3(b);

8 function4(feat A);

9 }
10

11 void function2(int isEnabled) {
12 [...]

13 if(isEnabled)

14 {
15 [...];

16 }
17 }

As mentioned earlier, function calls can occur either outside of or within a

compound block of a control statement that relies on the feature variable.

While the former does not create a necessity for further investigation, the

latter forms a special case. Independent of the particular call type, the

dependency here lies in the mere usage of the function.

Implications. An example for this is displayed in figure 3.11. Executing

our algorithm on this example will identify the conditional statement at Line

5 and its compound statement spanning from Line 6 to 10. Further, let

function A be a part of the implementation of feature A. This implies that

no function call outside of the scope of the specific feature occurs. For the

purpose of this example let the call on Line 8 be the only call of function A()
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within the entire project. At the time of analysis, our algorithm does not

determine that the execution of function A() directly relies on the execu-

tion of the compound statement underneath the corresponding conditional

statement. The marked code fragments would not include the definition and

declaration of function A(), as they should for a more complete result. If

this feature was to be removed from the source code on the basis of identified

statements, these remaining code parts would not interfere with the rest of

the source code. It does, though, create an overhead by leaving unnecessary

artifacts bloating the resulting source code. This clearly represents a typical

result of an approximation.

Listing 3.11: Relevance of other variables

1 int main () {
2 int feat A;

3 feat A=...;

4 [...]

5 if(feat A)

6 {
7 [...]

8 function A(...);

9 [...]

10 }
11 }
12 void function A(...) {
13 [...]

14 }

Solution Luckily, this specific type of problem can be accounted for by

gathering function calls within identified code blocks during the traversal of

the AST. Succeeding the analysis, a search for other calls of this function

throughout the entire project would reveal the actual dependency. If no

other occurrences of according calls are found outside of the scope of similar

compound statements, the function can be considered part of the feature

and, thus, be categorized appropriately. Because this check needs to be done
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after the analysis, it can be considered an additional step to further enhance

the results from this analysis. Existing development environments, support

tools, and compilers are able to identify unused code fragments, already.

This algorithm represents a naive incremental approach. While most slicing

algorithms use dependency graphs or control flow graphs, we generate this

information while visiting all code entities. This allows us to make ad-hoc

decisions and focus on a smaller amount of dependencies. In graph based

approaches the entire dependency graph needs to be created, which is a

resource intensive task. While this is a very accurate representation, it is not

suitable for the simpler restricted analysis we pursue because the complexity

of such graphs would be unnecessary when focus lies on simpler boolean

configuration variables and the features they control. Also, the incremental

character makes this approach more scalable and, thus, easier to extent. Very

simple scenarios can be covered with less effort while complex scenarios call

for more complex analytical algorithms.

Handling Loops

Another consideration in the area of function call tracing needs to be the

possible occurrence of loops. Because the analysis actually follows the control

flow and function calls to a certain extend, a mechanism is needed to ensure

the analysis does not go on for ever. In our analysis this is accomplished by

tracking the visits the algorithm does for certain function definition. This is

done on a variable basis. Was a function visited because a relevant variable

was passed to it, a flag denotes that in an appropriate data structure. This

ensures the function is not visited again with the same variable in focus.

Generally, this would be needed for each parameter individually, which can

be passed to that particular function. This is due to the fact that each pa-

rameter gets assigned to a different local variable in the function definition’s
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scope. Thus, different selection statements would be affected and must be

considered.

Example 3.12 represents such a scenario. The configuration variable feat A

is passed to the function in two different ways on Lines 4 and 5. The first call

would make the selective statement on Line 8 and its compound statement

possible feature implementation parts.

The second call on Line 5 would also result in the function definition being

visited by the analysis algorithm. This would render the selective statement

on Line 11 to also be part of the feature implementation. Additionally, the

algorithm would continue the analysis for variable y on Line 12 as it, again,

represents a function call with a relevant variable, that is passed.

Listing 3.12: Loop scenario with

1 int main () {
2 int feat A;

3

4 function(feat A,0);

5 function(0,feat A);

6 }
7 void function(int x, int y) {
8 if(x) {
9 [statement list] }

10

11 if(y)

12 function(x,y);

13 }

We do not include this individual inspection in our analysis because it simply

seems unlikely that a relevant configuration variable is passed to a function

through several different parameters.
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Data Flow

Additionally, it is necessary to trace where values of relevant variables might

travel. We found that many times they are either assigned to other variables,

or even passed on to functions in the form of parameters. This was also the

case for globally provided variables, probably as a result of different devel-

opers working on a single project or because priorly implemented methods

are being used without modification. Nevertheless, the analysis does require

some sort of data flow analysis to address this phenomenon. Fundamental

details on such examinations were described by Allen and Cocke [1976] and

usually based on prior control flow analysis.

Tracking the flow of certain variable values can be challenging. A value can

be passed on to another variable, which then becomes relevant to the analysis,

as well. Therefore, the analysis starts by focusing on a single variable but

might end up having to address several. This already bears complications.

The relevance of this new variable is not existing in all code fragments but

merely in the once executed after it has been assigned a significant value.

Example 3.13 shows how the relevance of a variable might change within a

code block. The variable we look at for the analysis is feat A. While the

conditional statement on Line 3 is not relevant, the same type of statement

becomes important in Line 7. The relevance, therefore, was transported from

feat A onto b at the assign statement on Line 6. Continued analysis must

account for variable b from that point on.
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Listing 3.13: Relevance of other variables

1 int feat A, int b;

2 [...]

3 if(b) {
4 [...]

5 }
6 b=feat A;

7 if(b) {
8 [...]

9 }

Because we use an incremental approach this problem is addressed automat-

ically. Data flow is implicitly determined with control flow by the algorithm.

The more accurate the control flow analysis is, the more accurate becomes

the analysis of the data flow.

3.3.4 Storing the Results

Throughout the analysis the algorithm gathers a list of statements and state-

ment blocks for each feature and each code file. This list also holds the cat-

egorization information for these statements or statement blocks. Because

this information is gathered incrementally, the particular form of storing the

results can be adjusted to a desired processing method. Therefore, the result

of a single analysis represents a granular categorization of statements within

a source code project.

3.4 Processing the Results

After the slicing analysis identified interconnected code branches and cate-

gorized these in a particular way, these results need to be used in a valuable

manner. There are several ways to make the collected and calculated data
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accessible to a developer. Generally, these can be categorized in two major

application scenarios. Either a visual representation is created, where results

are prepared and structured appropriately to support a developer during de-

velopment, maintenance, or simply for code understanding. Or, the identified

structures are used as input for other mechanisms which more or less auto-

matically transform the source code in a desired way and, therefore, become

an active part in the development process to increase efficiency.

3.4.1 Visual Representation

The identification and representation of concerns in source code can be a

valuable information for application developers. Aspect oriented program-

ming, for example, tries to provide developers with a method to thoroughly

apply separation of concerns when other paradigms lack the capabilities to do

so. Other approaches suggest tools and mechanics to restructure annotated

source code to create more comprehensible views of otherwise scattered code

fragments [Favre, 1996, Kästner, 2010]. Separation of concerns itself repre-

sents an abstract form of categorizing source code parts according to their

contextual roles. Therefore, the value of such supporting analytical develop-

ment tools is undisputed.

The kind of information that was gathered in the previous step has a similar

purpose and, thus, can be treated the same way. Code blocks have been

categorized according to their dependencies on particular code entities, i.e.

variables. A logical step, therefore, is to make these categories visible to

the user. This can be accomplished by coloring code blocks accordingly.

Working on a single concern is made easier because code fragments that are

contextually connected are visually represented in the same way. Kästner

et al. [2008] describe the use of background colors in the Colored Integrated

Development Environment (CIDE) to visualize feature affiliation of source code

lines. An example of this is shown in figure 3.2. For this purpose also a code

visualization tool, named Feature Commander (FC), can be used, which is
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Figure 3.2: The CIDE withen the Eclipse IDE. Kaestner [2010]

shown in detail within section 4.3 along with figure 4.2 depicting the result

visualization in the FC tool of a grep analysis.

Integrated into a development environment, i.e. Eclipse1, this kind of analy-

sis can enhance existing support tools, like highlighting references for certain

variables. In the current stage Eclipse simply marks statements that contain

the use of a certain preselected variable. While this kind of support only

presents direct dependencies of statements on a certain code entity, our anal-

ysis could provide additional dependencies to the user. The highlighting can

be extended to entire code blocks, whose execution relies on a single variable,

or even scattered code fragments that were identified to show a certain de-

gree of dependency. The potential value of introducing program dependency

graphs into development environments was already discussed by Ottenstein

and Ottenstein [1984]. The advantages would be relevant in editing, trans-

lation, debugging, and for the application of program metrics.

1 http://www.eclipse.org

http://www.eclipse.org
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The analysis maps source code parts to a variety of categories (3.3.1). Since

it is very complicated or even impossible to decide on what implication a

certain code structure has on the mapping, we end up with several cate-

gories that are related to a single concern. These subordinate separations

should be addressed in the visual representation as well. For instance, when

several concerns are displayed it seems convenient to chose similar colors for

subcategories that are believed to belong to a single concern. Another op-

tion would be to merge these subdivisions automatically by the application

of certain rules or manually by a developer. Experienced developers, ideally

knowledgeable of the existing code, could then complete the categorization.

With the uncertainties eliminated, the completed categorization could prove

to be a valid and more precise input for a possible source transformation.

3.4.2 Source Code Transformation

Another possibility to use the results of the feature-identification analysis

is to transform the according source code with the help of certain rules.

While, of course, it is possible to manually modify identified fragments with

a certain intent, a more interesting idea is an automatic approach. A simple

intention of a modification would be the removal of an entire feature. This

can be accomplished by simply taking the results from the previous phase

and delete lines accordingly, so they wont be present at compilation time.

This residual version of the program source code would in fact represent a

result that can be obtained from a partial evaluator 2.2.2. This specialized

version of the program is created by assigning a constant static input value

for the program, i.e. for a certain variable. This renders parts of the code

that were previously dynamic to be static. Thus, these parts of the code can

be transformed statically, which is called partial evaluation of a computa-

tion process. The transformation mentioned in the last paragraph would be

accomplished by assigning the value false or 0, respectively, to a feature en-

abling variable. All affected code fragments can be transformed accordingly.
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On the other hand, enabling the feature would also create a residual version

by assigning the value true or a value greater than 1, respectively, to the

according variable.

Another more flexible way is to use annotations, i.e. preprocessor directives,

to switch code blocks on or off for compilation. This represents an approach

to turn the dynamic, or run-time, variability, into a static, or compile time,

variability. Features that were dynamically enabled or disabled during the

execution of a program on the basis of variable values are now turned to fea-

tures that are enabled or disabled during compilation. Resulting programs,

then, either do not contain any of the implementation statements for a feature

or always include them, thus, always carrying the behavior that was existent

in the original program with the configuration for a feature enabled. For this

purpose research within the field of refactoring [Fowler and Beck, 1999] is

valuable, because it can provide transformation frameworks and rules that

leave original behavior intact. Particularly refactoring annotations [Tansey

and Tilevich, 2008] seems to be a suitable application because it handles

similar scenarios to the one proposed here.

The reasons for such a transformation can be diverse. One possible scenario

could be the intention to reduce the size of compiled programs. A neces-

sity for this can be found in software development for embedded systems or

mobile devices. Due to limited resources available, usually, these fields show

critical restrictions on program efficiency, performance, and size. Unneces-

sary code fragments belonging to certain features can be more easily stripped

out if they have been identified priorly. This results in less code, which lastly

leads to a smaller binary file and less memory being needed during execution.

An additional factor is the reduced amount of necessary control statements.

After the transformation all these statements are replaced by control mech-

anisms executed at the time of compilation. This ultimately decreases the

number of necessary evaluation procedures being performed during the exe-

cution of the resulting program, which increases the performance.
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Independent from the quality of the results of the particular analysis dis-

cussed in this thesis, it is necessary to make certain claims upon how trans-

formation must be performed. An automation of this process should also

be considered and further investigated to determine the potential of this ap-

plication case. This is not a trivial task because it needs to be determined,

which code artifacts must be annotated for a certain static variant and which

need to remain in the source code. A major concern for this is that the re-

sulting source code needs to behave in the same way as it did prior to the

modification, with the exception of the extracted feature itself.

By annotating and, thus, disabling the definitions and declarations of the

relevant variable selected and identified in earlier steps we need to modify

the rest of the code accordingly. All dependencies towards that particular

variable need to be addressed in the same way. The annotation process is

completed when all dependent code statements were also annotated accord-

ingly. The modified code with the newly created static variability needs to

compile and run correctly either way, with and without the feature enabled.

The following examples show how transformation would be performed in the

grep project when the case sensitity function is to be turned into static vari-

ability. All code snippets take place in the file ”main.c”. Example 3.14 shows

code fragments that need to be removed entirely and example 3.16 displays

more complex code transformations that would be necessary to maintain the

same behavior
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Listing 3.14: Before removal of case sensitivity.

1 int match icase;

2 [...]

3 while ((opt = get nondigit option ...

4 switch (opt)

5 [...]

6 case ’i’:

7 case ’y’: /∗ For old−timers . . . ∗/
8 match icase = 1;

9 break;

10 [...]

Listing 3.15: After removal of case sensitivity.

1 [...]

2 while ((opt = get nondigit option ...

3 switch (opt)

4 [...]
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Listing 3.16: Before removal of case sensitivity (if).

1 if (match icase

2 #ifdef MBS SUPPORT

3 && MB CUR MAX == 1

4 #endif

5 )

6 {
7 int i = lim − beg;

8

9 ibeg = buf = xmalloc(i);

10 while (−−i >= 0)

11 buf[i] = tolower((unsigned char) beg[i]);

12 }
13 else

14 {
15 buf = NULL;

16 ibeg = beg;

17 }

Listing 3.17: After removal of case sensitivity (if).

1 #IFDEF FEAT ICASE

2 if(MB CUR MAX == 1) {
3 int i = lim − beg;

4

5 ibeg = buf = xmalloc(i);

6 while (−−i >= 0)

7 buf[i] = tolower((unsigned char) beg[i]);

8 } else {
9 buf = NULL;

10 ibeg = beg;

11 }
12 #ELSE

13 buf = NULL;

14 ibeg = beg;

15 #ENDIF
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3.5 Summary

This chapter introduces our analysis approach in detail, which allows the

identification of variability in existing source code and an appropriate pre-

sentation of the results. First, the general process, which is made up of four

phases, is described. Starting with the selection of a particular program be-

havior, i.e. a configuration option, a controlling variable for this variability

is identified manually.

This variable, then, resembles the starting point for an automatic analysis al-

gorithm that restores traceability links for the configuration option to source

code fragments. The incremental naive algorithm is based on the concept of

slicing and allows the classification of source code statements in three distin-

guished categories that either implicate a direct affiliation with a feature, no

affiliation, or a state of uncertainty. It traverses the AST of a given source

code and processes code entities like control statements and functions in a

way that control and data flow information can be obtained.

Lastly, these categorization information has to be processed in a certain

way, in order to make it valuable to a certain practical application. Two

of these are discussed in detail, visual representation, on one side, and code

transformation, on the other.



Chapter 4

Implementation

This chapter will cover the implementation of a prototypical tool that al-

lows testing and evaluating our approach to a certain extent on real source

code examples. Because of the complexity of the problem and certain time

restrictions, we were not able to include all ideas mentioned in the concept

explained in chapter 3. One of the main restrictions is the focus on ANSI C

source code.

While parsing is handled by the PUMA Framework, which is capable of pro-

cessing C++, our analysis will only handle basic C statements. Technically

C++ can be processed as well, but since control flow and data flow are more

complex within the object oriented paradigm, we cannot make any state-

ments on how well the algorithm would perform with it.

4.1 Setting the Scene

Before any analysis can take place, phase one 3.1 and two 3.2 have to be

carried out manually. Because the input for the analysis is merely a set

of variable names, these have to be selected, identified, and provided in a

particular form in advance.
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The input for the tool is provided in a file, where each variable name is

put onto a line, as displayed in example 4.1. This file needs to be named

”featvars” and put into the folder that the tool is executed in.

Listing 4.1: Example of the featvars file for a set of variables in the grep

project.

1 match icase

2 show help

3 color option

4 suppress errors

Additionally, usual parsing parameters need to be provided for the PUMA

framework. These configurations are needed in certain cases to allow a proper

parsing process. Fortunately, most of the needed options can be provided

automatically. This is accomplished by using the configuration tool of the

AspectC++ project, ac++, with the parameter ”--gen config”. This con-

figuration file, usually named puma.config, must be provided to the annota-

tor tool as a parameter. A usual execution, therefore, contains a ”--config

puma.config” parameter. To complete the prerequisites, include parame-

ters might be necessary in certain occasions, usually when the project code

is scattered throughout several directories. These are either provided in the

execution command or added manually to the ”puma.config” file.

4.2 Using the PUMA Framework

This section covers the role of the PUMA library for the prototypical imple-

mentation of the analysis tool. Generally, the tasks covered can be separated

into file handling and parsing 4.2.1, which creates the AST of the source

code, establishing the semantic database, which holds further information

about relations of code entities, and providing a systematic transformation

framework to easily alter the AST and reproduce the according code.
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4.2.1 Parsing

We use PUMAs project class to hold all necessary source files. This also has

the advantage that necessary include files are automatically handled, which

prevents unnecessary redundant parsing. A project is linked to a certain

root directory, which we provide with the execution command line. A file

iterator, which is included in the PUMA framework, further provides us with

necessary file handling tools. Combined with file name filters we can track

all files that make up a project.

Once the relevant files have been identified, which is done by filtering out

all files with a certain file extension, here ”.c”, the parsing process begins.

All relevant files are read and a representation in the form of an AST is

generated. Because PUMA does have checking mechanics already in place,

all files need to be in proper C format. Errors will result in a termination of

the parsing process, which might leave the AST in an incomplete state.

Since the framework also takes care of the preprocessing directives, which is

useful to further expand the analysis’ coverage, only the parts of the source

code become part of the AST that belong to the static configuration. There-

fore, code fragments enclosed in #ifdef statements are not included in the

analysis if the particular macro was not defined in this configuration.

The created ASTs are held for reference within the memory in a vector

structure. These data structures, named translation units, consist of a set of

linked source code objects representing either abstract constructs, which de-

fine grammatical subdivisions or the tokens themselves, usually at the lower

end of the hierarchical structure. Typically, the first entity of a translation

unit is the file itself, underneath which the further grammatical constituents

appear as children. These objects hold several properties including the type,

location, the scope, or related other statements.
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Example 4.2 shows a function definition from the grep source code. Under-

neath a view of the resulting AST is located. Each line represents a node,

while indents reflects the hierarchy.

Listing 4.2: Source code example (grep).

1 static void suppressible error (char const ∗mesg, int errnum)

2 {
3 if (! suppress errors)

4 error (0, errnum, ”%s”, mesg);

5 errseen = 1;

6 }

1 FctDeclarator

2 SimpleName suppressible_error

3 Token "suppressible_error"

4 ArgDeclList

5 Token "("

6 ArgDecl

7 DeclSpecSeq

8 PrimDeclSpec

9 Token "char"

10 PrimDeclSpec

11 Token "const"

12 PtrDeclarator

13 Token "*"

14 SimpleName mesg

15 Token "mesg"

16 Token ","

17 ArgDecl

18 DeclSpecSeq

19 PrimDeclSpec

20 Token "int"

21 SimpleName errnum

22 Token "errnum"

23 Token ")"

24 CmpdStmt

25 Token "{"

26 IfStmt

27 Token "if"

28 Token "("

29 UnaryExpr

30 Token "!"

31 SimpleName suppress_errors

32 Token "suppress_errors"

1 Token ")"

2 ExprStmt

3 CallExpr

4 SimpleName error

5 Token "error"

6 ExprList

7 Token "("

8 Integer 0

9 Token "0"

10 Token ","

11 SimpleName errnum

12 Token "errnum"

13 Token ","

14 ImplicitCast

15 String "%s" [2]

16 Token ""%s""

17 Token ","

18 SimpleName mesg

19 Token "mesg"

20 Token ")"

21 Token ";"

22 ExprStmt

23 BinaryExpr

24 SimpleName errseen

25 Token "errseen"

26 Token "="

27 Integer 1

28 Token "1"

29 Token ";"

30 Token "}"

31

32 [...]

Figure 4.1: AST by PUMA
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4.2.2 The Semantic Database

An essential part of the library to this implementation is the semantic

database that can be created. It is part of a semantic checking functionality

that gathers information from the previously obtained AST, puts it into a

more accessible data structure, and, lastly, uses this to do basic semantic

checks to assure the correctness of the C or C++ source code. This assess-

ment includes type checks, definition checks, or the correct application of

GOTO and return-statements, respectively.

The database contains all existing source code objects, like the files them-

selves, classes, functions, unions, and even variables. Additionally, it holds

more abstract constructs, like scopes, to reconstruct cohesive code blocks

corresponding to functions, compound statements, or other similar artifacts.

Conveniently, all those objects are organized within easily accessible con-

tainer objects, which also contain references to the actual objects in the

corresponding AST. To increase the usefulness for analysis purposes even

more, each of the database objects also contains a specific set of properties.

For instance, objects representing functions hold data about return types, pa-

rameters, or if it is a static definition. Besides these data structures PUMA

also offers a variety of functions to analyze expressions to a certain degree or

locate constructs, like variable definitions.

4.3 Putting it All Together

Because we are not only dealing with single files, but rather entire projects,

we have to gather certain additional information in advance. PUMA creates

translation units and according databases separately for each file. Therefore,

we create a combined database with all necessary objects first, which are

function definitions and external variables.
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4.3.1 Prepare Required Data Structures

The former are needed to be able to follow the control flow of the execution

to a certain degree. In many cases the ”main” function marks the starting

point of execution. Its definition can be located in any file and needs to be

located first. Additionally, function calls can be made across files, as well.

Thus, creating a unified function database is a necessary step to provide the

AST parts with function definitions to the algorithm in an efficient way.

Global variables are another important thing to be analyzed in advance.

Given the premise that the variable that is interesting to this analysis turns

out to be a global one, each code file that uses it has to be analyzed in

its entirety right away. The holistic scope of these variables make the con-

sideration of control flow unnecessary, at least for the initial consideration.

Practically, we do this by matching the variable names given as input to all

external variables that exist in the project files.

4.3.2 Traversing the AST

As mentioned, we have two possible starting scenarios, either any file that

uses the feature variable with a global state or a main-function. If the former

is the case, the latter becomes unnecessary. We can claim this because in that

case the main function is also checked automatically, if it actually uses this

global variable. This renders a separate analysis run from the main-function

to be redundant and unnecessary, respectively.

Initialization of Algorithm

We created a class that allows us to look up of function names including their

definition nodes and initialize the actual recursive algorithm. This class is

necessary to set the boundaries of a run. It holds the name of the variable in
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focus, the starting node of the AST, and several other parameters, i.e. if the

variables scope is global or not. This class will always be the starting point

for a recursive call upon the investigation of other variables that relevance

has been transferred to.

If the variable in focus turns out to have a global scope, a database has been

created with all necessary files actually using this variable. This initialization

class then starts the analysis on each file. In the case that the feature variable

is not used globally, the starting function is located in the function database,

and the according AST is visited by the invocation of the recursive analysis

algorithm.

Recursive Algorithm

This class uses recursion to visit all nodes, which mostly represent statements

on the main level in the hierarchy and individual components of these state-

ments in lower levels. The nodes are visited by a customized class, which

was derived from the existing visitor implementation that does the seman-

tic checks and creates the semantic database. This implementation applies

the visitor design pattern [Palsberg and Jay, 1998], which defines new oper-

ations for several object structures without the necessity of having to alter

the object classes.

The recursion is created by a certain function, named visit(). It consists

of several rules represented by control statements that check the individual

type of the particular node passed to it. If necessary, it descends into it

by calling a function that corresponds to the individual node type. These

functions can then be used to process the individual statements or call the

visit()-function again with a child node passed as a parameter.
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The individual statement functions represent the perfect point to implement

our analysis processes because they allow us to treat code entities individually

or disregard others that are irrelevant for our investigation.

The relevant nodes we determine and process are the according AST el-

ements representing the control structures that were described in Section

3.3.3. Therefore, appropriate operations handle the statement categorization

for all selective and iterative control statements and one operation restarts

the analysis algorithm from AST elements that represent function definitions

after the according function calls were processed.

4.3.3 Using the Results

To use the results, which are basically a set of categorized code blocks, we

decided to apply a visual property to the original source code files. To es-

tablish this, we decided to use a prototype of a software product line IDE,

called Feature Commander (FC)1. It is intended to support programmers in

the development process by applying visual highlighting to C source code,

which helps the user to find feature-based files or code fragments.

While it is mainly used to highlight feature code, which is usually annotated

accordingly, a use for any other type of highlighting is possible. FC uses

several files as input to display the source code in a structured manner.

The results from our analysis, therefore, are drawn from the data structure

after the algorithm finished and used to generate the appropriate files to be

displayed in the FC.

The necessary files are:

models.d: This file comprises the feature model of all features that exist in

the source code. It also describes the relationships of these features. Depen-

1 http://wwwiti.cs.uni-magdeburg.de/~feigensp/xenomai/

http://wwwiti.cs.uni-magdeburg.de/~feigensp/xenomai/
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dencies and conditions are usually described in the form of rules. Because we

do not have these relationships in our consideration, we only generate a min-

imal file. For FC to function, we, therefore, just add all the entries we need

to the project and treat them equally. Each category and variable combi-

nation is included, resulting in three possible classifications for each feature,

representing a positive, negative, or uncertain possible affiliation with the

feature.

annotations.xml: This is the standard file for FC that holds the highlighting

information for the source code. The XML file contains several necessary

elements that define the project, folders, code files, and, lastly, the individual

code fragments. The <project>-element simply defines an arbitrary name for

the project. It contains a hierarchy of <folder>- and <file>-tags, that hold

the according name as an attribute and resemble the physical structure of the

source code project on file system level. Within these elements the individual

code blocks are contained. They are represented by the <fragment>-element

and hold specific beginning and ending line numbers that define coherent

lines forming a relevant code block. It also holds a <feature>-element, that

defines the name of the feature name and category combination.

Example 4.3 shows a possible file structure taken from the grep-project. The

prefix ”CONFIG ” is an arbitrary prefix, similar to conventions used with

annotations, which are sometimes followed by the category a certain code

block was assigned to. The categories we explicitly name are ”NOT” resem-

bling the case where a code block must not belong to a certain feature, and

”POSSIBLE” referring to all fragments that could not clearly be mapped.
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All other statements belong to the actual concern and have no extra tag.

Listing 4.3: Structure of the file annotations.xml for a project named ”Grep”.

1 <project name=”Grep”>

2 <folder name=”src”>

3 <file name=”dfa.c” length=”0”></file>

4 <file name=”dfasearch.c” length=”0”>

5 <fragment startline=”71” endline=”75”>

6 <feature>CONFIG POSSIBLE match icase</feature>

7 </fragment>

8 <fragment startline=”125” endline=”126”>

9 <feature>CONFIG match icase</feature>

10 </fragment>

11 [...]

12 <file name=”main.c” length=”0”>

13 <fragment startline=”381” endline=”382”>

14 <feature>CONFIG NOT suppress errors</feature>

15 </fragment>

16 [...]

Altogether, the source code files and the two configuration files described

above form a presentable project that can be displayed in the FC software.

Figure 4.2 shows results we drew from the grep project upon several identified

feature variables. The main application screen shows three different views:

the explorer view, the source code view, and the feature model view.

The first is located on the left and displays the project structure in the

form of a hierarchy of folders and files. These are additionally visualized by

rectangles that display the existence of features, either for each individual

file, or accumulated for the folders. Because this application was designed

for annotated features in source code, certain visualizations are not entirely

adequate for our use. In example, the feature bars in the explorer view do not

accommodate for lines that have not been assigned to features, thus, leaving

the impression features are taking up entire files when they really are not.

Nonetheless, this problem can surely be addressed with additional effort.
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Figure 4.2: Feature Commander showing several identified concerns in the
grep-project.

The view located in the center is called the source code view. It displays the

actual source code located in the files that were opened from the explorer

view. Additionally, it highlights feature affiliated lines of code accordingly.

To enhance readability, the transparency of the background colors can be

adjusted[Feigenspan et al., 2011]. Bars on both sides of the view indicate

where within the file feature code is present. These also indicate when code

blocks were assigned to several different features, which is only displayed by

one background in the source file to avoid confusion.

Lastly, the feature model view is located on the right side of the screen. It

shows all existing features in a tree layout. Because we are not creating

feature hierarchies, the tree has one level only for our analysis. It also allows

for assigning colors to the features individually, which is directly represented

in the other views, as well. This leaves the user in charge to more efficiently

locate feature related code in the project.
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4.4 Summary

With the application of the PUMA parsing framework, we were able to im-

plement a naive and conservative analysis algorithm for automatic variability

identification. The algorithm incrementally traverses the AST that is created

by the parsing functionality. With the help of additional information pro-

vided by the semantic database, relevant control statements are processed

and categorized. Thus, this tool is able to parse C source code files reliably

and, lastly, provides the results in a way that can be displayed in the FC tool

for comfortable code navigation.



Chapter 5

Evaluation

In this chapter, we evaluate the results within the context of manual exe-

cution of the same task. It is not possible to determine accuracy or com-

pleteness for our tool because there is not a single correct or true answer

on what feature code in particular projects is. If certain parts belong to a

feature implementation relies on the intentions of particular developers and

individual interpretation.

Nonetheless, we can try to look at results we obtained from several projects

and compare them, i.e., to a very simple manual approach that uses text

matching to look for the same code parts with certain variable names in

them. This particularly lets us check the results for the existence of false

positives and false negatives, because they mark code points that have either

been marked falsely or have been missed by the tool, although, they should

have been marked accordingly.

5.1 Test Cases

We tested our tool on three open source projects. Grep 1 is a command-line

text and pattern search utility that was originally written for UNIX. The

vsftpd 2 project is an File Transfer Protocol (FTP) server implementation that

1 http://www.gnu.org/s/grep/
2 https://security.appspot.com/vsftpd.html

http://www.gnu.org/s/grep/
https://security.appspot.com/vsftpd.html
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grep vsftpd ngIRCd

Version 2.6.1 2.3.4 0.17.1

Code Files in whole project 238 97 84

LOC of whole project ≈ 39000 ≈ 15500 ≈ 16500

Files in main source folder 19 97 65

LOC of main source folder ≈ 6100 ≈ 15500 ≈ 14000

# of Functions in analysis 134 738 537

Table 5.1: Properties of the three open source projects.

was developed with the focus on performance, reliability, and security. The

third program is called ngIRCd 3 and represents an Internet Relay Chat (IRC)

server application that was built from scratch, unlike many other daemons

that are based on existing libraries from the original developers.

Table 5.1 shows general properties of the projects. We distinguish between

code that is directly part of the project because the according code pieces are

gathered in a folder, and code parts that we believe to be supportive libraries

because they are kept at separate locations from the original project code

files. Running the tool on both variations created the same results, which

further supported our assumption.

Within all the projects we were able to identify almost all occurrences of cer-

tain option variables and their covered dependency variables, that we can also

find with a standard manual text matching approach. False negatives mostly

resulted from static annotations that contradicted with the set up configura-

tion and are processed by the PUMA framework automatically. Example 5.1

shows such a code part with the identified feature variable case fold, that

directly represents match icase from the grep code. The first code block is

correctly marked, while the second starting on Line 9 is ignored.

3 http://ngircd.barton.de/

http://ngircd.barton.de/
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Listing 5.1: Example of ignored feature code as a result of static variability

that is resolved by PUMA automatically.

1 if (case fold && ISALPHA(c))

2 {
3 zeroset(ccl);

4 setbit case fold (c, ccl);

5 return lasttok = CSET + charclass index(ccl);

6 }
7 [...]

8 #ifndef GREP

9 if (case fold && iswalpha(wctok))

10 {
11 addtok wc (towupper(wctok));

12 addtok (OR);

13 }
14 #endif

False positives were also encountered on the same project. Especially the

ternary operator seems to be problematic with the use of PUMAs semantic

database. Example 5.2 shows a code sample that led to the creation of

falsely marked code fragments. The variable case fold, here, is used as the

decision variable for the if expression leading to a case where either the result

of towlower(wctok) or the value of wctok itself is passed to the function.

Unfortunately, the parsing framework identifies case fold itself as the pa-

rameter that is passed and replicates this false relationship in the semantic

database. This leads to a false investigation of the function addtok wc(),

false dependency assumptions on its local variables, and, at the end, falsely

identified code pieces.

Listing 5.2: Example of problematic function call resulting in false depen-

dency investigation.

1 addtok wc (case fold ? towlower(wctok) : wctok);
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In all projects the identification of feature code related to boolean configu-

ration variables seemed very accurate. In all tested scenarios the occurred

false positives and false negatives could be traced back to similar scenarios as

the ones mentioned above. The application on configuration variables that

hold integer or string values did also create useful results, comparable to

the ones that can be obtained by manual text pattern search. As expected,

though, the classification here tends to result in the ”possibly belonging to

the feature” category in almost all cases. This results from the fact that

these variables are more prone to be used in complex conditional statements,

which are usually classified in that way by our algorithm. Also, these vari-

ables more often are passed to functions or assigned to different variables,

which increases the number of possible false positives because these values

are actually processed, opposed to the simple boolean values.

Using this tool to analyze entire code projects takes only several seconds.

Here, the parsing process consumes the most time usually, as well as the

creation of the semantic database. Because this only has to be done once,

analyzing several features does not increase the total time dramatically.

The results are directly formatted and written into according files, which can

be displayed flawlessly in the FC application. These projects are displayed in

their entirety, and according views are created as explained earlier in section

4.2.

This part of the evaluation shows that the prototype is capable of handling

entire application projects. The analysis produces quick results that can be

viewed instantly, opening several perspectives to inspect the application code

with the desired feature code highlighted.
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5.2 Case Study

To further determine the value and potential of our approach we decided

to conduct a small experiment, which does not provide empirical results

but rather represents an interview with two test subjects that have good

knowledge in computer science and C programming. These users had the task

to identify feature code within two test projects, grep and vsftpd, manually.

We did not give them any detailed instructions on what steps to perform,

but rather wanted to find out what approach would be used, what detailed

dependencies would be considered, and, finally, how efficient the task could

be performed if certain configuration options were given.

Because of this, measuring time to compare the approaches does not make

sense. The results presented here are qualitative observations that can help us

to make according claims rather than measuring and comparing quantitative

values.

The first interesting observation we were able to make was that without any

direct detailed description all of the test persons picked a similar approach

to the first analysis process steps. Especially, the task of finding the configu-

ration variable was solved exactly the same way. Thus, all persons were able

to find the relevant feature variable very quickly. This could also be the case

because both projects used clearly separated and trivial ways of processing

configuration parameters.

In the second phase also similar approaches could be identified. All intervie-

wees did use some sort of text search utilities to look for occurrences of the

feature variables. While one person chose to manually search the code files

one by one, another used a combination of grep and pipe UNIX console com-

mands. Another option observed was the code highlighting and referencing

capabilities of the Eclipse IDE.
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In all constellations the test subjects noted the amount of repetitive tasks

of searching for an occurrence and marking it according to the nature of the

statement. If-statements were usually quickly marked as belonging to the

feature when the conditions were trivial, or classified as uncertain when the

expressions became more complex. Especially, when the analysis came to

points where dependencies needed to be traced, i.e. due to variables being

passed to functions, a manual inspection became more and more confusing.

For instance, keeping track of these dependency trails turned out to be a

frustrating practice because non of the used tools provided possibilities to

keep record of visited code parts. These more or less repetitive tasks con-

sumed several minutes of time - usually 10 to 15 minutes per feature - and

eventually led to very similar approximating results.

While most of the results seemed very similar, two scenarios were identified

by two people that our approach cannot process appropriately. Both of

them require the evaluation of values that certain variables hold and the

consequences these assigned values have on further execution of the source

code.

In the first example, 5.2, the variable syntax bits is set to a certain value in

dependence of the value in match icase. This value ultimately gets trans-

ferred to the variable syntax bits set, which also has impact on the control

flow of this program. Thus, the control statement on Line 5 is directly de-

pendent on match icase and should be marked accordingly.

1 if (match icase)

2 syntax bits |= RE ICASE;

3 re set syntax (syntax bits);

4 [...]

5 if (! syntax bits)

6 dfaerror( (”no syntax specified”));

A different scenario is shown in example 5.2. Here the expression belonging

to the if-statement in Line 1 directly influences the statement block un-
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derneath. The condition obviously resolves to true whenever match icase

holds a value equivalent to false. This means that the return-statement in

the next Line is executed and the following code block is never reached. Vice

versa, whenever match icase holds the value true, the return-statement is

mostly not executed rendering the following code block to be necessary. Even

though the condition holds a more complex expression, a direct affiliation of

the code block starting on Line 4 and match icase exists. Therefore, a more

correct result should highlight that code block accordingly.

1 if (MB CUR MAX == 1 || !match icase)

2 return execute(buf, size, match size, start ptr);

3

4 for (line next = buf; line next < buf + size; )

5 {
6 const char ∗line buf = line next;

7 const char ∗line end = memchr (line buf, eolbyte, (buf + size) − line buf);

8 if (line end == NULL)

9 line next = line end = buf + size;

10 else

11 line next = line end + 1;

12

13 if (start ptr && start ptr >= line end)

14 continue;

15

16 result = execute (line buf, line next − line buf, match size, start ptr);

17 if (result != (size t) −1)

18 return (line buf − buf) + result;

19 }
20

21 return (size t) −1;

This interview shows clearly that our analysis process has similarities with

the approach developers would take. Additionally, we can claim that the

prototype can create valid results in less time than what an entire manual

execution can accomplish. Because there are scenarios that are prone to

create errors, a subsequent investigation of the results is necessary. This

supports the current intention of using the tool as a support for developers
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in maintenance and code comprehension tasks. This case study also showed

where the limitations of this simple prototype algorithm are. The problem-

atic scenarios that were identified in the context of this interview also point

to the assumption that the application of partial evaluation and abstract

interpretation techniques could improve the accuracy of the approach.



Chapter 6

Problems and Future Work

Slicing and the related static analysis concepts span a wide ranging and com-

plex research field. The restrictions that come with undecidable properties

of source code analysis (see 2.2.1), of course, also apply to the identifica-

tion of features, which relies on it. As a result, it was not, and probably

never will be, possible to achieve completely accurate analysis results from

the prototypical implementation.

Thus, our focus was to create a prototype as a proof of concept. This sec-

tion, therefore, gives a brief overview of the problems that arose during the

implementation. On one hand, these are issues related to the approximation

and, on the other hand, technical limitations in the PUMA framework.

6.1 Problems Concerning Approximations

The procedural programming language C, which is significantly less complex

than its object-oriented extension C++, already holds challenges for analysis

tasks. Therefore, we had to make restrictive decisions for the initial imple-

mentation to limit the amount of development, which resulted in even less

accurate approximations at the end. Nonetheless, some of these restrictions

are not entirely inevitable. The implementation of more complex static anal-
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ysis approaches or the usage of additional information can increase accuracy

to a certain degree.

6.1.1 Dependency Resulting from Variable Manipula-

tion

A major problem in determining feature-related source code fragments is

the determination of range that certain dependencies may have. While some

dependencies are clear, others are very subtle and rely on extensive evaluation

of scopes, possible values held by variables at particular points, and special

code structures. During the implementation phase we noticed that with our

simple algorithm we are not able to cope with a certain type of dependency.

One case is created when data items are modified within the source code

fragments of a feature which might have an impact on control flow during

further execution. A variable modification within the feature code is directly

dependent on the fact if the feature is enabled and, thus, the according code

is executed. Following control statements that rely on these variables can

only be mapped to features by investigating the possible values that this

variable can hold at that particular point.

Example 6.1 shows such a scenario. In a subtle way the control was passed

from feat A to the data item datatype. A programmer can notice the direct

relationship between feat A and and the compound statement on Line 7,

though, he cannot directly make a decision about the categorization of the

compound statement. But, our prototype cannot cope with this dependency

because it does not consider the values that any of the data items can hold at

that time. These are necessary to make any assumptions about the affiliation

of this code part with feature A. A programmer also needs to check this

dependency by determining possible values for this variable manually. In the

case that KEY VALUE can only be assigned to datatype within this displayed
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part of feature code, the compound statement can directly be mapped to

feature A.

Listing 6.1: Example of dependency on data values.

1 if(feat A) {
2 datatype=KEY VALUE;

3 [...]

4 }
5

6 if(datatype==KEY VALUE) {
7 [compound statement]

8 }

Even with more precise dependency analyses one can only determine that a

relationship exists, not the nature of the dependency. A simple method to

at least address this relationship would be to gather all variables that are

modified within feature code and have them analyzed in more detail in a

subsequent step.

To cope with this kind of problem in a more beneficial way, practical solutions

need to incorporate some kind of value analysis. Existing methods to do this

can be found in the field of partial evaluation or symbolic execution [King,

1976] (see 2.2.2). With a theoretical execution of certain code parts more

precise claims can be made, which result in more accurate categorizations.

We found potential solutions like the Frama-C1 analysis framework to be a

valuable tools to look at in the future. Multiple extensions allow to determine

possible values that variables can hold at specific points in the code. There-

fore, this information can be used to compare potential values in the variable

datatype within the first and the second compound statement, which, when

compared, show the dependency clearly.

1 http://frama-c.com/

http://frama-c.com/
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Because Frama-C was written in the programming language OCaml2, it is not

easy to integrate it into our analysis prototype. While it showed accurate

and, therefore, interesting results on simple examples, we were not able to

use it for bigger software projects, due to parsing errors and unresolved file

dependencies. Nonetheless, we found that partial evaluations are possible to

a certain extent, which should be looked at in the future to possibly further

enhance our prototype.

6.1.2 Increasing Accuracy of Control Flow Informa-

tion

As mentioned in chapter 3, we are not able to process the more complex

control flow mechanisms, like function pointers or GOTO-statements. Even

though their use within the code is quite simple the term complex, here,

refers to the challenging task of analyzing possible effects and dependencies.

Function pointers represent a useful mechanism to implement dynamic vari-

ability and, thus, should be further investigated. Pointer analysis approaches

[Ghiya and Hendren, 1998, Wilson and Lam, 1995] can be used to address

the problem that this concept might have on relevant code parts in our

analysis algorithm. Because the effects and consequences the application

of pointer can have on a program are very diverse, an independent explo-

ration of these mechanisms in the context of our approach could prove to

be valuable. We did find some application of this control mechanism in the

investigated projects, but they were not related to any of the configuration

variables that we looked at. A future step should first evaluate how common

this practice is for the implementation of dynamic variability. If it proves to

be beneficial, a suitable pointer analysis approach needs to be added to the

analysis algorithm.

2 http://caml.inria.fr/ocaml/index.en.html

http://caml.inria.fr/ocaml/index.en.html
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GOTO-statements create a big challenge in terms of determining the scope of

effect and the exact conditions under which certain code parts are reached.

This problem is closely related to an issue that arises from the use of multiple

return-statements. An observed scenario is described in section 5.2 (example

5.2). Similar to the problem in section 6.1.1 possible solutions require the

application of partial evaluation to determine the exact conditions.

Further, static analysis tools, like GNU cflow, already provide more precise

control flow information on C programs than what we achieve in our proto-

type. The inclusion of such analysis results from external tools could increase

the accuracy of our analysis. Future work should investigate and evaluate

how our approach could benefit from better control flow analysis methods, ei-

ther provided externally by other tools or internally by improving the current

algorithm.

6.2 Parsing Problems

The PUMA framework allows us to parse ANSI C code and provides sev-

eral built-in mechanisms to deal with semantics and preprocessor directives.

During our tests we encountered several problems that we could trace back

to inconsistencies in the parsing libraries implementation.

With this framework we are limited to a single code configuration that we

can analyze. PUMA does preprocess the code automatically, which also

means that certain compile-time configurations cannot be included. Specif-

ically, we found that many projects use a certain header file (mostly named

”config.h”) that holds all necessary preprocessor definitions. As a result our

parser also processes this configuration, which means only the current par-

ticular static variant defined by the according preprossor directives is parsed.

Therefore, we are not able to analyze the entire source code structure includ-
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ing all possible static variants unless a configuration exists that comprises all

of them at once.

Example 6.2 shows such a structure. In a case where both annotated struc-

tures cannot be enabled at the same time, i.e. because they implement two

alternative static variants. Within a configuration file either define1 or

define2 is defined, and, therefore, the corresponding code blocks will be in-

cluded in the parsing process. Code blocks annotated with the other define

name will be left out and code blocks that potentially belong to a feature

implementation cannot be identified.

Listing 6.2: Compile-time variability that is not parsable by the prototype.

1 #ifdef define1

2 if(feat A) {...}
3 #endif

4

5 #ifdef define2

6 if(feat A) {...}
7 #endif

Within our evaluation we also noticed issues that are related to the use of the

ternary operator within condition expressions. In the source code example

5.1 we observed unexpected behavior from the parsing library concerning the

creation of the semantic database. To address this problem the developers of

the framework should be contacted or an individual fix needs to be developed.

Lastly, because the PUMA library relies on a configuration file, the quality

of the parsing process strongly depends on how suited a configuration is for

a particular source code. We found several C projects that used slightly

different dialects, which was either not compatible with the PUMA library or

required a specific configuration flag that was not automatically determined

by ag++. Thus, parsing of these projects resulted in errors, which generates

incomplete ASTs for the analysis process.
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Such a project was the Berkely DB3, which partially uses the function declara-

tion syntax of original C, which is different to the one in ANSI C. Example 6.3

shows the difference in syntax. With appropriate configuration adjustments

the PUMA framework would be able to cope with this syntax, yet, we were

not able to find it due to the very limited documentation that is available for

PUMA at this point in time.

Listing 6.3: Difference in function definition syntax between original C and

ANSI C.

1 /∗ original C ∗/
2 int

3 functionName( param1, param2 ) ;

4 char ∗param1;

5 int param2;

6 { ... }
7

8 /∗ ANSI C ∗/
9 int

10 functionName( char ∗param1, int param2 );

11 { ... }

To improve the compatibility of our tool one of the first future steps should in-

clude a more precise investigation of the configuration options for the PUMA

library. This ensures that more projects can be reliably parsed and analyzed

in the future.

3 http://www.oracle.com/technetwork/database/berkeleydb/overview/index.

html

http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/berkeleydb/overview/index.html
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Related Work

This thesis presents an analysis process to automatically identify selected

features in program code. To accomplish this, we combine several steps and

analysis approaches. This chapter represents a brief overview of multiple

related concepts and research fields.

Program Configuration Analysis. Because we focus on configurable fea-

tures within software, the effects those have on program behavior is also an

interesting property to consider. Symbolic Evaluation allows the analysis of

these relationships and helps to reduce the amount of configuration scenarios

that need to be considered [Reisner et al., 2010].

To further automate process steps, approaches for automatic extraction of

configuration options from program code, as proposed by Rabkin and Katz

[2011], seem valuable. Even though this concept is not directly tailored to

C it does pose great insight into this area of research and might provide the

basis for further investigations.

Mining Approaches. Several different approaches and techniques for in-

vestigating legacy code exist, but they operate on different levels of granular-

ity, on different inputs, generate different results, or follow slightly different

goals and intentions. These are used with several intentions in mind, like

code reuse, maintenance, or comprehension. With all differences and simi-

larities, it is not easy to categorize all of these approaches clearly. Often a
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major difference can be identified in what is investigated in the according

analysis.

One concept that shows several similarities to the analysis introduced in

this thesis is called Variability Mining [Kästner et al., 2011]. It describes

four steps that represent a general process to identify feature related pro-

gram fragments in legacy code. In contrast to our approach, it uses domain

knowledge to enhance further investigations.

Feature Mining Dreiling [2010] is another similar concept that specifically

uses a feature model and several extraction techniques to migrate legacy

code towards software product lines. In his thesis he gives an introduction

to the general concept of feature mining. Opposed to other concepts, i.e., it

defines strict properties, like fine granularity and completeness.

Component Mining [Spinellis and Raptis, 2000] focuses on the identification

of reusable components, in legacy programs, which is similar to the goals

of Asset Mining [Eisenbarth and Simon, 2001], where code bases are only

partially examined through the application of an opportunistic ad-hoc de-

cision algorithm. Another approach operating in a different dimension is

Aspect Mining [Godil and Jacobsen, 2005, Störzer et al., 2006], which aims

toward identifying source code artifacts belonging to cross cutting concerns

(see 2.1.2).

With the exception of Asset Mining, these approaches consider entire pro-

grams as input and rely on the code structures and patterns that are investi-

gated, which is opposed to the focus on specific features and the incremental

code investigation in the concept described in this thesis. The nature of the

dynamic parameters allow a logical line of actions to conduct this analysis

corresponding to the controlling properties of these parameters.

Refactoring. Refactoring describes the process of restructuring source code

in a way that does not alter the external behavior of the resulting program

[Fowler and Beck, 1999]. This field of research provides developers with tools
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and algorithms for restructuring source code reliably. These transformations

were investigated on several levels, i.e. architectural or within annotations

[Tansey and Tilevich, 2008].

Specifically within the concept of features, efforts have been made to con-

struct reliable methods for code refactoring. This specific approach is called

Feature Oriented Refactoring [Liu et al., 2006]. Further, the automation of

this process was evaluated in other related work [Kästner et al., 2007].

These theories provide further insight for the transformation phase that was

discussed as a processing step of the results. With the distant goal of turning

dynamic variability into static variability, suitable refactoring approaches will

become necessary and, therefore, need to be investigated.



Chapter 8

Conclusion

In this thesis we presented an analysis process that allows the identification of

feature implementations in C source code. This is done by recognizing exist-

ing dynamic variability that implements run-time configurations in program

source code. We discussed the application of different analysis approaches

and found that a slicing algorithm is a suitable method to realize this task.

Then, we designed and implemented a tool that uses these theoretical con-

structs to identify source code fragments on the basis of given variable names,

which were selected in advance.

Our approach identified four major steps. Beginning with manual selection

and code mapping, we lead towards the actual analysis algorithm that we

build upon a naive incremental dependency check, which mimics maintenance

and code comprehension tasks that developers would apply manually. The

focus on configuration elements and according features reduce the complex-

ity of analysis, immensely. Additionally, we investigated possible utilization

scenarios of the results. While code transformation is discussed to a certain

extent, the visual representation of the results is also integrated into the

implementation.

With an experimental evaluation we were able to compare the results that we

obtained from our tool to actual results from developers that manually tried

to identify feature code. Not only were we able to see that the approaches

seemed very similar, we also found that the naive approach in the prototyp-
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ical implementation can lead to similar results in less time. Although the

developers were able to identify more accurate code dependency types, these

could also be investigated after the application of our tool.

Generally, we were able to show that even without the implementation of

complex and resource intensive static analysis methods it is possible to sup-

port development tasks and increase efficiency and code comprehension. Yet,

more accurate results can be achieved with the refinement of the analysis al-

gorithm and extend it with certain dependency identification mechanisms.

Especially the automation of repetitive investigative tasks can support de-

velopers and increase efficiency, even though the tools only use naive and

lass accurate algorithms that produce results that represent less accurate

approximations.

Extending and, therefore, improving the analysis process by using more com-

plex static analysis methods, like partial evaluation, marks the direction of

future work (see chapter 6). When the approach is made more reliable and

accurate the focus can be shifted towards how the results can be used so

developers can benefit from this work.

The prototype is already capable of supporting developers in code main-

tenance tasks that require the identification of code dependencies. In the

future more valuable tools could be created that support developers in code

navigation and comprehension in a visual way. Highlighting related code, a

specific selected variability, or code that seems to implement certain features

dynamically would mark the next step that should be taken.

With more reliable and more capable analysis approaches, it could even be-

come possible to create code transformation tools that further reduce the

necessity of developer interaction. More accurate analysis results make less

manual investigation steps necessary that developers have to undertake while

extracting reusable parts from legacy code. Identifying dynamic variability

automatically a transforming it in desired ways would create another bene-

fit.
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lässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel

ange- fertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen

Gedanken sind als solche kenntlich gemacht.

Magdeburg, den 08. Dezember 2011


	List of Figures
	List of Tables
	List of Source Code Listings
	List of Acronyms
	Introduction
	Goals
	Contributions
	Outline

	Background
	Software Product Lines
	Separation of Concerns
	Crosscutting Concerns
	Domain Engineering
	Implementation of Software Product Lines

	Static Program Analysis
	Approximation
	Control Flow and Data Flow Analysis
	Slicing
	Properties of Slicing Algorithms

	The PUMA Parser

	Concept
	Selection of an Existing Feature
	Mapping to Source Code Entity
	Slicing Analysis
	Classification
	The Relevant Control Mechanisms in C
	Determining Control Flow
	Storing the Results

	Processing the Results
	Visual Representation
	Source Code Transformation

	Summary

	Implementation
	Setting the Scene
	Using the PUMA Framework
	Parsing
	The Semantic Database

	Putting it All Together
	Prepare Required Data Structures
	Traversing the AST
	Using the Results

	Summary

	Evaluation
	Test Cases
	Case Study

	Problems and Future Work
	Problems Concerning Approximations
	Dependency Resulting from Variable Manipulation
	Increasing Accuracy of Control Flow Information

	Parsing Problems

	Related Work
	Conclusion
	Citations

