0TTO VON GUERICKE
UNIVERSITAT FAKULTAT FUR
MAGDEBURG IN F INFORMATIK

MASTER THESIS

Direct Manipulation of Turtle Graphics

Matthias Graf

September 30, 2014

Supervisors:

Dr. Veit Koppen & Prof. Dr. Gunter Saake

Otto-von-Guericke University Magdeburg

Prof. Dr. Marian Dork

University of Applied Sciences Potsdam

mailto:matthias.graf@mgrf.de
http://wwwiti.cs.uni-magdeburg.de/iti_db/
http://www.uni-magdeburg.de/
http://mariandoerk.de/
http://www.fh-potsdam.de/

Abstract

This thesis is centred around the question of how dynamic pictures can be created and
manipulated directly, analogous to drawing images, in an attempt to overcome traditional
abstract textual program representations and interfaces (coding). To explore new

ideas, Vogo' is presented, an experimental, spatially-oriented, direct manipulation, live
programming environment for Logo Turtle Graphics. It allows complex abstract shapes
to be created entirely on a canvas. The interplay of several interface design principles

is demonstrated to encourage exploration, curiosity and serendipitous discoveries. By
reaching out to new programmers, this thesis seeks to question established programming
paradigms and expand the view of what programming is.

http://mgrf.de/vogo/

http://mgrf.de/vogo/

Contents

1

3

Intro
1.1
1.2
1.3
1.4
1.5
1.6

duction

Research Question
Turtle Graphics
Direct Manipulation L Lo
Goal
Challenges
Outline

Related Research

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Vogo
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

Sketchpad
Constructivism e
Logo e
Scratch & Snap
Recursive Drawing L
Drawing Dynamic Visualisations
Summary L

Interface Overview
Design Principles
Proxies e e
Move e e

Loop e
Branch e
Selection & Editing
Expressions & Dragging
Subpictures
Call . . .
Recursion.
Scope . . . oL
Parametrisation oL o oo
Flow . . . e
Export
Compiler Design
Summary

(o le e Q) |

10
12
14

15
15
16
19
22
23
25
28

4 Discussion

4.1 Comparison with JSLogo o
42 Exploration.
43 Programming or Drawing? oL,
44 Environment Analysis.
45 Limitations e

4.6 Open Questions
5 Conclusion

Bibliography

56
56
61
63
63
65
66

68

70

1 Introduction

Bret Victor inspired this thesis project. His guiding principle is that creators need an
immediate connection to what they are creating (Victor, 2012b). For example, drawing
on paper is a very direct creative process. Each stroke is visible immediately and adds to a
continuously forming picture. The pen or brush becomes an extension of the artists body to
express intent. This allows for a tight feedback loop to establish between the formation of
ideas and their externalisation, each driving the other, which is crucial for the creative
process, according to constructionist theories of learning (Papert and Harel, 1991) (see
section 2.2).

The emergence of the computer paved the way for new forms of creation, many of which
are yet to be invented, since computing is still in its infancy (Kay, 2007) (Sussman, 2011). In
contrast to drawing, which creates static pictures, and animation, which creates static
moving pictures, dynamic pictures can behave, be sensitive to context, change based on
data, or respond to user input (Victor, 2011a). Victor points out that dynamic pictures are
native art in the medium of the computer, because it provides the fundamental ability to
simulate, not available in any other medium (Victor, 2013c). An example are computer
games, perhaps the most sophisticated dynamic pictures today. But dynamic pictures do
not have to be interactive. Data-driven graphics, like histograms or treemaps, are not
necessarily interactive, yet dynamic, because these information graphics change depending
on input data. Explorable explanations are another important category of dynamic pictures
(Victor, 2011c). A simple example is Jason Davies’ succinct illustration of how parametric
Bézier curves are constructed (Davies, 2012).

Although information graphics and visual explanations are scientifically recognised to
facilitate understanding (Card et al., 1999), the tools for their creation are hard to use and
learn. Some widely used today include D3', Processing?, R* and VTK". All involve the
manipulation of abstract textual representations - coding, a highly indirect form of
creation, requiring a great deal of technical sophistication. An author has to maintain an
intricate mental mapping between text and picture. How can this process be simplified?
How can dynamic pictures be created by manipulating the picture itself, instead of text?
Those questions motivate this thesis, but are to broad too pose as research questions.

'Data-driven documents (Bostock et al., 2011) - http://d3js.org/
*http://processing.org/

3The R Project for Statistical Computing - http://www.r-project.org/
*The Visualization Toolkit - http://www.vtk.org/

http://d3js.org/
http://processing.org/
http://www.r-project.org/
http://www.vtk.org/

To make programming approachable by children, Seymour Papert et al. developed the
programming language Logo (Papert, 1980). It creates Turtle Graphics, a form of dynamic
picture, that is based around the idea of moving a pen on a canvas, creating a line path
based on procedures. Logo’s design principles, like its inherently visual and body-syntonic
nature, allow children to relate to programming and make learning a motivating, fun and
insightful experience that can grow powerful ideas. Papert’s insights are the second key
motivation for this thesis project.

1.1 Research Question

Taking the insights carried by Logo as a starting point, the central research question is:
How can Turtle Graphics be created through direct manipulation? An alternative
formulation is: How can abstract procedural paths be created and manipulated directly,
without the "detour” through textual representations of program structure, but rather be
"drawn’, that is, be visualised and constructed in a spatial context? Those questions itself
raise many questions, most significantly:

« What are Turtle Graphics and abstract procedural paths?

What are the insights of Logo and what makes it a good starting point?
What is direct manipulation and why is it important?

What is meant by "detour", "drawing" and "spatial context"?

« How can a desirable solution be characterised?

What challenges does the question pose?

The following sections are devoted to explaining and answering them.

1.2 Turtle Graphics

In Logo a Turtle Graphic is specified by a procedural program that instructs a turtle to draw
a path, hence the name. The turtle can also be thought of as a pen, but a turtle is a more
anthropomorphic metaphor. The pen has a position and heading on a two-dimensional
plane. The most important instructions are move forward or backward and rotate right or
left. To draw an equilateral triangle with a side length of 100, the pen would have to do:

forward 100
right 120
forward 100
right 120
forward 100

Each instruction changes the pen’s state. The three forward commands draw the
equilateral sides of length 100, a dimensionless unit. The right rotate the pen by a given
number of degrees, 180°-60° for the outside angles. Each move of the pen appends a line
segment to the path. Note that due to the missing third rotate, then pen is not returned to
its original heading. The program can contain iterations and parameterised functions,
which allows for the specification of a whole class of paths. This is why Turtle Graphics, in
their most basic form, are abstract procedural paths. A simple example is any convex
regular polygon (an equiangular, equilateral polygon), written in Logo as:

to regularPolygon :numberOfEdges
repeat :numberOfEdges [
right 360/:numberOfEdges
forward 300/:numberOfEdges
]

end

RORRQ

3 4

This function can be called with any number of edges to produce an image. If the number
of edges is set to three, the above mentioned equilateral triangle is drawn. The regular
polygon is thus a possible abstraction for a equilateral triangle. The higher the number of
edges, the more it approximates a circle. A regular polygon is a dynamic image because it
changes based on input, the number of edges. It can be thought of as a parameterised image.

Logo’s syntax and semantics are comparatively easy to understand. For example,
instead of the common for-loop, the simpler repeat x-times is available. State is minimised
due to its functional style and the state that does remain is trivially visible as the pens
position and heading. Furthermore, most commands have a visible effect or pendant in the
image. This means that the output (image) still contains much information about the
execution flow of the program. This is crucially important for understanding how the
program works. But even more important is the use of powerful metaphors. Drawing and
navigating in space are two activities everyone is familiar with. Logo enables programmers
to reason not only symbolically about their programs but also visually/spatially and even
kinaesthetically, because they can project themselves into the turtle. This is called
body-syntonic thinking (Papert, 1980, p. 63). Logo is explained in more detail in section 2.3.

In the light of the overarching motivation, how to enable the direct manipulation of
dynamic pictures, Logo is suitable as a research subject because it 1) can produce a form
of dynamic pictures, namely Turtle Graphics, 2) is easy to learn and use, 3) has a strong
correspondence between its language constructs (represented symbolically via text) and
visuals and 4) is still characterised by indirect manipulation methods, exemplary of most
common programming interfaces.

1.3 Direct Manipulation

Programming has a long history. The paradigms and mindsets programming today is
based on developed largely as a result of the technological evolution of computers. In his
paper Alternative Programming Interfaces for Alternative Programmers Toby Schachman
conducts a thorough investigation of physical, conceptual and social programming
interfaces (Schachman, 2012). One example characteristic of physical interfaces is the
dominance of text manipulation in programming. Text is a linear medium, well
suited for paper formats, punchcards, teletypes, magnetic tapes, keyboards and the like.
Although most of these interfaces have become obsolete, traditional ways of programming
are still emulated on newer devices, that do not share the same restrictions on format.
Video displays allow the manipulation of information in a spatial, non-linear fashion. Yet
command line interfaces and consoles are still in common use today. Another important
reason for the prevalence of text is the fact that symbolic representations can be made
unambiguous and compact through carefully designed formal languages, syntax and
semantics. Communicating with the computer in such a language loosely mimics human
dialogue in written or verbal form. But symbolic as opposed to iconic representations
are inherently indirect signifiers, because they are arbitrary and do not resemble the
signified (Fiske, 1990, pp. 46-56).

Another implication of textual communication is a turn-based workflow. I speak, you
speak, I speak, you speak. This is a channel limitation. Humans can not speak and listen at
the same time, nor write and read simultaneously. Compare this to the experience of
adjusting an audio volume turning knob. The control is continuous, not discrete, the
reaction speed instant, not delayed, the communication simultaneously (full-duplex), not
turn-based: one can hear the volume change and manipulate it at the same time. Due
to those attributes, an isomorphic relationship between interface (knob) and object of
interest (volume) can develop in the human mind, which is essential for an effortless
mastery. For a more detailed study of this subject matter I refer to The Design of Everyday
Things (Norman, 1988). In contrast, a typical programming workflow (including Logo’s)
involves recompile and run cycles. Between a change in the code and the observable
effect of this change a considerable amount of time may pass. This essentially forces a
programmer to mentally simulate in advance what the computer would do, because he can
not actually see an immediately response. This has multiple negative consequences. For
example, debugging is impeded, because an error is not revealed in sync with the step that
lead to its introduction. This not only delays a correction, which itself makes learning
harder, but also complicates the bug-backtracing, because the search room grew bigger.
Another negative consequence is that it hampers a quick exploration of multiple possible
choices, because the up-front investment is increased (in terms of time and cognitive
precomputation required). How can we instead design a programming environment
that encourages exploration and playful interaction? Much of discovery in the history
of mankind would not have been possible without curiosity, open-mindedness and
serendipity. Instead of forcing programmers to think like a computer, how can we make
programming understandable by people (Victor, 2012a)?

Schachman also mentions conceptual programming interfaces, the metaphors
programmers typically use to think about their programs, like objects, inference,
arrays, streams and transitivity. They tend to be technical or algebraic in nature. This
may be unsuitable in certain domains. If an artist wants to create a dynamic picture,
spatial or geometric metaphors are more appropriate, like orientation, velocity, perspective
and intersection. Again, the use of metaphors in programming is influenced by the
predominance of text manipulation. Coding builds on our language capabilities - we think
linguistically. A shift in metaphors is likely to co-occur with a shift to visually oriented
manipulation, which, in the case of dynamic pictures and Logo in particular, is also a more
direct interface, because the objects of interest and the means of manipulating them lie in
the same domain. This is precisely what is meant with avoiding a "detour through textual
representations” in the research question.

Lastly, social interfaces describe what programming is, who programs and how it
relates to society. Schachman argues that

Many profound advances in programming were the result of people
reconsidering the question, who are the programmers? (Schachman, 2012, p. 3)

He mentions Engelbart’s oN-Line System (NLS) as such a revolutionary invention, making
him one of the prime conceivers of personal computing and networked collaborative
work (Engelbart, 1962). Sutherlands Sketchpad (Sutherland, 1964) had a similar
transformative impact. In the early days of computing, programming was considered to be
equivalent to calculating. Engelbart and Sutherland, among many others, helped redefine
what programming is and who programs. In addition and stark contrast to previous
computer interfaces, their programs featured what was 20 years later to be coined direct
manipulation by Shneiderman:

The central ideas seemed to be visibility of the object of interest; rapid,
reversible, incremental actions; and replacement of complex command
language syntax by direct manipulation of the objects of interest [...]
(Shneiderman, 1983, p. 57)

Direct manipulation revolutionised the human-computer interface (Hutchins et al., 1985).
This also applies to programming programs, which since then evolved into integrated
development environments. For example, text manipulation has turned away from
mode-based to mode-less editing and writers can use their mouse to point to and select text
(Tesler, 2012). But it is important to think about what the object of interest is. In the case
of programming, it is certainly useful to be able to directly manipulate text, but text itself is
not the object of interest, not even the program itself, but rather whatever people want to
use the program for. An ideal user interface for programming would therefore allow the
programmer to manipulate directly whatever is of interest to those who use the program.
Shneiderman summarises this user-centered design approach by saying:

The old computing is about what computers can do; the new computing is
about what people can do. (Shneiderman, 2002, intro)

1.4 Goal

The goal is to find means for directly manipulating Turtle Graphics, proof the
concept with the implementation of a prototype and analyse its design ideas in order to
further the understanding of how to develop new spatially-oriented, direct manipulation,
live programming environments. The prototype is to be based on Logo and implement its
essential ideas. It has to be possible to create abstract procedural paths in a visual manner,
for example: regular polygons, stars, spirals, trees, fractals, histograms, pie charts. All
important programming tasks (add, select, delete, copy, paste, adjust, rearrange, insert,
abstract, iterate, recurse, branch, call, ...) must not rely on code/text manipulation, but be
applicable to a graphical program representation, that is iconic of the object of interest:
the dynamic picture that is being created. The feedback is immediate and continuous.
There are no explicit recompile and run cycles that delay execution. This is related to live
programming (Tanimoto, 2013). Each step taken in the construction of the Turtle Graphic
ideally has to have a visual corollary reflecting its effect on the graphic immediately.

In short, creators need to see what they are doing. A painter wearing blindfolds has to
imagine and remember everything he is doing. This is of course unacceptable. Yet as

an analogy to programming it illustrates the main concern of this thesis. Mental focus

is sharply restricted in terms of objects it can hold. Creators need tools that help them
externalise their ideas as soon as possible, get them out of their heads, so they can refer to
them, reflect on them, refocus without losing track, start to grow and concretise them.

I approach the research question from a user-centered design perspective. The goal
is for the prototype to be easy to use and understand without loosing versatility and
abstraction capabilities. This is a trade-off to the extend that abstraction is inherently hard
to grasp and visualise. Logo is a strong basis in that regard because it already targets
children and encourages powerful ways of thinking. This should however not be confused
with meaning that Logo is unsuitable for "real" programmers or older generations. Papert
argues that what helps children learn is not outdated by age (Papert, 1980, pp. 7-11).
Furthermore, certain Logo implementations are being used all the way up to university
computer science courses, the most prominent example being Brian Harvey (Harvey,
1997b) (Harvey et al., 2014). The prototype presented in this thesis explicitly does not only
target today’s programmers, nor does it specifically target children. It is however a declared
goal to expand the view of who can and should program, whether it is children who want
to learn programming, information designers who want to create a data graphic or artists
how want to create generative art. The motivation is to make programming accessible
to a wider public and to democratise visualisation (Viegas et al., 2007). After all, how good
is a user-centered design in the domain of programming when most people can not at all
relate to programming? Mitchel Resnick, head of the MIT® Lifelong Kindergarten group,
emphasises this point by arguing that programming is a form of literacy and without
programming people can not get fluent in the medium of the computer (Resnick et al., 2009).

SMassachusetts Institute of Technology

10

In order to clarify, I will now point out what is not within the scope of this research
project. It is not the goal to extend, change or reimplement Logo. The prototype builds
on the essential ideas behind Turtle Graphics, but I make no claim to be complete in
implementing Logo. The command language itself is not the central concern but rather its
front-end, the programming environment. I shall strictly differentiate between language
and environment throughout the thesis. For example, the language is and will remain
fundamentally procedural. There is much potential in using constraint-based or even
goal-oriented programming models, but this is far beyond the scope of this thesis. In
addition, it is not programming by example, because it does not infer or generalise
automatically. However, it is programming with example, according to Myers taxonomy
(Myers, 1986). That means that the programmer is required to provide default values for
abstractions in order to work out a program on a concrete example.

Another aspect are the terms drawing, image and graphic, which are used throughout
the thesis. They are not meant to imply that the prototype is a drawing tool or that it
merely creates conventional images. Drawing is meant as an analogy for the process of
the program construction, which is to be similar in fashion. But it is not identical and
even radically different in certain characteristics because the prototype is not creating an
image but a program that can generate a class of images. The pictures are not one-offs.

For example, they may be data-dependent, which makes them data graphics, or simply
customisable via parameters that influence their appearance. So it is not a drawing tool but
it is also not a coding tool, because it does not emphasise text manipulation.

The last distinction important to draw is that this tool has almost nothing to do with
what is called visual programming. Visual programming has a long history (Myers, 1986)
(Sorva et al,, 2013). It is generally used to describe means of visualising the program
structure with blocks or patches that can be dragged, connected and attached to one
another. Scratch is a modern example of this approach (Resnick et al., 2009). It differs
substantially from what this project is trying to accomplish in multiple ways: 1) the goal is
not to find graphical representations for the static program structure, but for its "run-time"
behaviour, which is not even visible in the code. "Run-time" is quoted because the term is
derived from the assumption that there is a distinction between compile-time and run-time,
which the prototype is trying to break. 2) The spatial layout in visual programming has
nothing to do with the object of interest. It is often simply used as a means for organising
code elements, much like indentation is used in text, but has no syntactic meaning. Not
true here. If a command moves the turtle forward, the new spatial representation of this
command is to reflect both its effect and syntactic meaning. 3) In visual programming, the
graphics are separated from the program output. In contrast, the goal of the prototype is to
integrate program construction with the result (direct manipulation). 4) The visuals are not
just another symbolic representation but iconic of the run-time behaviour or the object of
interest. To my knowledge, nothing that fulfils these requirements exists in the domain of
visual programming.

Critically important for defining the requirements of a good solution to the research
question are Victors thoughts on how to design a programming environment for

11

understanding programs (Victor, 2012a). The primary objective is to enable programmers to
see and understand the execution of their programs. The key environment requirements
are:

« The vocabulary is readable; meaning is transparent.

« Program flow is visible and tangible.

« State is either eliminated or visible. There is no hidden state.

« Allows creating by reacting: the toolbox is shown and results are instantly visible.
« Encourages starting concrete, then abstract - see also (Victor, 2011b).

The key language requirements are:

+ Identity and metaphor - programmers can relate the computer’s world to their own.
« Ease of decomposing problems into mind-sized chunks.
« Ease of recomposing solutions.

An evaluation of those is provided in the discussion, section 4.4.

1.5 Challenges

The hardest challenge is the design of a command interface for the unambiguous
creation and manipulation of abstractions. This requires carefully constraining the
pathways for their formulation to eliminate ambiguity but retain flexibility and expressive
power. Formal languages are designed to be unambiguous. This is comparatively easy
because the meaning of symbols can be defined rather freely. For example, if a formal
language designer wants to introduce iteration, he just defines the for-loop construct to be
initialised by the reserved keyword for followed by brackets (containing 3 special-purpose
compartments separated by another ; reserved ; symbol). This construct has no precedent,
it is completely arbitrary. People trying to learn programming therefore naturally have no
clue what it means. They can not relate it to anything that is already familiar to them.
Worse yet, symbols with an established meaning may be redefined in order to suit the need
of the language. For example, when trying to make sense of an expression like ¢ = b % a++
newcomers first have to unlearn what they thought equals, percent and addition means.

Instead it is desirable to find program representations and interaction methods
with well-known connotations that are in line with their usage/meaning in the
programming environment. For example, dragging elements on the screen is an interaction
method that is metaphoric of grabbing and moving physical objects in space. If drag was to
be used in a programming environment to manipulate an object, the natural and justified
assumption is that it somehow changes the object’s spatial properties. This is used in all
drawing tools (for moving, panning, scaling, etc.) and has been shown to work well.
Finding such a good mapping is hard, because in order to draw on analogies, the freedom to

12

define meaning is restricted. If the drag was used to clone the object, the moving analogy is
useless, even a hurdle, because cloning as a result of dragging is unexpected. This is
complicated by the fact that abstraction is inherently hard and well-known analogies
for it are scarce.

Ambiguity is present when the programmer’s action can be interpreted or realised by the
environment in multiple ways or vice versa: the environment’s feedback is not clear. There
is a subtle but important difference here between interpreted and realised: interpreted
implies that the programmer’s intent can not be inferred by the environment from his
actions, while realised implies that the intention is clear, but it can be realised in multiple
ways. A hypothetical example would be the programmer’s wish to create a line! If he can
not unambiguously communicate that wish it is an interpretation problem. But if he could,
there still remains the realisation problem, because multiple programs satisfy this wish. The
line could be long, could be short, could be horizontal, could be vertical. This example is an
oversimplification, but illustrates the point. The problem of ambiguity is discussed in more
detail in section 4.1.

But it is not only the careless use of symbols and inappropriate interfaces that make
programming an obscure art, it also has to do with the fact that most programs resemble
black boxes, even when the source code is available. In order to understand programs it is
essential to see inside, see the run-time behaviour. Programmers may ask themselves: How
often was this loop run? or Was this condition met? or What is the concrete value of this
variable in this situation? In order to answer those questions programmers often resort to
printing to the console or setting breakpoints, which is comparable to figuring out the
travel route of a salesman by placing a policemen on every junction in the city to report
back. This is not good enough. How can program behaviour be made transparent? The
particular challenge of this thesis project is to answer this question for the case of Turtle
Graphics. How can these dynamic pictures be turned into white boxes?

All of those mentioned are design challenges, but there are also considerable technical
challenges. Writing a live compiler is the hardest one. The term in fact is an oxymoron.
Compiling implies that causality flows originating from the source code. But liveness
requires backwards reasoning: how does a change in the program propagate back to the
source? The programmer needs to see and manipulate the program while it is running.
Compiling therefore turns from being one step in the chain to a permanently running
stateful process, more like an operating system for programming.

Stepping back a bit from the immediate challenges that the research question poses, it is
important to keep in mind that the biggest challenge is to find the right questions to ask
in the first place. Once a better understanding of the core issues is unravelled, the questions
again need to be refined or even redefined. Many paradigms and assumptions form our
understanding of what programming is and what it is not. Challenging them requires
realising their existence first. Marshall McLuhan once humorously noted that fish were
probably the last to invent water (McLuhan, 1969, p. 5).

13

1.6 Outline

This chapter motivated and explained the research question. I introduced the term dynamic
picture and one particular subclass: Turtle Graphics. Direct manipulation was discussed
and confronted with today’s programming paradigms, followed by a thorough description
of the research goals and challenges.

The next chapter will present related research and explain how it contributes to finding
an answer to the research question. Afterwards, Vogo is presented, an experimental,
spatially-oriented, direct manipulation, live programming environment for Logo Turtle
Graphics, which serves as a case study and proof of concept. It follows a discussion of the
findings, ideas for future work and the closing conclusion.

14

2 Related Research

Conceptually, the closest related research projects are Recursive Drawing (Schachman,
2012) and Drawing Dynamic Visualisations (Victor, 2013a). Logo sparked many interesting
languages (Boytchev, 2014), notably Squeak/E-Toys (Ingalls et al., 1997), Scratch (Resnick
et al., 2009) and most recently Snap (Harvey et al., 2014). Starting with Ivan Sutherland’s
revolutionary Sketchpad from 1964 the related work is presented in chronological order.

2.1 Sketchpad

Sketchpad' pioneered computer graphics which earned
Sutherland the Turing Award in 1988 (Sutherland, 1964).
It allowed direct manipulation drawing on a computer
screen with a light pen. Several modes of operation
could be picked with the left hand. Among the many
impressive features was a constraint solver that could
be operated by directly applying a set of rules to
screen elements. For example, a set of lines could be set
to be mutually perpendicular. The system automatically
figured out a solution through numeric approximation.
Those rules were remembered and dynamically maintained as the drawing changed
in subsequent steps. This was the first important step in moving from static to dynamic
pictures. The second was instantiation of subpictures. This is identical to cloning groups
in a modern SVG* drawing program like Inkscape’. A selection of elements could be used
as a blueprint for copies. The children of those subpictures could be repositioned, rotated
and scaled, but their appearance was bound to the parent. If the parent was manipulated, all
children inherited the change. This made Sketchpad a simple object-oriented system with
polymorphism.

Vector graphics contain information about how a picture is to be drawn with geometric
primitives, like circle, rectangle, line, path, arc, font. This information is used to aid the
creative process. For example, elements that are overlapped by others can be brought to the

The picture is taken from the Sketchpad demonstration video.
2Scalable Vector Graphics - http://www.w?3.org/Graphics/SVG/
Shttp://www.inkscape.org/

15

http://www.w3.org/Graphics/SVG/
http://www.inkscape.org/

foreground. This is not possible in raster graphics or paper drawing. Once applied, actions
are irrevocable. Every creative tool imposes constraints that tend to encourage
certain types of working. Sketchpad’s design makes it suitable for technical drawings,
while painting a person’s face would turn out to be a chore. Likewise, Turtle Graphics are
constructed in a way that makes it easy to draw fractals. This is important to keep in mind
during the design of dynamic drawing tools.

Sketchpad’s subpictures all expose the same trivial spatial parameters: position,
orientation and size. None can be added, removed or otherwise restrained. For example, a
star can not be drawn and then instantiated with a different number of spikes. Also, the
graphic can not be made data-dependent. Turtle graphics are far superior in that regard,
because the rules that describe the graphic are much more expressive. Although there has
been some research in the field of constraint-based drawing, for example, Briar improves
on Sketchpad’s creation, display and editing of constraints (Gleicher and Witkin, 1994), the
same essential limitations apply.

Still, subpictures are an important ingredient for the creation of dynamic pictures. They
enable encapsulation and easy reuse. This is important for problem solving because
partial solutions can be packaged and later recombined to solve harder problems. It relates
to two language requirements that I brought forward: ease of decomposition of problems
and recomposition of (partial) solutions. Sketchpad also serves as a model for the physical
interface the prototype will use: a pointing device (the mouse) and buttons (the keyboard).

2.2 Constructivism

This research project is heavily influenced by Seymour Papert’s work in the fields of
developmental psychology, epistemology and computer science. One of his main

interests was understanding how humans learn. In his seminal book Mindstorms:

Children, Computers, and Powerful Ideas Papert proposed radical reforms of education in
particular and the learning culture in general (Papert, 1980). Among his proposals was the
introduction of Logo, an educational programming language that he developed in 1967, into
school education. The prototype developed as part of this thesis is based on Logo. This is
why it is in turn important to understand the ideas behind Logo - they equally apply here. I
will first take a glance at the epistemological theory of constructivism and the related
constructionism. This is an attempt to ground the quest for direct manipulation to
theories of learning. I will then take a closer look at Logo and its descendants to analyse
to what extent the modalities of their programming environments help to answer the
research question.

Papert worked together with the Swiss developmental psychologist Jean Piaget from
1958 to 1963. Piaget was the pioneer of the constructivist theory of knowledge which
argues that knowledge and meaning is constructed in the human mind from an interplay
between experiences and ideas (Piaget, 1955, pp. 350-363). This process results in the

16

construction of an individual representation of the world. Learners can be thought of as
active "builders of their own intellectual structures" (Papert, 1980, p. 7). Categories and
models of sense-making are formed by assimilation and accommodation of experiences.
Assimilation is the process of incorporating experiences into existing mental schemata.
Accommodation is the process of adapting mental schemata to fit new experiences. Piaget
writes:

To understand is to discover, or reconstruct by rediscovery, and such conditions
must be complied with if in the future individuals are to be formed who are
capable of production and creativity and not simply repetition (Piaget, 1973,

p- 20).

The constructivist sense-making process can be compared to scientific
experimentation and model building, but carried out on a personal level. A theory
(the mental model) is put to the test which results in an experience: either the theory
is confirmed or falsified. If it is confirmed, the theory is able to assimilate the results
coherently. If it is falsified, the theory needs to be revised to accommodate for
inconsistencies. For a theory of science I refer to Logik der Forschung (Popper, 1934). Of
course, scientific experimentation is a very deliberate and stringent process, in which it
radically differs from more casual and even unconcious forms of knowledge creation. But
fundamentally the test is at the heart of the matter in both science and constructivism
because it allows a comparison to be made between a model and experiences. Neither is a
test useful without a theory, nor is a theory acceptable without the ability to put it to the
test. Constructivism therefore argues that learning works best when the learner can create
a theory, devise a test for it, carry it out, obtain results, compare it with the theory and
revise it if necessary. The more rapid this cycle can be completed, the faster insights can
be generated, the more satisfying is the creative process, irrespective of whether it is
scientific knowledge, an engineering feat, a piece of art or fluency in a language that is the
object of interest being created/pursued. This is exactly what direct manipulation
aims for: establishing a rapid feedback loop with the object of interest, which entails
immediate control over and visibility of it. But without direct manipulation, the interplay
between ideas and experiences is hindered, which is what is needed for the construction of
knowledge and meaning. If a scientist can not test a theory, no insights can be gathered.
Likewise, an engineer can not learn anything from his construction plans if he lacks the
tools to implement them. This tool in both science and engineering is increasingly the
computer, which is why communicating with it in a language that is characterised by direct
manipulation becomes more and more important.

How do people best learn French? By going to France! They embed themselves into
an environment that provides plenty of opportunities to interact with the French language
and culture. Surrounded by native speakers, which serve as a reliable and convincing role
model, it is easy to engage in a dialogue, get feedback, spot mistakes fast, make corrections,
adapt, retry and get a feeling for progression, by seeing what works and what does not.
Provided with such an immersive experience, learning happens naturally. Children can

17

learn multiple languages while being raised without the need for formal instruction or
reflection. Two important learning mechanism are at work: observational learning and trial
and error. The later obviously depends on the ability to try, get feedback and having a
means of evaluating it. Its efficiency among other things depends on the amount, reliability
and speed of feedback. This is one of the reasons why young children hunger for attention.

Papert takes the example of learning French as an analogy for asking for the equivalent
of France for learning mathematics. What would "Mathland" look like? He argues that
computers can be designed to allow learning to communicate with them in the same way
learning French happens in France (Papert, 1980, p. 6). The second central theme is that
learning to communicate with computers can change the way other learning proceeds. It
can be summarised as follows:

Papert’s Principle: Some of the most crucial steps in mental growth are based
not simply on acquiring new skills, but on acquiring new administrative ways
to use what one already knows (Minsky, 1986, p. 102).

I described in the Challenges section that finding program representations and interaction
methods with connotations that people can relate to is essential for the interface design.
Papert’s Principle is the more precise reason for why this is so important. People have to
be able to bring their existing knowledge structures to bear in a new environment in order
to make sense of it. The analogy of this to experimentation is that having test results is
useless without a theory that helps to interpret them - they will just stay meaningless
otherwise.

Papert was at variance with Piaget over the matter of what role the surrounding
culture and learning environment plays as a source of materials for creative learning.
Constructionism is inspired by constructivism but the central role is attributed to the
availability of "construction materials" and explorability of ideas (Papert and Harel, 1991).
For example, mathematically sophisticated adults tend to develop arguments and sound
logic to underpin their convictions. Their interests may involve the solving of puzzles and
riddles, the thinking about paradoxes or the questioning of assumptions in everyday live.
Being in close touch with those individuals provides learners with opportunities to "speak
mathematics", but not in the sense of solving formal equations, but in forming an intimate
relation with a mathematical way of thinking.

Friedrich Frobel recognised the importance of educational materials and free play when
he opened the world’s first kindergarten in 1837. Each child was to be given one of his
gifts (Frobelgaben) for self-directed activities. Those ranged from marbles to geometric
wooden blocks to modelling objects of clay. The Lifelong Kindergarten group at MIT took
up his ideas:

Froebel was making for makers — he made objects that enabled children in his
kindergarten to do their own making and creating. Froebel’s work can be
viewed as an early example of Seymour Papert’s constructionist approach to
education. Papert argued that the activity of making things provides a rich
context for learning (Resnick, 2013, p. 50).

18

2.3 Logo

Logo is Papert’s gift to the digital generation. Logo

is personified by a turtle. Its language is turtle talk

and its drawings Turtle Graphics. Children would not
write a new procedure, they would teach the turtle

a new word. The turtle is either a virtual object on

the screen or a robot that actually draws on paper. The
robot is more engaging, because children find it easier to
relate to a physical object, especially if they can attribute
it with properties of living beings, because that is their
own most intimate perspective of the world (best fit for
assimilation). This allows children to project themselves
into the turtle and think as if they where the turtle, which means that they can bring
their own body knowledge and sense of orientation to bear in the world of the turtle, a
computer simulation. Papert calls this body-syntonic thinking (Papert, 1980, p. 63). A fun
and insightful experience for children who learn turtle talk is to play turtle*. One child
with blindfolds is pretending to be the turtle while others are giving the commands. For
this to be successful, children have to start thinking about how they think, incidentally
becoming epistemologists in the process. Papert writes:

Even the simplest Turtle work can open new opportunities for sharpening
one’s thinking about thinking: Programming the Turtle starts by making one
reflect on how one does oneself what one would like the Turtle to do. Thus
teaching the Turtle to act or to "think" can lead on to reflect on one’s own
actions and thinking (Papert, 1980, p. 28).

For example, drawing a circle with the turtle can be a challenge. When children ask for
help, instead of giving the solution, children would be asked to play turtle themselves. And
since every child knows how to walk a circular shape, it is easy to come up with a solution:
walk a bit and turn a bit, for a complete turn:

repeat 360 [
forward 1
right 1

]

A circle is a shape with constant curvature, which is particularly simple to express in
differential geometry, which in turn is why this solution is so elegant. As a contrast, the
symbolic representation of a circle in euclidean geometry is x*+y*=r?, which requires much
more mathematical sophistication to understand, let alone to invent (Kay, 1987, pt. 2, 21:40).
This demonstrates that Logo allows the utilisation of body knowledge to help children

*The picture is taken from The Children’s Machine by Seymour Papert.

19

think about differential geometry and become fluent in expressing and exploring their
ideas in this context. An excerpt of the things that new programmers can learn about
while gradually improving their turtle talk is: angles, iteration, state, commands, thinking
procedurally, debugging, geometric construction with differential equations, problem
decomposition using subprocedures, recursion and fractals, series, state-change operators,

scope, functional assignment, variables and abstraction.

Free modern implementations of Logo include
JSLogo’, papert® and UCBLogo’. The figure to the
right shows the JSLogo programming environment.
JS refers to Javascript; it runs entirely in the browser.
The graphics are drawn on a HTML5 Canvas®. The turtle
is represented by a green triangle, which always shows
its current position and heading. Run executes the code.

The most important feature of Logo in the context
of the thesis is its strong correspondence between
program run-time behaviour and visual output.
What the turtle did can literally be traced. The Spiral
shown in the second example program on the right
shall serve as a demonstration. Spiral is a recursive
function that does not terminate. JSLogo automatically
terminates the execution at a certain call depth. The
initial value of the variable step is 140, decreasing with
increasing recursion depth. Due to the fact that each
forward and each right command left a visual clue in
the graphic, the progression of the recursion can be seen,
how rotations add up and each individual value that the
variable step was assigned to and when in the program
flow. Each Turtle Graphic can be interpreted as a data
graphic of the behaviour of its generating program.
This is tremendously valuable for understanding how
Spiral and recursion in general works, because the
"internal" functioning is not hidden or left obscured
in loads of console text output, but beautifully encoded
visually and compactly arranged spatially. It is easy
do get an overview, pick out details, make comparisons
and find patterns. For the importance and design of
data graphics I refer to The Visual Display of Quantitative
Information (Tufte, 1986).

T0 star 'S
repeat 5 [
forward 100
. right 144

®

~ too much recursion

10 Spiral :step ¢
forward :step
right 72
Spiral :step*@.9

END Run
Spiral 140

star

Shttp://www.calormen.com/jslogo/, source: https://github.com/inexorabletash/jslogo
Shttp://logo.twentygototen.org/, source: https://code.google.com/p/papert/
"University of Berkeley Logo - often referred to as the standard Logo (Harvey, 1997a).

$Hypertext Markup Language - http://www.w3.org/TR/html5/

20

http://www.calormen.com/jslogo/
https://github.com/inexorabletash/jslogo
http://logo.twentygototen.org/
https://code.google.com/p/papert/
http://www.w3.org/TR/html5/

Logo is well designed for understanding programs because of this double function
of its Turtle Graphics. One the one hand, to draw those images is motivating in itself and
can in fact be used to generate serious data graphics. On the other hand, the output visually
reflects the program itself. It is this property of Logo that lets it be an ideal research subject.

In addition, it is in line with the research goals in the following ways: 1) it targets new
programmers, thereby expanding the view of who programs and making programming and
visualisation accessible to a wider public, 2) it uses drawing and orientation in space as
metaphors to encourage the application of existing knowledge in a new domain (see
Papert’s Principle), thus engaging the kinaesthetic and visual mentalities of thinking,
instead of only the symbolic one (Kay, 1987, pt. 2, 03:51) (Piaget, 1955), 3) program state is
encapsulated in the turtle, which is always visible (Logo employs multiple programming
paradigms, but can be used in a functional style), 4) like Sketchpad, Logo allows the
decomposition of problems into subpictures, 5) the language vocabulary is readable, syntax
and semantic kept comparatively simple.

However, the programming environment also has a number of severe downsides. I here
refer to JSLogo as a representative of Logo programming environments. If the construction
of a Turtle Graphic is seen as the object of interest, it is not possible to directly create
and manipulate it. Instead, a textual interface introduces a layer of symbolic abstraction
(code) between the programmer and the picture. The canvas in JSLogo, just like any
programming console, produces output that can not be altered. Although this output in
Logo can be a good representation of the essence of the program, it can not be manipulated
directly. Program flow is visible, but not tangible. That means that in order to change
something in the picture, an angle or the length of a line, the programmer first has to find
the corresponding line of code that drew it, change it, rerun the program, find the changed
part in the picture again and evaluate whether it had the desired effect. This process may
be very complicated. Even the simple fact that programmers have to switch back and
forth between two different visual contexts, namely the code and graphics viewport, is
strenuous. There also is absolutely no visual analogy between the two viewports - text first
has to be interpreted. A tiny change in one may result in a huge change in the other.

But above all, the switch between picture and code requires

a switch in thinking mentality. The first may be described

as visual, spatial, geometric and the second as symbolic, linguistic,
algebraic. For example, halving the length of a line can be
understood in both mentalities. The figure to the right illustrates
the geometric interpretation. It shows that the black line

is halved by the grey line, which can be constructed using

the two intersection points of the blue circles, which centre

in the endpoints of the black line and have the same radius

as the black line is long. The black line can be seen as denoting
where the radii of the blue circles "meet", connecting their centre
points. The algebraic interpretation may be line.length*=0.5,

"nn

where line is an identifier, "" a property access operator, length

21

the object property, * scalar multiplication, combined with = a shorthand assignment

and 0.5 a rational number. The algebraic interpretation represents the problem as an
equation to be solved: calculating the product of two numbers and assigning it to an
object. The geometric interpretation represents the problem as a spatial construction. Both
are completely different ways of thinking about halving a line. For a more thorough
investigation I refer to A Mathematician’s Lament (Lockhart, 2009). I do not argue that any
of the two is superior, though both have their strength and weaknesses, but rather that it is
inappropriate to force a person to think about a geometric construction in an algebraic way.
Halving the length of a line in a Turtle Graphic should not require the manipulation of
symbolic abstractions, but be possible to perform in a spatial way:.

At the very least, the principle of locality should be honoured (Denning, 2005). The
point of control and the point of effect should be proximal in both time and space. Neither is
true in Logo. Spatial proximity is foiled by two distinct viewports that separate cause and
effect. Temporal proximity is foiled by the chunking to compile-time and run-time. This
is not live programming. Playful interaction and exploration depend on the proximity
between cause and effect.

Logo influenced the development of other languages. Among them are Smalltalk, Squeak,
Scratch and Snap. A comprehensive list of dialects is provided by the Logo Tree Project
(Boytchev, 2014).

This section took a closer look at several language and environment design
characteristics of Logo and JSLogo in particular. Advantages and disadvantages of
Logo were discussed in light of the research question, which is aiming to find a direct
manipulation interface for Turtle Graphics. Most detrimental is the required switch in
thinking mentality between code and graphics view and the violation of the principle of
locality. However, notwithstanding interface improvements, it remains true that:

Logo does not in itself produce good learning any more than paint produces
good art (Papert, 1980, p. XIV).

2.4 Scratch & Snap

Two popular modern languages that are inspired by Logo are Scratch’ and Snap'’, the later
being an extension of the former. Both are examples of visual programming environments.
Visual programming means the use of blocks that represent code elements. Those
blocks can be picked, dragged and snapped together in accordance with the syntactic rules
of the language, in effect enforcing them, which reduces syntactic mistakes. Snap was
previously called Build Your Own Blocks to reflect this. The interface to the program

http://scratch.mit.edu/ (Resnick et al., 2009)
Ohttp://snap.berkeley.edu/ (Harvey et al., 2014)

22

http://scratch.mit.edu/
http://snap.berkeley.edu/

R & £ untitied

EI—

structure is presented in a graphical fashion. Most tasks can be accomplished by selection
or drag and drop. Blocks may contain drop down menus for choosing features and other
widgets for customisation. This significantly reduces the typing required, which in turn
reduces spelling errors. Being able to manipulate the program structure without text
manipulation lowers the entry barrier to programming to those not skilled in using the
keyboard for writing text. Scratch]r is even more radical - it completely abdicates keyboard
control in favour of touch control (Flannery et al., 2013). Another advantage is the display
of a toolbox of available commands. Instead of being required to read the language
documentation or refer to example programs to find valid program constructs, the toolbox
is providing them right next to the program structure.

In spite of the fact that those features ease programming, the drawbacks of Logo
relevant to the research question remain. The code structure can now be manipulated
directly with the use of spatial metaphors, like dragging and snapping. But they do not
operate on the object of interest. They do not break the separation between code view and
output. They do not present the code structure in a novel way, which is still an indented list
of commands. The graphic itself can not be edited and changing the program still relies on
the recompile and run cycle. Visual programming visualises the wrong thing. The object of
interest, the Turtle Graphic, remains being intangible.

2.5 Recursive Drawing

The most recent advance in the area of spatially-oriented programming environments is
Recursive Drawing'! (Schachman, 2012). Aside from Drawing Dynamic Visualisations,
which will be discussed in the next section, Recursive Drawing is the most relevant related
research project to this thesis. As the name suggests it allows the creation of recursive
shapes in a way akin to drawing vector graphics. A circle and square are the basic building
blocks. They can be dragged onto the canvas of a new shape, positioned, resized, rotated
and sheared. Multiple existing shapes can be combined to form a new shape. If an existing
shape is dragged onto itself it forms a recursive shape. The recursion is parameterised by a

"http://recursivedrawing.com/

23

http://recursivedrawing.com/

planar displacement (vector addition) between the original shape and its recursive self. The
displacement propagates through the recursive steps, creating new component shapes in a
linear spatial progression. The endless recursion is lazily evaluated in the bounds of the
screen window, minimum shape size and recursion depth ceiling.

The most interesting feature is that any component shape in the recursion can still be
repositioned, resized, rotated and sheared as if it were a normal shape, without breaking the
recursion, which is realised by constraint solving: given that the original shape is not
altered, how does the recursive call have to be modified in order to comply? This is achieved
by a modulation of the recursive displacement (vector component multiplication) and an
additional resizing and shearing factor. This approach violates the way programmers
typically think about recursion. Instead of reasoning forward from a recursive definition,
the programmer can alter the properties of all elements in the recursive call stack and the
system then reasons "backwards" automatically to derive a program that produces the
desired behaviour. It breaks the assumption that the control of the program has to flow
from "source" to "output". In addition, the two are not distinguishable in Recursive Drawing.

The interface is characterised by direct spatial manipulation of the drawing, which
means that:

« all shapes are visible

« the recursion is entirely represented spatially

« shapes can be selected by pointing to them

« all properties can be altered with a spatial metaphor: drag

« the shape that is dragged accurately follows the cursor’s path
« all changes are continuous

« the update to the drawing is immediate

« the attention is focused on the objects of interest

In such an environment, it is easy to develop an understanding for recursion. Exploration
and playful interaction are encouraged, which allows programmers to develop an intuition
for the behaviour of recursive shapes. Note that the interface manages without symbols

24

whatsoever, which is remarkable for a programming environment. This is achieved by
carefully constraining the options users are presented with, which also leads to a number of
downsides. The most severe one is that except for recursion, nothing else can be done. In
addition, the flexibility of defining the recursion is limited. For example, the rotation of the
shape is coupled to the rotation of the displacement. Furthermore, the assumptions of the
constraint solver can not be altered. It is always the root element that is assumed to be
fixed. All of those downsides are due to a trade-off that happens between the level of
abstraction perceived in the interface and the ability to meticulously control parameters.

In summary, Recursive Drawing is an excellent example of direct manipulation of
recursive shapes. However, recursive drawings are only a tiny subset of Turtle
Graphics. Expressive ability is sharply confined.

2.6 Drawing Dynamic Visualisations

chart pie donut grid pie-star ar

T N R R Move frame so frame's bottom-left meets bar's bottom-right.

Repeat from 1 to (EETLIED:

11l

TErD= N

Draw bar from frame's bottom-

I left to frame's top-right.
III .

Move frame so frame's bottom-
I left meets bar's bottom-right.
a

Move bar's right, -4 px
horizontally, 0 px vertically.

ADJUST

A n <

Scale bar's height around bar's
bottom by (&0 /

o fom ¥

MODIFIERS

]

The prime reference research prototype is Drawing Dynamic Visualisations (Victor, 2013a).
The tool is similar in terms of interaction style to vector graphics drawing programs, but
for creating data-driven graphics, instead of static pictures. The main component is a
drawing canvas. A toolbar is provided to the right, the data and program structure to the
left. The program is represented as a traditional list of steps, but this viewport is not used to

25

create commands. Instead, steps are recorded from drawing actions on the canvas. The
steps viewport is only used to add flow control statements (if & loop) around command
blocks and for navigating inside the history of the program. Selecting a step shows the
picture at that time. Commands are inserted after the selected step. Every step is also
enriched by a preview picture. Each step can be parameterised by dragging elements
from the data panel onto constants.

e
¢ o ¢
&—o—po

©
VE=~D=b X

The core insight is the use of snapping to establish relationships between
elements. The above figure shows the rectangle’s top-right corner snapping to the line’s
centre point while being dragged. Note that the key v is pressed to indicate the type
of operation: move. This is different from drawing tools. Elements can not be dragged
arbitrarily in order to avoid ambiguity. Artists have to make explicit what kind of operation
(move) is performed on which handlers (top-right corner). Overlapping source and target
handlers can be cycled through to pick the right one. Snap points are predefined on objects
but also automatically generated at intersections. This is useful because geometric
constructions often depend on intersection points. In addition, the glomp modifier allows
snapping to any point along an object (e.g. any point on a line).

Snapping actions are shown verbalised above the canvas. Established relationships are
turned into steps. The command is relative to the target. If the line’s position changes, so
does the rectangle’s. That means that the figure is just one example illustration of the
applied command. This is related to programming by example, but without automatic
"guessing" of intent. Different preconditions lead to different visual results. However, it is
possible to explore the dynamics of the program by walking through the steps or by
playing with the data. Since everything is live, changes propagate immediately. Combined
with parametrisation of geometric operations and flow control, snapping is what turns the
static picture into a dynamic one.

The panel at the top contains the subpictures, the function analogons. They abstract
computation. Their data panel can be thought of as their input. It is currently not possible
to import geometry (other subpictures). Output is split into algebraic information
(measurements) and geometric information, which consist of the graphic itself and so
called magnets, exported snap points. Subpictures can be used in recursions.

26

As mentioned earlier, resolving issues around ambiguity is challenging. For example,
trying to establish a reference to an object inside a different lexical scope is ambiguous. In
case of referencing an object inside a loop, which iteration is meant? In case of a condition,
what if the branch switches? In that case the reference is broken. Another example of an
ambiguous act is referencing a junction in a path of line segments. Which junction is meant
assuming that the path may have any number of junctions? In other words: operations
have to work in the general case, because they are abstract, data-dependent, driven by
parameters. Grounding them to concrete examples can mislead artists to perceive "simple
solutions" that are not generalisable.

Drawing Dynamic Visualisations is tailored towards the construction of procedural
data-graphics that rely on geometric transformations and relations between object
properties. One of the major differences to Turtle Graphics is the coordinate system.
Logo uses differential geometry. Operations implicitly establish a relation towards their
successor through state changes. If such an influence is not intended, a subroutine has to
reverse its own changes to the state before returning. Consider this binary tree as an
example:

to tree :size
if :size >5[
forward : size

left 30
tree :size x0.8
right 60
tree :size +0.8
left 30
back : size

]

end

tree 20

Every line is actually drawn twice. This becomes immediately obvious by considering
the fact that the turtle has to walk through the entire tree. Once in a leaf, it has to go back
in order to reach the others. This is done by code line 8 and 9. The change to the state done
in each subtree is reversed. Drawing Dynamic Visualisations instead operates in euclidean
"absolute” geometry. This has the advantage that the state does not have to be reversed
explicitly, if it is unwanted, but if it is, the relation instead has to be constructed explicitly.
For example, drawing a circle with line segments is therefore much harder. In summary, the
methods used to establish relations between objects differs substantially between Logo and
Drawing Dynamic Visualisations. They are both procedural, but work with different
systems of reference.

Drawing Dynamic Visualisations serves as a model for the research prototype. However,

27

due to its different referencing model, not all of its insights can be directly transported to
Turtle Graphics.

2.7 Summary

This chapter presented five programming environments that excel at the creation of
dynamic pictures. All of them present the picture on a canvas as part of their environment,
which hints at their focus. The following table briefly compares them based on the research
challenges:

Direct Expressiveness . Presentation of
. . b . Ease of Use ~ Dominant Metaphor . .
Manipulation of Dynamics Dynamic Relations

Sketchpad Yes Low Easy Technical Drawing Spatial
JSLogo No High Hard Drawing & Orientation Code
Scratch No High Moderate Building Blocks Code
Recursive Drawing Yes Low Easy Drag Composition Spatial
Drawing Dynamic Vis. Yes High Moderate Geometric Construction Mix

Direct Manipulation is here reduced to the ability to manipulate the picture. Ease of Use
refers to novices that are not familiar with programming. A similar set of challenges
has recently been proposed in Constructive Visualisation (Huron et al., 2014). Coding
environments generally have a high expressiveness but are hard to use. Sketchpad has a
low expressiveness because of the lack of custom parametrisation and rigid constraint
system. Recursive Drawing has a low expressiveness because of the same reasons and it
can only create recursive shapes.

The quest for direct manipulation was grounded in constructionist learning theories,
which also motivate the development of Logo. Advantages and disadvantages of Logo
are explained concerning the use of metaphors, differential geometry, representation of
program behaviour by Turtle Graphics, algebraic and geometric thinking mentalities and
the principle of locality.

28

3 Vogo

The prototype is called Vogo, a portmanteau word of Visual Logo. Vogo is an experimental,
web-based, spatially-oriented, direct manipulation, live programming environment for
Turtle Graphics. Vogo serves as a demonstration of new user interface ideas. This chapter
will elaborate on its usage, design and implementation.

Vogo is free software' and available online”. The source code is available on GitHub".
The reader is encouraged to try Vogo for himself. Many aspects of Vogo are better
understood by seeing them in action then by being described. Vogo works entirely in the
browser and has been verified to work reliably in Firefox 31* and Chromium 36°. It may not
work in other browsers. Vogo requires state-of-the-art HTML 5°, CSS 37, ECMAScript 5.1°
and SVG 1.1° compliance. The next section will introduce Vogo’s graphical user interface.

IGNU Affero General Public License 3, http://www.gnu.org/licenses/agpl-3.0.html
http://mgrf.de/vogo/

Shttps://github.com/rbyte/Vogo

*https://www.mozilla.org/de/firefox/new/

Shttp://www.chromium.org/

Shttp://www.w3.org/TR/html5/

"http://www.w3.0rg/TR/CSS/

8http://www.ecma-international.org/ecma-262/5.1/

http://www.w3.org/TR/SVG/

29

http://www.gnu.org/licenses/agpl-3.0.html
http://mgrf.de/vogo/
https://github.com/rbyte/Vogo
https://www.mozilla.org/de/firefox/new/
http://www.chromium.org/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/CSS/
http://www.ecma-international.org/ecma-262/5.1/
http://www.w3.org/TR/SVG/

3.1 Interface Overview

Subpictures Canvas Toolbox
"= Name 7 |4 Draw Line
| A lr Rotate
e [rble
¢ L. Loop
—— Remove — i = |b. Branch
@ D vicw H |2 Abstract
ol ome Ay le) Export
Parameter = SVG
—— Shortcut
Selected orteu
i Help
——Rotate
— Notifications r

The interface and interaction is modelled after a typical vector graphics drawing tool.
Inkscape has been an inspiration. The general composition has similarities to Recursive
Drawing and Drawing Dynamic Visualisations.

Vogo’s central interface component (literally) is the canvas. It can be panned and
zoomed. Compared to JSLogo and papert, this is a new feature. Panning works by dragging
the background with the middle mouse. Left mouse drag is reserved for rectangular
selection. Zooming works by scrolling with the mouse wheel. Zoom transitions smoothly
towards or away from the cursor position. Zooming can therefore be used to emulate
panning.

The canvas’ texture and shadows are designed to mimic a sheet of paper on a desktop.
The pen is visualised by a simple pointed orange triangle. The idea of a turtle from Logo is
abandoned in favour of emphasising the metaphor of drawing.

The home symbol is new. It is visualised by a darker outline of the pen with transparent
fill area. When a new subpicture is started, the pen "is home". Being able to spot home
makes it easier to trace the path of the pen. Panning can be interpreted as "moving home".

The toolbox shows icons, keyboard shortcuts and provides tooltips for their meaning.
Keyboard usage is encouraged for fast access but not required.

30

The subpictures panel is located on the left. Only the selected/focused subpicture is
shown on the canvas. Clicking on a subpicture opens it. Each subpicture has a name, a
preview and a list of parameters, which is empty by default. New subpictures can be added
and removed, but one subpicture is always open. Subpictures can be renamed. Their name
defaults to a Greek letter, chosen due to brevity and clarity. Greek letters are reserved for
subpictures. Subpictures are analogous to functions. The figure shows 3 examples that were
created with Vogo.

The interface is fully responsive, scales relative to the window size and without
pixelation. The panels can be resized within certain boundaries. The toolbox can be hidden
completely.

3.2 Design Principles

The most radical decision was to abandon the code editor altogether. As discussed

in section 2.3, Turtle Graphics provide many clues about the program behaviour. As a
consequence, reverse engineering a program from a Turtle Graphics without the source
code is often easy. However, execution still reduces information. For example, repeat 3 [
forward 10] is indistinguishable from forward 30. How can this loss of information be
avoided by reintegrating it into the canvas? The first design principle is hence to integrate
the "unfolded" program structure with the Turtle Graphic to break the separation
between code and picture and to merge the compile-time into the run-time. This is in
pursuit of the principle of locality.

The second consequence follows trivially: visualise every step. Program flow control
needs to be visible and tangible inside the canvas, as well as commands and parameters.
Code structures programs horizontally with indentation into logical blocks and vertically
into sequential steps (execution direction top to bottom). Both scope and sequence need to
be made visible spatially.

But how can abstract functionality be visualised? Two general observations
help inform an answer. Section 2.2 mentioned how assimilation is used to categorise
experiences. The human brain is innately gifted at pattern matching. It is easy to extract
common patterns from examples and make generalisations based on similarities. The
second observation is that everything abstract has concrete incarnations, however indirect
the connection. In dialogue, when trying to explain an abstract idea to someone that is not
familiar with it, people often resort to giving a concrete, illustrative example and let the
other person do the inferencing. For an in depth examination I refer to Moving Up and
Down the Ladder of Abstraction (Victor, 2011b). Based on those two observations, a tight
coupling with examples is proposed as a design principle. Abstract functionality has
to be constructed in terms of concrete examples. Default values have to be given for
parameters. Drawing Dynamic Visualisations follows the same approach. It is in line with
the environment requirement: start concrete, then generalise.

31

In addition, abstraction is to be made explorable along the dimensions of parameters
by providing interactive control over them. This leads to the next principle: minimise
indirection in the chain from intention to control to effect. This applies to all editing
tasks like adding functions, renaming parameters, inserting commands, selecting steps,
manipulating constants and editing expressions. Feedback must be immediate and control
be interactive.

Adopting a functional programming style is a design guideline. State is to be
minimised and variables eliminated. By default, everything is in a function. Encapsulation
is encouraged. All functions are in global scope.

Logo has hundreds of commands. What are the essential ones? What is a set of minimal
yet flexible commands? I conducted an informal online survey of Logo programs and
found that the commands most commonly used concern: movement, orientation, repetition
and calling functions. Conditions are not widely used but added in favour of flexibility.
Vogo concentrates on those essentials. It is a radically simplified version of Logo.

The design principles are in summary:

« provide immediate feedback

« honour the principle of locality

« abandon textual in favour of direct manipulation

« couple program structure and behaviour

« visualise every step

« ground abstractions to concrete examples

« make state transparent - follow a functional programming style
« reduce tools to a minimal yet flexible set

The following sections will explain how they are implemented in Vogo.

3.3 Proxies —

Proxies are "unfolded" commands. repeat 3 [rotate

10 | unfolds to repeat 3 [rotate 10 rotate 10 rotate

10]. Programs traditionally unfold at run-time.

In Vogo, the unfolded program is the working
representation. Proxies serve a number of functions,
but the most important one is to ground abstractions
to concrete examples. The figure to the left shows an
arrowhead, but due to parametrisation, the sharpness
of the tip and the cut at its base can be controlled.
Unfolding this program allows the display of one J
concrete incarnation with default parameters. 30 sharpnessteut)

vogo.sin(sharp)*25/vogo.cos(cut)

32

The code on the left is the Logo equivalent. On
the right is the unfolded form.

to arrowhead :sharpness :cut

forward 14 forward 14
left 180—:sharpness left 161
forward 25 forward 25
left 90+:sharpness+:cut left 143
fd (sin :sharpness)+25/cos :cut => forward 10
right :cut«2 right 68
fd (sin :sharpness)+25/cos :cut forward 10
left 90+:sharpness+:cut left 143
forward 25 forward 25
end

arrowhead 19 34

Note that Vogo represents the abstract in terms of this unfolded program, but does
not replace the expressions in the interface. This allows programmers to construct and
understand a program with an example. The proxy system is explained in more detail in
section 3.17 Compiler Design.

3.4 Move

The two most basis commands Vogo supports are Move

and Rotate. The default Move direction is forward from

the current pen state. Move has one parameter: the distance

travelled. When it is negative the direction is reversed. ' d
Logo instead differentiates between forward and backward, k

in addition to the short synonyms fd and back. Vogo reduces

those four commands to one. It is the first in the toolbar and 7.41

can be triggered by hitting the key d on the keyboard, which

is the initial letter of draw line. Once hit, Vogo reacts by

creating a preview line on the canvas. Its direction (forward

or backward) and length can be controlled by moving the

mouse on the canvas. The length is determined by dropping a perpendicular from the
cursor position. The preview is finished by clicking with the left mouse on the canvas. The
preview is discarded by hitting the escape key.

The angle of the line is determined by the heading of the pen and can not be altered by
Move. This behaviour may at first be unexpected because drawing a line or path is typically

33

realised in a vector graphics program by moving the preview line’s end point directly to the
current cursor position. However, in Vogo this can only be achieved by a combination of
Rotate followed by Move. This on the other hand would mean that Move can not be created
independent of Rotate, which precludes other constructions that require such precise
control.

The preview line provides immediate feedback and visualises the command.
It can be altered spatially by positioning the cursor. No text input is
required to create a line, neither for typing the command nor for typing its
parameter. No spelling or syntactic rules have to be known and met. Move is /
also not represented by a word but by an icon in the toolbar. The icon is a visual
representations. It portraits recognisable characteristics of the object of interest
(a line). In fact, programmers do not even know that the command is called Move. Yet it is
understandable and usable without any knowledge of language and the meaning of words.
The length is also shown next to the line by a continuously updated number in an input
field. It can be used for precise control, but can also be ignored. Vogo does not require the
programmer to think about length in terms of numbers or of lines in terms of commands.
He can just see the line and see its length.

Any line’s length can be altered after it has been created
by simply dragging it. Dragged objects are coloured in violet. *
Note that successive commands are affected by such an action.
They implicitly depend on one another through propagating
pen state changes that "flow from home". Again, changes to
the whole program are visible immediately. Run is implicit.

3.5 Rotate

While Move is explicitly visible in Turtle Graphics, Rotate

is not. It can only be guessed from the changes in the

heading of lines. This guessing is ambiguous. right 90 can

not be distinguished from repeat 2 [left 135 | and forward \ l 2 1 90
10 right 90 back 10 not from forward 10 left 90 forward)
10. Vogo introduces a new representation for Rotate which e
is the geometric angle. It is visualised by a pale grey .
circular sector. It has a centre and two sides. The centre ..

is positioned to wherever the current pen is. One side I k~ el
points to its current heading while the other points to)
where it will be after the applied Rotate. It is the second

item in the toolbar. The key r creates a preview, click

finishes, escape aborts. The heading is adjusted to be in one line with the cursor’s position.
Adjusting an existing angle via drag works in the same manner.

34

Angles are given in degrees. The Rotate parameter in the input field is followed by a
degree sign ° to clarify that. Degrees tend to be used in geometric contexts while radians
tend to be used in algebraic contexts. Logo uses degrees but is an exception. Most
programming languages use radians. Vogo is implemented in Javascript which also uses
radians. Parameters can also be expressions, which are in Javascript syntax. Math is
Javascript’s library for mathematic operations. This is why using Math.sin(90°) in Vogo will
lead to errors. Vogo provides its own interface to trigonometric functions: vogo.sin, .cos,
.tan, .asin, .acos & .atan which take or return degrees respectively. They have been used in
the arrowhead example. Degrees are used in Vogo for the same reason they are used in
Logo: they are preferable to radians in geometric contexts because significant headings
(3607, 270°, 180°, 90°, 45°, ...) are integers, instead of irrational numbers.

default orientation is clockwise rotation. Negative angles rotate
counter-clockwise. The circular sector is never larger than 180° or

smaller than -180° even if the angle is. 270° is equivalent to -90°, 400° to |
40°.

Logo’s right/rt and left/It are again reduced into Rotate. Its
2 %O°

The radius of the circular sector can be influenced by
the length of the following line. This has two advantages.
1) the radius of the circular sector does not exceed the
following line in length. 2) Overlapping Rotate can easier
be distinguished. This is aided by the fact that circular
sectors are semi-transparent. The structure of the graphic
to the right can be determined unambiguously:

Move +
Rotate +
Move +x
Move —x
Rotate —
Move +

The exact values are not visible by default to
avoid clutter in the interface. However, steps can
be selected. Selected steps turn red and input fields
become visible again. The figure to the right has
three types of angles: cornered, free-standing
and sided. Those give clues about the direction
of the attached lines. Cornered angles occur when
the incoming Move is negative, but the outgoing
is positive. Angles are free-standing in the opposite
case: when the incoming Move is positive, but the
outgoing is negative. Sided angles occur in any other case. Those distinct visual clues make
it possible to reliably determine the program structure from the spatial representations.

120°

35

3.6 Loop

Loop is the third command in the toolbar, shortcut L It is the first command

that has its own scope. It contains others commands. Vogo’s Loop is equivalent

to Logo’s repeat. It is the simplest form of iteration: do whatever is in the scope

x-times. It therefore has two parameters: x and the commands it contains. The

commands are determined by the current selection and x initially defaults to

two. That means the programmer is forced to first create what he wants to

loop. Loops can not be created without a body. If this is attempted, a warning is shown in
the notification area. This decision was made for two reasons: 1) it is easier to visualise a
non-empty loop and 2) it is in line with the principle start concrete, than generalise.

A loop creates dependencies between elements
because it replicates commands. Copies are not
unique. They are bound to their root. The figure
at the top shows Loop 4 [Move 7 Rotate 36° |. If any
one of the path segments or angles change, so do
the others. They are proxies to their root command.
The figure to the right shown what happens when
the last Rotate is dragged to 45°. The proxy delegates I
the change to the root which then propagates the
change back to all proxies. At 90° a square emerges,

a triangle at 120° and so on. This drag provides
immediate feedback by instantly updating the entire program. Note that the dragged
element is violet and all of its proxies have a blue outline.

The Loop is visualised in the toolbar by an icon that shows a clockwise
turn. Each step in the turn is one iteration within one full revolution. This
is metaphoric of a clock or a pie. On the canvas, each progression in the Q
iteration adds a "tick to the clock" or a "pie to the cake". The icon is placed
next to the position of the pen at the start of the current iteration. Hovering the
mouse over the "loop clock" reveals a tooltip showing the current iteration / the

36

total number of repetitions. The clock invokes the idea of progressing time.

This is a useful analogy because each loop iteration also progresses the pen forward,
drawing a path in its wake. Each new segment depends on the entire history. Another more
subtle advantage is that a clock transitions smoothly. If the number of iterations is
increased continuously, so does the visual quality of the icon, without abrupt changes.
Digits are different because of their symbolic nature.

The first iteration always has an attached input field. It can be used to change the
number of iterations. But there is also a way to directly "wind up the clock": by dragging
its hand to the desired position:

1C0Q®
JUIGIAI e I]

The higher the iteration that is picked, the "longer the lever". For example, dragging 5/6
to 1/7 squeezes 5 into 1/7, increasing the number of repetitions to 5*7=35.

The current iteration inside the scope of a loop
can be used in expressions by accessing the implicit
parameter i. The figure to the right shows Loop
31 [Move 1.7+i/13 Rotate 24° |. The length of the
line increases in each step, creating a spiral. The
expression is visible because the red line proxy
is selected. All other proxies are blue.

Another important feature of loops is that their
icon’s size decreases absolutely with the number
of repetitions and decreases relatively with the
number of iterations. This is done to better reflect its
decreasing importance, but also to reduce clutter and
to introduce the ability to better tell apart multiple
loops of different size.

3.7 Branch

Branch is the name and metaphor of this command at the same time. Branch is equivalent to
a traditional if-then-else statement but frames it in terms of flow control. Flow direction is
either channelled into the True Branch or the False Branch. The two are mutually exclusive.

37

Branches have a scope and can contain more branches. The deeper the scope depth, the
taller the tree they span. Since the pen "travels on a path", a branch is a suitable analogy for
a junction where a decision is made to either follow the flow in the True or False direction.

This is the Branch icon created in Vogo with the help of Branch:

branchlcon
condition=true

A

callWithFalse

= -

condition

Like the loop icon, the branch icon is placed next to the pen state current at its
invocation. The "upper branch" of the icon is coloured green to indicate that the condition
is true. The condition here is the parameter with the name condition which defaults to
true. The subpicture branchlcon is called by the second subpicture callWithFalse with the
parameter false. Its preview shows that Branch indeed controls the angle. The subpicture
branchlcon in pseudo-code:

Rotate 90

Move 5

Branch condition [Rotate —45] [Rotate 45]
Move 5

A branch has three parameters: the condition
and the two command blocks. It is created in the same
manner loops are. First, the programmer has to select
the commands he wants contained inside the True branch.
He then hits b or selects Branch from the toolbar. The

—) Sequence

selected commands have to be connected and be inside
the same scope, which means there may not be gaps
inside their chain. This is true for loops too. The reason (\

for this requirement is that it forces the programmer
to unambiguously specify the block he wants to create. If

—\r
gaps exist, the programmer may have overseen something, . -
or he may have intended to create multiple branches or he
may have wanted to lump the parts together. The intent . . .
is not clear. Instead of guessing, the environment forces
the programmer to clarify. The selected commands are

then surrounded by the new scope. The condition defaults
to the literal "true" and the False branch is initially empty.

38

The True and False branches are allowed to be
empty. After the condition is set to a meaningful
expression, Branch can be thought of as a switch.
I here refer to the electric switch, not the code
construct, which acts in a completely different
way. If the condition is met, the flow is allowed
to continue. If not, the flow is stopped because the
False branch is empty. In this case, the respective
icon’s branch is coloured red. This analogy is
particularly useful if the branch is not followed
by more steps but ends the scope it is contained
in. Since branches are routinely uses to terminate
recursions, this is not seldom the case. A binary
tree is an illustrative example:

angleF=0.8 ' <

True
—< Condition
False

@ taken & contains Commands
@ taken but has no Commands
@ not taken

@ sclected

@ proxy of selected

@ ncither

'j(bTree

Size<size*sizeF

bTree
size=10 angle«angle*angleF
angle=50 sizeIF
sizeF=0.7 angleF

size>1.5

The details of this example can not be understood until later in this chapter. The
important thing to note though is that a Branch is spanning the entire body of bTree. It only
lets the two-fold recursion progress if the size of each step remains greater then 1.5. Once
this condition is violated by the ever decreasing size, execution is halted, which is visualised

by the red branches in every leaf.

39

A second characteristic of Branch is illustrated in this example. The size of the icons
slightly decreases with the depth of the recursion. As was the case with Loop, this is done
to reduce clutter and make different branches distinguishable. In addition, only the first or
currently selected Branch proxy shows the condition.

3.8 Selection & Editing

The last section left open how the False branch can be filled with commands or how
commands in the True branch can be added, replaced and deleted. This section explains
Vogo’s selection and editing system. It was already mentioned that three colours are used
throughout Vogo. Red is used to indicate selected commands, [blue is used to indicate
proxies of the current selection and |violet is used to indicate dragged elements. All
commands can be selected by simply clicking on their visual representation. Move is
selected by clicking on its line. Rotate is selected by clicking on the circular sector. Loop is
selected by clicking on any clock. Branch is selected by clicking the left-hand "root" line of
the icon. Clicking on the background of the canvas deselects everything.

Selection is generally akin to vector
graphics editing programs and therefore
works largely as expected. The delete key
deletes whatever is selected. If commands
are deleted that contain other commands,
those too are erased. Holding down the
shift key allows accumulative selection.
Selecting already selected commands while
shift is pressed deselects them. Proxies
are selectable but refer to their respective
root. Selecting multiple proxies with
the same root is therefore not possible.

If multiple proxies with different roots
are selected, all their combined proxies
are coloured blue. For example, the star
to the right contains two root angles

(inner and outer). One proxy of both {-160°]
was selected (red) with accumulative
selection. All other proxies are blue.

As a side note, hovering over any Rotate reveals in a tooltip the exact computed
angle for a particular set of parameters, here cut=140, spikes=6, size=100. This creates an
immediate connection between abstract representation (expression) and concrete example.
It also reveals that the inner and outer angles are not identical, which may have remained
unnoticed at the first glance.

40

Elements inside calls to subpictures are not selectable intentionally. This
is to prevent alterations to functions from within other functions in order to enforce
encapsulation. Subpicture are only to be editable when they are focused. The call itself is
selectable. There is one exception to this rule: when a function calls itself. Elements inside
self-recursive calls are selectable, but again, only from within the parent function. Calling
a recursive subpicture is creating an own scope which is not selectable. This exception does
not apply to cyclic recursion schemes which involve multiple functions that reference each
other in a way that creates cycles in the call tree. This is true not only for selection but also
for editing. Lines can normally be dragged in order to change their length, but this is only
true if their root is a native of the focused subpicture.

_2)

The above example shows the one-fold self-recursive subpicture vortex. Angles can be
edited at any depth in the recursion to tighten or relax the "pull of the vortex". All but the
first Rotate proxy are inside a function call and yet selectable and editable.

a=10 in the above example. It controls the length of each segment and is continuously
decreased in each call. Again, the Branch acts like a switch. a*0.94"=1 yields x ~37.2, which
means that 37 calls are made before the recursion terminates, which is indicated by the last
red branch.

41

pressed on release, the current selection is extended by the new
elements, but reduced by those already selected. It behaves like
an exclusive or. For example, in the figure to the right, if shift
is pressed on release, the current selection will be deselected,
because it is inside the selection rectangle and replaced by the
two crossing lines in the middle. No angle is selected because
none is fully contained within the rectangle.

Dragging with the left mouse over the canvas creates a selection
rectangle. On release, everything fully inside the rectangle is
selected. Multiple elements can be selected at once. If shift is

Rectangular selection is also useful to select elements that hide
~—fT——1 behind others. Lines are black but have a slight transparency. Two lines
R that overlap are therefore slightly darker which makes it possible to spot

them, in case the context itself does not already hint at their existence.
A For example, blind alleys always reveal overlapping lines.

Elements that create own scopes (Loop, Branch & Call) are always favourably selected
if everything they contain is. For example, if the complete vortex was surrounded by a
selection rectangle, only the Branch would get selected because it is the outermost scope
that everything else is contained in. But if everything except home was included, the
recursive Call would get selected.

Cut, copy and paste are available with . r.—\ . N

control+x,c,v. Cut = copy + delete. Compared

to creating Loop and Branch, cut and copy pose]
no restrictions on the selection. The selection

is simply "flattened" by freeing its elements from

their previous scope. The figure to the right

shows how the three red elements are moved 4 paste

into a new scope. Their order is retained and (o ()
they are detached from their old scope. . . .

cut, select
(@) N

It is also possible to select and copy an element
that has a scope and elements inside that scope.
This is illustrated in the second example. The (—— A
command with number two is duplicated by . . 3 .
the cut because the scope is copied with all of 1
its contents, irregardless of whether they are
selected. Appending copied scopes to themselves
does not cause conflicts.

cut, select
N

4 paste
If no elements are selected, pasting appends y \
to the end of the program, because this is assumed . . 2 .

to be the most relevant location for insertion. If an

42

element that contains other elements is selected, pasting appends inside the selected scope.
If an element is selected that does not contain other elements, pasting prepends. If multiple
elements are selected, only the first is considered for deciding where to insert. The rules
described here also apply to creating elements. Elements are created and inserted before or
inside the first selected command. Branch has two scopes. Commands are always inserted
into the active one. Naturally, the True branch is active if the condition evaluates to true
and the False branch otherwise. Unfortunately, there is one position that is not reachable
for insertion: before a scoping element. This is currently a limitation. A possible
workaround is to duplicate the element that sits directly before the scope, insert between
the duplicates and then delete the second duplicate. What also works is to insert behind the
scope instead, then cut the scope and paste it behind the insertion.

Nevertheless, the typical insertion point is at the end of the program. Move and Rotate
create previews at the end by default. As mentioned earlier, a line does not point directly
to the cursor position without a Rotate in front of it. However, since the Rotate does
exactly orient the current heading towards the cursor, a line can easily be created by
positioning the cursor to the desired location and then hitting r and d right after one
another. d automatically finishes the pending Rotate preview and vice versa. This allows for
rapid and precise drawing in Vogo.

3.9 Expressions & Dragging

All text on the canvas is exclusively used in expressions for parameter assignment.
Expressions are contained in input fields. All can be edited. The only exception is

the function call, which is parameterised with an immutable reference to a function.
Expressions have to evaluate to numbers for Move, Rotate, Loop and to boolean for Branch.
If that is not possible the evaluation defaults to 1 or true. Expressions may be any valid
Javascript™.

Since it is a declared goal to minimise textual editing, manipulation
of expressions is avoided wherever feasible. Expressions are always
created and updated automatically and instantly. For example, this is the
case when moving a preview line with the cursor or dragging a selected
line. Aside from the direct manipulation and the textual editing of the
expression, there is a third option: dragging constants. Expressions can
be dragged with the mouse if they are constant numbers. The idea stems 6.6| €»
for Victor’s Scrubbing Calculator''. Dragging linearly adjusts the number
along the horizontal drag axis. The adjustment factor depends on the
magnitude and the granularity of the number at the start of the drag.
The higher the magnitude, the higher the factor. The more decimal places, the lower the

Oeval(), http://www.ecma-international.org/ecma-262/5.1/#sec-15.1.2.1
http://worrydream.com/ScrubbingCalculator/

43

http://www.ecma-international.org/ecma-262/5.1/#sec-15.1.2.1
http://worrydream.com/ScrubbingCalculator/

factor. Adding or reducing decimal places before starting the drag therefore changes the
desired drag range. The number of repetitions in a loop is restricted to integers.

The program is constantly updated whilst dragging. This encourages exploring the
influence of parameters on the behaviour of the graphic. The movement of the hand is
intimately coupled with the movement of the construction the screen. The input is tactile
(hand movement of the mouse) and the feedback visual. This allows the eye to stay focused
on the object of interest while it is being manipulated over the kinaesthetic channel. A
simultaneous and synchronous communication with the program can be established.
Moreover, the control continuously transitions visual qualities in correlation with the hand
movement. This is the prime realisation of direct manipulation of Turtle Graphics proposed
in this thesis.

Multiple selected commands of the same
type can be edited at once. This works with all
editing styles: direct spatial manipulation, textual 00"
editing of the expression and the aforementioned i
dragging of constants. Changing multiple at once
combined with a choice of editing style can result
in a tremendous improvement in editing speed
compared to traditional textual editing. In the 13.61 13.61
example on the right, a square was created by
first "free-handing” four lines that are connected
by angles, then selecting everything and setting
the angle to 90° and then dragging any line to =]_3_6]‘_\\\ 90°
the desired side length. Note that no reselection
is required to pick out the angles or the lines.
Changes only affect commands of the same type
inside the selection.

13.61 90°

The mentioned correlation between hand movement and spatial movement may
be more or less proportionate. The above square example is illustrative. Dragging the line
in the west moves the line’s end point exactly with the vertical position of the mouse. The
position of the start point remains unchanged. The proportionality factor is 1. Dragging the
line in the north still (taking the different orientation into account) moves the line’s end
point exactly with the horizontal position of the mouse. However, vertical motion of
the line is added. The proportionality factor is still 1, but the horizontal movement is
compounded with a vertical one. Dragging the line in the east is the most confusing.
Neither the start nor the end point move exactly with the vertical mouse movement.
Moving the mouse down moves the line up. The proportionality factor is -1. Again, this is
compounded with horizontal motion, which stands in no correlation with the horizontal
movement of the mouse, which actually has no effect on either. Dragging the line in the
south also moves contrary to the mouse, but at least remains static in the vertical. The
correlation worsens from the west to the north to the south to the east.

44

How the graphic behaves depends solely
on the structure of the program. For example,
consider the earlier vortex subpicture where any
angle could be dragged to tighten or relax its
pull. How precisely does the movement of the
mouse during the drag correlate with the size
of the angle or the pull? That depends on the
angle. If the first angle is dragged, which does
not depend on any previous angle, the angles
position during the drag is constant, which
creates a predictable proportionality. The angle
and pull increase with the increasing rotation
of the cursor around the angle. But other angles
depend on their precursors, which means that
their position does not remain static during the drag. The figure to the right shows
such a situation. If the dynamic position of the angle was to be taken into consideration for
calculating the angle adjustment, which depends on the relative position between angle
and cursor, the first change of the angle would trigger an avalanche of self-reinforcing
corrective adjustments. To avoid this, Vogo stores the state of the dragged object at the
start of the drag and uses it as the sole reference, irregardless of the actual (potentially
altered) position and heading. This stabilises the drag behaviour but does not necessarily
create well-formed proportionality. The closer the dragged angle is to the epicentre of the
vortex, the more erratic the behaviour (higher proportionality factor), which is obviously a
property of the vortex itself, not of the drag interaction that the environment provides.
It follows, put in simplified terms, that the environment can not provide a better drag
interaction without actually understanding the particular program.

+ Drag Reference

3.10 Subpictures

pie Subpictures are Vogo’s functions. They encapsulate a partial drawing
e for customised reuse. The subpictures panel prominently displays them
with a preview image. If the subpicture has parameters, this image
is only one incarnation of the function’s abstract nature, but it does
D at least provide a visual hint at it. Subpictures have an adjustable name.
The name defaults to a Greek letter in order to free the programmer from
, having the specify a name, if he deems it sufficient to identify subpictures
PI::t:ir[t3,4,6,z] by their preview only. Focused subpictures are displayed on the canvas,
=2 one at a time. The preview only contains the home, pen and the lines,
but shows no angles or others controls. The preview is otherwise tied
to the look on the canvas and therefore created as a byproduct.

Subpictures "return" a graphic and a pen state change. Their input
are parameters, which are listed below the name of the subpicture.

45

Parameters have a name and a default expression. Parameters are not variables. They
can be set on invocation of a function, but do not change inside any given scope. It is also
not possible to let parameters reference each other. For example, it is not possible to set
a=10 and b=a+a. Logo has variables but Vogo strictly bans their usage to enforce a more
functional programming style.

Just like any other expression, default parameters can be dragged if they are constants.
This changes the execution environment of the subpicture, which updated accordingly.
Parameters can be adjusted even if the subpicture they belong to is not focused. The
changes are immediately visible in the preview and propagate to all subpictures that depend
on it through referencing. This makes it possible to understand subpictures "from the
outside" by looking at its preview and playing with its parameters. It is therefore feasible to
understand whether a subpicture provides a certain desired graphical component without
needing to grasp its internal mechanisms, which is important for effective encapsulation.

3.11 Call

regularPolygon
edges=5
size=50

.

=

l fregularPolygon
edges«<3

Size

The Call is the fifth and last command in Vogo. As the name suggests, Call is used to
instantiate subpictures. The Call is the only command that is not listed in the toolbox. Call
is instead invoked by dragging a subpicture onto the canvas. The subpicture picked is
automatically set as the reference that is to be called. Calling a subpicture in Vogo is simply

46

another drag operation. Programmers do not need to type its name or arguments. By
default, the arguments list, Call’s second parameter, is empty. Since no arguments are
initially set to the called subpicture, the default expressions are used. Arguments can be
selectively overwritten. Typically, arguments can only be overwritten in order. For
example, the Javascript function function f (a, b) can only be called with none, one or two
parameters, but can not be called with only b being set. In contrast, setting parameters in
Vogo is independent of order, which is more flexible.

f is used to symbolise a call. It is followed by the name of the subpicture. Renaming
the subpicture does not break the call. Its name is just updated accordingly. This is another
advantage over textual program editing. Only "smart" development environments will
refactor a rename correctly. The call is the only command with a symbolic (textual)
representation. However, since each call actually draws the subpicture, this representation
is only meant to indicate that a subpicture was drawn. The graphic stands for itself. f is an
analogy to functions in math and programming. I do not consider it to be a good design
decision but have not yet come up with a better representation.

Arguments are listed below the name. Clicking on an argument "activates” or "unbinds"
it for custom setting. <— symbolises assignment. This differs from the traditional use of =
or := to indicate assignment. The arrow does not creating confusions with equals and
indicates a direction from the expression to the parameter. Note that the default parameters
do use the = but in the subpicture context it actually does mean equals.

In the figure angle is "rebound" or "overwritten" while
the other arguments remain inactivated. This scheme allows
programmers to quickly access only the functionality they
need. It is in line with the environment requirement create
by reacting, which can be paraphrased as start somewhere,

fcircleSector

size then sculpt. The idea is to get a visible result on the screen
angle«135 as soon as possible. The impression can then be used as
direction a stepping stone to inform the next steps.

A part of a called subpicture can also be distinguished by its lack of controls. For
example, angles are not displayed. Calls hide the internals of the called subpicture. It can
not be edited "from the outside".

3.12 Recursion

fcircleSector
size
angle
direction

47

Calls can reference the subpicture they are a part of. The circleSector is to be used to create
a wave. Wave calls circleSector, rotates 180° and then calls itself. This creates an endless
recursion. Vogo is able to visually approximate an endless recursion by computing it until
a certain scope depth ceiling is reached. The symbols of successive recursive calls are
hidden by default to avoid cluttering the interface. In the above figure, the first recursive
call is selected, which reveals all of its proxies in blue. In order to terminate the recursion, a
Branch can be used. First, the parameter n is added to Wave, which is set to default to 4.
Then, the recursive call is set to decrease n in every iteration. At last, the recursive call is
selected and branched at the condition n>1. This results in the following program:

fcircleSector
size
angle
direction

The recursion is terminated after the third call. Note that the second Branch proxy
is selected. Its root’s scope contains the call to Wave which itself contains the call to
circleSector, the angle and the next Branch proxy. Containment in scopes of selected
commands is visualised by low opacity. This is why the recursive call and everything it
contains has a pale colour.

This is not a proper wave yet. The direction of the circleSector can be set to alternate
between 1 and -1. The previous angle is then obsolete. And waves do decrease in size over
time.

circleSector
size=0.12
angle=180
direction=1

'

Wave
n=7

fcircleSector
Size«0.12*n/7

W angle

directionen%2*2-1

This walkthrough example shows many individual design principles in action, but above
all illustrates how they play together. Artists could not create by reacting if they had no
immediate feedback, which is available only due to the ability to see every step, which in
turn relies on the grounding of abstractions to concrete examples.

48

3.13 Scope

Code structures programs with indentation into blocks of commands. At run-time those
blocks create scopes. Blocks can contain blocks and scopes can contain scopes but the two
are not identical. The crucial difference is that a call creates a new scope, but it does not
create a new block. A block is structuring the static program representation while a scope
is structuring the dynamic program representation. There are still considerable overlaps.
Everything inside a block is also in the same scope, but the reverse is not necessarily true.
For example, the scope of an endlessly recursing program is also endless, but the function’s
command block is not. Logo uses dynamic scoping while Vogo uses lexical scoping,.

' \ /00 \,/ 000
‘O \ 0~ o Vg %

)@
o

LA LA

Loop, Branch and Call create scopes in Vogo. Seeing scopes is important to understand
the behaviour and structure of the program. The scope of a command can be made visible
explicitly by selecting it, which results in a reduction of opacity in all contained elements.
Nested loops, as illustrated in the above example, are indicated by the reduced size of the
loop icons. Selecting first the outer and then one of the inner loops reveals the program
structure unambiguously.

Rotate
Move
Loop 2
Loop 6
Rotate
Move
Rotate
Rotate
Move

In the previous Wave example, the scope of its Branch was shown. Its block only contains
the recursive call, but its scope contains the complete recursive chain of events including its
own proxies. The reason for choosing opacity as a means to visualise scope is that it works
on all elements without occluding the visibility of other properties, like selection and
proxies. It also creates a contrast to the surrounding program.

49

3.14 Parametrisation

Parametrisation is the principal mechanism for introducing

abstraction. It has its own place in the toolbar and is symbolised by a

ladder, which is inspired by Victor’s Ladder of Abstraction. 1t is the first

item in the toolbar that does not create a command. Pressing it adds a new
parameter to the focused subpicture. Its name defaults to a Latin letter, its

value to 1. Both can be changed. However, references to renamed parameters

have to be updated manually because Vogo does not (yet) "understand"

expressions semantically, which would require the parsing of Javascript inside itself.

Everything that is currently selected is set to the newly created parameter: Move’s length,
Rotate’s angle, Loop’s number of repetitions, Branch’s condition. Only Call can not be
parameterised that way. In addition, if the selection is not empty, the parameter does not
default to 1 but to the primary parameter of the first selected command. That is useful for
two reasons. 1) the attributes of all existing commands already provide a default value. If
the programmer wants to abstract over a command, he probably wants to retain the
values that are already in place. 2) Multiple commands can be set to refer to the same new
parameter at once, which increases editing speed.

Parameters can be deleted by setting its input field in the subpictures panel to the empty
string. Theoretically, parameters can also be Javascript functions a=(function(b) { return b*b
}) that are evaluated in the program a(b) using other parameters.

3.15 Flow

What happened when? It is not always trivial to figure out the flow. The following program
draws a grid with an adjustable number of columns, rows and cell size. Due to many
intersections, overlaps and only two dominant headings, it can be hard to figure out the
path the pen travelled. The most important fact to know is that the pen does not jump
around. Otherwise it would be a hopeless quest to figure out the flow in Vogo without any
further help. In contrast, Logo’s turtle can raise the pen with penup and lower the pen with
pendown which does allow visual jumps of the stroke to occur in the graphic. The same is
possible with commands like setpos or home, which allows absolute positioning. Logo’s
code view provides a way to tell the sequential structure of the program. Since this is not
the case in Vogo, absolute positioning is intentionally left out. The downside of that
decision is that everything has to be connected. This may be alleviated in the future by
adding the ability to hide lines on export.

50

zig
reverse=false
side=11
cellSize=3

i

cols=7

grid

rows=4
cellSize=5

3 rows
A\ffzdgi - -
reverse—i%2==1

side«rows*cellSize

cellSize«cellSize

b

Flow control statements and the discussed ability to see scopes and blocks are crucial for
understanding the pen movement. As shown in the figure, one click on the loop reveals the
last pieces of the puzzle. First of all, there are two loops: one for the rows and one for the
columns. Each even iteration starts on the opposite side of the grid. zig is called in every
iteration and its preview reveals that it draws one half of a complete column or row. Its
ability to reverse indicates that it can change direction and indeed it is called in the loop
with an alternating argument. It follows that the grid is woven by first drawing the long
vertical lines from left to right, in a zig-zag pattern. zig does not draw the final closing
border. This is done "behind" the loop. This leaves the pen standing at either the top or
bottom right end of the graphic depending on whether the number of columns is odd or
even. Then, the horizontal lines are drawn. The rows-loop is preceded by a rotation, 90° or
-90° depending on whether columns is odd or not. In pseudo-code:

zig :
Move side
Rotate 90«(reverse ? —1: 1)
Move cellSize
Rotate 90«(reverse ? —1: 1)

grid :
Loop cols
Call zig {reverse: i%2==1, side: rowsx cellSize , cellSize : cellSize }
Move rowss cellSize
Rotate 90«(cols%2==1?1 : —1)
Loop rows
Call zig {reverse: i%2==(cols%2), side: cols= cellSize , cellSize : cellSize }
Move cols+ cellSize

51

The naming of parameters also significantly contributes to the understanding. If it is not
clear that % is modulo, it is possible to play with the parameters and observe how the angle
alternates. And if nothing else helps, the programmer can simply deconstruct the program.
Deleting a loop immediately unravels the zig-zag pattern. The following characteristics of
Vogo improve the understandability of flow:

« the pen draws an uninterrupted path without jumps

« its start (home) and the end (pen) state are visible

« every state change operator leaves a spatial trace or iconic hint

« flow control statements reveal how they unfold at run-time

« scopes and blocks are visible

« subpictures provide previews and expose all parameters

« the effect of parameters can be explored, change is continuous, feedback is instant
« semi-transparency reveals overlapping elements

« ability to see proxies of selected commands

« explicit and distinct spatial representation for rotations

Nevertheless, flow can not be said to be unambiguous in all cases. Overlapping elements
are the gravest thread to flow visibility.

3.16 Export

Vogo graphics can be exported in a static and a dynamic format. The
static format is SVG. The first icon in the figure on the right is the SVG
icon. This export is static because the relationships and structures build
between the elements is not retained. The second icon stands for dynamic
export. Both can be found in the toolbar. Dynamic export generates an
HTML file that contains a script, which contains the program. It is written
in Javascript and tied to the Vogo API'%. Vogo in turn depends on D3,
which is loaded first. Its general structure looks as follows: u

<!DOCTYPE html>
<html>
<head>
<meta charset="utf—8>
< title >Vogo Export</ title >
<script src="http :// d3js.org/d3.v3.min.js ></ script >
<script src="http :// mgrf.de/vogo/js/vogo.js’></ script >
</head>
<body>
< script >

12 Application Programming Interface. A library of functions Vogo exposes.

52

var regularPolygon = new vogo.Func({
name: "regularPolygon ",
args: {"n": 5},
viewBox: {x:—17, y:—17, w:60, h :52}});
regularPolygon.setCommands([
new vogo.Loop("n", [
new vogo.Rotate ("360/n "),
new vogo.Move("100/n ")])]);

var fd = new vogo.Drawing(regularPolygon, {arguments: {n: 20}})
fd.update ({n: 3})

</ script >

</body>

</html>

Vogo exposes the following classes: Func, Move, Rotate, Loop, Branch,
FuncCall and Drawing. Drawing acts as a wrapper for functions that are drawn into a
custom inline SVG container. Since none is provided here, Vogo creates a new one. update
demonstrates that the graphic is indeed dynamic and controllable "from the outside". It can
be used to turn the dynamic graphic into an interactive graphic.

This is not the place to explain Vogo’s API in detail, but I want to hint at one other
option. Vogo can also be used to create data-driven graphics with D3. The following
snippet illustrates the principal mechanism:

var data = d3.range (1,9)
d3. select ("#mysvg").append("g")
. call (vogo.draw(barChart, {data: data }))
. call (vogo.update ({data: d3. shuffle (data)}))

3.17 Compiler Design

For a lack of a better word, I shall call it compiler, when in fact what is meant is more like a
mini program manipulation operating system. A compiler translates a source into an
executable form and then terminates. This is not the case in Vogo. Its compiler does not
shut down. In a way, the executable form itself is what is constantly manipulated. The most
important task that the "compiler" has to fulfil is to rather update the "source" in response
to changes to the working representation of the program. By update an incremental
change is meant, not a classical re-run that "destroys the world". This requires the compiler
to "know" what parts of the program are affected by an edit as well as what parts are not.
For example, if a loop’s number of repetitions is reduced from three to two, it does not first
remove the complete loop only to recreate it with two iterations, but just removes the last

53

iteration. This approach diverges from simply re-running fast in order to achieve real-time
programming (Hancock, 2003) (Tanimoto, 2013).

In spite of its name, the canvas is not implemented with the <canvas> element, but with
an embedded SVG. The primary reason for this decision is the simplified implementation
of interactivity. Vogo is build on D3, which is a superb library for manipulating the DOM"°.
In contrast, <canvas> provides a raster graphics interface. This is the secondary reason for
the usage of SVG: Vogo is meant to create dynamic vector graphics, not raster graphics.
SVG is a native format and natural choice. Trivial geometric manipulation does not require
a (manual) redraw. However, those benefits come at the cost of an increased performance
penalty. DOM manipulation and styling is performance intensive. Vogo is optimised
towards reducing the load on the DOM. This is where the aforementioned incremental
updates go hand in hand with performance.

An integral part of the compiler is the proxy system that was mentioned in section 3.3.
The proxy system can be understood as a new semantic layer on top of the static program
structure. Proxies are run-time objects that are spawned by root commands. Everything on
the canvas is a proxy, even if it is only a trivial one (has no siblings). For example, a
function call spawns proxies of the called function’s root commands. Proxies depend on
their roots. If any command in the called function is altered, all proxies update accordingly.
Due to the persistent, bi-directional link between roots and proxies, the effect of changes
stays localised. This is true up the level of the function itself. Changes in one subpicture
only trigger redraws in dependent subpictures. In addition, Vogo tries to reuse outdated
proxies instead of recreating its entire DOM tree. Other than that, the compiler has a fairly
ordinary design. Every update triggers a re-run that "marches the pen". It creates scopes,
evaluates expressions, executes state change operations, sets up parameters and so on.

Compared to Recursive Drawing, Vogo’s endless recursion system is crude. Recursive
Drawing progresses the recursive front incrementally in an asynchronous fashion. It also
walks into the breadth first, not the depth. This is problematic in Logo because different
branches are not independent of one another. Simply opposing a depth limit to the
computation does not guarantee a correct execution. This is only the case if the assumption
holds that each recursive branch "returns" to the state it started from. This is presumably
desirable in endless recursive programs with more then one recursive branch, for example a
binary tree. But multiple recursive branches also trigger a combinatorial explosion that is
not well met with a static depth limit. For such a case, Vogo has a static execution time limit.

Suffice it to say that many design decisions are simple solutions. However, they are
sufficient to demonstrate the principle of creating a working representation as soon as
possible and provide feedback instantly. As shown in the Wave example, each step is
meant as an intermediate representation only. Once an idea has solidified, the program can
be enhanced to terminate the recursion wilfully. Vogo allows programmers to quickly
explore ideas without forcing them to imagine multiple steps ahead without seeing results.

BDocument Object Model, http://www.w3.0org/DOM/

54

http://www.w3.org/DOM/

3.18 Summary

Vogo abdicates the use of a code editor by adding a new semantic layer of control on top of
the graphics canvas, which turns it from a mere vehicle of output into a means of direct
manipulation of Turtle Graphics. A minimal yet flexible set of five central commands was
presented: Move, Rotate, Loop, Branch and Call. I described the metaphors they use, their
iconic representations and the way they are organised and controlled spatially. Concrete
suggestions were made towards reducing ambiguity and handling abstraction. Those
include how the proxy system is used to create a tight coupling with examples, how
subpictures foster modularity and encapsulation, how scope and flow are made visible and
how expressions and parameters help create dynamism in graphics.

I presented numerous examples at various degrees of detail: arrowhead, spiral, branch
icon, binary tree, star, vortex, haus des nikolaus, square, regular polygon, pie chart, wave,
heart and grid. This is just a fraction of all the examples that are integrated in Vogo. Its
newest version contains an additional icon in the toolbar to load all examples. I commend
the interested reader to explore them.

55

4 Discussion

Vogo demonstrates a novel approach to programming Turtle Graphics. This chapter takes a
critical perspective on the proposed interface ideas. How does it fare compared to existing
programming environments for dynamic pictures? Does Vogo meet the research goals?
Where does it excel, where does it fall short? What are its limitations? What needs to be
improved? What new questions does Vogo raise, which remain open?

4.1 Comparison with JSLogo

JSLogo is comparable to Vogo due to the following reasons: 1) both are an
implementation of the classic Logo: a command language that moves a pen on a plane.
Other interpretations and dialects exist, including moving the turtle in three-dimensional
space and so called DynaTurtles, multiple turtles that are in constant motion, more akin to a
particle system. 2) Both use the structured programming paradigm. The classic flow control
mechanisms are used: sequence, repetition, conditionals and calls. 3) Both provide the same
kind of basic mechanism for abstraction: parametrisation of encapsulated functionality. 3)
Both are a modern, free, web-based interfaces build on HTMLS5. 4) Both have roughly the
same expressive power in terms of shapes they can produce. 5) Both prominently feature a
canvas to display the Turtle Graphic. 6) Both rely on the same physical devices for input
and output: mouse, keyboard and monitor.

spiral
step=20

too much recursion

L 10 Spiral :step «
forward :step
right 72
Spiral :step*0.9
END

7 Spiral 140

56

The figure shows the identical program spiral side by side in JSLogo and Vogo. The same
example was used in section 2.3. The only minor difference is that step is initialised in
JSLogo with 140 and with 20 in Vogo. The reason is simply a matter of length unit scale,
negligible for the program behaviour. Not visible in the screenshots is the availability of
example programs and a command reference in both JSLogo and Vogo.

The most obvious visual similarity is the spiral itself, while the most obvious visual
difference between the two interfaces is the lack of a code editor and run button in Vogo.
Those are part of a major transformation of the way the program is presented and
created.

Vogo generally uses less text. Much of the information that the code contains in JSLogo
is encoded in Vogo in a spatial way. For example, the parameter step in JSLogo is
represented primarily through the application of syntactic rules: parameters are declared
following a function name, separated by a white space and prefixed by a colon wherever
they are used. The secondary representation is colour. Parameters are purple. It is secondary
because 1) colour is redundant and 2) not used to specify a property, but only to help
display it. For example, a programmer can not write a word and then colour it purple in
order to indicate that it is meant to be a parameter. This is an important distinction because
it means that the programmer can not use colour as a way to create the program, but only
as a way to verify syntactic correctness. Without knowing the syntactic rules, it is not
possible to create a program. This is not the case in Vogo. Except through the use of wrong
expressions, it is not possible to create syntactically incorrect programs in Vogo
because the interface enforces them. A parameter is primarily represented through its
position in the interface: below a subpicture name and in an indented list. A colon is not
needed. Vogo does not internally store the program as text and therefore does not need
to parse it either. Text is only used as an export medium to transmit the dynamic
picture over traditional channels. But the exported code is not meant to be altered much
like bytecode is in Java; the only difference being that bytecode is a lossy format. Vogo
tried to hide the complexities of this low-level format. Commands and functions can be
parametrised by a spatial selection and the subsequent pressing of a toolbar button or
shortcut alternatively. The interface itself takes care of the correct insertion, setting of a
default name and value. The overall amount of required typing is reduced, which can
increase speed and accessibility.

Vogo’s interface to commands also has a number of downsides. For example, it is easier
to implement a new command in JSLogo compared to Vogo, because of the way it is
represented. JSLogo at best only needs to define a new keyword. All modes of interaction
stay the same. On the other hand, Vogo requires the specification of a new spatial
representation and interaction method for each new command. Its smooth integration into
the existing command structure is not trivial, because a range of dependencies have to be
taken into consideration. For example, the new spatial representation is not allowed to
collide with the way other commands are represented in order to avoid ambiguity. It is
easier to find or define a new word and assign meaning to it than to find a metaphor
that conveys the desired meaning and provides a strong way of referencing existing

57

knowledge structures in the programmer. Once found, the second considerable hardship
is its implementation. Vogo pleads for direct manipulation programming but is

itself written in Javascript out of necessity. The argument brought forward was that
programmers should not be forced to think about a geometric construction (like the Turtle
Graphic) in algebraic terms. The same analogy holds true for Vogo’s implementation. Tools
and interfaces for textual processing of text are abundant, but not for visual processing of
dynamic pictures. The existing tools amplify the dominance of text and the hardships of
implementing other forms of representation.

This is also one of the reasons why JSLogo has a much broader vocabulary than
Vogo. I here neglect expressions for parameter setting, mainly arithmetics and logical
operations. Arguably important commands not available in Vogo are:

+ penup & pendown: disjunct paths

« pencolor & pensize: stroke styling

« setpos & setheading & home: absolute positioning
stop & bye: breaking the execution

« while & until: conditioned iterations

fill: flood fill area with colour

« make: creating variables

« label: printing text

The upside of having a multitude of commands to choose from is an increase in overall
flexibility. The downside is a decrease in the flexibility each individual command possesses,
which is a consequence of its increased specialisation. This is a trade-off. Having too
many tools is a burden while having too few tools is restrictive. With only five
commands Vogo is very restrictive. However, due to the selection, careful design and the
way they work together, their expressiveness is still high.

Another major difference between JSLogo and Vogo is the way the program is
organised and navigated. In Vogo, functions are listed in the subpictures panel. Only the
internals of one function are visible at a time. In the library of JSLogo multiple functions
can be visible at once. On the other hand, each function provides a preview in Vogo, which
improves its "readability” because it is immediately understandable what each function
does. Navigation in JSLogo is done by scrolling in the code. The program is organised in
a sequential list. In Vogo the program is organised spatially on the canvas. Navigation
happens through panning and zooming. Zooming provides a smooth transition between
overview and detail that is not available in code. However, due to the spatial arrangement
of the program, it may be harder to grasp its sequential structure. On the other hand, the
advantage of the spatial organisation of commands is its tight integration with the program
flow. While it can be hard in JSLogo to find the command that drew a certain part of the
picture, this is easy in Vogo because of the spatial proximity between cause and effect. The
trade-off lies between the readability of the sequential structure and flow visibility.

Another kind of proximity that is vastly improved in Vogo is temporal proximity.
Vogo’s run is implicit. Changes to the program are visible immediately. For example,

58

changing the number of iterations in a loop is updated at an interactive rate. Furthermore,
changes do not have to be discrete jumps, but can be continuous on a customisable level of
detail. The dragging of constants supports this kind of manipulation. Even more direct is
the dragging of angles and lines because it operates on the spatial representations, is
continuous, bi-directional and immediate. The principle of locality is honoured and,
apart from expressions, no switch in thinking mentality is forced on the programmer.

For example, assume a programmer wants to change the direction of an existing line
to be horizontal. In JSLogo the programmer would have to 1) switch the visual context
from the canvas to the code view, 2) find the command that adds the angle before the line
in question (which presumes understanding at least parts of the program first), 3) compare
the line’s current heading with the horizontal heading, 5) mentally translate the delta into a
number of degrees, 6) determine the right turn direction and add or subtract the number of
degrees to the existing angle by 7) selecting the current number with the cursor and 8)
typing in the new number, 9) hit the run button, 10) switch back to the canvas and 11)
verify the result. Unless the programmer completely understood the chain of all previous
rotations, the solution can only be an approximation. Thus, the verification may identify a
required readjustment, which restarts the same procedure from anew.

In Vogo, the very same task can be accomplished as follows: 1) figure out the flow
direction of the line in question by tracing forward from home or backward from the pen,
2) find its point of origin, 3) find the angle at that location, 4) point the cursor to it and 5)
drag it into the horizontal (west or east). Since the program provides immediate feedback,
the drag can be released whenever the line is straightened to the horizontal. This too is an
approximate solution, but faster and more precise. The programmer had not to think about
any numbers, algebraic operations or switch context between graphic and text.

Now consider the spiral program at the beginning
of this section. Say the programmer wants to change the
direction of the fifth line from home to be pointed west, to
be in the horizontal. In JSLogo, using the described step by
step procedure would fail in this example, because the only
one rotation right 72° in the code does not stand in a direct
relation with the heading of the line in question. Instead,
since it is called multiple times, the relation is compounded
by a factor. To rotate west from home by turning right four
times, each turn has to be 27074=67.5°. This is the analytic A
solution. Apart from wild guessing, it is the only workable
approach in JSLogo. For the analytic solution a complete
understanding of the program is required. In contrast, the approach described for Vogo
still works in this example. The only difference is that the drag of the angle does not as
beautifully align the position of the mouse with the line in question. However, rotating the
cursor still allows a smooth easing in on the approximate solution.

fspiral
a<a*0.9

59

T0 square . length
repeat 4 [fd :length rt 90]
END
clearékreen
repeat 36 [square 50 rt 10]

Selection works completely different. Vogo uses spatial selection that operates
on commands while JSLogo uses textual selection that operates on characters. But
characters do not matter. Textual selection relentlessly cuts through all the semantic
properties of the program. It does not respect words, it does not respect blocks, it does
not know about values or operators. Selections in text are not allowed to have gaps, which
means that no two positions can be selected at once. Furthermore, editing can only happen
in one position at a time. It is practically impossible to edit a program without breaking its
semantics during the editing process. None of this is true in Vogo. Selection and editing do
respect the semantics of the program. Furthermore, Vogo actively simplifies common
tasks and tries to provide reasonable defaults. For example, it is assumed that moves and
rotations tend to follow each other in alternation. For a fast construction, Vogo provides a
preview for the creation of moves and rotations. Vogo also harmonises the way they work
together by letting the angle be pointed into the direction of the subsequent line’s end
point. In addition, multiple commands can be edited simultaneously.

In Vogo, the classical way of selection and editing only applies to the "manual"
manipulation of expressions. For example, this is required for setting conditions in
branches. While text manipulation is the only way to edit a program in JSLogo, it is
limited to non-constant expressions in Vogo. Still, this is a severe downside, because
Vogo does not "understand” expressions and can therefore offer no assistance to the
programmer in formulating and manipulating them. A second problem is that some
expressions may be surprising to novices. For example, the use of the implicit parameter i
in loops is not obvious. The same is true for array parameters that are queried.length and
accessed[i]. Javascript syntax has to be known.

The visibility of blocks is a strength of JSLogo compared to Vogo. Blocks are surrounded
by [brackets | and its body is typically indented. It is interesting to note that indentation
is actually an "artificial" spacial organisation inside text. I say "artificial” because it is,
just like colour and highlighting, redundant’ and not typical in prose. In Vogo, blocks are
not immediately visible. They have to be deduced from the flow and scope, which requires
previous sampling through selection. This is a downside of Vogo. On the other hand,
program flow and scope may be harder to understand in JSLogo. This is particularly true if
the program contains many conditioned calls, because each condition alters the flow
at run-time and each call creates a new scope inside the current one. Accomplishing
the visibility of the program flow, blocks, scope and structure with clarity is hard and
involves trade-offs. For a more detailed study I refer to Mike Bostock who wrote about the

'Python is a prominent exception - https://www.python.org/

60

difficulties of algorithm visualisation (Bostock, 2014). Vogo emphasises the visibility of the
flow to make the program behaviour transparent and easier to understand. This choice
has adverse effects on the visibility of other program qualities.

This section compared JSLogo and Vogo. Some significant differences and similarities,
advantages and disadvantages were discussed. The main difference lies in the way the
program is portrayed and edited. JSLogo relies exclusively on textual editing while Vogo
incorporates spatial forms of representation and direct manipulation. The main aspects that
were discussed are in summary:

« what metaphors are used and how they reference existing knowledge
« the extend and properties of the provided set of tools

« how orientation and navigation is accomplished

« whether the principle of locality is honoured in both time and space

« the way of thinking that is most prominently employed

» which program qualities are most prominently visible

« how syntactic and semantic support is provided by the environment
« ease of use for novices

4.2 Exploration

Vogo’s interactive drag is an invitation to exploration and curiosity. It is one of
the central accomplishments of Vogo. It opens the door to ideas and insights that were
previously literally unthinkable. The spiral shall serve again as a demonstration. Dragging
the angle immediately provokes the question: What happens at different angles?

fspiral
a«<a*0.9

61

Distinctive patterns emerge when the headings of multiple lines converge. The following
angles stand out: 120°, 90°, 72°, 60°, 51.4°, 45°. Do they have something in common? No
analytic genius is required to find that the angles must have something to do with the
number of edges used for a complete turn: 360°/n. This was found by inductive reasoning to
explain the findings. It was not necessary to already know the formula in order to
produce these graphics. But this is exactly the case in JSLogo because it is not possible to
easily explore the whole space of possibilities. The best programmers could do is "poke
around" by trying different values one at a time. Or they already know the formula and
reason deductively. But then this is not discovery. The third option is imagining how
changing the angle would affect the graphic, which is limited by the amount of "blind
precomputation" imagination can do. Thoughts beyond this boundary become unthinkable
without external aid. Writing is a good analogy. Writing made thought visible. Writing
was a new interface to language that aided the reflection on previously fleeting thoughts
(Victor, 2013b). In the same line of argumentation, Richard Hamming wrote:

Just as there are odors that dogs can smell and we cannot, as well as sounds
that dogs can hear and we cannot, so too there are wavelengths of light we
cannot see and flavors we cannot taste. Why then, given our brains wired the
way they are, does the remark "Perhaps there are thoughts we cannot think,'
surprise you? (Hamming, 1980)

fspiral
<a*0.97

fspiral
a<a*0.9

fspiral
a<a*0.9

fspiral
a<a*0.99

fspiral
a<a*0.99

62

The above graphics shows more examples of discoveries of interesting patterns that can
be found while exploring the effects of the angle and the factor in spiral: Move a, Rotate r,
Call spiral a<—a*factor. Considering its simplicity, the range of shapes it can produce is
astonishing. Note that the "holes" in the fourth and fifth example are due to the limited
execution depth of recursions. They would be closed otherwise.

Most of these findings were surprising to me. One of the thoughts the first example, the
"triangular steps", invoked was: In what relation do angle and factor stand given the
constraint that the start and end point of all lines (except for the first n) need to touch or
"stand on" each other, as demonstrated for n=3 in the first and n=4 in last example? Vogo
takes a small step towards enabling these serendipitous discoveries, which were
previously cumbersome to make in Turtle Graphics.

4.3 Programming or Drawing?

Today, programming is largely synonymous with coding. Coding may be defined as the
textual manipulation of symbolic abstractions. Source code is a way of representing a
program and coding the act of manipulating it. If programming is identified merely by the
style of interaction and the way a program is represented, then neither Vogo nor Recursive
Drawing nor Drawing Dynamic Visualisations are programming environments. Judged

by these criteria, the mentioned tools are more akin to drawing then to programming.

But they do not create static pictures. They create programs. Vogo’s export proves that.
Equating programming with coding is insufficient. Papert writes:

Programming a computer means nothing more or less than communicating to
it in a language that it and the human user can both "understand". And learning
languages is one of the things children do best (Papert, 1980, p. 6).

In the case of Vogo this language is Logo. This is the reason why Vogo was not compared
with Logo but with JSLogo. Multiple interfaces to the same language exist. Speech, writing
and signing are all interfaces to language. In the same sense, code is not language and
coding is not programming. Vogo attempts to expand the view of what programming is
and who programs.

4.4 Environment Analysis

I defined several criteria for the environment as research goals in section 1.4. Direct
manipulation depends on the successful interplay of many interface elements. For
example, instant feedback can not be achieved when the execution performance is slow, nor
when the editing granularity is too coarse. Direct manipulation also requires the visibility

63

and tangibility of the object of interest. Arbitrary symbolic representations need to be
replaced by iconic, visual representations that resemble the signified and create strong
references to appropriate existing mental schemata.

Vogo demonstrates that such an interplay is possible. It implements a substantial
subset of Logo. Abstract procedural paths can be created and manipulated in a visual
manner. All important programming tasks are supported (add, select, delete, copy, paste,
adjust, rearrange, insert, abstract, iterate, recurse, branch, call, ...) without relying on
code manipulation. Multiple spatial metaphors for the direct manipulation of Turtle
Graphics were found and presented: drawing with a pen, movement and orientation in
space, the geometric angle for rotations, clocks and winding them up for loops, dragging
moves to alter their length, subpictures for decomposition, the toolbox for commands,
home for the origin of the program, tree branches for conditions, geometric objects like
spirals, trees, waves for the program run-time behaviour and the ladder of abstraction for
parametrisation.

The environment fulfils the following criteria (Victor, 2012a): 1) the "vocabulary is
readable". Meaning is transparent through the use of recognisable spatial representations
that are embedded into the context of the object of interest. 2) The program flow can be
seen, retraced and comprehended. 3) State is either eliminated or visible. There are no
variables. The environment implements a functional style of programming. What the
"turtle is thinking" is visible throughout its path. 4) Graphics can be created by reacting.
The "parts bucket" is shown and results are instantly visible. Each step to the next
intermediate result is kept small. Defaults allow the programmer to start somewhere, then
sculpt. 5) Abstractions are grounded to concrete examples. The environment encourages
starting on the ground and climbing the ladder of abstraction in iterative stages.

The most recent conceptual contribution to the research challenge posed in this thesis is
Constructive Visualisation (Huron et al.,, 2014). Huron et al. present a new paradigm for
the creation of dynamic visualisations which is focused on supporting amateurs to create
their own data visualisations. They identify three challenges that a system would have
to support: 1) keep it simple, 2) enable expressivity and 3) incorporate data dynamics.
Arguably to different degrees, Vogo meets all of them. Simplicity does not reach
kindergarten play, but is a clear improvement over existing environments like JSLogo and
Scratch. Huron et al. propose sketching as an activity "routed in deeply familiar activities",
similar to Vogo’s drawing. Expressivity is moderately high. For example, no styling of
lines and areas is supported yet. However, the versatility of producible shapes is high and
exceeds existing direct manipulation environments like Recursive Drawing and Scratchpad.
Dynamics are fully supported through parametrisation and encapsulation. Even data
arrays can be used inside Vogo, though some knowledge is required for their referencing.
For more complex data operations, export provides the opportunity to design a data graphic
in Vogo and then use it in D3.

64

4.5 Limitations

Vogo is a prototype with many insufficiencies.
Some of them were already hinted at throughout
the thesis. Clutter and occlusion on the
canvas are two of the most important. They
severely limit the scalability of programs.

The figure to the right shows an extreme
example. It contains three nested loops. To
make matters worse, their visuals interleave
one another. The second loop is selected.

It strikingly demonstrates the importance of
a reduced opacity and the need to size loop

clocks depending on their number of iterations. b . /] ki@,}'d o

Nevertheless, it is hard to understand and extend | @\f "é
i - TON s \

the program. Admittedly, this example does N/ v

not make any use of encapsulation, which would

much improve the situation. One consideration to solve this problem would be the use of
something similar to the steps panel in Drawing Dynamic Visualisations, which lists the
program structure much like code does, but not for editing, but for browsing and selecting
only.

Another limitation is that only one branch of conditions is visible at once. This is a
symptom of a larger problem: only one snapshot of the complete functionality of
a subpicture is visible at once, because abstractions are grounded to examples. This
principle helps to make the subpicture visible in the first place and abstractions graspable.
However, since the program is presented in terms of only one instance, other paths of
execution may be hidden. The ability to understand a program in Vogo is therefore highly
dependent on illustrative default parameters. Bad examples or naming may seriously
impair the ability to grasp parts of the program.

Vogo does not "understand” non-constant expressions. It only evaluates them, just like
code does, but can not guarantee their syntactic correctness or provide help for their
construction and editing. This limits the amount of direct manipulation that Vogo can offer.
For example, an expression like 3%x+90° should allow the programmer to interactively
adjust via drag 3, x and 90° individually. Or if an angle with the expression x*x is dragged
to 25° Vogo should be able to solve the equation and set the default parameter of x to 5.
This is not currently possible.

Another limitation to the scale of programs are performance issues. They threaten the
interactivity of the execution that direct manipulation depends on for providing instant
feedback. Again, expression evaluation is one of the major factors that decrease the
performance. DOM manipulation, which includes the creation, adjustment, styling and
destruction of SVG elements, is another major performance drain. Of course, Javascript
itself is slow due to its dynamic, interpreted nature.

65

Vogo’s vocabulary is restrictively small. Although the five commands accomplish a
wide breadth of expressive possibilities, they do pose limits. For example, paths can not be
disconnected, can not be closed to form areas, which can not be filled with colour or
otherwise styled. Furthermore, absolute pen positioning is not possible and the properties
of the stroke can not be altered. SVG offers a wide range of elements: circles, rectangles,
bézier curves, text; geometric operations: resize, rotate, shear; styling: radial gradients,
patterns, blur, etc. that are not available in Vogo.

Those are the most significant limitations that Vogo imposes on the direct manipulation
of Turtle Graphics. However, the variety of limitations is much broader. For example,
subpictures can not themselves be parameters. This would be desirable in a functional
language. Another problem is that Vogo does not yet provide an undo. Endless recursion
has a fixed depth and execution time limit. New commands can not be directly inserted
before a scoping element. Two subsequent moves and angles are hard to tell apart. Moves,
angles and loops with a parameter of zero are invisible. Cyclic recursion schemes can not
be exported. Calling a subpicture lacks affordances. This list continues far beyond the scope
of this section. For an exhaustive enumeration I refer to Vogo’s documentation.

4.6 Open Questions

One of the leading questions behind the thesis project was: how can the program be
manipulated directly on the canvas instead of indirectly through the code? Inspired by
the example of Recursive Drawing, this lead to the abolishment of the code editor. But
the previous section mentioned the disadvantages of not having a separate view for the
dependencies - "structures" - that exist within the program. Showing this structure only in
terms of a concrete example may be misguided. It remains an open question how
these dependencies can be effectively represented. Two directions may provide an
answer. The first is to find a way to spatially portrait abstract functionality "exhaustively".
The second is to reintroduce a revised equivalent of traditional code. Drawing Dynamic
Visualisations provides an example of how this may look like in its steps panel, because it
only serves as a reference, not as the primary means of manipulation.

The second open question from the same line of insight is: Given that direct
manipulation and instant feedback are desired design goals, how can the program
be structured to ease their accomplishment? Vogo was initially approached from a
different point of view: Given the structure of Turtle Graphics, how can direct manipulation
and instant feedback be designed on top of it? This is the wrong approach if the design is to
be user-centered. The crux is not to think of the new in terms of the old. The traditional
way to approach the construction of a program may be inappropriate in the first place.

Introducing constraint-solving and goal-oriented programming may be better
perspectives for future research. For example, given the program Loop 4 [Move 10 Rotate
10° | the programmer may just indicate that he wants the pen’s end position to be moved

66

home. The program may then automatically offer two possible solutions: Loop 4 [Move 10
Rotate 90° | or Loop 36 [Move 10 Rotate 10]. In order to solve the ambiguity the programmer
may decide to constrain or "fix" the number of iterations. This constraint and the goal may
then form a part of the program. The program may afterwards look as follows: Loop

(fix:4) [Move 10 Rotate 10° |; solve: pen is home. Changing the number of iterations later is
dynamically maintained. For example, changing 4 to 5 automatically adapts the angle from
90° to 72°. Sketchpad’s constraint system also serves as a demonstration of the principle
idea. How can constraints and goals be specified, represented and solved?

How the program flow and scopes are to be visualised spatially remains an
open question. Vogo provides just one initial idea. There is still much potential for
improvements. For example, a time slider may help to better understand the flow. Scopes
are currently only visible once a command is selected. This may be improved by a cascaded
transparency that depends on the scope depth. Further research is required to find and
evaluate suitable visual mappings.

How can occlusion be avoided? Vogo’s icons and command representations - "labels" -
are currently blindly positioned on the canvas, independent of nearby elements. This
may lead to heavy occlusion which can make elements unselectable and even invisible.
This is the case in the binary tree example. The left and right recursive call for the two
branches overlap entirely. This may be solved by a collision-free positioning. However,
since positions are meaningful, because they indicate the pen’s position at the time of
invocation of a commands, finding such a positioning algorithm may be hard. Labels are
currently not resized on zoom. Giving them an absolute size is one initial idea to allow
programmers to gradually zoom in on the details of command clusters.

Perhaps one of the most interesting open question is: Are the design principles that
Vogo proposes generalisable to other domains? I suspect they are - at least partially - if
the nature of the object of interest is spatial. However, more research is needed to arrive at
definite conclusions.

Vogo is designed to be user-friendly and accessible to non-programmers. Whether this is
actually the case, how its usability fairs and how it is perceived is an open question. A
user study needs to be conducted in order to answer those questions.

The limitations mentioned in the previous section all raise further questions. For
example:

« How can conditionals be edited?

« How can subpictures be first-class citizens, higher-level functions?

« Instead of using Vogo inside D3, how can D3 be used inside Vogo?

« How can Vogo’s expressivity be increased without crippling direct manipulation?

« and of course: how can the direct manipulation presented in Vogo be further
improved?

67

5 Conclusion

Vogo is the first programming environment that allows Turtle Graphics to be directly
manipulated on the canvas. Vogo demonstrates that it is possible to create complex
dynamic shapes without the need to code in the traditional sense. Instead, the
construction of the program is approached with the analogy of drawing in mind.
Programmers can use their spatial orientation and geometric thinking mentality
throughout, instead of being forced to manipulate the graphic through a layer of symbols
that requires an algebraic way of thinking. This was not previously possible. Vogo
implements a new form of representation of and interaction with Turtle Graphics. Several
design guidelines were identified, motivated and successfully applied. They are:

« provide immediate, continuous feedback

« honour the principle of locality

« visualise every step

« couple program structure and behaviour

« ground abstractions to concrete examples
 make state transparent

« encourage creating by reacting

« reference existing knowledge through metaphors
« reduce tools to a minimal yet flexible set

Vogo demonstrates how they play together in order to achieve direct manipulation. One
of the central consequences is that it opens the door to exploration and curiosity. How
dynamic graphics behave can be experienced in a novel way that can lead programmers to
a better understanding of their underlying principles and possibly to new insights by
enabling serendipitous discoveries.

Vogo presents an opportunity to redefine what programming is and who programs
by reaching out to novices. New programmers do not think in the programming paradigms
that are currently established. Putting these users first in every regard allows us to question
traditional ways of thinking about programming. Instead of asking how new programmers
can be made to understand programming, we should instead ask ourselves: how can we
transform programming into something that is understandable by newcomers? This is not
asking to trivialise programming, but rather to better adapt programming interfaces to the
human mind. They need to play to our natural strengths.

Vogo implements the components of a constructive visualisation system; it combines
simplicity, expressivity and dynamics. Yet each of them is limited, which leaves manifold

638

open questions for future work. The presentation and nature of the structure of the
program will need to be rethought. I hinted at the potential of goal-oriented programming
and criticised the grounding of abstract functionality to one example. Future programming
environments will not only need to "understand" the program in terms of its syntactics but
also in terms of its semantics.

69

Bibliography

Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2301-2309, December 2011.
ISSN 1077-2626. http://d3js.org/. p. 5

Mike Bostock. Visualizing algorithms. June 2014. http://bost.ocks.org/mike/algorithms/. p.
61

Pavel Boytchev. Logo tree project. Online, March 2014.
http://www.elica.net/download/papers/LogoTreeProject.pdf. p. 15, p. 22

Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman. Using vision to think. In Stuart K.
Card, Jock D. Mackinlay, and Ben Shneiderman, editors, Readings in Information
Visualization, pages 579-581. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1999. ISBN 1-55860-533-9. p. 5

Jason Davies. Animated bézier curves. Online, 2012.
http://www.jasondavies.com/animated-bezier/. p. 5

Peter J. Denning. The locality principle. Communications of the ACM, 48(7):19-24, July
2005. ISSN 0001-0782. p. 22

Douglas C. Engelbart. Augmenting human intellect: A conceptual framework. Air Force
Office of Scientific Research, October 1962.
http://www.dougengelbart.org/pubs/augment-3906.html. p. 9

John Fiske. Introduction of Communication Studies. Routledge, 2 edition, 1990. ISBN
0-415-04672-6. p. 8

Louise P. Flannery, Brian Silverman, Elizabeth R. Kazakoff, Marina Umaschi Bers, Paula
Bonta, and Mitchel Resnick. Designing scratchjr: Support for early childhood learning
through computer programming. In Proceedings of the 12th International Conference on
Interaction Design and Children, IDC *13, pages 1-10, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1918-8. p. 23

Michael Gleicher and Andrew Witkin. Drawing with constraints. The Visual Computer, 11
(1):39-51, January 1994. ISSN 0178-2789. p. 16

Richard W. Hamming. The unreasonable effectiveness of mathematics. The American
Mathematical Monthly, 87:81-90, 1980. p. 62

70

http://d3js.org/
http://bost.ocks.org/mike/algorithms/
http://www.elica.net/download/papers/LogoTreeProject.pdf
http://www.jasondavies.com/animated-bezier/
http://www.dougengelbart.org/pubs/augment-3906.html

Christopher Michael Hancock. Real-time Programming and the Big Ideas of Computational
Literacy. PhD thesis, 2003. http://dspace.mit.edu/handle/1721.1/61549. AAI0805688. p. 54

Brian Harvey. Berkeley Logo Reference Manual. The MIT Press, 2 edition, 1997a.
http://www.cs.berkeley.edu/ bh/docs/usermanual.pdf. ISBN-13: 978-0262581493. p. 20

Brian Harvey. Computer Science Logo Style: Advanced techniques, volume 2. MIT Press,
1997b. http://www.cs.berkeley.edu/ bh/. ISBN: 0-262-58149-3. p. 10

Brian Harvey, Daniel D. Garcia, Tiffany Barnes, Nathaniel Titterton, Omoju Miller, Dan
Armendariz, Jon McKinsey, Zachary Machardy, Eugene Lemon, Sean Morris, and Josh
Paley. Snap! (build your own blocks). In Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, SIGCSE "14, pages 749-749, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2605-6. p. 10, p. 15, p. 22

Samuel Huron, Sheelagh Carpendale, Alice Thudt, Anthony Tang, and Michael Mauerer.
Constructive visualization. In Proceedings of the 2014 Conference on Designing Interactive
Systems, DIS ’14, pages 433-442, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2902-6. p. 28, p. 64

Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. Direct manipulation
interfaces. Human Computer Interaction, 1(4):311-338, December 1985. ISSN 0737-0024.

p- 9

Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the future:
The story of squeak, a practical smalltalk written in itself. In Proceedings of the 12th ACM
SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA *97, pages 318-326, New York, NY, USA, 1997. ACM. ISBN
0-89791-908-4. p. 15

Alan Kay. Doing with images makes symbols: Communicating with computers. Online,
1987. http://archive.org/details/AlanKeyD1987_2. University Video Communications. p.
19, p. 21

Alan Kay. The real computer revolution hasn’t happened yet. Viewpoints Research Institute,
pages 1-25, June 2007. http://www.vpri.org/pdf/m2007007a_revolution.pdf. p. 5

Paul Lockhart. A Mathematician’s Lament. 2009.
http://mysite.science.uottawa.ca/mnewman/LockhartsLament.pdf. ISBN-13:
978-1-934137-17-8. p. 22

Marshall McLuhan. Counterblast. Harvest book. Harcourt, Brace & World, 1969. ISBN:
978-1-58423-063-2. p. 13

Marvin Minsky. The Society of Mind. Simon & Schuster, Inc., New York, NY, USA, 1986.
ISBN 0-671-60740-5. p. 18

71

http://dspace.mit.edu/handle/1721.1/61549
http://www.cs.berkeley.edu/~bh/docs/usermanual.pdf
http://www.cs.berkeley.edu/~bh/
http://archive.org/details/AlanKeyD1987_2
http://www.vpri.org/pdf/m2007007a_revolution.pdf
http://mysite.science.uottawa.ca/mnewman/LockhartsLament.pdf

Brad A. Myers. Visual programming, programming by example, and program visualization:
A taxonomy. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’86, pages 59-66, New York, NY, USA, 1986. ACM. ISBN 0-89791-180-6. p. 11

Donald A. Norman. The Design Of Everyday Things. Basic Books, Inc., New York, 2 edition,
1988. ISBN-13: 978-0-465-06710-7. p. 8

Seymour Papert. Mindstorms: Children, computers, and powerful ideas. Basic Books, Inc., 2
edition, 1980. ISBN 0-465-04627-4. p. 6, p. 7, p. 10, p. 16, p. 17, p. 18, p. 19, p. 22, p. 63

Seymour Papert and Idit Harel. Constructionism: Research Reports and Essays 1985-1990.
Ablex Publishing Corporation, Massachusetts Institute of Technology. Epistemology &
Learning Research Group, 1991.
http://www.papert.org/articles/SituatingConstructionism.html. ISBN-13:
978-0893917869. p. 5, p. 18

Jean Piaget. The Construction of Reality in the Child. Routledge and Kegan Paul, London,
1955. http://www.marxists.org/reference/subject/philosophy/works/fr/piaget2.htm.
ISBN-13: 9780415210003. p. 16, p. 21

Jean Piaget. To Understand is to Invent: The Future of Education. Grossman Publishers, New
York, 1973. ISBN-13: 978-0670720347. p. 17

Karl R. Popper. Logik der Forschung. 1934. ISBN 3-16-148410-X. p. 17

Mitchel Resnick. Lifelong kindergarten. In Culture of Creativity: Nurturing creative mindsets
across cultures, pages 50-52. LEGO Foundation, 2013.
http://www.media.mit.edu/ mres/papers/CulturesCreativityEssay.pdf. p. 18

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman,
and Yasmin Kafai. Scratch: Programming for all. Communications of the ACM, 52(11):
60-67, November 2009. ISSN 0001-0782. p. 10, p. 11, p. 15, p. 22

Toby Schachman. Alternative programming interfaces for alternative programmers. In
Proceedings of the ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward! ’12, pages 1-10, New York, NY, USA,
2012. ACM. ISBN 978-1-4503-1562-3. http://recursivedrawing.com/. p. 8, p. 9, p. 15, p. 23

Ben Shneiderman. Direct manipulation: A step beyond programming languages. Computer,
16(8):57-69, August 1983. ISSN 0018-9162. p. 9

Ben Shneiderman. Leonardo’s Laptop: Human Needs and the New Computing Technologies.
MIT Press, Cambridge, MA, USA, 2002. ISBN 0262194767, 9780262194761. p. 9

Juha Sorva, Ville Karavirta, and Lauri Malmi. A review of generic program visualization
systems for introductory programming education. The ACM Transactions on Computing
Education, 13(4):15:1-15:64, November 2013. ISSN 1946-6226. p. 11

72

http://www.papert.org/articles/SituatingConstructionism.html
http://www.marxists.org/reference/subject/philosophy/works/fr/piaget2.htm
http://www.media.mit.edu/~mres/papers/CulturesCreativityEssay.pdf
http://recursivedrawing.com/

Gerald Jay Sussman. We really don’t know how to compute. Strange Loop Conference, Oct
2011. http://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute. p.
5

Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In
Proceedings of the SHARE Design Automation Workshop, DAC *64, pages 6.329-6.346, New
York, NY, USA, 1964. ACM. http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf.

p- 9. p. 15

Steven L. Tanimoto. A perspective on the evolution of live programming. In Live
Programming (LIVE), 2013 1st International Workshop on, pages 31-34, May 2013. p. 10, p.
54

Larry Tesler. A personal history of modeless text editing and cut/copy-paste. interactions,
19(4):70-75, July 2012. ISSN 1072-5520. p. 9

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire,
CT, USA, 2 edition, 1986. ISBN 0-9613921-0-X. p. 20

Bret Victor. Dynamic pictures motivation. Online, March 2011a.
http://worrydream.com/DynamicPicturesMotivation. p. 5

Bret Victor. Up and down the ladder of abstraction. Online, October 2011b.
http://worrydream.com/LadderOfAbstraction. p. 12, p. 31

Bret Victor. Explorable explanations. Online, March 2011c.
http://worrydream.com/ExplorableExplanations/. p. 5

Bret Victor. Learnable programming - designing a programming system for understanding
programs. Online, September 2012a. http://worrydream.com/LearnableProgramming. p.
8, p. 12, p. 64

Bret Victor. Inventing on principle. Online, 2012b. http://vimeo.com/36579366. p. 5

Bret Victor. Drawing dynamic visualisations. Online, May 2013a.
http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum. p. 15, p. 25

Bret Victor. Media for thinking the unthinkable. Online, April 2013b.
http://worrydream.com/MediaForThinkingTheUnthinkable/. p. 62

Bret Victor. Stop drawing dead fish. Online, 2013c. http://vimeo.com/64895205. p. 5

Fernanda B. Viegas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and Matt McKeon.
Manyeyes: A site for visualization at internet scale. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1121-1128, November 2007. ISSN 1077-2626. p. 10

E. M. Wilcox, J. W. Atwood, M. M. Burnett, J. J. Cadiz, and C. R. Cook. Does continuous
visual feedback aid debugging in direct-manipulation programming systems? In
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI
'97, pages 258-265, New York, NY, USA, 1997. ACM. ISBN 0-89791-802-9.

73

http://www.infoq.com/presentations/We-Really-Dont-Know-How-To-Compute
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-574.pdf
http://worrydream.com/DynamicPicturesMotivation
http://worrydream.com/LadderOfAbstraction
http://worrydream.com/ExplorableExplanations/
http://worrydream.com/LearnableProgramming
http://vimeo.com/36579366
http://worrydream.com/DrawingDynamicVisualizationsTalkAddendum
http://worrydream.com/MediaForThinkingTheUnthinkable/
http://vimeo.com/64895205

Selbststandigkeitserklarung

Hiermit erklare ich, dass ich die vorliegende Arbeit selbstandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

74

	Introduction
	Research Question
	Turtle Graphics
	Direct Manipulation
	Goal
	Challenges
	Outline

	Related Research
	Sketchpad
	Constructivism
	Logo
	Scratch & Snap
	Recursive Drawing
	Drawing Dynamic Visualisations
	Summary

	Vogo
	Interface Overview
	Design Principles
	Proxies
	Move
	Rotate
	Loop
	Branch
	Selection & Editing
	Expressions & Dragging
	Subpictures
	Call
	Recursion
	Scope
	Parametrisation
	Flow
	Export
	Compiler Design
	Summary

	Discussion
	Comparison with JSLogo
	Exploration
	Programming or Drawing?
	Environment Analysis
	Limitations
	Open Questions

	Conclusion
	Bibliography

