
Otto-von-Guericke-Universität Magdeburg

School of Computer Science
Department of Technical and Business Information Systems

Master Thesis

Design and Implementation of Customizable Query

Processors

Author:

Shuai Cao

2nd June 2009

Advisor:

Prof. Dr. rer. nat. habil. Gunter Saake,
Dipl.-Inform. Marko Rosenmüller,
Dipl.-Inform. Norbert Siegmund

University of Magdeburg
School of Computer Science

Department of Technical and Business Information Systems
P.O.Box 4120, D–39016 Magdeburg

Germany

Cao, Shuai:
Design and Implementation of Customizable
Query Processors
Marster Thesis, Otto-von-Guericke-Univer-
sität Magdeburg, 2009.

i

Acknowledgements

I would like to thank to Prof.Dr.Gunter Saake for his support and confidence in me and
allowing me to work on master thesis in his group. Thank you!

I would like thank to my senior supervisor, Dipl.-Inform. Marko Rosenmueller and
Dipl.-Inform. Norbert Siegmund, for their encouragement, guidance, fruitful discussions
and many other helps. Without their full support, this thesis will be impossible. Thank
you!

I would also like to thank M.Sc. Sagar Sunkle and M.Sc. Syed Saif ur Rahman for
their productive discussions on my work. Thank you!

I would like to thank my friend Rong for correction my English many times. Thank
you!

I would like special thank to my wife Lingzhi Meng and my baby Aimeng for their
encouragement, love and “mental support” in good and bad times.

Thanks to all!

ii

CONTENTS iii

Contents

Contents iii

List of Figures v

List of Tables vii

List of Abbreviations ix

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 3

1.3 Structure of the Thesis . 4

2 Background 5

2.1 Software Product Line Concepts . 5

2.1.1 Domain Engineering . 5

2.1.2 Application Engineering . 8

2.2 Feature-Oriented Domain Analysis . 10

2.2.1 Feature Model . 11

2.3 Feature-Oriented Programming . 13

2.3.1 Mixin Layers . 14

2.3.2 Feature C++ . 16

2.4 Query Processing . 17

2.4.1 Feature-Oriented Decompositon of SQL 18

2.4.2 SQL Dialects . 18

2.4.3 A customizable SQL parser . 20

2.5 Summary . 21

iv CONTENTS

3 Feature-Oriented Design of Customizable Query Processors 23

3.1 Feature Diagrams for FAME-DBMS, SQL and SQL Engine 24

3.2 A Model for a Custom Query Engine . 26

3.2.1 SQL Engine . 27

3.2.2 SQL Parser . 27

3.2.3 Query Rewrite . 28

3.2.4 Query Optimizer . 29

3.2.5 Query Execution . 33

3.3 Constraints Between Features . 36

3.4 Summary . 36

4 Implementation Detail 39

4.1 Characteristics of FAME-DBMS . 39

4.1.1 Feature: DataAndAccessManager 40

4.1.2 Different Implementation Variants for FAME-DBMS 41

4.2 Query Engine Implementation . 42

4.2.1 Parsing the SQL Query . 43

4.2.2 Query Translation . 44

4.2.3 Implementation Query Execution 47

4.3 Feature Interactions . 48

4.4 Summary . 49

5 Conclusion and Future Work 51

5.1 Conclusion . 51

5.2 Future Work . 53

Bibliography 55

Appendix 61

Appendix 62

LIST OF FIGURES v

List of Figures

2.1 The software product line engineering framework [PBvdL05] 6

2.2 Feature Diagram Notations . 11

2.3 Madartory and Optional Features . 12

2.4 Alternative and Or Features . 12

2.5 Convertion Alternative Features into another Alternative Features 13

2.6 Conversion of Or Feature into Feature Diagram with all optional Features 13

2.7 Example stack of Mixin Layer . 15

2.8 Refinement class of inheritance hierarchies 16

2.9 Baic Steps in Query Processing [SKS96] 17

2.10 Main Feature Diagram of SQL:2003 [Sun07] 19

2.11 Feature diagram for a subset of SQL that supports core functionality and

several extensions [RKS+09] . 20

2.12 Generating a family of SQL parsers by decomposing the SQL gram-

mar [RKS+09] . 21

3.1 Feature diagram of FAME-DBMS [RSS+08] 25

3.2 Feature diagram for SQL subset extracted from Figure 2.11 26

3.3 Feature diagram for the SQL engine . 27

3.4 Translation Of a Parse Tree to An Algebraic Expression Tree 28

3.5 Feature Diagram Of the Optimizer . 30

3.6 Feature Diagram Of the Execution . 33

4.1 Generating Customizable Query Processors (adopted from Fig-

ure 2.12) [RKS+09] . 40

4.2 Class Record . 41

4.3 Process of Query Engine Implementation 43

vi LIST OF FIGURES

4.4 One Example of Abstract Syntax Tree 45

4.5 Relation Algebra Tree . 46

4.6 Visitor Pattern Architecture . 47

5.1 Query Specification Feature Diagram [Sun07] 61

5.2 Table Expression Feature Diagram [Sun07] 62

LIST OF TABLES vii

List of Tables

3.1 Constraint of Features . 37

4.1 Some Feature Interactions . 48

5.1 Different Algebraic Laws for Improving Query Plans [GMUW00] 63

viii LIST OF TABLES

ix

List of Abbreviations

ANSL American National Standards Institute

AST Abstract Syntax Tree

AHEAD Algebraic Hierarchical Equations for Application Design

BNF Backus-Naur Form

CBO Cost-Based Optimizer

DBMS Database Management System

DML Data Manipunation Language

FOP Feature-Oriented Programming

FODA Feature-Oriented Domain Analysis

FOSD Feature-Oriented Software Development

FOD Feature-Oriented Decomposition

ISAM Indexed Sequential Access Method

JTS Jakarta Tool Suite

OOP Object-Oriented Programming

RAT Relational Algebra Tree

x

RBO Rule-Based Optimizer

SCQL Structured Card Query Language

SPL Software Product Line

SPLE Software Product Line Engineering

SQL Structured Query Language

Chapter 1. Introduction 1

Chapter 1

Introduction

1.1 Motivation

With breakthroughs in different domains of computer systems, like increase in processing,

connection speed, in memory and storage capacity, it is now possible to create data driven

applications. For such applications, their data can be kept anywhere like on a server or

a desktop machine and can be accessed irrespective of the location like from a local or a

remote machine or over the network. Growth in the development of embedded systems

has been triggered by increase in memory size while simultaneously a decrease in their

prices. These applications are oriented towards a specific user requirement, are simple in

nature and are required to perform simple to moderate data manipulation. Depending

on the type of application and its usage, an application requires varying amount of access

to a database like a general query support, Indexed Sequential Access Method (ISAM)

access or synchronization with backend database system [Nor07].

Developing a complete Database Management System (DBMS) for small intelligent

devices like cellphones, sensors, smartcards, PDAs etc. [SR98] is difficult to implement

due to the lack of large stable storage like main memory, low computing power, different

hardwar platforms and operating systems. These new application domains differ from

traditional database applications. These new applications have a different and specialized

set of operation that must be efficiently supported by the database system [CDG+90].

The traditional database technology cannot fit into some application areas due to these

limits. The foremost need of the user is the development of a special-purpose database

system tailored to a specific application scenario. In order to solve this problem, we

apply one of the appropriate methods named Tailor-Made Data Management System1.

This method focuses on reusing functionality in different variants of a DBMS that will

satisfy the needs of different application scenarios. For example the EXODUS Extensible

DBMS [CDG+90], provides basic DBMS functionality. It can be extended to a rule-based

1http://wwwiti.cs.uni-magdeburg.de/iti-db/workshops/SETMDM/

2 1.1. Motivation

query optimizer generator and a persistent programming language [CDG+90].

Structured Query Language (SQL) is the basis for interaction between a user and

relational database. It was proposed in 1974 by Boyce and Chamberlin and since then

has gained widespread attention and the fast development. Although SQL is an ANSI

(American National Standards Institute) standard computer language for accessing and

manipulating database systems, nearly all big database vendors provide proprietary ex-

tensions in addition to the SQL standard. These extensions have caused the appearance

of different versions of the SQL language, like Structured Card Query Language (SCQL)

for smart cards [Int99], TinySQL for sensor networks [MMHH05], or StreamSQL and

Oracle’s CQL for stream processing [ZJM+08] etc. These SQL dialects are usually sep-

arate from the standard language or included as extension packages [RKS+09]. These

extensions intensified the language complexity, making it difficult for the developers to

understand the complete semantics. For example, in widely used navigation systems in

cars, an application developer only needs a simple select statement, other SQL state-

ments like insert, update, delete, are not required. Insert, update and delete just add

to the complexity. Another example is a sensor network, it needs only a small subset of

SQL, some complex SQL statements like joins, XML extensions, windows functions, or

recursive queries are not needed. Therefore, for developer, it is not necessary to under-

stand all the statements of SQL, he only needs to concentrate and apply his energy in

developing the part demanded by the user or application scenarios [RKS+09].

Object oriented Programming is an ad-hoc way to address variations in a product

family. This can be achieved by implementing functionalities directly into the code of

the base program. The problem which arises here is that the resulting code is littered

with an IF-THEN control statement at every function where the program chooses which

variant to produce. The problem which this approach is that it lacks modularity and

reusability [NS02]. A much better and modular approach would be to use polymorphism.

Polymorphism replaces the IF-THEN with polymorphism different subclasses of a class

are instantiated which represents the specification of each variation that the IF-THEM

control statements represent. These subclasses then replace the IF-THEM control state-

mens. This approach requeries a significant amount of manual labor [BJK05]. However,

this approach is unable to represent every kind of functionality because of the inherent

constraints in the expressiveness provided by the OOP language.

A much better solution is to modularize the software corresponding to the function-

ality it provides. Modules which increments the functionality of the system are knowns

as features. Features provide building blocks for software development in FOP. The fun-

damental principle of FOP is to produce different variations of a software by composing

together different features. Feature interaction is managed by feature composition. Fea-

ture interacting is important to ensure the validity of a composition. FOP concepts are

applied to implement the features of query engine. It modularizes the software develop-

Chapter 1. Introduction 3

ment of a system in a base program which can be entended with any number of features

modules to form new software variations.

In regard to the different application scenarios and SQL dialects, we need a cus-

tomizable SQL query processing engine. This customizable SQL engine processes only

the queries of application needed SQL dialect. For example, the SQL support not join

functionality in the sensor network, the customizable SQL engine provide also not func-

tionality corresponding to this SQL dialect. In this thesis, we apply Feature-Oriented

Programming (FOP) and the Software Product Line (SPL) concept to design and realize

a fully customizable query processor.

1.2 Goals

Feature-Oriented software development(FOSD)aims at modularizing software to support

the development of tailor-made applications that contain only needed functionality. It is

based on the decomposition of software with respect to relevant features. Thus a concrete

tailor-made software product can be generated by selecting needed functionality. FOSD

can also be applied to SQL which results in a family of SQL dialects where a dialect

describes the queries for a particular application scenario.

The aim of this thesis is to apply FOSD to the query processing of database man-

agement systems(DBMS). This includes analysis and design of the query processing

subsystem and its integration into an existing DBMS product line to enable processing

of queries of different SQL dialects. It should be analyzed how the feature model of a

family of SQL dialects and the feature model of the extended DBMS(including the query

engine)can be combined. This should be the basis for automatic generation of a DBMS

according to a given SQL dialect.

To evaluate the developed approach, an existing DBMS product line implementaion

has to be extended with a prototypical query engine using feature-oriented programming.

Based on the analysis of possible features, the query engine should be implemented using

an existing SQL parser.

The following tasks have to be considered:

• Analysis of existing tools and modeling approaches to integrate multiple feature

models.

• Analysis of possible features for a SQL query engine and its integration into the

DBMS feature model.

• Analysis of dependencies between a SQL feature model and the extended DBMS

model.

4 1.3. Structure of the Thesis

• Creating a model that integrates both feature models(SQL and query engine)and

allows for derivation of DBMS functionality based on a tailor-made SQL dialect.

• Evaluation of the developed solution with a prototypical implementation of a query

engine.

1.3 Structure of the Thesis

Chapter 2 we lay the some foundations for understanding the central ideas of this

thesis. The focus will be on the essential concepts related to Software Product Line En-

gineering and its two sub-processes, Domain Engineering and Application Engineering,

Feature-Oriented Domain Analysis, Feature-Oriented Programming and Query Proces-

sor. Consciously, we avoid getting into much detail.

Chapter 3 we introduced some basic feature models which will be used in our query

processor. Then we illustrate the background feature diagram for FAME-DBMS and SQL

Parser. With the aid of this diagrams, we could better understand the decomposition

of Query processors. Then we describe in detail the query processors feature diagram,

after which we list the constraints between these feature models.

Chapter 4 we will describe in detail how the query processing has been implemented

as well as the different issues which will appear in the practical application.

Chapter 5 On the end, we will provide the evaluation in chapter 5 and lists suggestions

for future work.

Chapter 2. Background 5

Chapter 2

Background

In this chapter, we explore various topics required as background for good under-

standing of the feature-oriented decomposition of query processing. We first review the

concept of software product lines. Then we talk about feature-oriented domain anal-

ysis and feature-oriented programming. Finally, we explore the basic process of query

processing.

2.1 Software Product Line Concepts

Software engineering community has long been striving for the effective reuse of soft-

ware. When the size and complexity exceeds the limits of what is feasible with tradi-

tional approach, the advantages of adopting product line engineering can only then be

fully comprehended in software domain. Software Product Line Engineering has shown

that software systems can be built at lower costs, in short time and with higher qual-

ity [PBvdL05]. It has proven to be the methodology for developing a diversity of software

products and software-intensive systems. SPLE contains two distinct development pro-

cesses: Domain Engineering and Application Engineering. We will introduce them in

the following sections.

2.1.1 Domain Engineering

Domain Engineering is a process of designing a whole family of software systems and

does not focus on a single software system. Most software organizations work only on a

single domain or a small set of domains, building similar systems repeatedly. Differnt

definitions of Domain Engineering can be found in related literature. Czarnecki et

al. [CE00] define Domain Engineering as follows:

6 2.1. Software Product Line Concepts

D
o
m
ai
n

E
n
g
in
e
e
r
i
n
g Domain

Requirements
Engineering

Domain
Realisation

Domain
Design

Domain
Testing

Product
Management

Requirements Architecture Components Tests

Ap
p
l
i
c
a
ti
o
n

E
n
gi
n
e
e
r
i
ng Application

Requirements
Engineering

Application
Realisation

Application
Design

Application
Testing

Requirements Architecture Components Tests

Domain Artefacts incl. Variability Model

Application N – Artefacts incl. Variability Model

Figure 2.1: The software product line engineering framework [PBvdL05]

Chapter 2. Background 7

Domain Engineering is the activity of collecting, organizing, and storing past ex-

perience in building systems or parts of systems in a particular domain in the form of

reusable assets(i.e., reusable work products,) as well as providing an adequate means for

reusing these assets(i.e., retrieval, qualification, disseminations, adaptation, assembly,

and so on) when building new systems.

Czarnecki et al. [CE00] describes Domain Engineering encompasses Domain Analysis,

Domain Design, and Domain Implementation. The results of Domain Engineering are

reused during Application Engineering.

In Klaus Pohl et al. [PBvdL05] give the following definition of Domain Engineering.

Domain engineering is the process of software product line engineering in which the

commonality and the variability of the product line are defined and realised.

Klaus Pohl et al. [PBvdL05] has also given the following goals of domain engineering:

• Define the commonality and the variability of the software product line.

• Define the set of applications the software product line is planned for, i.e. define

the scope of the software product line.

• Define and construct reusable artefacts that accomplish the desired variablity.

The domain engineering process (depicted in the upper part of Figure 2.1) is com-

posed of five key sub-processes: product management, domain requirements engineering,

domain design, domain realisation, and domain testing.

Product Management Product Management is a sub-process of domain engineering.

Its main focus is on the whole process of the product development that meets customer’s

needs. It also makes sure that the entrepreneurial goals that follows the concept of the

software engineering process. All of the other sub-processes of domain engineering and

application engineering will be related with it. In summary, product management deals

with the economical aspects of the software product line.

Domain Requirements Engineering The domain requirements engineering sub-

process encompasses all activities for eliciting and documenting the common and vari-

able requirements of the product line. It is concerned with the development of detailed

common and variable requirements and their precise documentation based on the initial

features provided by product management. The input to the application requirements

engineering is also provided by domain requirements engineering, such inputs are con-

cerned with creating application-specific requirements artefacts [PBvdL05].

8 2.1. Software Product Line Concepts

Czarnecki et al. [CE00] express the opinion that the product management and domain

requirements engineering sub-processes provide the same functionality as the domian

analysis.

Domain Design The domain design sub-process is used to produce a product line

reference architecture [PBvdL05]. A reference architecture provides a common, high-

level structure for all product line applications. A domain architect provides common and

variability features, which can be decided according to the requirements of the customer.

Domain design is very closely related to the domain requirements engineering, domain

realisation, and application design. It provides a reference architecture for the software

product line as the input to domain realisation and application design. The user has the

ability to select and configure reusable software artefacts because of the characteristic of

this architecture [PBvdL05].

Domain Realisation Domain realisation is the sub-process between domain design

and domain testing. It develops the reference architecture which contains a list of

reusable software artefacts from the sub-process domain design. Similarly, it provides the

detailed design and implementation assets of reusable software components to domain

testing. Reusable components and interfaces are the main parts of the reusable software

assets points. In addition, domain realisation incorporates configuration mechanisms

that enable application realisation to select variants and build an application with the

reusable components and interfaces [PBvdL05].

Domain Testing The goal of domain testing is to veirfy the output of all other sub-

processes of domain engineering, and then provide an efficient overall testing process.

Domain testing focuses on the specification, i.e. requirements, architecure, and design

artefacts. In addition, domain testing provides reusable test artefacts to reduce the effort

for application testing [PBvdL05].

2.1.2 Application Engineering

Klaus Pohl et al. [PBvdL05] define Application Engineering as Application engineering is

the process of software product line engineering in which the applications of the product

line are built by reusing domain artefacts(domain artefacts are reusable development

artefacts created in the sub-processes of domain engineering) and exploiting the product

line variablity. The key goals of the application engineering process are [PBvdL05]:

• When developing and defining a product line application, application engineering

achieves almost all the reuse of the domain assets.

Chapter 2. Background 9

• While developing the product line application, the commonality and the variability

of the software product line should be exploited.

• Application artefacts like application requirements, architecture, components and

tests should be documented and related to the domain artefacts.

• Keeping in view the application needs from requirements over architecture, to

components and test cases and should be bound to variability.

• The impacts of the differences between application and domain requirements on

architecture, components and tests should be estimated.

Application Engineering (depicted in the lower part of 2.1) is composed of following

sub-processes: application requirements engineering, application design, application

realisation, and application test. Each of the sub-processes uses domain artefacts and

produces application artefacts. In this thesis, we will not provide detailed description

of these sub processes.

Separation of Concerns in Domain Engineering and Application Engineering

Separation of concerns is at the core of software engineering. For a particular concept,

goal, or purpose, separation of concerns means the ability to identify, encapsulate, and

manipulate those parts of software. Dijkstra [Dij97] and Parnas [Par76] have applied

the fundamental of divide-and-conquer to software development. The idea is that it is

easier to manage a problem by breaking it down into smaller pieces than to solve the

problem as is. These pieces refer to the concerns of a software system. Concerns are the

main method of organizing and decomposing software into smaller, more manageable

and comprehensible parts 1. For example, objects and classes are modeled as sepearate

concerns in object-orinted methods. In structural methods, concerns are reprensented

as precedures.

The goal of separation of concerns is to focalize, separte and encapsualte the rep-

resentations of concerns in a software system. Using separation of concern in software

development, will give much more useful characteristics like comprehension, reuse, main-

tenance, customization [Ape07].

To build a robust platform and to build customer specific applications in short time,

splitting is advantageous because of the separation of the two concerns. In order to

make these two processes effective, they should interact in a way that benefits both. For

example, platform design should be useful for application development and application

1http://www.research.ibm.com/hyperspace/workshops/icse2000/index.htm

10 2.2. Feature-Oriented Domain Analysis

development should aid in using the platform. This separation indicates the separation

of concerns with respect to variability. Ensuring that the available variability is relevant

for producing the applications is the responsibility of domain engineering. In many

reusable artefacts, the platform is defined with the right amount of flexibility. Reuse

of the platform and binding the variability according to the requirements of different

applications makes up a large part of application engineering [PBvdL05].

2.2 Feature-Oriented Domain Analysis

Feature-Oriented Domain Analysis (FODA) is a special method for Domain Analysis.

Czarnecki et al. [CE00] shows that domain analysis is the process of analyzing and

creating a model of a specific domain. It consists of two activities:

• Identifiacation and definition of the domain, the scope of the domain, and the

relevant stakeholders.

• Creation of the domain model that describes the vocabulary of the domain, the

common and variable properties of all systems of the domain and the dependencies

between these properties.

The second activity of domain analysis also contains the finding of common and

variable features of all systems belonging to the domain. It focuses on the features of

the systems of a domain. First we introduce some definitions of feature.

What Is a Feature?

Different researchers have been proposing different views of what a feature is or should

be. Batory et al. define a feature as:“an increment in program functionality” [Bat05]

and also it is a product characteristic that customers view as important in describing and

distinguishing programs within a family of related programs [BEHM02]. Czarnecki et

al. [CE00] define feature in Domain Engineering as:“ An end-user-visible characteristic

of a system or a distinguishable characteristic of a concept (e.g., system, component, and

so on) that is relevant to some stakeholder of the concept ”.

[Ame85] [CE00] describes feature “A prominent and user-visible aspect, quality, or

characteristic or a software system or systems. For example, when a person buys an

automobile, a decision must be made about which transmission feature (e.g., automatic

or manual) the car will have.”

[ALMK08] shows that “a feature is a structure that extends and modifies the struc-

ture of a given program in order to satisfy a stakeholder’s requirement, to implement

Chapter 2. Background 11

Mandatory Optional Alternative And Or

Figure 2.2: Feature Diagram Notations

and encapsulate a design decision, and to offer a configuration option.” This definition

provides a ground that is common to most (if not all) work on Feature-Oriented Software

Development.

In this thesis in the chapter 3, we have dealed with various feature models. The

feature in the feature model describes an end-user-visible characteristic of a system or a

distinguishable characteristic of a concept.

2.2.1 Feature Model

Feature modeling has been applied to many numerous diverse domains like telecom sys-

tems, template libraries, network protocols and embedded systems [CHE04]. It has been

proposed as a part of the Feature-Oriented Domain Analysis method. These models are

independent of the implementation and are used to describe only the abstract common-

alities of the code program. Common and variable features of concept instance and the

dependencies between the variable features are represented by feature models [CE00].

These models are generated during feature modeling. It is the main approach to acquire

and govern the common and variable features of systems in a system family or a prod-

uct line. Feature diagrams, feature descriptions, binding times, priorities, stakeholders

together make up feature models [CHE04].

Feature diagram

A feature diagram is a tree with the root representing a concept (e.g., a software

system), and its descendent nodes are features [CHE04]. Relationships between a parent

feature and its child features are categorized as: Mandatory, Optional, Alternative, Or,

And. Common graphical notations are depicted in Figure 2.2.

12 2.2. Feature-Oriented Domain Analysis

Figure 2.3: Madartory and Optional Features

Figure 2.4: Alternative and Or Features

Mandatory Features A mandatory feature is included in the description of a concept

instance if and only if its parent is included in the description of the instance [CE00]. It

is described with an edge ending with a filled circle. It shows that this particular feature

is mandatory. According to Figure 2.3, every instance description of Concept F, F1, F2,

F4, F5, are always included.

Optional Features An optional feature is described with a edge ending with an un-

filled circle. Only when its parent is included in the description, it may be included in

the description of the instance. Consider Figure 2.3, F3 and F7 are optional features,

F6 is a mandatory feature. If and only if F3 is included in the instance description, F6

has to be included.

Alternative Features An alternative feature is represented by connecting edges with

an arch. So the feature consists of exactly one of its child features [CRC03]. In Figure 2.4,

Feature F1, F2, F3 are alternative features and F4, F5 are also alternative features. Every

time only one of the features from F1, F2, F3 could be selected; and only one of the

features from F4 and F5 is selected. In Figure 2.5, there is an optional feature in the

alternative features, such a set of alternative features is equivalent to the situation that

all the alternative features in this set are optional [CE00].

Chapter 2. Background 13

Figure 2.5: Convertion Alternative Features into another Alternative Features

Figure 2.6: Conversion of Or Feature into Feature Diagram with all optional Features

Or Features These are set of features from which any non-empty subset can be in-

cluded in the instance description, provided that their parent was also includes [CE00].

According to Figure 2.4, F6 and F7 are OR features. In Figure 2.6, there is an optional

child feature in the OR feature, such a set of OR features is equivalent to the situation

that all the child features are optional.

And Features A and features are a set of features which are included in the instance

description depending on the type of each feature node [CE00]. In Figure 2.3, for concept

feature F, two instance descriptions are possible. One with feature F3 and one without

feature F3, while including all other features in both.

2.3 Feature-Oriented Programming

For many years researchers try to reuse software perfectly but it has proven to be a very

difficult task to achieve. Object libraries can only describe the software reuse at a very

low level which is be difficult for the application designer to reuse. Code encapsulation

is a great problem when developing software for reuse. Object-oriented programming

(OOP) can resolve this issue, however, since system feature implementation can cross

cut several objects, changing something in this system features might influence other

objects.

Feature Oriented Programming (FOP) refers to synthesizing programs by composing

features [Bat03]. It is a criteria for developing software product lines. Consistent artifacts

14 2.3. Feature-Oriented Programming

that define a program are systhesized when features are composed. The concept of FOP is

to use algebraic techniques to specify and manipulate program designs [TBD07]. Feature

oriented programming is advantageous for the following reasons: [Pre97]

• It is desirable that objects with individual services can be composed from a set

of features. This will give more flexibility. Its advantage can be observed in sit-

uations where different variations of a software component are required or if new

functionality needs to be incorporated into a software component frequently.

• Clearity of dependencies between features and structure is achieved by separating

the core functionality from interaction handling. The benefit of this is independent

reusable code by making subclasses an independent entity and not a subclass. It

also benefits in making class refactoring [OJ90] much easier. This idea is same

as the idea of abstract classes but in addition it also encompasses dependencies

between features.

• Type dependencies between two features can occur but this can be specified within

the setting stated. Parameterized features (similar to templates) also works fine

with interactions and liftings.

• The simplicity of a model is achieved by considering only liftings or interactions be-

tween two features at a time. Liftings between two features could still be adequate

if there are dependencies between several features by considering only auxiliary

features.

2.3.1 Mixin Layers

Modularity has played an important role in the history of software design and pro-

gramming languages. Modules encapsulate functionality that can be reused in other

applications [SB02]. It has been experienced gradually from the small scale (functions)

to the large-scale (components or packages-suites of interrelated classes) process, the rea-

sons for simple application design and easier to bulid from fewer and larger parts [SB02].

However, researcher find that reuse opportunities become fewer as a module becomes

larger. Mixin layers seem like a good solution to this problem [SB02].

The step-wise refinement is a very useful paradigm for a programmer to develope a

complex program from a simple base program by adding what the customer needs [Dij76].

In this thesis we focus on feature refinements. The idea of FOP is to develop software

which is composed of features. Such features describe the characteristic that customers

views as distinguishing within a family of related programs [Gri00]. Features refine other

features are increments of the program functionality that can affect multiple dispersed

implementation entities (functions, classes, etc.) [SB02]. More general than traditional

Chapter 2. Background 15

A1

ClassA ClassB ClassC ClassD

Layer1

Layer2

Layer3

A1

A2

A3

B2

B3

C1

D2

D3

B1

Figure 2.7: Example stack of Mixin Layer

packages that encapsulate sets of complete classes, a feature refinement can also encap-

sulate fragments of multiple classes [BSR04].

Mixin Layers encapsulate fragments of serveral different calsses so that all fragments

are composed consistently, a single class is also named Mixin. Mixin Layers are an

approved implementation technique for component-based layered designs. Figure 2.7

depicts a package of four classes, ClassA - ClassD, and a stack of three Mixin Layers from

top to bottom defined as layer1 - layer3. A Mixin Layer consists of a set of collaborating

Mixins, which cross-cuts such mutltiple classes (A-D) and implements the encapsulated

fragments of the classes. The vertical lines denote class refinement chains. From the

start layer1 also called constants encapsulates three classes (A1-C1). Layer2 refines two

classes (A1 that is refined by A2, B1 that is refined by B2) and adds another class. That

means layer2 encapsulates a cross-cut that refines class A1, B1 (represented by mixins

A2, B2) and increment class D2. The same process applies to layer3 which encapusaltes

layer2.

Linear refinement chains are common in this type of implementaion. We represent

mixins (class refinements) as functions [BSR04]. Mixin A3 is a function that is applied

to mixin A2 and mixin A2 is applied to base class A1. For function implemented in

Java language, only the terminal classes (shaded circle in Fig 2.8 a) of the refinement

chains could be instantiated, nonterminal classes (those that are unshaded in Fig 2.8 b)

are never instantiated [BSR04].

Suppose that the Class A is the superclass of the Class B and C, and Class C is the

superclass of Class D, as shown in Fig 2.8a depicts the class hierarchie. The subclass

is described with the bold lines. The calss refinement stated in Figure 2.8b can also be

depited using the Figure 2.7. The refinement chains that we synthesize are the same as

those in Fig 2.7 expect that both class B1 and C1 are declared to be the subcalsses of

the synthesized class [BSR04]. This inheritance implements both subclassing (the bold

lines in Fig2.9b) and emulates refinement (relationships shown in thin lines). With this

design scheme which refines arbitrary subclassing hierarchies by adding new classes and

refining existing classes, leads us to buliding the Jakarta Tool Suite (JTS) [BSR04].

16 2.3. Feature-Oriented Programming

A

B C

D

B2
D2

A1

A2

A3

B3

C1

D3

B1

Figure 2.8: Refinement class of inheritance hierarchies

2.3.2 Feature C++

Java language has been mostly used for implementing FOP e.g. AHEAD. C++ despite

being widely used in a large number of applications like operating systems, realtime and

embedded systems, databases and middleware, is rarely considered for FOP. Currently

templates [SB02], simple language extensions [SB93], or preprocessing directives are used

for providing solutions. As these approaches are complicated, hard to understand and

not applicable to larger software systems, therfore, Feature C++2 has been proposed for

FOP in C++.

Feature C++ is an extention of C++ which supports FOP. It uses the keyword refines

for class refinement which has been specifically introduced in C++ for this purpose.

In Feature C++ Mixin Layers are represented by directories of the file system, they

have no programmatic representation. Mixins are represented by included source files,

an equation file specifies which features are required for a configuration [ALRS05].

Feature C++ offers many benifits in comparision to other programming languages.

It provides solutions to different problems of the object-oriented languages like:

• The constructor problem: Minimal extentions have to be initialized even if they

are not required, which causes constructor problem [EBC00] [SB00].

• Extensibility problem: occurs due to the mixture of class extensions and varia-

tions [FF98].

• Hidden Overloaded methods: in C++ hinders in step-wise refinements [ALRS05].

2http://wwwiti.cs.uni-magdeburg.de/iti-db/fcc/

Chapter 2. Background 17

Query
Relational Algebra

Expression
Parser and
Translator

Optimizer

Execution PlanEvaluation
EngineQuery Output

data statistics about data

Figure 2.9: Baic Steps in Query Processing [SKS96]

2.4 Query Processing

Query processing refers to the range of activities involved in extracting data from

database. These activities include translation of high level user query languages (for

example, SQL) into low level data manipulation commands that can be implemented

at the physical level of the file system, different query-optimizing strategies, and cost

evaluations for each operation [SKS96].

Query processing and optimization have always been one of the important compo-

nents of database technology. This component mainly deals with the user-desired data

from an often large database and efficiently returns the results with an acceptable accu-

racy [YM98]. Figure 2.9 depicts the process of query engine. When the system receives

a SQL query, the query processor first checks the correctness of SQL query (for example,

whether the query syntax is correct, whether the relations and attributes are stored in

the database, etc.) with support of SQL Parser. If the query is acceptable, then a re-

lation algebra expression is generated, also called initial logical query plan [GMUW00].

Since initial logical query plan can be expressed with a large number of equivalent forms,

the query optimizer is used to find only the best logical query plan. Query optimizer can

be ignored by application programmer in some scenarios, for example, in the network

and hierarchical models, because the Data Manipulation Language (DML) statements of

such models are usually embedded in a host programming language. It makes it difficult

to transform a network or hierarchical query into an equivalent form without knowing

the entire application program. In contrast, relational-query languages are either declar-

ative or algebraic. Relational query language with this form can easily generate relatively

large number of equivalent plans [SKS96].

18 2.4. Query Processing

The logical query plan must be transformed into a physical execution plan. Such an

execution plan contains details of each operation. For each relational operation, there

are a number of methods that can be used. For example, the order of join generates

different access cost. We can choose nested loop, merge sort, and other join methods

according to the requirements of a stakeholder. We will explain this in more detail in

Chapter 3.

2.4.1 Feature-Oriented Decompositon of SQL

SQL has grown quickly in recent years. It has been applied to different domains like

sensor networks, embedded systems etc. Such applications have caused the appearance

of different versions of the SQL language, like SCQL [Int99], TinySQL [MMHH05], and

so on. These SQL dialects are usually separate from the standard language or included

as extension packages [RKS+09]. But current standards of SQL are really complex

and hard to manange. But in some case like in a sensor network, it needs only a

small subset of SQL, some complex SQL statements like joins, XML extensions are not

required. Therefore, it is not necessary for developer to understand all the parts of SQL,

he only needs to focus on the demanded part of SQL. For these reasons have caused the

decompositon of standard SQL. We have applied feature-oriented programming approach

based on software product line engineering which can be used to create customizable

SQL parsers. Figure 2.10 [Sun07] depicts the main feature diagram of SQL:2003. It

represents the basic decomposition of SQL:2003. Each of the sub-features could be

further decomposed, for example, SQL foundation could be decomposed to different SQL

statement classes like data manipulation statements, data definition statements, query

expressions, sql transaction, etc [Sun07]. A user could arbitrary select combination of

such features or packages, in order to derive a tailor-made SQL parser.

2.4.2 SQL Dialects

The current standard of SQL is much more complex and unmanageable. Because all big

database vendors can provide proprietary extensions in addition to the SQL standard,

These extensions have caused the appearance of different SQL dialects. For example,

Structured Card Query Language (SCQL) for smart cards [Int99], TinySQL for sensor

networks [MMHH05], or Stream SQL for stream processing [ZJM+08]. Different users

have interest in different aspects of an SQL engine like performance, the execution speed

of query, the semantic of query etc., thus needing a suitable cutomizable SQL parser

which can select only the needed functionality in different scenarios. In the following,

we review some application domains (for example, web databases, sensor networks, and

stream processing systems) where we will need different SQL dialects [RKS+09].

Chapter 2. Background 19

SQL2003

SQL
Foundation

SQL
XML

SQL Call
Level

Interface

SQL
Persistent

Stored
Modules

SQL types
and routlines

for Java

SQL Object
Level Binding

SQL
Management
of External

Data

Figure 2.10: Main Feature Diagram of SQL:2003 [Sun07]

Web Databases Web databases are accessible from web through form-based query

interfaces. Web database systems support a small subset of SQL functionality like

selection-projection-join queries, aggregation, tranactions, XML etc. MySQL is an ex-

ample often used for web development, despite the fact that it doesn’t support nested

queries, foreign keys and referential integrity, stored procedures, triggers, or views.

Sensor Networks Sensor networks also support only a small subset of SQL function-

ality. TinySQL [MMHH05] and Cougar [YG02] are examples used for sensor networks.

Similar to the standard SQL, the query form in the TinySQL also contains select-from-

where-groupby-having. It supports select, project, join and aggregation. The TinySQL

dialect explicitly supports sampling intervals and windowing.

Stream Processing Stream processing is different from data processing of traditional

relational database systems. In stream processing engines, data is processed as it arrives

and before it is stored. Stream processing system support a stream-oriented query lan-

guage. They are essentially all SQL extensions, which contain a concept of a window on

a stream as a way to convert an infinite stream into a finite relation in order to apply

relational operators [JMS+08] . StreamSQL or Oracle’s CQL [ZJM+08] are represen-

tative work for stream processing. In these systems, they might support multistream

and aggregation functions on different windows like rowing, ranging, partition and slid-

ing windows. Since most stream processing applications apply only sliding windows,

therefore, this type of window can also be provided by a simple SQL dialect [RKS+09].

In the above paragraphs three different application scenarios have been presented.

The SQL dialect selected for each scenario provides only a part of functionality of the

complete standard SQL. We apply the concept of domain analysis [KCH+90] and software

20 2.4. Query Processing

SQL

Views Spatial

Update

TemporalCore

Insert

Read

Row

Windows

StreamProcessing

Range

MultiStream

Partition Slide

Transactions StoredProcedures

Constraints Intervals

DataTypes

VarCharChar

FixedLength VarLength

Int

OR (one or more) optional mandatory

Delete

Write

Join Aggregation

Figure 2.11: Feature diagram for a subset of SQL that supports core functionality and

several extensions [RKS+09]

product line engineering [CE00] to define an initial feature diagram for a subset of SQL.

Figure 2.11 [RKS+09] shows the family model of SQL that is suitable for these scenarios.

This feature diagram describes the differences and commonalities of the above three

scenarios. The root of the feature diagram is concept and all the other nodes are features.

If the web database needs a SQL dialect, we could provide only its needed features, i.e.

Data Types, Core, Transactions, Join, Aggregation, and all the Core sub-features. If

the user choses the sensor networks, that means the SQL dialects could select only a

small subset of SQL, like Data Types, the sub-features of Core, Temporal and Spatial

features. In case of sensor networks, they do not provide important information, like

sensor position (potentially aggregated), density and connectivity, system workload and

network stability [YG02]. Which in turn makes the optional Spatial feature useless for

them(sensor networks). If the user uses temporal queries, then the Temporal feature must

be selected by the SQL dialect. At the same time, the Temporal Data Type (e.g. Data

Time) must be supported by the DBMS and SQL. Such constraint will be introduced

in the last section of the chapter 3. Similarly, we can describe SQL dialects for stream

processing using the Core feature without write functionality and the Stream Processing

feature. If user wants to represent operation on multiple streams, the Multistream feature

will be provided [RKS+09].

2.4.3 A customizable SQL parser

Because of the existence of the various SQL dialects, a customizable SQL parser for dif-

fernt scenarios is desirable. SQL parser is needed for processing queries, the customizable

SQL parser provides only needed functionality, such as some specific SQL statements.

Rosenmueller et al. [RKS+09] described in Figure 2.12 how various SQL parsers are

generated according to SQL dialects. The SQL grammar is decomposed into small SQL

sub-grammars according to the feature derived from the family of SQL dialect. Such

SQL sub-grammars are composed into different grammars according to the needed SQL

dialect. Composed grammars are used to create various SQL parsers with the aid of

Chapter 2. Background 21

G1

G3
G2

G4
G5

G6

G7

SQL
grammar

Grammar
decomposition

Grammar
composition

G2

G1

Grammar variant 1

G1

G3

G7

Grammar variant n

Parser
generation

SQL
Parser 1

SQL
Parser n

F1
F2

F3
F4

F5
F6

F7

Family
of SQL
dialects

SQL
Sub-grammars

Grammars for
SQL dialects

Family of
SQL parsers

Figure 2.12: Generating a family of SQL parsers by decomposing the SQL gram-

mar [RKS+09]

parser generators.

2.5 Summary

Software Product Line Engineering concepts are applied to query processors to design

customizable query processors. The fundamental principles of software engineering are

separation of concerns and stepwise development. There are two sub-processes of the

Software Product Line Engineering, namely, Domain Engineering and Application En-

gineering. The feature-oriented domain analysis is part of the phase of Domain Engi-

neering. We will need feature-oriented programming approach of Feature C++ in order

to implement customizable query processors. We have also provided a short review of

the basic process of query processor. In order to implement a customizable query pro-

cessor, we must first obtain a customizable SQL parser. Implement a feature-oriented

SQL parser based on the feature-oriented decomposition of SQL. This feature-oriented

decomposition of SQL consider about serval different SQL dialects.

22 2.5. Summary

Chapter 3. Feature-Oriented Design of Customizable Query Processors23

Chapter 3

Feature-Oriented Design of

Customizable Query Processors

The scope of the thesis is to modeling the features of a query processor for FAME-DBMS,

a customizable DBMS for embedded devices. We describe constraints between the fea-

ture models of FAME-DBMS, the customizable Query engine and the feature-oriented

SQL parser. We give an example of how the features can be used for implementing a

product line of query processors. The complete implementation of various features is

beyond the scope of this thesis. In this chapter we introduce various feature models like

SQL Engine, FAME-DBMS and so on. These feature models are used to describe only

the abstract commonalities and variabilities of different software produline line.

Basis for Modelling Features for Query Processors A complete feature model

consists of a feature diagram and other additional pieces of information, including seman-

tic description, rationale, exemplar systems, constraints and default dependency rules,

availability sites, and so on [CE00]. But we only consider about the semantic description

and constraints as follows:

• Semantic description Each feature should contain a short description describ-

ing its detail semantics. The developer can quickly undstand what the feature

means from such information. The semantic description includes different models

in appropriate formalisms (e.g. an interaction diagram, pseudocode, equations,

and so on [CE00]). In this thesis, we only give small description of the feature.

Some semantic description may use interaction diagram to express the feature more

elaborately.

• Constraints Feature diagrams include not only variable features but also depen-

dencies between them. These dependencies are expressed in the form of constraints.

24 3.1. Feature Diagrams for FAME-DBMS, SQL and SQL Engine

Constraints allow us to establish an automatic configuration. In this thesis, we have

used a labeled arc to describe a ‘require‘ condition in a feature diagram.

3.1 Feature Diagrams for FAME-DBMS, SQL and

SQL Engine

Developing a complete DBMS for different small devices like cellphones, sensors, smart-

cards, PDAs, etc [SR98] is often not possible. Developing a special purpose database

system specifically tailored to a specific application scenario like web databases, sensor

networks, stream processing etc. is both desirable and easy to achieve. When vari-

ous SQL dialects are considered for differnt application scenarios, a suitable underlying

DBMS must support the special functionality required by the SQL dialect. For exam-

ple, in the sensor network scenario, if a SQL dialect includes the Temporal feature, the

DBMS must provides the corresponding Data Type, e.g. Date Time. Such changes may

affect several layers of the DBMS. In the last section we will introduce constraints of

different features in the feature models of FAME-DBMS, Query Engine and SQL.

The FAME-DBMS (Family of Embedded DataBase Management Systems)1 project

explores techniques to implement highly customizable data management solutions, and il-

lustrates how such systems can be created with a software product line approach. With this

approach a concrete instance of a DBMS is derived by composing features of the DBMS

product line that are needed for a specific application scenario. The feature model of the

FAME-DBMS prototype is depicted in Figure 3.12. This prototype of FAME-DBMS is

developed using the experiences of the decomposition of Berkeley DB and a prototypical

Storage Manager product line. It contains the core functionality OS-Abstraction, Buffer

Manager, Storage, and Access. Each of these features can be decomposed into more sub-

features according to the needs of different applications. For example, in widely used

navigation systems in cars, the user only needs a simple select statement, other SQL

statements like insert, update, delete, are not required [RKS+09]. For such a case, in the

Access layer of FAME-DBMS, the Get feature is only allowed and omit the functionality

of Put, Remove and Update. When implementing a number of similar DBMS, these

features could be often reused by the developer. This approach offers many benefits,

like descreasing development costs, easy to maintain, faster development of the product

and shipment to markt and increasing software quality. We argue that FAME-DBMS

is highly suitable for various embedded systems. It supports a very fine granularity of

features and variability that are required in such constrained environments.

1http://fame-dbms.org/
2http://fame-dbms.org/prototype.shtml

Chapter 3. Feature-Oriented Design of Customizable Query Processors25

FAME-
DBMS

Access

OS-
Abstraction

API

Memory
Alloc

Linux

Win32

NutOS

put

get

remove

update

LFU

LRU

Dynamic

Static

update

remove

search

add

B+-Tree

Transaction

Optimizer

SQL Engine

Storage
Index

Data Types

Buffer
Manager

Replacement

List

Figure 3.1: Feature diagram of FAME-DBMS [RSS+08]

26 3.2. A Model for a Custom Query Engine

SQL

ViewsData
Types CoreJoin Aggregation

Var
Char

Transactions

Fixed
Length

Var
Length

Char Int … ...

Read Write

Insert Update Delete

OR (one or more) mandatory optional

Figure 3.2: Feature diagram for SQL subset extracted from Figure 2.11

3.2 A Model for a Custom Query Engine

For developing a customizable and extensible DBMS, query processing plays an im-

portant role in it. For example, datawarehouse analytics applications require multi-

dimension queries; streaming applications may require some form of stream SQL; web

database applications may require XML supports and so on. As we know, there is

not even a single query language that supports all the functionality needed by vari-

ous embedded application scenarios. In order to satisfy different requirements of the

users, we use the novel software engineering techniques, like software product lines and

feature-oriented programming to develop customizable query engines. We use the soft-

ware product line approach to reduce the complexity of building different solutions and

enhance the maintainability of the components.

A customizable query processor cannot provide the complete functionality of the

whole SQL family. It can only address some parts of the SQL [RKS+09]. In this thesis,

we only provide a small part of the SQL functionality corresponding to the subset of SQL

shown in Figure 3.2. This SQL subset support the Core feature which represent basic

functionality and some basic data types like char, int and so on. The other features

defined as optional features. These features are selected only according to the user’s

requirement. For example, the optional feature Join is not always needed. In the initial

model of FAME-DBMS only one table is supported, join operation is not necessary for

this case. But FAME-DBMS could support more tables after extended, in this way, SQL

should support the feature of Join. We will also explain the constraints related to these

optional features in the last section. In Figure 3.3, we show an initial feature diagram

on the basis of differences and commonalities of the family of SQL. In the following, we

Chapter 3. Feature-Oriented Design of Customizable Query Processors27

SQL Engine

Parse
Query

Rewrite

SQL Semantic
checking

Relational algebra
conversion

Optimize Execution

Relation use
checking

Attribute use
checking

Types
checking

SQL Engine is described in section 3.2.1
Parse is described in section 3.2.2
Query Rewrite is described in section 3.2.3
Optimizer is described in section 3.2.4
Execution is described in section 3.2.5

Figure 3.3: Feature diagram for the SQL engine

discribe the features shown in Figure 3.3.

3.2.1 SQL Engine

Semantic Description

Figure 3.3 describes the main feature diagram of SQL engine. It also shows the

most coarse-grained decomposition. The whole SQL Engine include four main features

: mandatory features Parse, Query Rewrite, Execution, and optional feature Optimize.

The shadowed feature can be decomposed further. Before query processing can begin,

the query engine must first parse the query, which builds a tree structure from the textual

form of the query. Then the query rewrite performs semantic checks on the query. It

also performs some tree transformations to turn the parse tree into a tree of algebraic

operators representing the initial query plan. After this, the query optimizer transforms

the initial query plan into the best available sequence of operations on the actual data.

In the end, the execution engine executes each step of the generated query plan.

3.2.2 SQL Parser

This feature references the work from Sunkle Sagar [Sun07]. Since the whole standard

SQL is very complex. There is quite a large number of SQL dialects, therefore, Sunkle

proposed to decompose the standard SQL. This SQL Engine process depends on the

28 3.2. A Model for a Custom Query Engine

Results

Projection
(T1.a,T2.b)

Selection
(T1.a=7)

Product

T1 T2

SFW

SELECT FROM WHERE

<SelList> <FromList> <Condition>

a b T1 T2 a = 7

Parser Tree Algebraic Expression Tree

Figure 3.4: Translation Of a Parse Tree to An Algebraic Expression Tree

features selected for this dialect. We have already talk about this SQL dialect in section

2.4.2. In the Appendix A, we refer a sub-feature diagram of SQL 2003 to show how the

simple SELECT-FROM-WHERE forms can be parsed.

3.2.3 Query Rewrite

This feature includes an optional feature Semantic checking and mandatory feature Re-

lational algebra conversion. The main function of the Query Rewrite is to translate the

parse tree which was generated by the SQL Parser into an initial query plan. Semantic

checking is not required if the SQL is well-formed before it is processed. (In fact, even if

the query is valid syntactically, it may violate one or more semantic rules on the use of

names). So we use the Semantic checking feature in order to generate a valid parse tree.

If the parse tree is not valid, then an appropriate diagnostic is issued, and no further

processing occures.

Types checking

Types checking is a mandatory feature. All attributes must be of a type appropriate to

their uses. Likewise, operators are checked to see that they apply to values of appropriate

and compatible types. For instance, if the SQL dialect is applied in the sensor networks,

it provides temporal functionality, which further require a DATETIME data type. The

Types checking feature must ensure whether this data type exists or not.

Relation use checking

Chapter 3. Feature-Oriented Design of Customizable Query Processors29

It is an optional feature. Every relation mentioned in a FROM-clause must be a

relation or view in the schema against which the query is executed.

Attribute use checking

It is an optional feature. Every attribute that is mentioned in the SELECT- or

WHERE-clause must be an attribute of some relation in the current scope. Although

the SQL query statisfies valid syntax, but it actually may violate some semantic rules

on the use of names. For example, one simple SQL query like SELECT A FROM B

WHERE A = 7 ; We can find that the syntax of this query is valid, but if the attribute

A belongs not to relation B, this will cause the error. If the user have more experiences

with the database, he may avoid to make this mistakes, so we define both Relation use

checking feature and Attribute use checking feature are optional features.

Relational algebra conversion

It is a mandatory feature. It transforms SQL parse trees to algebraic logical query

plans. For instance, it converts a simple SELECT-FROM-WHERE (SFW) construct

to relational algebra. If we have a < Query > that is a < SFW > construct, and the

<Condition> in this construct has no subqueries, then we can translate the constuct

with select-list, from-list, and condition to a relational-algebra expression, from bottom

to top. For example, if user gives a SQL query like:

SELECT T1.a, T2.b

FROM T1, T2

WHERE a = 7

In Figure 3.4 describe how translate of a parse tree to an algebraic expression tree.

• We first translate the < Fromlist > with product of all the relations.

• Then the < Condition > expression in the construct being replaced with a selection

σ.

• At the last, the < SelList > in the construct being replaced with a projection π.

3.2.4 Query Optimizer

Semantic Description

30 3.2. A Model for a Custom Query Engine

Optimizer

Rule-Based
Optimizer

Cost-Based
Optimizer

Algebraic
optimization rules

Join ordering

Computation
of statistics

Cost estimation
algorithms

Intermediate
relation size

Projection size

Selection size

Join size

Other
operations size

Figure 3.5: Feature Diagram Of the Optimizer

The Figure 3.5 describes the main feature diagram of SQL Optimizer. SQL Optimizer

is a useful part of the SQL processing. It can have a huge impact on the speed of the

SQL execution. In Figure 3.3 we have defined the feature Optimizer as an optional

feature. Because in some cases, the speed of the SQL execution might not be an issue

for the user. Without the SQL optimizer, the query processing can still works. Feature

diagram of Optimizer includes two mandatory features : Rule-Based Optimizer - RBO

and Cost-Based Optimizer - CBO. Both the RBO and CBO have benefits and it is up

to the user to tune each SQL query using the proper optimizer. So we define these two

mandatory features as Or features. This means that the user can choose both of these

two methods or anyone of them.

RBO

It is very elegant for its simplicity and often made faster execution choices than the

CBO. Because the cost of CBO is very expensive, many systems use RBO to reduce the

number of choices that must be made in a cost-based fashion. RBO uses a heuristic

method to select among serveral alternative access paths with the help of some algebraic

optimization rules. All possible paths were ranked and chosened the lowest one 3. RBO

feature includes two sub-features, one mandatory feature Algebraic optimization rules

and one optional features Join ordering.

Algebraic optimization rules

3http://www.lc.leidenuniv.nl/awcourse/oracle/server.920/a96533/rbo.htm

Chapter 3. Feature-Oriented Design of Customizable Query Processors31

This feature listed here reorder an initial query-tree representation such that the op-

erations that reduce the size of intermediate results are applied first. It contains many

different equivalence transformation rules. For example, selection operations are com-

mutative, conjunctive selection operations can be composed into a sequence of individual

selections. More detailed rules are shown in the Appendix B. With the aid of these rules

we can use the heuristic optimization to reduce the cost of execution. Such as perform-

ing selection and projection operations as early as possible. Because early selection can

reduce the number of tuples and early projection can reduce the number of attributes.

Join ordering

In some cases, the user does not use the join operation, so we define the Join ordering

feature as an optional. As we know, a good ordering of join operators is important for

reducing the size of temporary results.

CBO

It determines which execution plan is most efficient by considering available access

paths and by factoring in information based on statistics for tables or indexes accessed

by the SQL statement. The CBO performs the following steps4:

• The optimizer generates a set of potential plans for the SQL statement, based on

available access paths.

• The optimizer estimates the cost of each plan, based on statistics in the data dictio-

nary for the data distribution and storage characteristics of the tables, indexes, and

partitions accessed by the statement. The cost is an estimated value proportional

to the expected resource use needed to execute the statement with a particular

plan. The optimizer calculates the cost of access paths and join orders, based on

the estimated computer resources, including I/O, CPU, and memory.

• The optimizer compares the costs of the plans and chooses the one with the lowest

cost.

Computation of statistics

4http://www.lorentzcenter.nl/awcourse/oracle/server.920/a96533/optimops.htm

32 3.2. A Model for a Custom Query Engine

It is a mandatory feature. The CBO uses statistics that are collected from the table

in the DBMS. Query engine uses these metrics, such as number of rows and number of

rows per block, average row length, total number of database blocks in a table and so on,

in order to intelligently determine the most efficient way of servicing the SQL query. As

we know, the database is not static. It will always changes through data input and data

modifiaction. These changes cause current statistics to become inaccurate and generate

the “best” plan for the SQL engine that actually is not the accurate best plan. So query

optimizers prefer the periodic computation of statistics because these statistics tend not

to change radically in a short time [GMUW00].

Cost estimation algorithms

CBO uses cost estimation algorithms to estimate the cost of each physical plan. After

calculating the cost, CBO selects the physical query plan with the lowest cost. The

selected plan is then forwarded to the query execution engine. There is an algorithm

corresponding to every operation in the logical plan.

Selection size

It evaluates different selection operations and picks the cheapest cost.

Projection size

It evaluates different projection operations like sort-based projection or hash-based

projection and chooses the better one. We define projection size are mandatory fea-

ture. That is becaue we consider about for a very simple SQL query may only contains

SELECT statement and FROM statement, without WHERE statement. In this case,

FROM statement can also contain only one table.

Join size

It decides which join algorithm like sort merge join, hash join or nested loop join

should be used.

Intermediate relation size

Chapter 3. Feature-Oriented Design of Customizable Query Processors33

Projection
operation

Selection
operation

Join operation
Execution

Sort-based
projection

Hash-based
projection
Unsorted
projection

Nested loop join

Sort Merge join

Hash join
Aggregate
operation

Other operations

Figure 3.6: Feature Diagram Of the Execution

Knowledge of how the intermediate relations are represented is known when expression

of the logical plan involves several operators. Relations which are arguments of an

expression can be stored in many different ways like clustered or unclustered, indexed

or unindexed. Relations computed during query execution can be stored on a disk in a

cluster occupying as few blocks as possible [GMUW00].

Other operations size

It evaluates other operations like aggregate operation, set operation and so on and

chooses the lowest cost operation.

3.2.5 Query Execution

Semantic Description

The Figure 3.6 describes the feature diagram of SQL execution. It is the responsibility

of the execution engine to execute each step of the chosen query plan. Interaction between

execution engine and most of the components of DBMS takes place using buffers or

directly [GMUW00].

Selection operation

34 3.2. A Model for a Custom Query Engine

The selection σC(R) takes a relation R and a condition C. The condition C may

involve [GMUW00]:

• Arithmetic (e.g. +, -, *) or string operations (e.g. concatenation or LIKE) on

constants and/or attributes.

• Comparisons between these arithmetic, e.g. x > y or x - y = 1 and

• Boolean connectives AND, OR and NOT applied to the terms constructed in step

2.

In query processing, file scan is the lowest level operation performed by query proceesing

to access data. File scan can be categorized as search algorithm. All records fulfilling a

selection condition are located and retrieved by file scan [SKS96].

Projection operation

Projection helps in deleting unwanted columns after a relation has been scanned.

However, the situation gets complicated due to the presence of DISTINCT directive.

The problem arise because of the presence of duplicate tuples as a result of the projection

operation. These duplicate tuples must be eliminated. Sorting and hashing [KBL05],

the two sub-features of projection operation can be used for finding identical tuples.

Sort-based projection

It is also used for scanning the orignal relation. It removes the tuple components that

are to be projected out, sorts the resulting tuples and writes the result back to disk. The

result can then again be scanned and duplicate tuples can easily be removed since they

are right next to each other [KBL05].

Hash-based projection

Hash-based projection is another way to quickly identify the duplicates using a hash

function. In this thesis, we will not go into details of the Hash-based projection.

Join operation

Chapter 3. Feature-Oriented Design of Customizable Query Processors35

Join operation is an optional feature. In the design of FAME-DBMS, there is only

one table, therefore, join operation is not needed. Nevertheless, it is a very useful

operation in relation algebra and is used to join information from two or more tables.

The size of the resulting data obtained after applying join operation is two times the

size of the input. Although in comparison to exponential complexity of some algorithms,

quadratic complexity of join operation seems quite acceptable. But considering the

large amount of data and the relatively slow disk I/O operation, quadratic complexity is

prohibitive in database query evaluation. There are three main methods for computing

joins: Nested loop join, Sort merge join and Hash join. We define them as sub-features

of Join operation [KBL05].

Nested loop join

Nested loop join is useful when small subsets of data are being joined and if the join

condition is an efficient way of accessing the second table. It is very important to ensure

that the inner table is driven from (dependent on) the outer table. If the inner table’s

access path is independent of the outer table, then the same rows are retrieved for every

iteration of the outer loop, degrading performance considerably.

Sort Merge join

Sort merge join is used to join tuples from two independent sources. Generally, the

performance of hash join is better than sort merge join, but in some cases sort merge

join can perform better than hash join. This happens if both of the following conditions

exists:

• The tuples have already been sorted.

• The join condition between two tables is an inequality condition (but not a

nonequality) like <, <=, >, or >=.

For large datasets, sort merge join performs better than nested loop join. You cannot

use hash join unless there is an equality condition.

Hash join

Hash join is used for joining large datasets. A hash table on the join key is built by the

optimizer in memory using the smaller of the two tables or data sources. It then scans

the large table, seraching the hash table to find the joined rows. This method works well

when the smaller table fits completely in the available memory, reducing the cost to a

single read pass over the data for the two tables.

36 3.3. Constraints Between Features

Aggregate operation

Apart from retrieving data, computation or summarization on data could also be

performed. This computation can be performed using arithmetic expressions like MIN

and SUM provided by SQL. These features represent a significant extension of relational

algebra [Ram97].

Other operations

Other relational operations such as set operations (union, intersection and set-

difference operations) can be implemented according to customer needs.

3.3 Constraints Between Features

We express constraints between different features or feature models with Requires or

Excludes [CE00]. In our feature models we present in all of the feature diagrams not

with Excludes constraint. It does not mean that exlusion conditions do not exist at all

but at least not exist in the feature modeling sense and at the feature constraints level.

The exclusion constraints are present in the form of what we have called implementa-

tion constraints. At the statement level and in terms of feature constraints, it is the

Requires constraints that are more prominent than Excludes constraints and therefore

only Requires constraints are presented. In the following, table 3.1 describe constraints

between the feature models FAME-DBMS, SQL, and SQL Engine. We only consider

domain dependencies and talk about implementation description in Chapter 4. In ta-

ble 3.1, we describe two columns with Constraint and Constraint description. Constraint

describe the constraints between different features. Constraint description explains why

we use this constraints. In this table, the constraint type of all the constrains use the

Require. We use constraints from upper layers to lower layers, because if we configure

upper layers, the lower layers should be configured automatically.

3.4 Summary

In this chapter introduced the basic idea of how the customizable query processors de-

sign. We first apply the domain engineering approach to analyze the family of query

processor. Then we used feature-oriented approach to design a basic feature modelling of

query processor (Figure 3.3). In order to find the dependencies between differnt software

product lines, we are reviewed short about the software product line FAME-DBMS (Fig-

ure 3.1). At the same time, we abstract a simple SQL feature diagram (Figure 3.2) to

Chapter 3. Feature-Oriented Design of Customizable Query Processors37

Constraint Description

SQL.Data Types (Figure 3.2) ⇒
FAME-DBMS.Data Types (Figure 3.1)

Without Data Types of FAME-DBMS,

the Data Types of SQL can not work

SQL.Transaction (Figure 3.2) ⇒
FAME-DBMS.Transaction (Figure 3.1)

Without Transaction of FAME-DBMS,

the Transaction of SQL can not work

SQL.Insert (Figure 3.2) ⇒ FAME-

DBMS.Put (Figure 3.1)

Without FAME-DBMS API-Put fea-

ture, the Insert of SQL can not work(*

This feature will cause feature deriva-

tives problem, we will discuss in chap-

ter 4)

SQL.Delete (Figure 3.2) ⇒ FAME-

DBMS.Remove

Without FAME-DBMS API-Remove

feature, the Delete of SQL can not

work(* This feature will cause feature

derivatives problem, we will discuss in

chapter 4)

SQL.Update (Figure 3.2) ⇒ FAME-

DBMS.Update Figure 3.1)

Without FAME-DBMS API-Update

feature, the Update of SQL can not

work(* This feature will cause feature

derivatives problem, we will discuss in

chapter 4)

SQL.Join (Figure 3.2) ⇒ SQL En-

gine.Execution.Join operation (Fig-

ure 3.6)

Without Join operation feature of Ex-

ecution, the Join functionality of SQL

can not work

SQL.Aggregation (Figure 3.2) ⇒ SQL

Engine.Execution.Aggregate operation

(Figure 3.3)

Without Aggregate operation feature

of Execution, the Aggregate function-

ality of SQL can not work

SQL Engine.Query Rewrite.Semantic

Checking.Types checking(Figure 3.3)

⇒ FAME-DBMS.Data Types (Fig-

ure 3.1)

Without Data Types feature of FAME-

DBMS, the Types checking of Query

Rewrite can not work. For exam-

ple, SQL query have a where condition

A=10, the DBMS must support the Int

Datatype

SQL Engine.Optimizer.Computation of

Statistics (Figure 3.5) ⇒ FAME-

DBMS.Data dictionary (Figure 3.1)

Without Data dictionary feature of

FAME-DBMS, the Computation of

Statistics of CBO can not work

SQL Engine.Execution.Sort-based

projection (Figure 3.6) ⇒ FAME-

DBMS.Index (Figure 3.1)

Without Index feature of FAME-

DBMS, the Sort-based Projection of

Execution can not work

SQL Engine.Execution.Hash-based

projection (Figure 3.6) ⇒ FAME-

DBMS.Index (Figure 3.1)

Without Index feature of FAME-

DBMS, the Hash-based Projection of

Execution can not work

Table 3.1: Constraint of Features

38 3.4. Summary

meet the software product line query engine. We are only provided a quite coarse-grained

decomposition of query engine, it contains only the basic functionaly, more fine-grained

decomposition maybe implement in the future. In order to implement automatic config-

uration of SPL, we describe the constraints between variable features. These constraints

specify which feature combinations are valid or invalid. In Chapter 4 we introduce some

feature implementation detail.

Chapter 4. Implementation Detail 39

Chapter 4

Implementation Detail

After the above discussion about our design, in this chapter we will give a more detailed

discussion of how our system works and how it is implemented. We developed a prototype

to demonstrate how feature oriented programming can be used to generate a highly

customizable query processor. The implementation described here is based on our test

implementation of query processor, which is mainly based on query parser, rewrite and

execution modules. FeatureC++ is used for implementation and FAME-DBMS is used

as database, which is highly customizable embedded DBMS.

Automatic Generation of Customizable Query Processors

In the subsection 2.4.3 we have introduced how a family of SQL parsers can be gener-

ated by decomposing the SQL grammar. Similarly, we describe in Figure 4.1 to explain

how customizable query processors are generated according to the family of SQL parsers.

As we can see from Figure 4.1, the SQL sub-grammars which are obtained by decompos-

ing SQL grammar and are composed into different grammars according to the needed

SQL dialect. Composed grammars are used to create various SQL parsers. These dif-

ferent parsers with features which is selected from the family of query engines are used

to generate the various query engines according to different application scenarios. For

example in our implementation, we developed a query engine with parsing, rewrite and

execution features. In which, rewrite feature is optional and can be removed from query

engine. We can extend the functionality of query engine by including more optional

features like optimization.

4.1 Characteristics of FAME-DBMS

In order to implement the query processor, we first review some characteristic of FAME-

DBMS. Because SQL Engine is the feature of the FAME-DBMS. In chapter 3 we have

40 4.1. Characteristics of FAME-DBMS

SQL Sub-
grammars

Grammar
composition

G2

G1

Grammar variant1

G1

G4

G7

Grammar variant n

SQL
parser 1

SQL
parser n

F1
F2

F3
F4

F5
F6

F7

Family
of SQL
dialects

Parser
generation

Grammars for
SQL dialects

Family of
SQL parsers

Query engine
generation

F1
F2

F3
F4

F5
F6

F7

Family
of Query
Engines

Query
Engine 1

Query
Engine n

Customizable
Query engines

Figure 4.1: Generating Customizable Query Processors (adopted from Fig-

ure 2.12) [RKS+09]

introduced some constraints between SQL Engine and FAME-DBMS. In the following

we give the main features in the FAME-DBMS, such feature have closely related to the

implementation of customizable SQL Engine.

4.1.1 Feature: DataAndAccessManager

This mandatory feature that realizes the API for FAME-DBMS. This API include func-

tions like PutData(), GetData() and Delete().

Class DataAndAccessManager

DataAndAccessManager class contains the functionality of the API. The purpose of

keeping the API separate was to make sure, changes to internal interfaces have less impact

on the external API and we make sure that API is consistent for different versions and

builds of FAME-DBMS. Class details shows below:

bool GetData(RECORD r) Get the data from the database as per the key provided

in the RECORD structure as argument. This method will be used by end user to retrieve

data from database. This method simply forwards this call to storage manager.

Class DataDictionary

Chapter 4. Implementation Detail 41

RECORD

~ key: int
~ size: size_t
~ value: byte*

Figure 4.2: Class Record

DataDictionary class manages the FAME-DBMS Meta-Data information. This class

is responsible to load Meta-Data information when database is opened and this class

saves the Meta-Data information when database is closed.

bool PutData(RECORD r) Put the data to the database as per the tuple provided

in the RECORD structure as argument. This method will be used by end user to insert

data to database. This method simply forwards this call to storage manager.

bool Delete(RECORD r) Delete the data from the database as per the key provided

in the RECORD structure as argument. This method will be used by end user to delete

data from database. This method simply forwards this call to storage manager.

Class-RECORD

Record is used to store each tuple in FAME-DBMS. It is also exposed through API.

End-user gives records in the form of RECORD structure to FAME-DBMS. Figure 4.2

define the class Record.

4.1.2 Different Implementation Variants for FAME-DBMS

For the initial FAME-DBMS, it supports no tables. Considering about the limited

resource on the devices (e.g., memory), a very simple query processor is also needed.

In Figure 4.2 we have clearly know the class of record. All data in the FAME-DBMS

express with <key, value>. In this case, the FAME-DBMS contains no columns and

also no tables. If we implement query engine for this case, we can do the query like this:

SELECT <columns>

FROM <table>

42 4.2. Query Engine Implementation

WHERE <condition>

The SELECT <columns> in this case can only query SELECT KEY and SELECT

*, in fact the * meaning here only the key, value. because the FAME-DBMS contains no

columns. And searching for values does not make sense since these are without any type,

the values is only byte array. If the query have only SELECT * without FROM and

WHERE sentences, the output of query print all data in the FAME-DBMS. When the

query engine process FROM <table> sentence, the table could be mapped directly to a

database in FAME-DBMS. If we define a name of database, we could use the name as the

table name for the FROM sentence. But also the FROM sentence could be ignored since

there are actullay no tables in FAME-DBMS. The WHERE <condition> in the initial

FAME-DBMS can query WHERE key = “condition”. In general, in our implementaion

we predefine the key and value as columns. Key can also be used within WHERE clause.

For example, we support a simple SQL query like SELECT key, value WHERE key =

10 + (10-5) ;

4.2 Query Engine Implementation

In our implementation we developed a hightly customizable query engine prototype.

The main components of query engine are Parser, Query Rewriter and Query Execution

components. In figure 3.3 optimization also exist as optional feature. However, it is

currently not part of this prototype implementation.

Since FAME-DBMS which we used at back end for testing our prototype, currently

only support key/value pair, we restricted our implementaion to available functionality.

However, we laid down an architecture that is highly customizable and can be extended

to support full fledged DBMS query execution.

To support high customizability, we used feature oriented programming approach.

Sunkle [Sun07] decomposed the SQL based on feature and then realized those features

in our prototype using FOP. We used C++ for our prototype development. C++ give

benefit of high performance at the same time giving the benefits of object oriented

programming. We used Feature C++ for implementing our prototype. To verify the

functionality of our prototype, executed some test queries and verified the functionality

of the query engine.

The functionality of the prototype is in Figureas 4.3 as follow:

We provide the query as input to query engine which is first processed by Parser.

Parser after processing the query generates the Abstract Syntax Tree (AST) for the query

as output. The resulted AST is submitted to Query Rewrite component. Query Rewrite

component converts AST into Relational Algebra Tree (RAT), however Query Rewrite

Chapter 4. Implementation Detail 43

Parser
Rewrite
(Optional)

ExecutionQuery AST RAT Database
Execution

Q u e r y E n g i n e

AST

Figure 4.3: Process of Query Engine Implementation

in our prototype implement as an optional component and can be removed from the

query engine as needed. Execution component is able to execute the AST as well as

RAT based on the seleted components. If we do not have the feature Query Rewrite,

the query execution execute the operation based directly on AST. If we provide the

feature Query Rewrite, the query execution will execute the operation based on RAT.

Once we provide AST or RAT to Execution component it performs the execution on

the database. Query execution traverses the AST or RAT. For each type of node it

performs the execution task for that node. For example, for a CREATE query, first

node encountered is Keyword node in case of AST based execution. Once execution

component reads that it is CREATE node, it knows that it should contain the child

with table name. It reads the child for table name and then execute the appropriate

method calls of FAME-DBMS.

4.2.1 Parsing the SQL Query

Parser is one of the most important components in the query engine. It checks for correct

syntax of query and builds a data stucture (in our implementation this data structure has

been described as Abstract Syntax Tree (AST)) to describe the input tokens. Parsers

include hand-writen parser and Parser generators like ANTLR, Yacc and so on. The

parser generators often use a grammar written in BNF form.

It is not always possible or desirable to use a Generated Parser. In our implementation

the languages grammer is not very complex, therefore, the development cost of writing

a parser by hand is lower than that of using a parser generator. Generated Parsers also

have an inherent problem that they lack extensibility mechanism. This might become

an issue if the semantics of the language demands extensibility. It is also difficult to

provide extensible grammars and sophisticated error reporting with Generated Parsers.

In our case, the simplicity of our implementation allows us to ignore the use of generated

parsers [JDJ04]. Another important thing is that there is currently no working solution

based on features as described by Sunkle [SKS+08]. Our implementation is based an

AST which fulfills many of our needs, therefore, it was important for us to build our own

parsing engine, as AST are not completable with existing parsers are built for complete

44 4.2. Query Engine Implementation

SQL while we are only concerned with very specifiv elements.

The customizable query engine is based on a customizable parser which was provided

as a starting point for this thesis. The parser is manually implemented with FeatureC++

and supports only a small subset of SQL. This Parser components contain scanning

functionality that scans the query for delimiters, whitespaces and keywords etc. and

generates the tokens for query. These tokens are then used to generate the AST for the

query. At present, this feature oriented parser supports only features SELECT statement

and INSERT statement. This feature oriented parser can in future be extended to parser

more statements like, DELETE, UPDATE etc. The features we want to use have been

extracted from sunkle thesis [Sun07]. In our implementation we focus only an SELECT

statement.

Design of Abstract Syntax Tree

The SQL parser generates an AST by passing the input query. The nodes of the AST

contains tokens. The importent syntactical elements of the query are saved in the nodes

of the AST. In other words, AST is the internal representation of a query in our system.

The benefit of using AST is that all the necessary and important parts of the input

query are saved in the nodes of the AST for further processing while it also helps in

omitting the unnecessary systactic details. The difference between the AST and concrete

syntax trees is that AST omities the tree nodes which represents punctuation marks such

as semi-colon to terminate statements or commas to separate funetion arguments. Also

in AST there are no tree nodes for unary productions in the grammar. Such these

informations are directly represented in ASTs by the structure of the tree [JDJ04].

For example, if the user give the simple SQL query like this:

SELECT T1.Key, T2.Value

FROM T1, T2

WHERE Key = (5+10)-10

Use the parser, we can get the AST in Figure 4.4.

4.2.2 Query Translation

Figure 3.3 showed that query rewrite is a mandatory feature of Query Engine. In our

implementation, we implement only feature relational algebra conversion. However, we

kept it optional in our prototype implementation since we don’t have complex query

execution need in our current DBMS implementation. We know that after parsing the

query, we can get an abstract syntax tree. But in the inner of relational DBMS, lower

- level operations are similar to relational algebra operations. Relational algebra is

Chapter 4. Implementation Detail 45

SELECT

SELECT LIST FROM

FROM LIST WHERET1.Key T2.Value

T2T1 =

Key -

10 +

5 10

Figure 4.4: One Example of Abstract Syntax Tree

a mathematical formalism that is used to express queries. One advantage of using

relational algebra is that it makes alternative forms of SQL query more easy to explore.

Relation algebra expression forms the basis of the procedural language of the execution

plans. So in order to get a logical query plan for this query, we must translate the

AST into relational algebra expression. An expression in relational algebra describes a

sequence of operations that can be applied to a relation and which produces a relation

as a result. The primary operations of the relational algebra are projection, selection

and joins.

RAT makes a little change of AST. The nodes of AST describe for each rule of a

grammar. The nodes of RAT are based on the nodes of AST. The RAT create a PRO-

JECTION node for each SELECT node of the AST and also create a SELECTION node

for each WHERE node of the AST. Actually, internally of SELECT node and PROJEC-

TION node, WHERE node and SELECTION node are same. In our implementaion,

WHERE node actually supports not AND. It supports only one condition. We have also

added two special nodes ,one is Attribute node, another is Relation node for RAT. That

is because in relational algebra column is called attribute, and relational algebra table

is called relation.

Figure 4.5 describe a relation algebra tree translate from the abstract syntax tree

in figure 4.4. Because our FAME-DBMS currently support not tables, so in the im-

plementation of query rewrite component, we have ignored the FROM statement. The

PROJECTION node in our prototype query engine support only attribute Key and

Value. The RAT also evaluate the complex query expression in figure 4.5 with simplified

expression in figure 4.4.

Visitor Pattern

46 4.2. Query Engine Implementation

Projection

Attribute List Selection

Key Value =

Key 5

(BinExpression)

Figure 4.5: Relation Algebra Tree

To avoid frequent type casts or recompilation Visitor pattern has been used. It de-

scribes a mechanism for interacting with the internal structure of composite objects.

The advantage of Visiteor Pattern is that a new operation can be defindan on an Object

structure without changing the classes of the objects on which it operates. This saves us

from writing dedicated methods for each programming task and afterwards recompiling.

The main objective is to have an accept method in every class which passes control back

to the visitor. The Visitor behaves like a repository for the new methods [PJ98].

If the operations are distributed across the various node classes, the resultiong system

becomes hard to understand, maintain and change [GHJV94]. If a new operation is

added, then we will have to recompile all of the classes, we have used visitor to package

related operations from each class in a separate object, then we pass it to node of AST

as it is traced. Once a visitor has been “accepted“ by a node, a request is sent to the

visitor that encodes the node’s class, it also includes the node as an argument. The

visitor then executes the operation for the node - the operation that is in the class of

the node.

Figure 4.6 illustrates the relationship between RANode class and RAVisitor class in

our implementation. Classes RAListNode, RAKeywordNode, RAValue and RAExpres-

sion inherit from a higher-level class RANode. Class RAPrintVisitor inherits from clas

RAVisitor. RAVisitor provides different operations on the RAT. Every class that inher-

its from RANode contains methods AcceptVisitor() and DoneVisitor(). DoneVisitor()

methods do nothing at present but can be implemented later. The function argument

to these methods is an object of type RAVisitor to select through dynamic binding, the

appropriate visit method to be called. The RAVisitor implements a ”double- Dispatch”

machanism [MA06]:

Chapter 4. Implementation Detail 47

RANode RAVisitor

RAListNode

RAValueRAKeywordNode

RAExpression
RAPrintVisitor

AcceptVisitor()
DoneVisitor()

Target Application Class Visitor Class

Class_name Class

Inherits form

Client (uses)

Figure 4.6: Visitor Pattern Architecture

• In a call to AcceptVisitor() on a certain RANode, the appropriate version of Ac-

ceptVisitor() is determined by the type of that RANode.

• When that version is executed on an argument of type RAVisitor, the appropriate

visitor routine version is dertermined by the type of the RANode attached to that

argument as given by one of the RAVisitor classes, for example RAPrintVisitor.

The strong point of the pattern is that it is easy to add new functionalities to a class

hierarchy: simply write a new inheritance of RAVisitor to traverse the structure in a

different way and perform some other task.

For generating the RAT we used visitor pattern. First we traverse the AST to

generate the RAT. Based on visitor patter, we override the methods for each type of

node. As we encounter some typed of node in AST, we generate a RAT node in RAT

that contains the same meaning in relational algebra form. For example, when we

encounter WhereNode in AST, we generate the Selection node in RAT. Similarly, we

traverse AST, generates similar nodes in RAT and at the same time we simplify the

concepts where applicable. For example, if where clause contains the k = 7 + (10 - 5) as

expression. While generating RAT we will simplify it to k = 12. It is a simple example.

However, we can extend this concept for simplifying the complex queries for execution

during ReWrite. Once RAT is generated, we can traverse the RAT for execution.

4.2.3 Implementation Query Execution

Query Execution manipulate the data of the database. In the part of Query Rewrite

translate the query into relation algebra expression. Query Execution execute the oper-

48 4.3. Feature Interactions

Parser Query Rewrite Query Execution

Select × × ×
Insert × × ×

Update × × ×
Delete × × ×

DbOperations × × ×

Table 4.1: Some Feature Interactions

ations of relational algebra. Consider about in practical application, DBMS will quite

complete, it should at least support tables. We must translate the AST into RAT in

order to optimizer the logical query plan and generate a physical query plan based on

the relation algebra expression tree.

But in our initial FAME-DBMS store only KEY/Value pair. In this case, it does

not need the functionality of Query Optimizer. In our implementation of query engine

prototype, actually query rewrite does not make sense. Because of this reason, we

implement the Query Execution with two ways based on the selected components. One

approach implement based directly on the AST. Another approach implement based on

the RAT. Both of this two approaches are possible in our initial FAME-DBMS.

4.3 Feature Interactions

We can use FeatureC++ to modularize crosscutting concerns. But interactions between

different crosscutting features occur often in the implementation. These feature interac-

tions often enforce a particular composition order of features and can result in special

interaction code, know as derivatives 1.

Since we have developed our prototype based on feature oriented decomposition mech-

anism. We have seperated, end-user visible functionalities based on features. However,

not all features are mandatory and this results in feature optionality problem. In our

prototype mechanism we have used feature derivative approach to solve this issue. We

have talked about in table 3.1 some constraints about different features. We have found

that feature Select, Insert, Update, Delete and DbOperations in the implementation

have crosscut features Parser, Query Rewrite, Query Execution. In Table 4.1 shows this

feature interactions.

In our implementation, we have two approaches to resolve this feature interaction

problem.

• One approach adds directly related feature below each of crosscuted features. For

1http://wwwiti.cs.uni-magdeburg.de/iti-db/fcc/

Chapter 4. Implementation Detail 49

example, Select feature crosscut feature Parser, Query Rewrite, Query Execution.

We add feature Query Rewrite/Select, Query Execution/Select for feature Query

Rewrite and Query Execution part.

• Another approach uses the feature derivatives to solve this as we describe below.

We can use the first approach to implement the functionalities like Select, Insert in

our prototype. But it cause not consistence of feature domain lay.

In our prototype mechanism we have used feature derivative approach to solve this

issue. Because the special code is needed to implement the interaction of different fea-

tures, feature derivatives can be modularized and separated from the interacting fea-

tures [LBL06]. A derivative occurs only in the interacting features are present in an SPL

instance. Implementing with FeatureC++, derivatives are stored in a separate folder

which used only for derivatives. The symbolic links within folders of the corresponding

features are used to ease navigation2. When SPL building, the FeatureC++ precompiler

generates binary code for derivatives. For example, in our implementation the selection

of features in Query Rewrite and Execution component is based on the feature selection

in Parser. In parser we have DbOperations, Project, Select and Insert features that we

used for feature derivative selection in Query Rewrite and Execution components. Query

Rewrite and Execution components are composed based on the Parser component feature

selection. If we remove the Insert feature from the parser, Insert functionality will auto-

matically be removed from the Query Rewrite and Execution components. This enables

use high customization in our query engine prototype. In our implementation we have

generated 10 feature derivatives. There are 4 feature derivatives, i.e., DbOperations,

Select, Project and Insert crosscut three features, i.e., Parser, ReWrite and Execution.

There are two feature derivatives that crosscut ReWrite and Execution feature, as well

as Execution and QueryEngine. If ReWrite feature is not selected these two derivatives,

it should automatically generate code that should execute based on AST.

4.4 Summary

This chapter describes the main ideas of how implement a customizable query processor.

We first describe that how can generate customizable query engine based on customizable

parser. We based on a simple customizable SQL parser to implement query rewrite

and query execution. Because our initial FAME-DBMS do not support tables, just

contains a pair of value (key,value), we have ignored the query optimizer part for the

implementation. At the last, we talked about how can solve the feature interaction

problem in the implementaion.

2http://wwwiti.cs.uni-magdeburg.de/iti-db/fcc/

50 4.4. Summary

Chapter 5. Conclusion and Future Work 51

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we demonstrated how feature-oriented decomposition can be used to de-

velop highly customizable query processor. In this chapter, we present the conclusions

that we reach during the presented work. Highly customizable query engine is very criti-

cal for customizable DBMS. Customizable DBMS are tailor-made DBMS based on some

important criteria. Functionalities within these DBMS are not same across different

DBMS products. All important user visible functionalities are identified and decom-

posed as features. Each variant is generated based on the selection of feature. For these

customizable DBMS, if we use query engine with all functionalities, it will lead to waste

of resources. Query engine will have large binary size, high complexity, and complex

execution.

In this thesis, we envision the customization of DBMS based on query engine cus-

tomization. We can identify the required feature of query engine based on the knowledge

of domain. As we customize the query engine, DBMS customization should be automati-

cally done. However, for existing applications, it is possible to identify all needed features

of DBMS by analyzing applications queries. Based on query analysis, we can generate

the configuration for query engine customization and so on we can also customize the

DBMS.

We applied Software Product Line concept to address query engine variations by

keeping common assets inside a core element and combining it with a set of extra func-

tionalities that might be selected to provide variation. These core elements are defined

as mandatory feature in feature diagram. Extra functionalities are defined as optional

features. Product Line instances are the result of combining the core element and a set

of extra functionalities. For example, the high-level query engine feature diagram con-

tains core functionalities, i.e., Parser, and Executor. These core functionalities actually

address the basic requirement of query engine. Each of these core features can also be

52 5.1. Conclusion

decomposed according to the application need. Combining these features in different

but valid combinations will generate various software products.

Feature-oriented decomposition of SQL can be used to generate a customizable SQL

parser. For each decomposition a different parser can be generated. One approach

could be to use customizable parser generator. Using customizable parser generator, it

is possible to generate parser by writing grammar. It is possible to write grammar for

each decomposition of SQL and then generate parser for it. This approach is efficient

for parser generation but other functionalities are implemented manually. Since, parser

generator generates parser based on grammar, to make parser customizable there should

be mechanism in existing tools for writing grammar using feature oriented approach.

However, there is not such support in existing parser generators. For each SQL variant,

we will have to write a separate SQL grammar which is not viable. Another approach is to

have hand-written parser that we also followed in this thesis. Using handwritten parser,

we can write parser based on software product line approach. We decompose parser into

user visible features and generate variants of parser for different SQL decompositions.

Now this give us control on how parser should be generated and what features it should

contain based on the grammar it should parse. This also gives us possibility to generate

other query engine components as well as DBMS based on the parser feature selection.

A customizable SQL processor is composed of customizable SQL parser and different

features in the family of SQL engine. For k features, theoretically 2k feature combinations

are possible. But it does not mean that every combination is possible. There exist

optional features. Interactions between different features that are being composed can

lead to an invalid composition. This feature optionality problem reduces the benefits of

software product line approach. There exists extensive literature on the mechanism of

solving feature optionality problem. In order to avoid this invalid composition, we have

described constraints between different features of various software product lines (i.e.,

FAME-DBMSand Query Engine). The most highly used approach to overcome feature

optionality problem is feature derivative approach. We used this approach in resolving

feature optionality problem and to ensure that generated combination of SQL engine

is valid and correct. We identified that there are certain implementation dependencies

between features that are not identified at domain level in feature diagram. We have to

satisfy these dependencies during implementation. We used feature derivative approach,

but we do not found it highly scalable. In our implementation, we have six derivatives

for only one optional feature of ReWrite. We identified that number of derivatives

grow approximately exponentially as the number of optional features and cross-cutting

features grows.

We have implemented a simple customizable SQL parser specifically implementing

query rewrite and query execution. As currently we have pair of data (i.e., key, value)

and we do not have tables support in FAME-DBMS, parser can parse tables and columns

Chapter 5. Conclusion and Future Work 53

but nodes with table information are ignored during query rewrite and execution. Sim-

ilarly only pair of data (i.e., key, value) is executed. Our implementation is highly

customizable and with addition of functionalities in FAME-DBMS, it will be possible to

add functionality in query engine.

Highly customizable query engine are important for support different SQL dialect ef-

ficiently. In future as more application areas for data management emerges, customizable

DBMS will play an important role and the most important part of it will be customizable

query engine.

5.2 Future Work

There are some area of research that can be done in the near future along the direction

of this thesis.

Prototype Implementation

Although we have partially implemtented our system based on FAME-DBMS, there is

still some more work to do for a prototype system of our design. In our current design, we

had to ignore some features of query languages, such as transactions management, view

supports, etc. Also, the design of the whole system is still not exquisite. For a more

realistic prototype, a more careful and comprehensive design is needed. Our current

testing experiment is only based on FAME-DBMS. Although, according to our studies,

generating query processors for other DBMS should be quite similar to our current test.

So prototypes based on other DBMS should also be constructed.

Query Optimization

In our thesis, we have not considered query optimization strategies in detail. But

query optimization is one of the crucial parts of query processing. Although many

Query optimization strategies designed for traditional SQL can still be applicable to

FAME-DBMS but with FAME-DBMS many more complex situations are encountered

where traditional query optimization stratigies can not be applied, as these algorithms

are mainly based on the predefined operations for the predefined types in the system. In

such situations new specifically tailored optimization algorithms have to developed. The

designers provide some optimization hints (operetion algebric rules, logic rules or code

segment transformation rules) based on the operation specification or implementation

should be very useful to the system.

54 5.2. Future Work

Granularity of a SQL Engine Decomposition

In Section 3.2, we have provided a coarse-grained decompostion of SQL Engine but

we can also show that a much more fine-grained decomposition is possible. The main

challenge in future research will be to find the appropriate granularity for a SQL Engine

decomposition. The main hurdle is the resulting complexity of a DBMS implementation

which increases as the level of granularity increases. This however has the benefit that

a fine - grained decomposition produces an SQL engine that better fits to application

scenarios.

FAME-DBMS Extension

Because initial FAME-DBMS support only KEY/Value pair data. It restrict the im-

plementation of the Query Rewrite and Query Exectution. In the future, we can extend

our prototype FAME-DBMS to support tables and much more data types. Based on

this support of tables, we can also extend our customizable query engine to support

tables. In the implementation layer of Query Rewrite, it can support FROM statement.

Similarly, in the Query Execution can also provides Join Operation feature.

BIBLIOGRAPHY 55

Bibliography

[ALMK08] Apel, S.; Lengauer, C.; Moeller, B.; Kaestner, C.: An Algebra for Features

and Feature Composition. Pearson Addison Wesley, University of Passau et

al, 2008.

[ALRS05] Apel, S.; Leich, T.; Rosenmueller, M.; Saake, G.: Feature C++: Feature-

Oriented and Aspect-Oriented Programming in C++. University of Magde-

burg, Germany, 2005.

[Ame85] The American Heritage Dictionary. Houghton Mifflin, Boston, 1985.

[Ape07] Apel, S.: The Role of Features and Aspects in Software Development. Uni-

versity of Magdeburg,Magdeburg, 2007.

[Bat03] Batory, D.: A Tutorial on Feature-oriented Programming and Product-

lines. In Proceedings of the 25th International Conference on Software

Engineering, Washington USA, 2003.

[Bat05] Batory, D.: Software Product Line Conference 2005-Feature Mod-

els,Grammars,and Propositional Formulas. University Of Texas at

Austin,Austin, 2005.

[BEHM02] Batory, D.; E.Lopez-Herrejon, R.; Martin, J.-P.: Generating Product-Lines

of Product-Families. Automated Software Engineering, University Of Texas

at Austin,Austin, 2002.

[BJK05] Batory, D.; Jung, E.; Kapoor, C.: Automatic code generation for actuator

interfacing from a declarative specification. 2005.

[BSR04] Batory, D.; Sarvela, J.; Rauschmayer, A.: Scaling Step-Wise Refinement.

IEEE Transactions on Software Engineering, 2004.

[CDG+90] Carey, M. J.; Dewitt, D. J.; Graefe, G.; Haight, D. M.; Richardson, J. E.;

Schuh, D. T.; Shekita, E. J.; V, S. L.: The EXODUS Extensible DBMS

Project: An Overview. Reading in Object-Oriented Database Systems, 1990.

56 BIBLIOGRAPHY

[CE00] Czarnecki, K.; Eisenecker, U. W.: Generative Programming - Meth-

ods,Tools,and Applications. Pearson Addison Wesley, 2000.

[CHE04] Czarnecki, K.; Helsen, S.; Eisenecker, U.: Staged Configuration Using Fea-

ture Models. SPLC 2004: software product lines, University of Water-

loo,Canada,University of Applied Sciences Kaiserslautern,Germany, 2004.

[CRC03] Cao, F.; R.Bryant, B.; C.Burt, C.: Automating Feature-Oriented Domain

Analysis. University of Alabama,Birmingham, 2003.

[Dij76] Dijkstra, E.: A Discipline of Programming. Prentice Halle, 1976.

[Dij97] Dijkstra, E. W.: A Discipline of Programming. Prentice Hall, 1997.

[EBC00] Eisenecker, U.; Blinn, F.; Czarnecki, K.: A Solution to the Constructor

Probelm of Mixin-Based Programming in C++. In GCSE’2000 Workshop

on C++ Template Programming, 2000.

[FF98] Findler, R.; Flatt, M.: Modular Object-Oriented Programming with Units

and Mixins. In Proc. of the 3rd Int. Conf. on Fuctional Programming, 1998.

[GHJV94] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J. M.: Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Addison-Wesley Professional,

1994.

[GMUW00] Garcia-Molina, H.; Ullman, J. D.; Widom, J.: Datebase System Implemen-

tation. Prentice Hall, America, 2000.

[Gri00] Griss, M.: Implementing Product Line Features by Composing Component

Aspects. Proc.First Int’l Software Product Line Conf., Aug 2000.

[Int99] International Organization for Standardization(ISO). In Identification

Cards- Integrated Circuit(s) Cards with Contacts, ISO/IEC 7816-7, 1999.

[JDJ04] Jones, J.; Dunnavant, C.; Jay, T.: A Pattern Language for Language Im-

plementation. Tuscaloosa,USA, 2004.

[JMS+08] Jain, N.; Mishra, S.; Srinivasan, A.; Gehrke, J.; Widom, J.; Balakrish-

nan, H.; Cetintemel, U.; Cherniack, M.; Tibbetts, R.; Zdonik, S.: Towards

a Streaming SQL Standard. Proceedings of the 34th International Confer-

ence on Very Large Data Bases, Auckland, 2008.

[KBL05] Kifter, M.; Bernstein, A.; Lewis, P. M.: Database Systems - A Plication

Case. Pearson Addison Wesley, State University of New York,Stony Brook,

2. Auflage, 2005.

BIBLIOGRAPHY 57

[KCH+90] Kang, K. C.; Cohen, S. G.; Hess, J. A.; E.Novak, W.; Peterson, A.: Feature-

Oriented Domain Anlaysis(FODA)Feasibility Study. Software Engineering

Institute, University of Camegie Mellon, 1990.

[LBL06] Liu, J.; Batory, D.; Lengauer, C.: Feature Oriented Refactoring of Legacy

Applications. Proceedings of the international conference on Software engi-

neering (ICSE), 2006.

[MA06] Meyer, B.; Arnout, K.: Componentization: the Visitor example. 2006.

[MMHH05] Madden, S.; M.J.Franklin; Hellerstein, J.; Hong, W.: TinyDB: An Acqui-

sitional Query Processing System for Sensor Networks. ACM Transactions

on Database Systems, 2005.

[Nor07] Nori, A. K.: Mobile and Embedded Databases. Microsoft Corporation, 2007.

[NS02] Nakkrasae, S.; Sophatsathit, P.: A formal approach for specification and

classification of software components. Proceedings of the 14th international

conference on Software engineering and knowledge engineering, USA, 2002.

[OJ90] Opdyke, W.; Johnson, R.: Refactoring: An Aid in Designing Application

Frameworks. ACM-SIGPLAN, September 1990.

[Par76] Parnas, D. L.: On the design and development of program families. IEEE

Transactions on Software Engineering, 1976.

[PBvdL05] Pohl, K.; Boeckle, G.; Linden, F. v. d.: Software Product Line Engineer-

ing - Foundations,Principles,and Techniques. Springer, State University Of

Duisburg-Essen,Essen, 2005.

[PJ98] Palsberg, J.; Jay, C.: The Essence of the Visitor Pattern. USA, 1998.

[Pre97] Prehofer, C.: Feature-Oriented Programming: A Fresh Look at Objects.

University of Technisch Muenchen,Muenchen, 1997.

[Ram97] Ramakrishnan, R.: Database Management Systems. Tom Casson, 1997.

[RKS+09] Rosenmueller, M.; Kaestner, C.; Siegmund, N.; Sunkle, S.; Apel, S.; Le-

ich, T.; Saake, G.: SQL ‘a la Carte - Toward Tailor-made Data Man-

agement. In Proceedings of the GI-Fachtagung Dantenbanksysteme fuer

Business, March 2009.

[RSS+08] Rosenmueller, M.; Siegmund, N.; Schirmeier, H.; Sincero, J.; Apel, S.; Le-

ich, T.; Spinczyk, O.; Saake, G.: FAME-DBMS: Tailor-made Data Man-

agement Solutions for Embedded Systems. ACM International Conference

Proceeding Series, 2008.

58 BIBLIOGRAPHY

[SB93] Singhal, V.; Batory, D.: P++: A Language for Large-Scale Reusable Soft-

ware Components. In Workshop on Software Reuse, 1993.

[SB00] Smaragdakis, Y.; Batory, D.: Mixin-Based Programming in C++. In Proc.

of GCSE, 2000.

[SB02] Smaragdakis, Y.; Batory, D.: Mixin Layers: An Object-Oriented Implemen-

tation Technique for Refinements and Collaboration-Based Designs. ACM

Transactions on Software Engineering Methodology, 2002.

[SKS96] Silberschatz, A.; Korth, H. F.; Sudarshan, S.: Database System Concepts.

McGraw-Hill, 3. Auflage, 1996.

[SKS+08] Sunkle, S.; Kuhlemann, M.; Siegmund, N.; Rosenmueller, M.; Saake, G.:

Generating Highly Customizable SQL Parsers. Workshop on Software En-

gineering for Tailor-made Data Management(SETMDM), 2008.

[SR98] Sen, R.; Ramamritham, K.: Efficient Data Management on Lightweight

Computing Devices. IEEE Computer Society Press, Indian Institute of Tech-

nology India, 1998.

[Sun07] Sunkle, S.: Feature-Oriented Decomposition of SQL:2003. University of

Magdeburg,Magdeburg, 2007.

[TBD07] Trujillo, S.; Batory, D.; Diaz, O.: Feature Oriented Model Driven Devel-

opment:A Case Study for Portlets. Accepted for Publication,International

Conference on Software Engineering(ICSE)2007, University of the Basque

Country and University of Texas at Austin, 2007.

[YG02] Yao, Y.; Gehrke, J.: The Cougar Approach to In-Network Query Processing

in Sensor Networks. Sigmod Record, September 2002.

[YM98] Yu, C. T.; Meng, W.: Principles of Database Query Precessing for Advanced

Applications. Morgan Kaufmann Publishers, 1998.

[ZJM+08] Zdonik, S.; Jain, N.; Mishra, S.; Srinivasan, A.; Gehrke, J.; Widom, J.;

Blalkrishnan, H.; Cherniack, M.; Cetintemel, U.; Tibbetts, R.: Towards a

Streaming SQL Standard. Proceedings of the VLDB Endowment, 2008.

59

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit er-

laubten Hilfsmitteln angefertigt habe.

Magdeburg, den 2nd June 2009

Shuai Cao

60

61

Appendix A

Feature ID -Query Specification

Query
Specification

Set
Quantifier

Table
Expression Select List

All Distinct Select Sublist Asterisk

Derived
Column

AS
Clause

Figure 5.1: Query Specification Feature Diagram [Sun07]

Semantic Description - Figure 5.1shows the feature diagram for Query Specification.

The Query Specification feature specifies a SELECT statement. The [1..*] cardinality

notation for Select Sublist feature indicates that one or more columns can be selected.

The Set Quantifier feature tests for duplicate rows and returns all rows or distinct rows

depending on the features ALL and DISTINCT. The Asterisk feature indicates that all

columns of specified table are selected. The AS Clause is used to name or rename result

columns [Sun07].

Feature ID -Table Expression

62

Semantic Description - Figure 5.2shows the feature diagram for Table Expres-

sion. The Table Expression feature specifies a table or a grouped table. The From

Clausefeature is mandatory. The Where Clause feature can be used to apply conditions

to columns in a table expression. With the Group By feature can be used to group

columns values while using aggregate and other grouping functions. Having Clause fea-

ture is supposed to be used along with Group By to apply conditions to grouping of

columns. If it is used without Group By Clause feature then it applied to all rows that

satisfy given condition. Since Having Clause can be used independently of Group By

Clause feature, no ‘requires’ arc has been shown between the two [Sun07].

Table
Expression

From
Clause

Where
Clause

Group By
Clause

Having
Clause

Window
Clause

Figure 5.2: Table Expression Feature Diagram [Sun07]

Appendix B

*1 means that if the selection is σc, then we can only push this selection to a relation

that has all the attributes mentioned in C, if there is one. We shall show the laws below

assuming that the relation R has all the attributes mentioned in C [GMUW00].

*2 means that M is the list of all attributes of R that are either join attributes (in

the schema of both R and S) or are input attributes of L, and N is the list of attributes

of S that are either join attributes or input attributes of L [GMUW00].

*3 means that M and N are the lists of all attributes of R and S, respectively, that

are input attributes of L [GMUW00].

*4 means that C is the condition that equates each pair of attributes from R and S

with the same name, and L is a list that includes one attribute from each equated pair

and all the other attributes of R and S [GMUW00].

63

Different Algebraic Laws for Improving
Query Plans

Expression of Laws

Commutative and Associative Laws R×S = S×R; (R×S)×T = R×(S×T)
Commutative and Associative Laws R∞S = S∞R; (R∞S)∞T =

R∞(S∞T)
Commutative and Associative Laws R

⋃
S = S

⋃
R; (R

⋃
S)

⋃
T = R

⋃
(S

⋃
T)

Commutative and Associative Laws R
⋂

S = S
⋂

R; (R
⋂

S)
⋂

T = R
⋂

(S
⋂

T)
Laws Involving Selection σc1 AND c2(R) = σc1(σc2(R))
Laws Involving Selection σc1 OR c2(R) = (σc1(R))

⋃
S (σc2(R))

Laws Involving Selection σc1(σc2(R)) = σc2(σc1(R))
Selection Laws for Union σc(R

⋃
S) = σc(R)

⋃
σc(S)

Selection Laws for Difference σc(R-S) = σc(R)-σc(S)
Selection Laws for Product σc(R×S) = σc(R)×S *1
Selection Laws for Join σc(R∞S) = σc(R)∞S *1
Selection Laws for Intersection σc(R

⋂
S) = σc(R)

⋂
S *1

Laws Involving Projection πl(R∞S) = πl(πm(R)∞πn(S)) *2
Laws Involving Projection πl(R×S) = πl(πm(R)×πn(S)) *3
Laws About Joins R∞S = πl(σc(R×S)) *4
Laws involving Duplicate Elimination δ(R×S) = δ(R)×δ(S)
Laws involving Duplicate Elimination δ(R∞S) = δ(R)∞δ(S)
Laws involving Duplicate Elimination δ(σc(R)) = σc(δ(R))

Table 5.1: Different Algebraic Laws for Improving Query Plans [GMUW00]

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Goals
	Structure of the Thesis

	Background
	Software Product Line Concepts
	Domain Engineering
	Application Engineering

	Feature-Oriented Domain Analysis
	Feature Model

	Feature-Oriented Programming
	Mixin Layers
	Feature C++

	Query Processing
	Feature-Oriented Decompositon of SQL
	SQL Dialects
	A customizable SQL parser

	Summary

	Feature-Oriented Design of Customizable Query Processors
	Feature Diagrams for FAME-DBMS, SQL and SQL Engine
	A Model for a Custom Query Engine
	SQL Engine
	SQL Parser
	Query Rewrite
	Query Optimizer
	Query Execution

	Constraints Between Features
	Summary

	Implementation Detail
	Characteristics of FAME-DBMS
	Feature: DataAndAccessManager
	Different Implementation Variants for FAME-DBMS

	Query Engine Implementation
	Parsing the SQL Query
	Query Translation
	Implementation Query Execution

	Feature Interactions
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Appendix

