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Abstract

Current database systems are confronted with increasing demands considering processed
data and expected response time. Hence, given hardware has to be fully-exploited to
fulfill the requirements. To this end, modern hardware represents an opportunity to
accelerate database operations. However, extensive evaluations of database operation
performance under changing hardware have not been accomplished to the best of our
knowledge. In our work, we derive hypotheses on algorithm performance regarding the
used hardware from literature and present possible impact factors. With this, we im-
plement an evaluation framework to test our hypotheses and evaluate the performance
of join algorithms for different storage devices.
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1. Introduction

Database technology and demands on it has evolved immensely in the last decades.
According to Larson [Lar13], commercial database management systems were originally
designed for online transactional processing (OLTP) workloads on disk resident data
that were executed on slow processors with scarce main memory. In contrast, today’s
workload include OLTP as well as OLAP (online analytical processing) and processing
capabilities have improved to strong multi-core CPUs and plenty available RAM, so
that most of the data can be held in the in-memory buffer pool. As a consequence,
traditional database management systems have to be adapted to the new workloads
and hardware capabilities.

The force to increase the processing capability of databases is even higher consider-
ing diverse scenarios reaching from data management for embedded systems [Lei12]
to large-scale applications. As a consequence, processing capabilities have to be fully-
exploited and new hardware trends have to be examined to provide a high performance
in the future. Considering new hardware possibilities, on the one hand, new hard-
ware includes new co-processing devices, such as graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs). Especially GPUs as co-processing devices for
database systems have been pushed into sight in the last decade [GLW+04, FHL+07,
HYF+08, KLMV12], making co-processing a popular technique for performance gains
and should be continued for FPGAs. On the other hand, storage configurations that
rely on the use of SSDs and huge amounts of RAM are at hand accelerating access to
processed data.

Arising from the usage of new hardware, we argue that database management sys-
tems have to be tailored to the new hardware to exploit its processing power. This
statement is underlined by Stonebraker et al. claiming that ”it’s time for a complete
rewrite” [SMA+07]. Consequently, an important task is to examine processing capa-
bilities of the new hardware and map these results to the algorithms of our database
operations. In literature, there are numerous different algorithms proposed for the most
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common database operations. However, their evaluations are done on a single machine
using a predefined hardware configuration and, thus, present no differences of the algo-
rithms with respect to different hardware devices. Consequently, we want to initiate a
first step towards a comparison of different database operation implementations under
changing hardware with this work.

Goal of this Thesis

The goal of this thesis is to review and evaluate how the performance of database
operations changes under varying hardware configurations. To this end, we provide
the following contributions to reach a comprehensive evaluation of database operation
performance.

1. Based on our literature review of publications of the main conferences consid-
ering database operations on different storage and processing devices, we derive
assumptions to the performance of database operations under different hardware
configurations.

2. Furthermore, we extract impact factors from literature that influence the per-
formance of database operations and present identified impact factors in a well-
structured way using feature models. This also helps us to describe visible rela-
tions between impact factors of our model.

3. Since the amount of impact factors is too huge to evaluate, because of continues
parameter values, we contribute a reasonable limitation of the impact factors.

4. Considering found impact factors, we review different implementation techniques
to provide variability in a framework helping us to evaluate the performance of
database operations under changing impact factors.

5. We contribute an analysis of the qualitative and quantitative differences between
presented implementation techniques.

6. Finally, we evaluate the performance of join algorithms under different storage
configurations and present our results.

Structure of the Thesis

This thesis is structured as follows. We start with an extensive background chapter that
introduces necessary topics to understand the following discussion about database op-
erations and performance impacts. In Chapter 3, we present hardware that is currently
used in the processing of database queries and also introduce current research which
focuses on the use of new hardware for executing database operations. This chapter
also reviews comparisons of different algorithms for new hardware and performance
evaluations in literature that are strongly related to our results. From this literature
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review, we extract important impact factors on the performance of database operations
including the impact of new hardware and summarize these factors in Chapter 4.

Considering changing hardware, we focus on different storage devices and their influence
on the performance of database operations. To this end, we explain our evaluation
method and environment in Chapter 6 and present important results of our evaluation
in the following section. We end this thesis with a conclusion and present steps that
have to be done in future work to continue the work of this thesis.



4 1. Introduction



2. Background

In the following, we present basic background required for an unbiased analysis of join
algorithms in a database system. A database system is a complex system and, thus, its
core components have to be known in particular to state their impact on performance.
Hence, we will present the classical system architecture of database systems in this
chapter. Since join behavior in these systems is well known and documented, it will
give us a good base for formulating performance assumptions on different systems. As
an important obstacle in this architecture, we explain the access gap in the second
section and finally present the four categories of join algorithms in Section 2.3.

2.1 Classical Database Architecture

The classical architectural model of a database has been studied in the eighties [BFJ+86]
and three important models arose, which describe the components of a database system
in a more or less fine granularity. These three models are: the three-schema logical
database architecture [BFJ+86], the ANSI/SPARC Reference Model [BFJ+86, SSH11]
and the five-level schema architecture [Här87].

The three-schema logical database architecture is a coarse classification of the system
components into three schemas, namely the external, conceptual and internal schema.
The ANSI/SPARC Reference Model takes up these three schemas and refines each
of them with specific components as well as functionality that have to be provided.
However, a good implementation-oriented view on the database is not given in these
models.

For our work, we concentrate on the five-level schema architecture which is also an exten-
sion of the three-schema logical database architecture. Since the five-level schema archi-
tecture represents an implementation-oriented view on the database components [Här87],
it is a useful guideline for our implementation and we present the five-level schema ar-
chitecture in the following section in detail.
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2.1.1 Five-Level Schema Architecture

The five-level schema architecture was introduced by Härder [Här87] in 1987 and is a
hierarchical composition of the following five components: data system, access system,
storage system, buffer manager, and operating system. Between components, there
are defined interfaces, namely set-oriented interface, record-oriented interface, internal
record interface, system buffer interface, file interface, and device interface. Relations
between components and interfaces are visualized in Figure 2.1.

query evaluation

presentation of result

data system

access system

storage system

buffer manager

operating system

external storage

set-oriented
interface

record-oriented
interface

system buffer 
interface

file interface

device interface

internal  record
interface

Figure 2.1: Five-level schema architecture – adapted from [SSH11].

The five-level schema architecture is a hierarchical model, consisting of five components,
four interfaces between them, and two interface to external devices. The benefit of
the five-level architecture is the usage of abstraction. Each component has its own
degree of abstraction to the preceding and following component. For the purpose of
data exchange between two connected components, there has to be a common interface
between them [Här87].

The query processing starts at the top level where the query is described in a declarative
query language, such as SQL. SQL is similar to the human language and allows a
high level of abstraction [Här87]. The actual data required for answering a query is
present on external storage devices, so the query passes every component downwards
the hierarchy and is transformed step by step until the result data is retrieved from
disk. After that, the data is passed upwards the hierarchy and transformed into the
table-like representation. For detailed information on the query representation in the
components and provided functionality, we review each component in the following.
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2.1.2 Data System

The data system component is the most abstract component in the architecture and
thus, the data representation is on the highest abstraction level. Data is accessed by a
declarative query language, such as SQL, which is passed over the set-oriented interface
to the data system.

The data system translates received queries and optimizes the execution order of op-
erations. Therefore, knowledge about index structures and tables has to be present.
Furthermore, it manages whether a user is permitted to read, update, or delete data
of the specified tables (access control) and whether there are any integrity constraints
violated by the query (integrity control) [SSH11].

SELECT N_Name, C_Name 
FROM Nation, Customer
WHERE C_MktSegment = 'Automobile'
AND N_Nationkey = C_Nationkey

!C_MktSegment = 'Automobile'

π#N_Name,C_Name

⋈N_Nationkey = C_Nationkey

π#N_Name,N_Nationkey π#C_Name,C_Nationkey

r(Nation) r(Customer)

tuple1
tuple2
tuple3
tuple4

Nation
schema ... ... ...

tuple3

tuple1
tuple2

Customer
schema ... ... ... ... ... ......

Figure 2.2: Query translation in the data system.

In Figure 2.2, we depict an example taken from the TPC-H benchmark schema1 where
the nation and customer table is joined and the output should only contain those
records where the customer is in the automobile market segment. This SQL-Statement
is translated into an optimized query plan, which we represent in relational algebra. The
notation r(x) denotes that the relation x is taken and forwarded to the next operand.
π is a projection, which puts out the input relation reduced to given attributes. The
selection operand, which is represented as σ, puts out a relation with reduced rows
which all have to fulfill the given selection condition. The binary operation ./ denotes

1http://www.tpc.org/tpch/
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the join operation, which takes two relations and combines their rows with the same
value in the specified attributes. Further operations defined in the relational algebra
are explained in [SSH13]. After optimization, the query plan is executed on the tables
in the access system. For the communication, a record-oriented view on the tables is
forwarded, which means we can navigate through the records of each table.

2.1.3 Access System

The access system has to provide the transformation of data from the table-wise view
of the record-oriented interface to a tuple-oriented view of the internal record interface.
Such an internal record is a uniform representation of tuples without considering its
corresponding table. Hence, a uniform management of tuples independent of the source
relation is provided. We depict the transformation in Figure 2.3, where the input tables
are transformed to a list of tuples that can be processed.

tuple1

tuple2

tuple3

tuple4

tuple1

tuple2

tuple3

Nation

Customer

tuple1
tuple2
tuple3
tuple4

Nation
schema ... ... ...

tuple3

tuple1
tuple2

Customer
schema ... ... ... ... ... ......

Figure 2.3: From table-wise to tuple-wise execution.

The transformation to an internal representation of tuples is necessary, because tuples
are stored on pages written to disk in a binary format. Thus, there has to be a system
which bridges the gap between binary representation of tuples and typed representation
of tuples, namely, the access system.

Further typical tasks of the access system are to update index structures and the data
dictionary. The data dictionary holds necessary information of all tables and is needed
for typing the internal record to confirm to the record-oriented interface. Additionally,
algorithms for sorting the output relations are implemented in the access system [Här87].

2.1.4 Storage System

The tuples that are processed in the access system are organized on pages. A page is
an abstract container with a concrete size of bytes. Since tuples may be updated, a
sequential storage of its tuples on pages is not possible in every scenario. Consequently,



2.1. Classical Database Architecture 9

there has to be a concept for identifying the storage location of tuples on pages. For
the mapping, the storage system uses the tuple identifier (TID) concept which is also
explained by Saake et al. [SSH11]. To identify the storage location of a tuple, the TID
consists of two values that are the page number and an offset in the header of the page.
The value behind the offset in the header points to the storage location of the tuple in
the page.

An advantage of the TID concept is that a TID can also be used in index structures
to reference tuples. Hence, it is possible to retrieve a specified tuple from a page by
its TID found in the index structure. Moreover, if a new tuple is inserted, the storage
system has to update the index structure as well.

header

tuple2
tuple3tuple1

pages

header

tuple1

tuple2
tuple3tuple4

tuple1

tuple2

tuple3

tuple4

tuple1

tuple2

tuple3

Nation

Customer

Figure 2.4: Tuples used in the access system are stored on pages.

When retrieving a tuple, the ID of the page has to be calculated according to the given
TID. The storage location of the tuple on the page is typically stored in the header
of the page. Pages that have to be processed by the storage system, e.g., those used
in Figure 2.4, have to be loaded by the buffer system.

2.1.5 Buffer System

The buffer system provides pages requested by the storage system. Since in many
scenarios the RAM is much smaller than the amount of data, all pages of a relation do
not fit en bloc into main memory. Consequently, an efficient page replacement strategy
is required and has to be implemented in the buffer system.

Easy ways of implementing a page replacement strategy are to replace the oldest page
(FIFO) or the least recently used one (LRU ). However, these strategies are not efficient
in the context of database operations [SSH11]. Hence, numerous page replacement
strategies were developed to overcome this issue. For a collection of important strategies,
we refer to [SSH11].

First, when the storage system requests a page, it has to be searched for the page in
the buffer pool. In the best case, the page is still cached and can be returned. However,
if the page is not found, it has to be loaded from disk and is cached in the buffer pool,
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Figure 2.5: Load needed page from files.

if there is still enough space. When a requested page does not fit into the buffer pool
anymore, a cached page has to be chosen to be replaced. After that, the page can be
loaded into the buffer pool and is then accessible in the storage system. When loading
the page, page data has to be extracted from files storing information in blocks, which
we depict in Figure 2.5. Files represent the abstraction in the file interface which is the
input of the operating system.

2.1.6 Operating System

The operating system is the lowest component in the five-level schema architecture.
Its task is to provide mechanisms to read data from disk and write data to disk. For
this, navigation on the disk has to be implemented to update files on disk, as depicted
in Figure 2.6.

hard disk drivedatabase files

block

Figure 2.6: Extracting files from disk.

The operations implemented in the operating system are used to bring data from disk to
main memory. Nevertheless, a high amount of disk accesses should be avoided, because
the so-called access gap decreases performance. Hence, we review the access gap in the
following section.

2.2 Access Gap

On the way through the processing of a query, data has to pass several different stor-
age devices. The classification of the storage devices depends on access time and
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costs [PSG08]. Since large amounts of fast storage devices are often too expensive,
we have to cope with issues arising from limited space. Different levels of storage de-
vices are classified in the memory hierarchy, which we present in the following section.

2.2.1 Memory Hierarchy

The memory hierarchy consists of three different groups, as we depict in Figure 2.7.
The groups range from primary over secondary to tertiary memory. In general, memory
located in a higher levels of the hierarchy offers higher access speeds, but also cost per
MB increase the higher the device is classified in this hierarchy. As a consequence,
in most of the systems there is a limited memory capacity of devices in the primary
memory while devices in the tertiary memory offer plenty of space.

cache

main memory

optical drives

magnetic tapes

hard disk drives, solid-state disks

primary memory

secondary memory

tertiary memory

Figure 2.7: Memory hierarchy – adapted from [SSH11].

Since data processing typically follows specific access patterns, the principle of the lo-
cality of reference is considerable for achieving performance improvements. On the one
hand, locality of reference means that data is used more than once in our processing
(temporal locality). On the other hand, if a memory location is referenced in an opera-
tion, it is likely that nearby locations will be referenced as well (spatial locality) [SSH11].
To exploit the locality of reference, frequently accessed data is cached on memory de-
vices situated in higher levels of the hierarchy while less often used data is stored on
lower levels. Having only the most likely used data cached is especially important for
the primary memory.

Primary Memory

The primary memory can be classified into cache and main memory [SSH11]. While
cache memory consists of fast static random-access memory (SRAM ), for main memory
dynamic random-access memory is used which is slower, but less expensive. In general,
both memory devices are volatile, which means that they require electricity to keep
data stored. In case of a loss of electricity, stored data is lost. Consequently, persistent
storage cannot rely on RAM memory devices.
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In modern computers, there are several levels of cache memory, typically ranging from
L1 to L3 cache. The L1 cache is the smallest, but is located on the CPU chip to grant
fast access [BMK99]. The sizes of modern caches range from several kilobytes in L1
cache over several hundred kilobytes in L2 cache up to several megabytes in L3 cache.
The highest amount of storage space in primary memory is the main memory which is
nowadays several gigabytes big. Data that is not present in RAM has to be loaded from
disks of the secondary memory. For detailed properties of current commodity hardware,
we present some interesting numbers in Table 2.1.

Storage Module Size Latency Transfer Rate

L1-Cache 32KB per core 1.2ns 49GB/s
L2-Cache 256KB 3.2ns 32GB/s
L3-Cache 6-8KB 5.2ns 18GB/s
DDR3 RAM 16-64GB 11.25ns 12.8 - 25.6GB/s
HDD 1TB 8.5ms 300MB/s

Table 2.1: Size, latency, transfer rates of current commodity hardware. Numbers taken
from different sources2 with an Intel Core i7-965 Extreme Edition and RAM of 1600MHz
frequency and CL9-9-9.

Secondary Memory

The secondary memory includes only non-volatile storage devices, which means data
is stored permanently even without electricity. Hence, secondary memory is an impor-
tant storage location for databases to ensure persistency. Typical storage devices of
secondary memory represent hard disk drives (HDD), which have a capacity of several
hundreds of gigabytes up to a few terabytes.

Nevertheless, data in secondary memory cannot be directly processed and has to be
loaded into the primary memory [SSH11]. Furthermore, the granularity of access is
much higher on an HDD than on devices of the primary memory. For example, on an
HDD, addressable blocks are often about 512 bytes big while in RAM every byte is
addressable [SSH11].

An HDD consists of multiple spinning platters where data is stored in concentric tracks.
To read or write, the heads have to be positioned to the local storage location. The
disk access time depends on the seek time, rotational latency and transfer time [Den11].
Small random accesses cause high seek time and dominate the access time and, hence,
a sequential access is favored for HDDs. In addition, access times are much higher on
HDDs than on RAM, typically with a factor of 105 [SSH11]. This phenomenon is called
the access gap, which we review in Section 2.2.

2http://en.wikipedia.org/wiki/Hard disk drive,
http://en.wikipedia.org/wiki/DDR3 SDRAM,
http://www.xbitlabs.com/articles/cpu/display/intel-core-i7 7.html,
http://www.alternate.de/Seagate/Seagate+ST1000DM003 1 TB, Festplatte/html/
product/963366/?
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Tertiary Memory

Similar to secondary memory, the tertiary memory is a non-volatile storage device.
However, in contrast to secondary memory, a tertiary memory device can be exchanged
while the system is running. Furthermore, they offer a high amount of storage capacity
at low cost, but with high access times. Typical tertiary storage devices are optical
drives or magnetic tapes.

In databases, the tertiary memory is used for storing backups, because storing data on
tertiary memory for operational access would mean to accept high delay which is not
in the sense of databases. Nevertheless, they are a perfect medium for storing backup
data of the database, because of their high capacity and exchangeability.

2.2.2 Access Gap Between HDD and RAM

Access time of the devices of different memory levels differ significantly. Especially, the
gap between hard disk drives and random access memory are very high, which is also
evident from Table 2.1. Saake et al. state that hard disk drives increase their storage
space by about 70% a year, but access time only improves by 7% [SSH11]. In contrast,
processing power of CPUs increased by 70% a year and access time of RAM by 50% a
year [BMK99]. The high difference in access time between RAM and hard disk is called
the access gap [SGG+99, BMK99, SSH11].

The significant deficit between performance and access time causes many operations to
slow down their processing, because data is not available when needed. Thus, access to
the secondary memory becomes the bottle neck of the system. To overcome this gap,
there have to be either good algorithms or new hardware. We review a possible solution
represented by solid-state disks (SSD) in Section 3.3.

Especially the access gap causes difficulties in designing suitable algorithms for database
operations. For instance, join algorithms working on tables with sizes much bigger than
available RAM have to be implemented considering the access gap. For this, we will
present basic join algorithms in the following.

2.3 Relational Join Strategies

In this section, we present different join strategies introduced in literature. A rela-
tional join is a binary operation on two relations leading to a combination of them.
In the following section, we start by introducing the Cartesian product as the basis of
combination of relations and advancing to more restrictive methods.

2.3.1 Theory of Relational Joins

Relational joins are extensively reviewed in literature [Got75, Sha86, ME92]. The ne-
cessity for having joins arises, for instance, from the use of normal forms. Due to a
favorable non-redundant storage, relations are split up to satisfy conditions for nor-
mal forms [SSH13]. However, if a query has to retrieve the whole relation, split relation
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have to be reunited. In general, considering a multi-attribute key, even a multi-attribute
foreign key would be created when splitting. Joining these tables would lead to a com-
parison in more than one attribute. Nevertheless, for simplicity, we only consider keys
consisting of one attribute.

Cartesian Product

The theory of combining two relations is based on the Cartesian product. The Cartesian
product results in a relation where each tuple of the first relation is combined with each
tuple of the second relation [ME92]. Considering n tuples for the first relation and m
tuples for the second relation, the cardinality of the result is (n ∗m). Furthermore, the
attributes of the resulting relation are the concatenation of attributes from both input
relations.

The Cartesian product produces a combination of two relations, but this operation is not
meaningful for reconstructing a relation which was split in the sense of normalization,
since it does not combine only those tuples belonging to each other.

Theta Join

A more meaningful way of combining two relations is the theta join. The theta join can
be represented by using a Cartesian product and a selection [ME92] while the selection
checks if a condition between two join attribute values is satisfied. There are several
join conditions possible in a theta join, for example: =, 6=, <, >, ≤, ≥.

The theta join as an extension to the Cartesian product has at most (n ∗ m) tuples
in the result relation, but in most cases the cardinality of the result is much smaller.
Furthermore, the set of attributes is the concatenation of attributes from both input
tables.

An important join condition of the theta join is the ”=”, which is also known as equi
join. Equi joins are especially considerable since they reunite two relations that were
split because of normalization. The exact reconstruction of split relations using an equi
join is called natural join.

Natural Join

The natural join as the inverse operation to the splitting of a relation because of nor-
malization has to ensure that the original table with all original tuples and attributes
is reconstructed. Since the splitting leads to an additional equally-named attribute in
one of the resulting relations (representing the foreign-key relationship), this attribute
has to be omitted in the result relation. Thus, in addition to the equi join execution,
a projection on the specified attributes has to be done as well [ME92]. The projection
is useful to reduce the storage cost of the join result and, furthermore, it does not lose
any necessary information, because the normalization introduced this attribute.

There are several other joins, such as semi join, outer join, self join, which will not be
covered here, as they are special cases of the natural join or theta join. For our further
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course of action, we limit our consideration to the execution of natural joins, because
of its memory saving.

In the next section, we review different ways of executing a natural join on two relations
and present some exemplary algorithms clarifying these approaches. For this, we con-
sider only ad-hoc-join algorithms to show basic concepts of join strategies [HCLS93]. Of
course, joins differ when index structures can be used or even join indexes were created,
but this is not in the scope of this work.

2.3.2 Nested-Loops Join

The easiest way of implementing a join is the nested-loops join [ME92]. As the name
suggests, the nested-loops join consists of two or more loops that are nested into each
other. In particular, considering two relations the first tuple of the outer relation is
read and compared to every tuple in the inner relation. After that, the next tuple of
the outer relation is read and again compared to every tuple in the inner relation.

1 Input: Relation A, JoinAttribute jA, Relation B, JoinAttribute jB
2 Result: Relation C
3 foreach Tuple a in A do
4 foreach Tuple b in B do
5 if a.jA = b.jB then
6 // keys match → join tuples

7 c:= join(a,b);
8 C.insert(c);

9 end

10 end

11 end
12 return C;

Algorithm 2.1: Nested-loops-join algorithm – adapted from [ME92].

In Algorithm 2.1, we show an exemplary algorithm for a nested-loops join. Since each
tuple of relation A (with cardinality n) is compared to each tuple of relation B (with
cardinalitym), the nested-loops join has the computational complexityO(n∗m). Hence,
the nested-loops join is the brute-force strategy for a join and, thus, a good starting
point for comparisons.

Because of its high complexity, the nested-loops join is hardly applicable for large re-
lations. Nevertheless, it holds great potential regarding parallel execution which makes
it still considerable especially for new hardware [ME92].

2.3.3 Block-Nested-Loops Join

An improvement of the nested-loops join reducing I/O-costs is the block-nested-loops
join. Especially when considering the access gap (cf. Section 2.2), it is a promising way
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to design algorithms to have a better I/O-behavior. Considering the nested-loops join,
it is more efficient to take advantage of the underlying hard disk by aggregating tuples
that are processed into chunks of tuples, the so-called blocks. We provide exemplary
code in Algorithm 2.2 for the block-nested-loops-join.

1 Input: Relation A, JoinAttribute jA, Relation B, JoinAttribute jB
2 Result: Relation C
3 // Load as many pages as possible

4 foreach Block aBlock in A do
5 // Load page by page → block size = page size

6 foreach Block bBlock in B do
7 foreach Tuple a in aBlock do
8 foreach Tuple b in bBlock do
9 if a.jA = b.jB then

10 // Keys match → join tuples

11 c:= join(a,b);
12 C.insert(c);

13 end

14 end

15 end

16 end

17 end
18 return C;

Algorithm 2.2: Algorithm of block-nested-loops join – adapted from [SSH11].

The size of blocks depends on the amount of available main memory. The outer relation
A should take as much space as possible, while the inner relation B can be read page
by page for comparison [ME92]. With this algorithm, already fetched pages can be
utilized more efficiently. For additional improvements, the number of tuples in both
relations has to be considered. The relation of the outer loop should be the smaller one,
because most of the page misses occur in the outer loop and tuples of the inner loop
are sequentially read.

The computational complexity of the block-nested-loops join is still O(n ∗m), because
still each tuples of one relation is compared to each tuples of the other relation. One
way to avoid some of the unnecessary comparisons represents the hash join.

2.3.4 Hash Join

The hash join is executed in two phases [ME92, SSH11]. In the first phase (the build
phase), a hash table is build up on all tuples of one relation. For this, the join attribute
of each tuple is hashed with a given hash function to determine the bucket the tuple
is inserted into. Here, it is possible to store whole tuples, or just their TIDs, which
minimizes storage cost for the hash table.
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Depending on the hash function, it is possible that multiple different values are mapped
to the same hash value. This property is called collision and influences the performance
of the hash join, as we describe later on.

In the second phase (the probe phase), the second relation is sequentially scanned and
each tuple is hashed with the same hash function the hash table was created with.
Then, the resulting hash value is used to retrieve possibly matching tuples from the
hash bucket with the same hash value. After that, the real key values of each retrieved
candidate from the hash table have to be checked for a match to the current tuple of
the second relation, because of the possibility of collisions.

1 Input: Relation A, JoinAttribute jA, Relation B, JoinAttribute jB
2 Result: Relation C
3 Build phase:
4 foreach Tuple a in A do
5 HashTable.insert(H(a.jA),a);
6 end
7 Probe phase:
8 foreach Tuple b in B do
9 // Retrieve possible matches for a from the hash table

10 foreach Tuple a in HashTable.get(H(b.jB)) do
11 if a.jA = b.jB then
12 // Keys match → join tuples

13 c:= join(a,b);
14 C.insert(c);

15 end

16 end

17 end
18 return C;

Algorithm 2.3: Hash-join algorithm – adapted from [ME92].

In Algorithm 2.3, we formulated algorithms for both phases of the hash join. The
computational complexity of hash joins is O(n+m), because every relation is scanned
once. A significant impact on the performance has the used hash function. If the
hash function causes numerous collisions, many tuples have to be compared in the
probe phase which decreases performance. Furthermore, it is important to choose the
right relation for the build phase. Optimally, the smallest relation should be taken for
building the hash table [ME92], because it reduces storage costs.

2.3.5 Sort-Merge Join

Another possible strategy for joining two relations is the sort-merge join. Like the hash
join, the sort-merge join consists of two phases. In the first phase, both relations have
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1 Input: Relation A, JoinAttribute jA, Relation B, JoinAttribute jB
2 Result: Relation C
3 Sort phase:
4 sort(A,jA);
5 sort(B,jB);
6 Merge phase:
7 // Initialize first tuple of b.
8 b:= B.begin();
9 foreach Tuple a in A do

10 while a.jA > b.jB do
11 b:= B.next();
12 end
13 if a.jA = b.jB then
14 // Keys match → join tuples

15 c:= join(a,b);
16 C.insert(c);

17 end

18 end
19 return C;

Algorithm 2.4: Sort-merge-join algorithm – adapted from [ME92].

to be sorted, if they are not already in a sorted order. The second phase is the merge
phase, where the sorted relations are sequentially scanned to retrieve matching tuples.

In Algorithm 2.4, we present a simplified version of the sort-merge join. For the merge
phase of the simplified algorithm, we sequentially compare the values of the join at-
tribute. If the values are the same, we have to merge these tuples. Otherwise, we have
to read the next tuple of the relation with the smaller value. This implementation
assumes, that there are no duplicate values in the join attribute. Otherwise, we would
have to add a nested-loops join for joining tuples from A and B with duplicate key values.

The performance of the sort-merge join highly depends on the sorting step, which in
general has a complexity of O(n ∗ log(n)) [ME92]. If one of the relations, or both, are
already sorted or indexes have been constructed, which can retrieve tuples in a sorted
order on the join attribute, only the complexity of the merge step has to be considered,
which is O(n+m).

In this chapter, we gave an extensive overview of the traditional database design and
components that are involved in the processing of database queries. A severe impact
on the query performance has the access gap between primary and secondary memory
and has to be considered when executing operations. A famous operation in databases
is the natural join. Hence, we presented suitable strategies to perform a natural join,
namely nested-loops and block-nested-loops join as well as hash join and sort-merge
join.
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In the remainder of this thesis, we show the influence of new hardware on the database
architecture, processing steps inside a database and finally, its influence on the perfor-
mance of our presented join strategies.
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3. Recent Advances in Database
Technology

In the last 10 years, there have been steady improvements and novelties in hardware.
This new technology influences the way database systems work and may favor different
operations or algorithms. For a detailed consideration of the impact of new hardware
on databases, we present recent advances in technology in the following chapter.

We start with recent advances in in-memory databases and in Section 3.2, we show
the technology of multi-core CPUs and co-processing devices, such as GPUs and FP-
GAs. Finally, we present SSDs bridging the access gap and consequently representing
a possible alternative to in-memory databases.

3.1 In-Memory Databases

Enormous improvements in hardware over the last decades have raised the importance
of in-memory databases. However, these improvements are not as high in access time
as in memory capacity, since there is a trade-off between capacity and access time in
RAM [BMK99]. As a result, nowadays for many applications it is a reasonable approach
to have all data to be processed in RAM, which changes the memory hierarchy.

When using in-memory databases, the access gap between HDD and RAM can be disre-
garded, since all data is in RAM. However, fully exploiting the computational potential
of the CPU is not achievable, since CPU processing speed is much higher than access
latencies of cache and RAM. The gap between processing speed and access latency,
which is also called the memory wall, is going to grow [BMK99]. As a consequence
of the memory wall, Boncz et al. improve the processing model of databases to match
cache requirements in MonetDB [BMK99].
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3.1.1 Column-Oriented Storage for In-Memory Databases

A common approach to improve processing performance in an in-memory database
is to change the storage model from row-oriented storage to column-oriented stor-
age [BKM08]. There are several advantages when using column-oriented storage schemes
(column store).

• On the one hand, good compression rates exist for column stores. Data values
of one column are very similar to each other whereas data values in one row are
often varying strongly, especially in type and domain. Thus, it is more effective
to compress data of one column than data of one row [RDFH12]. Numerous
compression techniques are presented in [SSH11].

• On the other hand, query execution may benefit from a column-oriented storage.
Considering queries with projections, unnecessary columns can be filtered out in
early phases. Furthermore, I/O-costs are reduced and cache overflow is prevented,
because processed data items are much smaller [BKM08]. To illustrate these
benefits , we depict the column-oriented execution of the projection and selection
on the customer table of Figure 2.2 in Figure 3.1.
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Figure 3.1: Projection and selection in a column-oriented database system.

Storing tables column-oriented instead of row-oriented, however, is not only beneficial.
For example, when the whole table has to be retrieved, tuple reconstruction is a task
with high effort in column stores compared to row stores [BKM08, KSS12].
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As a consequence of the changed storage model for in-memory databases, the processing
model is adapted as well. The impact of this new processing model is sketched in the
following.

3.1.2 Operator-at-a-Time Processing Model

The traditional way of executing operations in a DBMS is tuple-at-a-time, which was
extensively covered in the volcano model proposed by Graefe [Gra94]. Here, one tuple
passes several operators in a pipelined-way until it is added to the result table [BKM08]
and after that, the next tuple passes the pipeline. As a consequence, one processor
may have to cache all operations of the pipeline which may lead to an overflow in the
instruction cache.

Nevertheless, in the traditional database architecture and memory hierarchy, overflow-
ing caches represent no performance issue, since the bottle neck is located between HDD
and RAM. As this bottle neck shifts to cache usage considering in-memory databases,
an improved processing model is proposed, which is called operator-at-a-time.

In the operator-at-a-time processing model, all data which has to be consumed by one
operator is processed completely and then passed to the next operator. For operator-
at-a-time, processed data has to be as small as possible to avoid cache overflow, con-
sequently column stores are the preferred data representation. The change of the pro-
cessing model influences algorithm design as well. Shatdal et al. propose five optimiza-
tions of algorithms to make them more cache conscious [SKN94]. Important points are
reducing the data which has to be accessed for example by projections, blocking or
partitioning of data so that it fits in cache, or combining two or more loops that run
over the same data separately.

Especially join algorithms benefit from a cache-conscious algorithm design. Shatdal
et al. acknowledge about 10% smaller execution time for cache-conscious join algo-
rithms [SKN94]. Thus, an impact of storage location on the join performance and
algorithm design has been shown.

3.2 Multi-Core CPUs and Co-Processing

Algorithm design is not only influenced by the storage architecture and model, but even
more severely by the processing device, because they dictate how data is processed and
which operations are efficiently supported.

There are several possible processing devices that have to be considered, namely multi-
core CPUs as primary processing devices, and GPUs and FPGAs as co-processing
devices. At first, we review processing capabilities of multi-core CPUs and continue
with GPUs and FPGAs.
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3.2.1 Parallelization in Multi-Core CPUs

The processing capabilities of modern CPUs are enormously increasing. To reach high
performance, CPUs offer a large degree of parallelism by having multiple cores on a
single chip. Furthermore, they support multiple hardware threads on each core and offer
single instruction multiple data (SIMD) computation. SIMD means that one instruction
can be applied to multiple vectors of currently 128-bit in parallel [KSC+09]. Thus, an
operator consumes several data items in one run instead of iterating over data one by
one.

To exploit the processing capabilities of multi-core CPUs, thread-level and data-level
parallelism have to be considered when engineering algorithms.

• For thread-level parallelism, database operations should be able to be executed
in parallel on multiple threads. Hence, data has to be able to be partitioned into
corresponding threads without incurring concurrency on data, since this would
lead to synchronization issues [KSC+09].

• Exploiting data-level parallelism includes to fully load SIMD processors. For
processing chunks of data in parallel by one operator, the data has to be contigu-
ously stored in cache or RAM. Otherwise, there is a high overhead, because of the
memory wall [KSC+09]. Consequently, storing data column-wise helps increasing
data-level parallelism and is a good choice for multi-core CPUs.

Considering the performance of join algorithms, Kim et al. evaluate hash join and sort-
merge join as the most promising join algorithms on multi-core CPUs [KSC+09]. Their
evaluation shows, that hash-join performance is superior to the one of sort-merge join.
However, sort-merge-join performance is increasing when the size of tuples decreases,
since more tuples can be kept in the cache for comparisons. With this in mind, they
assume that the sort-merge join could have a better performance than the hash join for
small sized tuples using 256-bit SIMD and could outperform the hash join with 512-bit
SIMD.

Since high-performing SIMD seems to be a key capability for good parallelism as well
as for a change in the performance hierarchy of join algorithms, we review a device
offering this capability, namely the GPU.

3.2.2 Co-Processing of Database Operations on GPU

In the last decade, query processing on graphics processing units (GPU) as co-processing
devices attracted much attention in literature [GLW+04, FHL+07, HYF+08, KLMV12].
The availability of general-purpose graphics processing units (GPGPU) and their in-
creasing processing power have emerged their usage also in database applications.

In fact, GPGPUs tend to offer in average the same quantities in throughput as modern
CPUs. This makes GPUs very attractive as a processing device [LKC+10]. To achieve
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good processing power, a GPU provides parallel lower-clocked execution capabilities on
several hundreds of single instruction multiple data (SIMD) processors. In contrast,
CPUs allow an out-of-order execution of branches in a program while using much less
cores. Thus, GPUs are not suited for branching, because some GPU cores will stay idle
while the others execute the branch [BBR+12].

In general, the processing on the GPU consists of three steps. At first, the host code
allocates enough memory in the GPU RAM so that input and output data fit and copies
the input data from RAM to occupied GPU RAM. In the second step, the host code
is started on the GPU, consumes input data and stores the result in allocated GPU
RAM. As third step, data is copied back to main memory [HYF+08]. As a result of this
procedure a copy overhead is introduced. Consequently, execution decisions have to be
well considered and first approaches for load balancing of database operations between
GPU and CPU are proposed [LKC+10, BBR+12].

Considering performance of different join strategies, He et al. make a comparison be-
tween indexed nested-loops join, non-indexed nested-loops join, hash join and sort-
merge join [HYF+08]. They show that performance improvements of factor two to
seven can be achieved in join processing on GPUs compared to an execution on multi-
core CPUs.

The best performing join in the evaluation of He et al. is the indexed nested-loops
join. Since we consider only ad-hoc join algorithms, this strategy is out of scope. The
second best performing join is the hash join, closely followed by the sort-merge join.
Far behind them is the non-indexed nested-loops join. However, a comparison of the
impact of parameters and workload is not given.

Considering the assumptions of Kim et al. about CPUs with wider SIMDs, a GPU
should favor the sort-merge join as well if their vector register width extends to 256-
or 512-bit. Currently, GPUs support 128-bit vectors, so further evaluations have to be
done in future.

3.2.3 FPGA as Co-Processing Device

A promising new processing device is the field-programmable gate array (FPGA). An
FPGA can be seen as a number of logic gates whose wires can be programmed by using
software making it usable as a hardware-accelerated implementation for computation
or control tasks [MT09].

The processing in an FPGA takes place in several lookup tables (LUT) having k inputs
(k usually between 4 and 6) and one output. Each LUT is programmable to implement
any Boolean function with k inputs. With the help of a programmable interconnect
fabric, the behavior defined in software is mapped to the functionality of LUTs as
hardware.

FPGAs offer a high parallelism and can be used for processing data streams. Especially
in databases, selections with many Boolean operators can be processed together in one
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clock cycle of the FPGA instead using several cycles on the CPU [MT09]. However,
FPGAs work on lower clock speeds and processing capability is also limited by the
number of available lookup tables.

Considering the execution of join algorithms on FPGAs, recent research of Vaidya and
Lee propose a join implementation for coarse-grained FPGAs looking similar to a block-
nested-loops join [VL11]. Several processing units (between 16 and 256) in the FPGA
are populated with data of one relation and step by step, tuples of the second relation
are rotated through them to find join partners and output them.

Their evaluation shows speed ups of 6 to 100% on FPGAs in contrast to CPUs depending
on the number of the processing units in the FPGA. Furthermore, when the amount
of data increases, FPGA speed ups increase as well, because the time for programming
the FPGA amortizes with increasing table sizes. As a consequence, joining small tables
might not be efficient on FPGAs [VL11].

Considering their used join algorithms, they did only consider one join strategy and
maybe there are better strategies possible for an FPGA. Hence, a performance evalua-
tion of different join algorithms has to be done and stays open for future work in the
area of co-processing.

3.3 SSDs to Bridge the Access Gap

In Section 2.2, we already introduced the access gap, which means that access time
between primary and secondary memory differs in an order of 105. The access gap
troubles the processing power, since data is faster processed than new data is retrieved
from the secondary memory. The reason for the access gap is the inferiority of hard
disk drives in access times compared to the RAM. Thus, for scenarios, where more
data is processed than available RAM, we need an alternative to an in-memory system.
To bridge the access gap, solid-state disks (SSD) may be an opportunity to accelerate
accesses.

3.3.1 Properties of SSDs

In contrast to HDDs, an SSD contains no moving parts. SSDs consist of NAND-flash
memory chips and controllers that provide a block-wise access to storage cells of the
chip. The memory is divided into blocks which are subdivided into a number of flash
pages. Each storage cell of a page is initially set to 1. To store a value, the SSD switches
necessary bits to the value 0. If the value of a written flash page has to be changed, all
pages of a whole block have to be erased and their content set to 1. After that, a page
of the erased block can be rewritten by setting necessary memory cells to 0 [DP09].

Time critical operations on an SSD are not reading and writing of pages, but erasing
of blocks. According to [APW+08] depending on the used device, reading a page takes
approximately 125µs in sum and writing a pre-erased page requires 300µs for the whole
execution. In contrast to that, erasing a block of pages to allow further rewriting is
substantially more expensive taking 1.5ms [APW+08].
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Another limitation of SSDs is the number of possible erase cycles, because constant
writes on the same NAND flash eventually wears it out which means that a complete
reset of a block is not possible anymore. In numbers, many devices allow up to 100,000
write cycles per memory cell. Consequently, writes have to be distributed over all
available blocks by the SSD to minimize an unbalanced aging of single memory cells of
the device. For this, wear-leveling is implemented inside the SSD controller to ensure
an even aging of memory blocks. With wear-leveling, the SSD has a method to choose
which block to erase depending on how often the block was rewritten before [APW+08].

Despite given disadvantages of SSDs, the read and write performance of an SSD is
highly superior to those of HDDs. Especially random reads are much faster on an SSD
than on the HDD, because there are no moving parts involved when reading blocks or
pages from the SSD. Even limited lifetimes of SSDs do not pose a severe disadvantage,
since overwriting a 32GB flash disk with 30MB/s a 100, 000 times would take 31/2 years.
Thus, we discuss the usage of SDDs as part of the memory hierarchy in the next section.

3.3.2 Adding SSDs to the Memory Hierarchy

The access gap exists between the RAM with access times less than 100 nanoseconds and
HDDs operating in orders of several milliseconds. With this in mind, SSDs are valuable
devices to fill this gap, because they offer access times of hundreds of microseconds
which is in the middle of access times of RAM and HDD.

In general, there are two possibilities for using SSDs in the memory hierarchy. On the
one hand, SSDs could be used as an extension of the secondary storage (extended disk)
and on the other hand, SSDs could represent an own component in the primary memory
(extended buffer pool) [Gra07]. Both variants will be reasoned in the following.

SSD as Extended Disk

A considerable concept using SSDs would be to support HDDs in persistently storing
data. This increases the overall performance, since data that is accessed many times
(hot data) is stored on the SSD while data which is infrequently used (cold data) resides
on the HDD. The effort for the database system is to manage the storage location of
data and if access patterns change, cold data has to be transferred to the HDD and hot
data loaded to SSD.

Especially the impact of SSDs on join algorithms is an interesting topic, since using
SSDs their performance have a greater tendency to become CPU-bound (rather than
I/O-bound) [DP09]. Furthermore, Do and Patel propose that algorithms should favor
sequential writes instead of random writes when using SSDs, since random writes cause
more blocks to be deleted [DP09]. Consequently, an algorithm should write its data
sequentially down even if this incurs a random access when reading it. Another inter-
esting observation of them is that the execution time of random writes varies highly,
thus they favor sequential writes.

Graefe is particularly optimistic that extended disk is the best configuration for databases,
since all data is always persistently stored [Gra07] and uncommitted data is not stored
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on persistent storage. Especially for checkpointing, which means a consistent stage
of the database has been made for backup issues; this configuration is the preferred
one. Although SSDs as extended buffer pool seem to have disadvantages in checkpoint
scenarios, we argue their advantages in query performance in the following.

SSD as Extended Buffer Pool

Instead of using SSDs as an additional persistent storage device, their fast access time
makes them a considerable device for cached data. To this end, data that was replaced
in RAM, because of its little use, is at first stored on SSD. Just when it has to be
replaced on SDD, it is stored on HDD.

As a consequence of the usage as buffer pool, there have to be data structures in-memory
that manage the residence of data on SSD or their replacement to disk. For this, Graefe
proposes an LRU priority queue which orders the data by their last accesses [Gra07].
The least-recently-used approach is a reasonable replacement strategy, since properties,
such as the number of accesses, do not change once the data is on the SSD. Furthermore,
a hash table for finding the storage location of data on SSD has to be held in RAM.

Considering the usage of SSDs as an extension of the buffer pool in a database implicates
some drawbacks. As we have mentioned before, database systems create checkpoints of
current data to backup the database in case of upcoming failures. When a checkpoint
is to be created, changed data in the buffer pool is written to disk, to have a consistent
image of the database. Thus, when checkpoints are very frequently done, cached data
on SSDs is forced to the disk very often. Consequently, caching benefits decrease, since
the buffer pool is renewed after every checkpoint.

Nevertheless, we argue that especially in analytical queries, for instance in data ware-
houses (so-called OLAP transactions [KSS12]) which may have long execution times
and include intensive processing, SSDs extending the buffer pool are a valuable pro-
cessing support. Especially join algorithms may benefit from the usage of SSDs as
extended buffer pool.

3.4 Conclusion

After representing several advances in modern hardware, we want to summarize the
assumptions that were given in research on the join performance on modern hardware.
With this, we fulfill the first contribution of our work. We found the following assump-
tions for different storage and processing devices:

• Storing data in memory favors a column-wise storage of data and improves the
operator-at-a-time processing model for join algorithms. However, there is no
evidential influence on the join strategy when using in-memory databases. Solely
the algorithm design has to be adapted to fulfill cache-consciousness, because of
the memory wall.
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• Multi-core CPUs offer high capabilities for data-level and thread-level parallelism
which have to be exploited extensively in the algorithm design. Considering the
join strategies, current multi-core CPUs favor hash joins. However, with increas-
ing SIMD capabilities of CPUs, sort-merge joins should become superior.

• The parallelization of modern GPUs with highly parallel SIMD but restricted
branching capability favors hash-join as well. However, if SIMD capabilities ex-
pand similar to those of CPUs, it is likely that sort-merge join becomes superior
to hash joins.

• FPGAs are an upcoming alternative to accelerate database operations using new
hardware. FPGAs could be programmed to execute block-nested-loops join more
efficiently. However, there is a need to evaluate the performance of different join
strategies on FPGAs.

• SSDs could be used in databases to bridge the access gap between RAM and
HDD. However, comprehensive performance evaluations of join algorithms using
SSDs as extension of the buffer pool are needed.

To conclude, there are many open questions concerning the performance of different join
strategies on new hardware. In this work, we are evaluating the join performance for
ad-hoc joins on different storage devices, since there are still open questions, especially
when using SSDs. To have a conclusive evaluation, we have to identify possible impact
factors on join performance that are covered in the following chapter.
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4. Preliminaries for Database
Operation Evaluation

Performance evaluation of algorithms is a difficult task, because there are numerous
factors, which influence performance. Considering database operations, there is not
only an impact of hardware, but also of functionality that has to be provided by the
database system. For example, buffer management influences the performance of oper-
ations, since it manages how data is accessible for the operation. To have an overview
of possible impact factors on database operations, we present them in the following
section. This will help us on the one hand, to identify variable components in our
following implementation and on the other hand to provide a number of variants that
could be evaluated. Consequently, our first contribution of this chapter is to show a
comprehensive and well-structured overview of impact factors on database operations.

Although a comprehensive evaluation of database operation performance requires the
consideration of all impact factors, not all of them are evaluable in their entirety, because
some of them (e.g., the buffer pool size) imply an unlimited amount of possible values.
As a consequence, we have to limit our considerations to a few selected factors. Hence,
our second contribution is a reasonable discretization of the impact factors to enable a
first evaluation of the performance of database operations.

4.1 Impact Factors on Database Operations

In this section, we describe impact factors on database operations that have to be
considered for a performance evaluation. Since a complete model of all impact factors
is hardly achievable, we argue that our model covers at least the most important areas
to be considered. In fact, our extensive literature review assures comprehensiveness of
high levels in our categorization. To this end, our model includes traditional design
factors described in Chapter 2 as well as factors of new approaches which are derived
from the survey in Chapter 3.
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Considering impact factors on database operations, there are different combinations
between them. For instance, some factors are obligatory while others are optional. To
present these impact factors in a well-structured model and their relation in an easily
understandable way, we rely on feature models. Feature models are the state-of-the-art
to depict variability in the context of software product lines [BSRC10] and, thus, a
good solution for describing our impact factors on database operation performance. A
feature model is a set of features which are arranged in a hierarchical way and they offer
several possibilities to model relationships between features. We introduce necessary
notations in the following and refer to the work of Batory for a comprehensive overview
of possible relations [Bat05].

The advantage of using feature models as representation is that we can compute a
number of possible configurations of our evaluation. In Figure 4.1, we depict a coarse-
grained variant space using a feature diagram for visualizing feature models. In this
representation, a rectangle denotes a feature of the evaluation, which means it is an
impact factor that may be taken into account when doing the evaluation. All of the
four child features are mandatory which means if the parent is chosen (the root in this
case), they are chosen as well.

impact factors on 
database operations

hardware 
parameters

database-specific 
parameters algorithms workload

<name> feature

mandatory

Legend

Figure 4.1: Groups of impact factors.

For a first classification of the impact factors, we define four groups of impact factors.
Arising from our overview in Chapter 2 , we identify database-specific parameters and
algorithms as impacting components. Furthermore, new challenging hardware and its
strengths and weaknesses are presented in the previous chapter and have to be included
in our consideration as well. An impact factor that strongly influences the algorithm
choice is the workload, because some algorithms may be in favor considering specific
properties of data. With the given coarse-grained categorization, we argue that all
factors considered in the literature fall into one of these categories.

Since the four impact factors are always present when executing evaluations of database
operations, we model them as mandatory features. As a result, the number of possible
configurations does not change considering these four features, because they do not
provide any variability. However, they are important, because they serve as a catego-
rization of the underlying features, which are presented in the following.
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4.1.1 Database-Specific Factors

As database-specific factors, we define impacts that are caused by the database man-
agement system. These impacts include functionality that has to be provided to fulfill
the specification of a database system, which were also introduced in Chapter 2 and
Chapter 3. From these chapters, we extract typical impact factors of database systems
and depict them in the feature diagram in Figure 4.2.
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Figure 4.2: Factors implied by chosen database system design.

Two typical design choices, which impact the functionality of a database system, are
the storage model and the processing model. Hence, they are mandatory features in
the diagram to express their necessity. We present their characteristics in the following.

Storage Model

For the storage model, we decided that it is possible to store data in a row- or column-
oriented way. Furthermore, a combination of both storage models is possible, as the
work of Lübcke et al. indicates [LSS13]. They argue that it is possible to store data re-
dundantly in a hybrid storage system of row- and column-oriented tables. Consequently,
our variant space includes the three possibilities of single row- or column-oriented stor-
age as well as a hybrid storage system, which is denoted by an or relationship. Hence,
we have to be able to evaluate our database operations under different storage models.

Considering the column-oriented implementation, an open issue is at which point in the
query execution the database management system reconstructs the tuples. Abadi et al.
present early and late materialization for points of reconstruction [AMDM07]. The
differences between these two strategies are the intermediate results. In an early mate-
rialization, values of a tuple of a processed column are added to an intermediate tuple.
Thus, after the last operation, the intermediate result is the final result. In contrast,
late materialization uses compressed data structures or row IDs to reference tuples,
which provides a more effective cache utilization, since intermediate results occupy less
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storage space. However, to retrieve the result, values of tuples have to be retrieved and
a second access to data is incurred.

Abadi et al. present different types of early and late materialization depending on the
executed operation [AMDM07] and, consequently, we cannot model it as a Boolean
feature. Since a materialization can take place at any point in the query plan, the ma-
terialization strategy does not represent a feature which can either be taken into account
or not. Hence, we use the concept of extended feature models and model the material-
ization strategy as an attribute to indicate that there are several forms [BSRC10].

Processing Model

Regarding hybrid storage systems, a hybrid processing model is also considerable. A join
may either compare and join single tuples, whole columns, or a whole column with single
tuples. As a consequence, tuple-at-a-time [Gra94] and operator-at-a-time [BMK99]
operations are in an or relation as well. This impacts our considerations significantly,
because we have to consider access to single tuples as well as to a whole block of tuples
or columns.

Page Size

Another important property of databases is the page size. Data of a database system,
such as columns or rows of tables as well as index information, is stored on pages that are
synchronized with the persistent storage. Since pages are the container of the storage
system, they specify the granularity of access. Small pages may incur many reads, but
offer a more fine-granular and selective access than bigger pages. Consequently, the
amount of storage space per page is an important impact factor on the performance
of database operations. Since the page size can take an arbitrary numerical value and
does not represent a Boolean feature, we model the page size as an attribute to indicate
that it may take several values.

Buffer Management

A further database-specific impact factor is the buffer management. The buffer manage-
ment is an optional feature in our feature model, because there are configurations that
do not require a buffer manager. Especially an in-memory database operates without
a buffer manager, since all data is already in RAM. Every buffer manager has a fixed
size of its buffer pool, generally defined as the number of fitting pages. This property is
also represented as an attribute, because buffer sizes may vary from system to system.
Another sub-feature of the buffer management is the page replacement strategy, since
the buffer manager has to identify pages that have to be replaced if the buffer size is
exceeded and an additional page has to be loaded. As page replacement strategies we
choose LRU, FIFO, and CLOCK in our feature model. Of course, there are further
page replacement strategies introduced in literature and we refer to Saake et al. for
a comprehensive overview [SSH11]. Nevertheless, we list only these three strategies as
representatives here, since they are easy to implement and leave further extensions open
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for future work. Furthermore, we argue the relation between them is an or relation,
because there may be several buffers. More specifically, we can choose a different page
replacement strategy in the SSD buffer than the one chosen for our main memory.

4.1.2 Hardware Parameters

Another group of impact factors that influences the performance of database operations
are hardware parameters. Especially changing the hardware may influence processing
capabilities as well as algorithm design as we have already emphasized in Chapter 3.
As a result, we depict the two groups of hardware specific factors in Figure 4.3, namely
the used processing devices as well as storage devices.
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Figure 4.3: Hardware-specific impact factors.

Processing Device

As processing devices, we categorize hardware components that process data in order to
execute a database operation. For this, we list CPU, GPU, and FPGA. We argue, that
it is possible to choose multiple devices for processing, because, for instance, in the sort-
merge join, we could execute the sorting on the GPU while the CPU is responsible for
comparison and joining of tuples. Thus, we model the processing devices CPU, GPU,
and FPGA with an or relationship and this way, we support modern co-processing
approaches [MT09, BBR+13].

An aspect that has to be considered for future work is the capability for parallelization,
because different processing devices provide different types of parallel execution. Con-
sidering CPUs and GPUs, the CPU offers branching capability in execution while the
GPU executes one operation on all cores in parallel. Furthermore, whether the code
is written for single-threaded or multi-threaded execution is a point to be addressed
in future work. Thus, our work presents an initial step for an evaluation of database
operations on varying hardware.
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Storage Device

Additionally, storage devices influence the performance of database operations, because
they hold data to be processed. We consider HDD, SSD, and RAM as storage devices.
The traditional way consists of HDD as persistent storage and RAM as storage device
to provide access for the CPU, but also a combination of all three devices is possible.
Nevertheless, there is no storage system working without RAM and, thus, it is a manda-
tory feature. In contrast, storing data on HDD or SSD is optional and included in our
model as an optional feature.

When data is stored on HDD or SSD, the scenario implies that the RAM is limited
and does not provide enough capacity for all our processed data. Consequently, a buffer
manager has to manage the available space in RAM. This necessity for a buffer manager
will be expressed by a cross-tree constraint in the whole feature diagram.

An important feature selection for our work includes all three available storage devices.
In this case, a limited part of the data that is stored on HDD fits into RAM. While the
execution of an operation, the buffer manager has to replace unused pages to continue
processing of new data. For this, the pages are written to the SSD acting as an additional
buffer pool including an own buffer manager. This may be advantageous for those
systems, where data exceeds the amount of available SSD storage and, thus, the SSD
can only be used as a buffer providing faster access to often used pages than the HDD.

Limitations of our Model

Considering the storage and processing devices, there are still properties that have not
been considered in our feature model. Each storage device has a capacity and latencies
as well as a limited bandwidth. Nevertheless, we excluded them from the feature model,
because depending on the use case, we do consider different properties. For example, the
capacity of an HDD does not matter for the evaluation in a traditional system, because
it has to provide only enough space for storing the tables. In contrast, the storage
capacity of RAM is important, when just a part of the data fits into it. Furthermore,
considering in-memory databases, the RAM capacity does not have to be considered in
the performance evaluation of database algorithms, because of the assumption that all
data fits into RAM.

Furthermore, techniques, such as RAID are taken out of consideration. A RAID system
balances access time using a cluster of storage devices with redundant data. Since the
behavior of RAID influences access times, these systems are future work for performance
evaluation of changing hardware.

4.1.3 Database Operations and Their Algorithms

Not only hardware and database parameters influence the performance of database
operations, but also more considerably, the chosen algorithm influences the performance.
Boncz et al. identify selection, join, sort, and aggregate operations as important database
operations [BMK99] and, thus, we consider these four operations in Figure 4.4.
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Figure 4.4: Parameters of algorithms.

Considering the selection operation, suitable data structures have to be provided. Since
we do not cover index structures in this work, we exclude the selection operation from
further evaluations and leave it open for future work. For join operations, we consider
nested-loops, block-nested-loops, hash, and sort-merge join, which can be evaluated
to find the best strategy for a join. There are further properties that influence the
performance of block-nested-loops join or hash join, which is the block size for the
former and the hash function for the latter. In general, the sort-merge join requires a
good implementation for sorting, because sorting produces the computational effort with
a computational complexity of O(n ∗ log(n)). However, the sort algorithm is another
feature in our feature model and, thus, a connection between them would be necessary
which could be expressed in a multi-product-line language, such as VELVET [STSS13].
Thus, for future work, it could be helpful to model our variant space as a multi product
line.

Based on our literature review, we propose radix sort [BMK99] and bitonic merge
sort [FHL+07] as important sorting strategies and include them in our feature diagram
for possible evaluations. Furthermore, aggregations can be implemented as hash-based
or sort-based algorithms [BMK99] while the sort-based approach depends again on the
best sorting algorithm.

4.1.4 Impact Factors of Workload

An important group of parameters represents the workload, because some workloads
may favor different strategies of an operation. For example, Kim et al. state that skewed
data troubles the performance of the hash join, because the data does not distribute
equally over all hash buckets [KSC+09]. Hence, the data distribution is an important
property of the workload.
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In addition, table sizes impact the performance of database operations. For example,
considering hash join, if one table has significantly less tuples than the other, the smaller
table has to be taken for building the hash table [ME92]. Thus, table sizes have to be
included in our feature model.

The last two features of the workload regard the property how data has been pre-
processed. On the one hand, data can be stored in a sorted way. With this in mind, the
sorting phase of sort-merge join can be skipped which gives this strategy an important
advantage. On the other hand, an index on the data may favor different algorithms.
For example, He et al. identified the nested-loops join as the best join strategy on the
GPU for indexed data [HYF+08].
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Figure 4.5: Impact factors of specific workload.

In Figure 4.5, we show the feature diagram for the workload. We represent table sizes
and data distribution as attributes, because these properties have an unlimited amount
of possible values. In contrast, data that is pre-sorted or indexed can be represented as
optional features, because it can be determined whether the property is fulfilled.

4.1.5 Summary of Variant Space

For the complete feature diagram of impact factors, we merge the feature diagrams,
presented before, in Figure 4.6. Furthermore, we add a constraint to exclude some of the
variants that are not possible. The constraint is SSD∨HDD ⇔ buffer management,
which expresses that if we store our data on an SSD or HDD, we also have to use the
RAM with a buffer manager to make data available for processing.

One result of building a feature model is that the number of possible configurations is
computable. However, not all of our considerations can be taken into account. The
aspect of using attributes in the feature model disables the possibility to count the
number of possible variants, because an attribute often represents an unlimited range
of values leading to an infinite number of variants. Hence, for computing the number
of possible variants, we rely on Boolean features only. Consequently, our computed
number of variants differs from the actual one that includes attributes.

For modeling the feature model, we use FeatureIDE [TKB+13] for Eclipse and export
the feature model to use it in S.P.L.O.T.1 [MBC09], an online automated analysis tool

1http://www.splot-research.org
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Figure 4.6: Summary of impact factors on performance of database operations.
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for feature models. S.P.L.O.T. computed 3,734,388 possible variants. Since we are
not able to evaluate such a high number of possible variants, we have to limit our
considerations to a selected number of features. Thus, we present a reduced feature
model in the following section.

4.2 Discretization of Variant Space

Our feature model of the last section shows a big amount of impact factors on database
operation performance. On the one hand, a broad identification of impact factors is of
high importance, because our evaluation model should offer the possibility to extend
it to support every variant. On the other hand, in the current state, we have to limit
our model, because an evaluation of the whole variant space within this work is not
feasible.

For a reduction of the space of possible variants, we limit our consideration to selected
features and present these limitations in the following. The resulting feature model is
depicted in Figure 4.7. Features that are not considered are shown in gray color and
only features to be evaluated are still visible with black borders and labels.

Database-Specific Parameters

For our evaluation, we limit the database-specific parameters to those of the traditional
database systems, because its functionality is well known and effects on performance
are well explainable. Hence, we evaluate algorithms on a row-oriented storage system
and process one tuple after another instead of operator-at-a-time processing. As a page
replacement strategy, we reduce our consideration to the CLOCK algorithm, because
LRU and FIFO are said to not scale for database applications [SSH11]. However, impact
factors, such as buffer size and page size are still taken into account in our evaluation
and we choose different reasonable and often used values for them.

Hardware Parameters

The used hardware in our evaluation is, at the moment, limited to one given system.
The processing is executed on the CPU and as storage system we have the choice to use
either HDD, SSD, RAM, or their possible combinations. Finding suitable algorithms
for different processing devices is open research for future work.

Apart from the extended disk approach proposed by Graefe, we focus on the idea of an
extended buffer pool when we use the SSD in combination with an HDD and RAM.
The extended disk approach is partly evaluated when using the SSD only, under the
condition that hot data to be joined is stored on SSD.

Algorithms

In our work, we limit the database operations to the most important one – the relational
join [BMK99]. This limitation decreases our variant space significantly and breaks it
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down to an acceptable amount of variants to evaluate. However, further work includes
evaluation of selection, sorting and aggregation.

To find the best join strategy depending on the impact factors, we consider nested-
loops, block-nested-loops, hash, and sort-merge join, because we do not know which
strategy performs best for a given scenario. Since we evaluate each join algorithm on
its own instead of evaluating whole query plans with several joins, the join algorithms
are represented in an alternative relation in the reduced feature model.

Considering additional attributes of the join algorithms, a comprehensive evaluation
of different block sizes and hash functions would be necessary. However, this would
lead each to an increase of at least factor 10 or more in the number of evaluated vari-
ants. Consequently, we have to exclude these two attributes, because a comprehensive
evaluation of these two properties is not possible in the limited time of this work.

Workload

Data of our workload is taken from one of the most-often-used data-warehouse bench-
mark TPC-H 2. It provides large volumes of data that are common in industrial use
cases and business processes. The benchmark offers several tables and, hence, we are
able to join tables of different sizes and find the best join strategy for them. All tables
have the same distribution and are pre-order by their primary key. Since we consider
only ad-hoc joins, we leave performance evaluation for indexed data open for future
work.

4.3 Conclusion

In the first section of this chapter, we contribute a structured representation of the
variant space. Our examination reveals that there are several hundred thousands of
possible configurations and considering attributes, we end up having to execute an
infinite number of evaluations. Nevertheless, the examination of the impact factors
shows which parts in our implementation have to be exchangeable. Important points
to be considered in the following are:

• Variable storage model

• Variable processing model

• Integration of new page replacement strategies

• Extensibility of algorithm pool

2http://www.tpc.org/tpch/
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Because of the huge amount of possible configurations, we have to reduced the number
of considered impact factors in order to achieve a feasible evaluation of selected impact
factors. As a result, we contribute a specialized feature model to evaluate different
storage devices for the traditional database architecture. This degrades the variant
space to four possible storage configurations when considering only Boolean features.
These four variants represent varying storage configurations, which are:

1. All data is stored on an HDD and we use the RAM as our buffer.

2. Our secondary memory device is the SSD and RAM is used for buffering.

3. All data is stored on an HDD. The SSD as well as the RAM are our two buffers,
where RAM is the primary buffer and if it is too full, pages are written down to
the SSD. In this case, we consider the SSD as extended buffer pool instead of as
extended disk.

4. Our tables are stored in RAM and can be processed without the need of a buffer
manager.

In addition to the four storage configurations, we include the four join algorithms nested-
loops, block-nested loops, hash, and sort-merge join, which increases the number of
variants to 16. However, the total number of evaluations that have to be executed
depends on the selection of values for the attributes which are the buffer size, page size,
as well as the chosen table sizes.
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5. A Framework for Performance
Evaluation of Database
Operations

In this chapter, we describe how we implement a framework for performance measure-
ments of database operations. As a first consideration, we argue why we favor a tool
instead of cost models in the first section. In Section 5.2, we describe the architecture
of our framework and state differences in our tool compared to the traditional five-level-
schema architecture. With these sections, we underline the validity our performance
evaluations using our tool.

Another focus of our work is to provide variability in our implementation. To implement
the required variability regarding our variant space, at first, we use abstract classes to
support variable implementations of the same class. The usage and characteristics of
abstract classes is described in Section 5.3. However, some characteristics of abstract
classes may influence the performance of our implementation and, consequently, we
show an alternative implementation in Section 5.4.

5.1 Preliminary Considerations

Our goal is to determine the best algorithm of a database operation for a given system
and workload. To test the hypotheses found in literature, we have to evaluate the
performance of database operations. To this end, we decided to use a tool to measure
performance instead of creating a cost model to estimate execution times. Important
reasons for this decision are given in the following.

After deciding to implement a tool for performance evaluation of database operations,
we have to choose a good programming language enabling us to do fine-granular per-
formance measurements. For this, we reason our decision in Section 5.1.2.
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5.1.1 Whether to Use a Tool or Cost Model

In general, there are two ways for a performance evaluation:

• On the one hand, after a comprehensive theoretical examination of all possible
impact factors, costs are derived for the impact factors and a cost model is created.
An important example is the cost model of Manegold et al. for access costs in in-
memory databases [MBK02].

Possible threats that make the model incomprehensive are missing impact factors
and changing properties of considered impacting components. Especially, access
time or processing power are weighted features in the cost model and the specific
weight for a given system is not always easy to determine [SSH11].

• On the other hand, a software system can be developed which is executed on
the given hardware measuring the performance of database operations under the
specific workload. This strategy has already been used in QuEval1 to evaluate
the performance of index structures [GBS+12, SGS+13].

As a result of our performance evaluation, we identify algorithm implementations
that are superior to others and are able to formulate advices of algorithm usage
under the specific workload. To prove the validity of our assumptions, a test on
a complete database system has to be done.

Considering both possibilities, we decide to implement software that evaluates the
database operations on a given hardware system, because of the following reasons:

1. Creating a cost model for varying impact factors is an error-prone task, because
there are too many factors that have to be taken into account. The high amount
of impact factors makes the cost model highly complex and if a critical factor
was overseen, the validity of the cost model may be disproved. To discuss va-
lidity, performance tests have to be done under different configurations of the
underlying hardware. However, as we have already stated, the number of possible
configurations is extremely high, making prove of validity almost unachievable.

2. Another disadvantageous aspect of cost models is that some factors are not rep-
resentable by variables. For instance, algorithm design is hard to cover in a cost
model. In a tool, however, different implementations of an algorithm can be
evaluated against each other.

3. Considering ideas for a reimplementation of specific database operations, users
implement necessary algorithms and are able to test their implementation against
others using our tool. With this, there is no need to understand a highly complex
cost model and to map an implementation to variables in the cost model. Fur-
thermore, unconsidered impact factors that arise from the given implementation
would have to be included and weighted, which may introduce errors.

1http://QuEval.de
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By implementing a tool for performance evaluation of database operations, we are able
to test different algorithms and establish a framework in which every programmer may
contribute. An open necessary decision is the programming language. To end this, we
present our decision in the following section.

5.1.2 Choice of Programming Language

At first, we decide to use an imperative instead of a logic programming language,
since our database operations are easier expressible in an imperative language. Fur-
thermore, we rely on the object-oriented programming paradigm to use functionality,
such as inheritance to provide necessary variability. Since we are executing perfor-
mance measurements, we have to use a programming language that interferes as little
as possible our processing. For instance, unpredictable garbage collection would hinder
our performance measurements. Furthermore, for evaluating memory consumption of
algorithms, we need a fine-granular memory management. As a consequence of the
before-mentioned points, we use C++ as programming language.

With the choice of the programming language, we also use functionality of several stan-
dard C++-libraries to implement our tool as well as database operations. Furthermore,
we use some classes of the boost-library2, which offers responsible implementations and
is said to be included in the C++-standard soon. As a consequence, we have to rely on
a proper implementation of used classes to reach a valid evaluation framework.

After presenting preliminary considerations that lead us to an implementation of an
evaluation framework written in C++, the implementation itself is the focus of the
following sections. Important points are the overall architecture of our framework as well
as ways to provide variability in our implementation to support different configurations
derived from Chapter 4.

5.2 Architecture of our Framework

For a comprehensive evaluation of database operations, our evaluation environment
has to be known in particular to argue that our results are valid. Thus, we present
the overall design of our implementation in this section and give an introduction to
our framework. For this, we start with a short presentation of the workflow in our
framework.

For a good implementation, which produces valid results, we derive our implementation
from the traditional five-level-schema architecture. Nevertheless, since our goal is to
evaluate the performance of database operations, we are able to define some assump-
tions that simplify our implementation in comparison to an implementation of a whole
database management system. For instance, transaction management is not required,
because it is not in the focus of this work. Since our simplifications may influence
the performance, we discuss differences in our implementation to the five-level-schema
architecture and also discuss the validity of our results considering the given limitations.

2http://www.boost.org
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5.2.1 Workflow in our Framework

To execute an evaluation of database operation performance, we define the following
workflow when using our framework. In the first step, necessary tables are created one
after another, resulting in a sequential storage of tables on pages. For this, the schema
of a table is defined in the data dictionary and then data can be inserted. We emphasize
that our framework stores all data of one table on contiguous pages. With this, we have
to store only the first page of the table to know where tuples are stored. We argue that
instead of storing tables on contiguous pages, we could also use simple data structures
such as hash maps to provide the same functionality with minimal overhead.

As the second step, different database operations can be executed on created tables and
execution times are measured. For executing the operations, we assume that interme-
diate data structures, such as hash tables for the hash join, fit into RAM. Otherwise,
these data structures would have to be written on pages and placed on disk. However,
we argue that intermediate data structures fit well into RAM, because they do not store
whole tables. Instead, data of few columns is stored causing little overhead.

At last, tables may be stored after the execution. With this, we can check whether
two different algorithms of an operation produce the same result and, thus, validate the
correctness of our implementation.

5.2.2 Simplification of the Five-Level-Schema Architecture

Considering the workflow of our framework and needed functionality, we are able to
reduce the requirements of a traditional database management system in our case,
because we measure the performance of database operations instead of several queries
in a transactional context. In Figure 5.1, we depict the necessary components for our
implementation and show unnecessary components or components whose functionality
is already provided in gray color. In the following, we argue for our decisions and discuss
the validity of results under the given simplifications.

Data System

In contrast to traditional database management systems, our framework does not re-
quire functionality of the data system. The data system is responsible for translating
SQL-queries into an inner representation and their optimization. Since we measure the
performance of database operations, formulating whole SQL-queries is not necessary
to tell the system what to do. Consequently, parsing and optimizing complex SQL-
queries is not supported in our system. Instead, we create tables and execute database
operations by simply calling functions, which looses the comfort of SQL but provides
comparable and distinctive results.

Access System

Considering the access system, we implement a data dictionary which holds all table
definitions including lengths of columns and data types. For a first step, we are support-
ing 32-bit and 64-bit integers as well as the data type char(n) where n represents the
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Figure 5.1: Implemented and unimplemented (shown in gray) components of the five-
level-schema architecture.

number of chars of storable strings. Hence, supported data types have a fixed length,
which is advantageous for our implementation. Since every row has a fixed length,
storage locations can be computed using fixed offsets stored in the data dictionary.
Extending our framework for data types with varying lengths is left open for future
work.

Storage System

Our storage system has the task to map TIDs to pages. For this, it uses our assumption,
that tables are sequentially stored on contiguous pages. Consequently, since we know
the first page of the table and the size of one row from the data dictionary, we can
easily compute the page where the tuple is located and its offset on the page.

Considering the storage of tuples on pages, we do not support updates or deletes. As a
consequence, a mixture of tuples, which would occur under many updates and deletes, is
not accomplishable. Nevertheless, we argue that such a mixture can almost completely
be emulated in our framework by just inserting tuples in a mixed order.

Buffer Manager

Since our storage hierarchy may differ considering the resulting four configurations of
the last chapter, we have to be able to support several buffer managers with different
levels of buffer pools, e.g., buffering on SSD and RAM to bridge the memory gap.
Our solutions for the variability in the buffer-manager functionality are covered in the
following section.

In general, our buffer manager navigates through files and loads pages. Furthermore, if
the buffer pool is full, it has to replace a page that was identified by our page replacement
strategy. For this, we implement the CLOCK algorithm as page replacement strategy.
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Operating System

For our processing, the framework interacts with the operating system, but does not
implement operating-system functionality for itself. Important functionality, we use,
is the file interface to get necessary page data. Furthermore, we rely on the storage
management of the operating system in RAM, which provides memory for our created
objects and data types.

To summarize, we implement a framework for emulating the workflow of database op-
erations in a typical database management system. For this, we identify simplifications
of a database management system and argued that they simplify our implementation
without reducing necessary validity for our evaluation.

5.3 Providing Variability with Abstract Classes

In the last section, we identified variable parts that we have to support in our im-
plementation. After previously presenting the overall components and functionality of
our framework, we present how we provide the variability of the buffer manager, page
replacement, and join strategies in our framework in this section.

To provide the variability, we have to be able to exchange the code when executing
different configurations. For this, we decide to use abstract classes as an object-oriented
paradigm to create different implementations which can be handled similarly.

An abstract class in C++ can be used to define an interface for classes that inherit
the method signature. Subclasses have to implement needed functionality of inherited
methods for the current configuration. The advantage is, when declaring classes, an
abstract class can be initiated with any subclass at run-time. Thus, a uniform handling
of different implementations is accomplished. A good example for abstract classes as
interfaces for different implementations is given in the following for the buffer manager.

Introducing abstract classes in our implementation will cause additional computational
overhead [DH96]. As a consequence, we also want to review another possibility and
argue possible advantages and disadvantages of both approaches in Section 5.4.

5.3.1 Interface of Buffer Manager

Our implementation of the buffer manager has to be able to support different storage
scenarios. In the first configuration, data is stored on SSD or HDD and pages are
buffered in RAM. In this case, we argue that the buffer manager has to provide the
same functionality for both devices, because only the storage location differs. The
second configuration is an extension to the first one where we add another buffer to the
system which uses the SSD. The third configuration that we consider is the in-memory
case where all data is already stored in RAM and a buffer manager that has to replace
pages is not necessary.
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Code of Abstract Class BufferManager

For a variable implementation of the three storage configurations, we implement an ab-
stract class BufferManager that defines necessary methods. Our code for the Buffer-

Manager is depicted in Listing 5.1.

1 class BufferManager{
2
3 protected:
4
5 pageContainer* pages;
6 unsigned int numberPages;
7
8 public:
9
10 virtual PagePtr getPage(unsigned int pageID, Table* table) = 0;
11 virtual PagePtr getNewPage(Table* table) = 0;
12 virtual void commit(Table* table) = 0;
13 virtual void clean() = 0;
14 virtual ~BufferManager(){};
15
16 };

Listing 5.1: Abstract class BufferManager.

Considering necessary methods and fields, a buffer manager needs a container that holds
the pages which are buffered, which is called pages (cf. line 5), and a number of pages
to identify new page IDs.

Since the buffer manager has to load pages, we define the method signature getPage

in Line 10. This is a pure virtual method, because it does not contain any code in
the abstract class and, consequently, should not be executed. Behavior of pure virtual
methods should be implemented in derived classes. Further pure virtual methods are
getNewPage, which creates a new page for the table, commit, which writes every page
of the table that is in RAM down to persistent storage, and clean, which writes every
page in the buffer down to persistent storage.

Additionally, we define the destructor ∼BufferManager as virtual method, because it
has to be able to be called when destroying a BufferManager object and if we do not
define a constructor for the class, the standard constructor is used which is sufficient
for our implementation.

Three Implementations of Buffer Manager Derived from BufferManager

To have a variable implementation, we have to create derived classes for the three before-
mentioned configurations and implement the pure virtual methods of the super class in
the derived classes. In Figure 5.2, we depict the UML-diagram of the implementation
of our different buffer managers.
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Figure 5.2: Buffer manager implementations for different storage devices (”+” denotes
public class members and ”−” private class members).

The DiskBufferManager introduces the member fileInterface, which enables ac-
cess to SSD or HDD files, and pageRepl being a page replacement strategy for our
buffer in RAM. Furthermore, it implements the defined methods and adds the method
writePageDown, which writes pages to the storage device under the usage of the file
interface.

Considering the SSDBufferManager, it has to manage two buffers, one buffering pages
in RAM and another one managing pages on SSD. Consequently, we need two page
replacement strategies, and an additional page container which manages page location
on the SSD. Since we access data on SSD via the file interface, we have to create two
file interfaces – one for the HDD and one for the SSD.

The easiest configuration to implement is the class RAMBufferManager, because many
simplifications are possible. The methods clean and commit do not contain any code,
because all pages stay in RAM. Furthermore, synchronization with persistent storage
is not necessary, which makes a file interface obsolete.

How to Use Different Buffer Managers

After defining an abstract class BufferManager and deriving three different implemen-
tations depending on the used storage devices, we show exemplary code of its usage in
Listing 5.2.
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1 class Main{
2 ...
3 BufferManager* buff = new RAMBufferManager();
4 ...
5 buff−>getPage(pageID, table);
6 ...
7 };

Listing 5.2: Initialization of buff as RAMBufferManager.

In Line 3, we show the initialization of a pointer to a BufferManager which is instanti-
ated with the derived class RAMBufferManager. Since we can initialize buff with every
derived class, we are able to handle different implementations uniformly. This offers
the possibility to exchange the functionality of the BufferManager during runtime, but
also introduces computational overhead, which we will explain by introducing static
and dynamic object types in the following.

In C++, every object has a static and a dynamic type [Mey05]. The static type is the
one, which is defined at compile-time. In our listing, the static type of buff is a pointer
to BufferManager. However, the dynamic type differs from that, because we initialize
it with a pointer to RAMBufferManager, which is the dynamic type of buff.

As we have seen, the dynamic type of the variable buff may change during processing.
This influences the computational effort when executing virtual functions (cf. Line 5),
because they depend on the dynamic type. If a virtual function is called, a lookup
on a virtual function table becomes necessary to get the address of the function to be
executed introducing an additional indirection [DH96]. As a consequence, we discuss
alternatives in Section 5.4 to avoid abstract classes and their computational overhead
to get more unbiased results.

5.3.2 Page Replacement Strategy Interface

Another variable part of our implementation is the page replacement strategy, because
new strategies should be added in the future. At the moment, we implement the
CLOCK-algorithm as page replacement strategy, as depicted in Figure 5.3. To have a
comprehensive interface, we identified the following methods to be provided:

• The buffer size should be adjustable so that we are able to execute performance
measurements under varying buffer sizes.

• Pages have to be added and removed from the strategy if a new page is loaded
into buffer pool or replaced.

• If a page is accessed or modified, the page replacement strategy has to be notified,
because it possibly influences the decision of the strategy, which page will be
replaced next.

• Furthermore, it has to decide which page is replaced if the buffer is full.
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Figure 5.3: Interface for page replacement strategies.

The predefined methods are implemented for our page replacement strategy CLOCK,
which works as follows. CLOCK stores a counter for every page, which is initially set
to the given value k. If the page is accessed, its counter is incremented if it is smaller
than k. If a page has to be replaced, the list of page counters is traversed in a cyclic
way and every time the current counter is greater than 0, it is decremented. When an
accessed counter is 0, the page is the returned candidate for replacement.

5.3.3 Implementation of Join Algorithms

The interface of our join algorithms is straight forward. Each algorithm has to provide
a method to join two tables. This creates a joined table and persistently stores it on
the storage devices. With this, we are able to test the validity of our join algorithm
results.

For the performance evaluation, we will produce a join index using the method joinIn-

dex. Our join index consists of pairs of TIDs that represent the matching tuples. As a
consequence, we save computational effort for writing tables to disk. This is negligible,
because every algorithm writes the same result table to disk.

As depicted in Figure 5.4, we derive the NestedLoopsJoin, BlockNestedLoopsJoin,
HashJoin, and SortMergeJoin from our abstract class JoinAlgorithm. To provide the
variability in our join algorithms, we add fields for block sizes in the block-nested-loops
join and an exchangeable hash table implementation in the hash join.
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Figure 5.4: UML-diagram of join strategy implementations.

5.3.4 Variability in Access Using Cursors

Another important task is to allow different processing models. For this, we have to
be able to access either single tuples one after another, or to process them all in one
iteration. To allow access to an unbound number of tuples, we implement cursors for
accessing the table content. The UML-diagram of different cursor implementations is
shown in Figure 5.5.

Every cursor retrieves tuples from the table and passes them forward. Considering the
SingleTupleCursor, one tuple after another is loaded and as long as the end of the table
is not reached, the next tuple can be loaded. To allow loading multiple tuples in one step,
cursors return a vector of tuples which has the length one for the SingleTupleCursor

and a predefined length for the BulkCursor. With this, processing of multiple tuples is
enabled, which can be used to execute operator-at-a-time processing.

5.3.5 Summary

In this section, we introduce abstract classes as an object-oriented possibility to provide
variability in our implementation. Abstract classes define an interface that has to be
implemented in inheriting classes. With this, different implementations of one class can
be handled uniformly in our implementation. However, virtual functions of abstract
classes introduce computational overhead and, thus, we review another possibility to
provide variability in our implementation.



56 5. A Framework for Performance Evaluation of Database Operations

Cursor

+ table
+ currRowID

+ getNextTuple()
+ hasNextTuple()

BulkCursor

- rows

+ getNextTuple()
+ hasNextTuple()

+ BulkCursor()

SingleTupleCursor

- currRow

+ getNextTuple()
+ hasNextTuple()

+ SingleTupleCursor()

Figure 5.5: UML-diagram of different cursor implementations.

5.4 Providing Variability with Preprocessor Direc-

tives

Another way to support different implementations for classes and functions is to use
preprocessor directives. As the name preprocessor directive implies, these statements
are executed before the program is compiled. With this, we provide compile-time vari-
ability instead of run-time variability using abstract classes [ABKS13].

In the following, we present the syntax of preprocessor directives on the example of our
configuration of different buffer managers. After that, we discuss the applicability of
preprocessors in our example and present advantages and disadvantages.

5.4.1 Preprocessor Syntax

With preprocessors, we can define variables such as INMEM, SSDBUFF, or HDD to define
different variants as shown in Listing 5.3. With ”#” we introduce that the following
content belongs to a preprocessor directive, which is processed by the preprocessor and
will not be contained in the compiled code anymore. With define, we create a macro
that is replaced with the value that follows the macro name.

For our implementation, we decide to use three macros. Normally, two variables would
suffice to express four configurations, but for a better understanding of the code, we
introduced three macros. In Listing 5.4, we present the instantiation of three different
buffer managers.

With available preprocessor directives, we instantiate a RAMBufferManager iff INMEM is
true. Otherwise, iff SSDBUFF is true, an SSDBufferManager is instantiated. However, iff
none of these macros is true, the only left buffer manager is the DiskBufferManager.
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1 class Main{
2 ...
3 // RAM or disk storage
4 #define INMEM false

5 // SSD as buffer?
6 #define SSDBUFF false

7 // HDD or SSD
8 #define HDD true

9 ...
10 };

Listing 5.3: Preprocessor directives for different configurations of the buffer manager.

1 class Main{
2 ...
3 #if INMEM

4 RAMBufferManager* buff = new RAMBufferManager();
5 #elif SSDBUFF

6 ...
7 SSDBufferManager* buff = new SSDBufferManager(pageRepl1,pageRepl2);
8 #else

9 ...
10 DiskBufferManager* buff = new DiskBufferManager(pageRepl);
11 #endif

12 ...
13 };

Listing 5.4: Defining different buffer managers.

Since preprocessor directives are used without brackets, we have to end the if-block
with #endif.

Using preprocessor directives, we are able to introduce variability in our program. Only
necessary code is passed to the compiler and, with this, we expect minimal computa-
tional overhead, as we discuss in the next section.

5.4.2 Expected Advantages and Known Drawbacks of Prepro-
cessor Usage

Preprocessor directives are the state-of-the-art approach and have been being used for
decades. Thus, their impact on the implementation and especially their understanding
are well-documented. In this section, we want to discuss known benefits and drawbacks
that we encountered while our implementation. For a detailed discussion of known
impacts, we refer to Apel et al. [ABKS13]. Furthermore, we expect differences in
the performance of our implementation when using preprocessor directives instead of
abstract classes, which is discussed in the end of this section.
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Known Advantages of Preprocessor Usage

An advantage of preprocessor directives is that they are easy to use and also well-known.
We found much information about its usage and even our used programming IDE sup-
ported us in the implementation process with preprocessor directives. Thus, it is a good
way to start with when introducing variability in a program. Furthermore, we are able
to easily adapt our framework to use preprocessor directives instead of abstract classes,
because preprocessor usage implies little preplanning. Another important advantage is
that preprocessor directives allow us to vary programming artifacts of arbitrary granu-
larity. We are able to include or exclude whole classes or just change the parameter of
a function. An example for a fine-granular usage of preprocessor directives is shown in
Listing 5.5

1 class CSVLoader{
2 ...
3 TablePtr loadCSV(char delimiter, DataDictionary* dict,
4 #if INMEM

5 RAMBufferManager*
6 #elif SSDBUFF

7 SSDBufferManager*
8 #else

9 DiskBufferManager*
10 #endif

11 bufferManager,
12 std::ifstream* openedFile);
13 ...
14 };

Listing 5.5: Fine-granular adaptation using preprocessor directives.

The class CSVLoader enables loading table data from a file in CSV-format into our
framework. For this, it needs access to the buffer manager to place tuples one the
specified pages. However, the buffer manager may change and, hence, the method
signature of loadCSV has to change as well.

Disadvantages of Preprocessor Usage

However, there are some disadvantages when using preprocessor directives, which grant
them the name #ifdef hell [FKA+13]. One of them is visible in Listing 5.5, because
a fine-granular adaptation implies an overhead of code, which makes it more confus-
ing. With the usage of preprocessor directives, the declaration of the method loadCSV

changes from the extent of a single line to being scattered over several lines.

Furthermore, we had to adapt code distributed on several classes. A desirable property
would be a clear separation of concerns [ABKS13] in our implementation. This means,
code that belongs to one feature is located in one programming entity. However, this is
not possible by just using preprocessor directives, because the directives belonging to
one feature are situated in different classes.
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Expected Differences in Performance Using Preprocessor Directives

As we have described above, abstract classes introduce an additional lookup on the vir-
tual function table to find the code to be processed while run-time. Using preprocessor
directives, we want to avoid this additional lookup and, hopefully, save computational
effort. As a consequence, the performance of database operations may vary depending
on the two framework implementations.

Designing our framework using preprocessor directives, the footprint of our variants
should decrease. This is because unnecessary code, which was used to provide variability
considering the usage of abstract classes, is filtered out before compilation and, thus,
the footprint of the program should be shrunk. As a consequence, the performance of
the framework should increase even more, because code of our framework fits better
into cache and, hence, the possibility for a cache miss should reduce. Nevertheless, the
given assumptions have to be proven in our evaluation to assure their validity.

5.4.3 Conclusion

To conclude, preprocessor directives are the state-of-the-art approach for introducing
variability in C++-programs, because preprocessor directives are easy to use and offer
adaptations of arbitrary extents. However, the code of one feature is often scattered
over several classes and using preprocessor directives may reduce the readability of
the code, because of the possibility for fine-granular adaptations. Furthermore, using
preprocessor directives, we hope to be able to reduce the run-time overhead of abstract
classes. However, we have to prove our assumptions in the evaluation.

5.5 Summary of our Implementation

In this chapter, we started with presenting arguments for an implementation of a frame-
work to evaluate the performance of database operations. After that, we presented the
overall design of our implementation. For this, we described the architecture and work-
flow of our framework. Furthermore, we present simplifications of our implementation
compared to traditional database management systems. With this, we can state the
validity of our results that are presented in the following chapter.

Another contribution of this chapter is to state possible extensions to our framework.
Using abstract classes, we can extend the buffer manager, implement new page replace-
ment strategies and join algorithms. In addition, we are able to access data tuple-wise
or to load a whole table using cursors, which allows us to emulate different processing
models.

However, we argue that the object-oriented way of implementing variability using ab-
stract classes may introduce a performance overhead and, thus, we propose to use pre-
processor directives as the state-of-the-art approach to introduce variability in C++.
To discuss which of these approaches offers the best performance and introduces the
smallest amount of computational overhead, we evaluate both approaches in the next
chapter.
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6. Evaluation

In this chapter, we present results of our tests that we have executed using our frame-
work to evaluate the performance of join algorithms under varying hardware. As de-
scribed in Chapter 4, we limit our considerations to different join strategies of tables
with varying size under different storage configurations. For this, we will start to eval-
uate the traditional storage concept consisting of HDD as persistent storage and a
buffer in RAM with varying capacity and varying page sizes. After that, we emphasize
differences to other configurations of the storage system.

Another important fact to be evaluated is whether using preprocessor directives instead
of abstract classes is beneficial for the performance of join algorithms. For this, we
execute our experiments on the modified framework with preprocessor annotations.

6.1 Configuration of Evaluation

To have a comprehensive overview on our evaluation, we present defined parameters
and impact factors in the following. For this, we will start by presenting hardware
factors of our test machine and continue by introducing the workload of our tests.

6.1.1 Test Environment

We execute our performance evaluation on a machine with an Intel(R) Core(TM) i5-
2500K as processing device. This is a quad-core with 3.30GHz processing power having
64KB L1-cache and 256KB L2-cache per core as well as 6MB L3-cache.

To provide different devices of the memory hierarchy, our test machine has an HDD,
SSD, and RAM installed. The HDD is a Seagate ST380011A Barracuda with average
latencies of 8.5ms. Our SSD is an ADATA Premiere Pro SP900 with 128GB storage
capacity, which offers us average access times around 0.1ms at 550/520MB/s read and
write performance respectively and, thus, being in the upper performance segment of
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todays SSDs. We installed 2x4GB DDR3-RAM running on 1333MHz with a clock
timing of 9-9-9-24.

As operating system, we installed the 64-bit version of Ubuntu 13.04, which offers us
stability and a good performance for our tests. To provide robust results, we execute
each performance measurement 20 times and compute the mean value out of it. To
assure even more robustness, we use a two-sided gamma trimming approach to remove
outliers, which means we filter out the two slowest and the two fastest response times.

Since we want to measure the performance of one database operation, we want to
eliminate the possibility that data or functions are already cached. For this, we execute
all our implemented join algorithms per run instead of executing one algorithm 20 times
and then continue with the next one. We argue that this is more relevant, because in
a database scenario with many parallel transactions, we cannot assume that data or
functions are already cached in the cache hierarchy.

6.1.2 Workload Characteristics

For the following discussion of our results, it is important to know the workload in
particular. Especially, the distribution of tuples on the pages is important to explain
dips in our performance diagrams. Our workload consists of five tables taken from the
TPC-H benchmark, which we adapt to our supported data types. Important properties
of the used tables, namely region, nation, supplier, customer, and lineitem

table are summarized in Table 6.1.

region

Table
nation

Table
supplier

Table
customer

Table
lineitem

Table

Tuples 4 25 100 1500 60175
Columns 3 4 7 8 16
Size of one Tuple
in Byte

181 185 197 223 159

Table 6.1: Summary of table properties.

Since tables are stored on pages, it is even more important to know how many pages have
to be accessed for an operation. Page accesses are directly correlated to the response
time of an operation. Furthermore, considering a buffer manager, it is important to
know how much content of a table can be held in the buffer, because it has a limited
amount of capacity of pages. To present an overview, we list the amount of occupied
pages per table depending on the page size in Table 6.2. For our evaluation, we choose
page sizes of 4, 8, and 16KB, because these are typical values used in common database
management systems, such as PostgreSQL1.

For evaluating the performance of join algorithms, we execute joins of four different
table pairs. Considering our five tables, the TPC-H benchmark provides joins between

1http://www.postgresql.org/
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Occupied Pages at region

Table
nation

Table
supplier

Table
customer

Table
lineitem

Table

4KB page size 1 2 5 84 2407
8KB page size 1 1 3 42 1180
16KB page size 1 1 2 21 585

Table 6.2: Pages per table under different page sizes.

nation and region table, nation and supplier table, nation and customer table as
well as a join between supplier and lineitem table.

6.1.3 Expected Results

In this work, we want to emphasize and evaluate the impact of hardware on the per-
formance of database operations. Consequently, our evaluation concentrates on the
join performance differences under varying hardware. Generally, we want to find cases
where the superiority of one join algorithm changes because of changed hardware and
based on our literature review, we derive the following hypotheses:

• In contrast to the HDD, SDDs give advantage to random reads. Thus, join al-
gorithms causing random reads should have a better performance using SSDs
instead of HDDs.

• Compared to the configuration with the HDD as persistent storage device, the
performance of database operations should increase when using the SSD as addi-
tional buffer, because it may close the gap in the memory hierarchy.

• Finally, the best performance results are to be achieved when using the in-memory
variant.

• Furthermore, we expect that the object-oriented approach using many abstract
classes incurs performance penalties compared to an implementation using pre-
processor directives.

In the following, we will start by presenting our results for the traditional storage
configuration consisting of HDD and RAM as the basis of our evaluation. With this,
we are able to compare the remaining configurations to the traditional configuration
and present differences between the storage configurations.

6.2 Performance Comparison for HDD as Storage

Device
In this section, we are presenting numbers that we have gathered for evaluating the
performance of different join strategies. For this, we executed the nested-loops, block-
nested-loops, hash, and sort-merge join for the five tables on different storage config-
urations, buffer and page sizes. For a detailed view on our collected data, we refer to
the Appendix Chapter A.
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To present our results, we start with the evaluation of the traditional database configu-
ration where all data is stored on the HDD and RAM is used as buffer. For comparing
the performance of join strategies, we execute the four strategies on four joins under
different buffer pool sizes and measure their response time. In Figure 6.1, we depict the
average of measured response times of join algorithms for each pair of joined tables at
4KB page size with increasing buffer sizes.

For performance evaluation under varying buffer pool sizes, we measure the response
time with 10 to 90 percent of the needed pages to fit into buffer pool. To calculate the
number of needed pages and, thus, the buffer pool size, we refer to Table 6.2 presenting
pages per table.

6.2.1 Join Performance When Joining nation and region Table

Regarding the performance of different join strategies, the join of the nation and region

table is an interesting case, because the best join algorithm differs in this case depending
on the available RAM. In Figure 6.1.(a), three stairs are visible:

1. 10% – 30%: Since only one of three needed pages fits into RAM, each time a
new tuple is read for comparison, the buffered page has to be replaced. At this
configuration, the nested-loops and block-nested-loops join are superior, because
they cause less page misses. For each tuple of the region table (4 in numbers),
the two pages of the nation table are loaded.

In contrast, the hash join loads the region table and constructs the hash table out
of it. Then, for each tuple of the nation table (25 in numbers), the corresponding
tuple of the region table is loaded which is located on the same side as the others.
Consequently, the hash join cannot benefit from the hash table, because hashed
values are located on the same side.

Considering the sort-merge join, we are faced with the same problem. Both
strategies, hash join and sort-merge join, are constructed for reducing the amount
of loaded pages. However, this does only work, when (1) enough RAM is available
and (2) page accesses are reduced because of the known storage location.

2. 40% – 60%: Here, two pages fit into RAM, which causes the same amount of
cache misses for the nested-loops join, because still every page of the nation
table is loaded. However, this configuration causes more computational effort for
the nested-loops join, because the page replacement strategy has to traverse a list
of two pages to find the page to be replaced.

The sort-merge join improves its performance, because after reading both tables
in, one page of each table can be held in RAM for comparison. Nevertheless, the
sort-merge join is still not the best join strategy at this configuration, because
the random access during comparison phase causes more page replacements than
,e.g., the hash join or block-nested-loops join, which benefit from the available
RAM, having four page misses both.
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3. 70% – 90%: All pages fit into RAM and except for loading pages, no access to
secondary memory is needed. This configuration is similar to the in-memory case.
The nested-loops join has the worst performance because of the computational
overhead for comparing each tuple of one table with each tuple of the other. The
block-nested-loops join proves his superiority to the nested-loops join, which is
the result of the reduced I/O-overhead (cf. Section 2.3.3).

The sort-merge join is the second fastest algorithm, because the sort phase needs
additional computational effort. This join algorithm is only beaten by the hash
join, which benefits the most from the data being in RAM.

As we can see, the best algorithm for joining small tables depends on the given RAM.
This phenomenon is even more severely, when the page sizes increase, because tuples
are placed on less pages. At 8KB page size, every table consumes one page and, as a
consequence, there are just two steps in the performance. We summarize the average
response times for the join algorithms at 8KB in Table 6.3.

Average Response
Time at

Nested-Loops
Join

Block-Nested-
Loops Join

Hash Join Sort-Merge
Join

1 page in RAM 118 90 258 255
2 pages in RAM 55 41 34 43

Table 6.3: Average response time of join algorithms joining region and nation table
with 8KB page size.

6.2.2 Join Performance When Joining Bigger Tables

In contrast to joins of small tables, the overhead for page accesses is dominantly impact-
ing the performance of join algorithms. Since the nested-loops and the block-nested-
loops join represent the brute-force approach, which accesses every page of the second
table per tuple of the first table, they cause the most page accesses compared to the
hash join and the sort-merge join.

However, the hash join and sort-merge join benefit from their selective page access in the
second phase of the algorithm. This results in a big advantage for these two strategies,
because significantly fewer pages are accessed and especially in a system where disk
access is the bottleneck, reducing disk accesses is a beneficial strategy.

Our results indicate that, if joined tables take several pages, the hash join is the best join
algorithm and is superior to every join algorithm that we implemented. Nevertheless,
the sort-merge join offers good performance, too, and improves its response times the
more RAM is available. Considering pre-sorted data, it is plausible, that the sort-merge
join may have a better performance compared to the hash join.
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6.3 Comparison for SSD as Storage Device

For comparing the performance of the join strategy on the SSD, we executed all exper-
iments done on the HDD again using the SSD as storage location. While HDDs are
good in performing sequential reads and suffer from random reads, an SSD beats the
HDD in performing random reads, as we have already stated in Section 3.3.

Regarding differences in access times between HDD and SSD, join algorithms should
be favored on the SSD that incur a high amount of random reads. Considering our four
join algorithms, we expect the following results:

• The nested-loops join and block-nested-loops join rely on sequential reads and
should not benefit significantly from SSD usage.

• However, the hash join and sort-merge join cause random reads in the second
phase of their execution and, thus, benefit from the usage of the SSD.

In the second phase of the hash join, the second table is read sequentially and on
the hashed table, random reads are executed. The sort-merge join causes even more
random reads, because in the second phase, tables are traversed in the order of the join
attribute values, which may lead to random reads, if the tables are not sorted on the
join attribute. Consequently, we expect performance differences for the hash join and
sort-merge join using SSDs instead of HDDs.

After executing the performance experiments on the SSD, we compared our results
with the data gathered from the HDD configuration. However, there had been almost
no significant difference in the corresponding response times of both implementations.
Solely, the sort-merge join at 16KB page size shows steadily improved performance
values of around 1%. Nevertheless, our results do not match our expectations and,
thus, we will discuss, which impact factors may be changed to get more meaningful
results for future evaluations.

6.3.1 Possible Impact Factors Distorting our Results

Since our assumptions mismatch the measured data, we have to find explanations for
our gathered data. We identify four possible reasons that may have led to different
performance results than we expected when using SSDs. These four are: our joins
cause to less random reads, or too many write operations, the page size is not optimal,
or the file is already cached. We discuss these four impact factors and present possible
solutions in the following section.

Too Less Random Reads

One possibility that the SSD results have not improved for the hash and sort-merge join
is that our workload implies to less random reads. For the hash-join, we execute random
reads on the hashed table, which is the smaller table, because it was proposed to hash
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the smaller table to reduce memory consumption [ME92]. However, the smaller table,
which is either the nation table or the supplier table, takes between one and five
pages depending on the page size. Consequently, it is very likely that the performance
benefit for the hash join is too little in our scenario and, hence, cannot be separated
from the standard deviation.

Considering the sort-merge join, data is read in the order of the join attribute values.
As we have already said, one of the joined tables is already stored in a sorted way. Thus,
it will be sequentially read when the join is executed reducing the amount of random
reads.

To summarize, the used benchmark and the strategies may reduce the amount of random
reads and, thus, the high potential of SSDs may not be exploited in our evaluation.

Too Many Write Operations

Another property of SSDs that may hinder their performance is the write latency of
SSDs. As we review in Section 3.3, critical operations on SSDs are deleting of blocks
to get free pages to write. In our experiments, every time the buffer is full and an
additional page is loaded, one page in the buffer pool has to be written down to the
SSD. These writes may decrease the performance of database operations if they are
frequently executed.

Page Size not Optimal

Another possible impact factor that diminishes the superiority of SSDs as persistent
storage device for database operation may be the chosen page sizes. For our evaluation,
we choose 4, 8, and 16KB as page sizes. It is possible, that at the given granularity
of access, the SSD configuration has a similar performance as the HDD configuration
and differences would occur when page sizes are varied. As a consequence, further
experiments are necessary to give a comprehensive answer considering the optimal page
size for SSDs.

Database File is Cached

Our implementation relies on the functionality of the operating system, which provides
access to resources, such as main memory and disk access. However, considering our
scenario, the operating system may try to improve our performance by caching necessary
data. Especially access to our database file may be improved by holding part of or even
the whole file in RAM and propagating changes to the disk in an asynchronous way.

By caching the database file, the operating system improves the performance of our
program, but also obscures the access gap. Another cache that may distort our results
is installed on the hard disk itself. This cache buffers read and write request to reduce
accesses to the hard disk. This may also lead to a better performance of the HDD
compared to the SSD than we expected. As a consequence, we have to execute our
experiments with more data, so that used caches overflow, which should favor the SSD
as persistent storage devices.
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6.3.2 Possible Solutions for Distorting Impact Factors

Since we cannot clarify which reason caused the mismatch between our assumptions
and the measured performance of our join algorithms without further tests, we want to
discuss here what has to be done in future work.

Increase Table Size

One possibility to increase random reads and stop caching effects is to increase the table
size to amounts that are not cacheable for the operating system or hard disk. With this,
we decrease the impact of caching in our performance evaluation and response times
are dominated by real disk access.

However, increased table sizes also lead to highly increased response times, especially
considering nested-loops join and block-nested-loops join. Thus, we have to leave this
open for future work, because of our limited time.

Prevent Operating System From Caching by System Call

A possibility to stop caching effects of the operating system is provided by the Ubuntu
operating system itself. When executing echo 3 > /proc/sys/vm/drop_caches on the
command line tool, we are able to tell the Linux kernel to write all cached data down
to disk again. This is an easy way to eliminate cache effects caused by the operating
system, because C++ offers us the possibility to implement such system calls in our
framework.

Nevertheless, when we tried to execute our experiments again with the included system
call after accessing the database file, we were faced with enormous run times of the
experiments. This arises from the fact that even the operating system itself needs cached
data to work properly and fast enough. As a consequence, computational potential is
used to resume the operating system functionality instead of executing our performance
evaluation. Thus, we cannot use this system call to prevent caching, because it leads
to false results.

Exhausting Available RAM

The problem of caching is that free memory is used to hold data that may be valuable
for further processing even if we do not want it to be cached. But what if there is no
space left to cache any data?

Considering our scenario, we would have to write a program that allocates remaining
memory so that it cannot be used for caching our database file. Furthermore, the
program should frequently access its data, because else the operating system may swap
out unused data to disk in order to gain free memory for caching. The implementation
of such a tool is open for future work.
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Store Table Data Several Times

Another way to stop caching effects, is to blow up the size of the database file, so that
it cannot be cached anymore. This could be done by storing the accessed table several
times. With this, the database file can take an arbitrary size and, thus, is hard to
cache. Additionally, to hinder the system from caching parts of the database file, we
also have to access different replicas of the table. Considering our design, this is easy to
implement, because we know the size of a table and how many tables are stored. Thus,
storage locations of tuples in the replicas are easily computable.

However, accessing different replicas causes a random read every time which penalizes
a HDD in contrast to the SSD and will also distort expected measurements. As a
consequence, this strategy is only usable for selected algorithms that imply random
reads by definition.

6.3.3 Summary

To summarize, we are not able to evidence that some algorithms, especially the hash
and sort-merge join, benefit from SSDs as persistent storage devices. In this section, we
described possible factors that may have distorted expected performance benefits and
also present possible approaches using our framework to avoid these factors. However,
since our performance tests would have to be repeated and we expect higher response for
the algorithms, most of these possibilities have to be evaluated in future work, because
of the limited time of this thesis.

6.4 Comparison for SSD as Extended Buffer Pool

Another configuration of storage devices includes the SSD as buffer pool to bridge
the access gap between HDD and RAM. For this configuration, we firstly present some
assumptions according to expected performance characteristics and, after that, we show
if our expectations are confirmed by our gathered data.

6.4.1 Performance Assumptions

Considering the design of our implementation to use the SSD as additional buffer, we
are able to formulate a few assumptions on the expected performance of join algorithms
under different criteria. On the one hand, a high amount of RAM should diminish the
performance gain when using SSDs to extended the buffer pool and, on the other hand,
the number of reused pages determines how beneficial an additional buffer pool on the
SSD is.

High Amounts of RAM Diminishes Benefit of SSD as Extended Buffer Pool

The implementation of the SSD buffer pool incurs additional overhead. First, an addi-
tional data structure is needed holding information of pages buffered in RAM. Second,
if a page has been loaded from HDD and both buffers are full, two page replacements



6.4. Comparison for SSD as Extended Buffer Pool 71

have to be executed to buffer the new page. As a consequence, if enough RAM is
available, the need for an SSD decreases, because the computational overhead is not
justified.

With this in mind, we expect that at little amount of RAM available, performance of join
algorithms increases compared to the HDD configuration. However, when the amount
of available RAM increases, the gained speedups will decrease and join performance may
even get worse than the corresponding join performance under the HDD configuration.

Page Reuse Influences Performance

Having in mind that using the SSD as buffer pool implies computational overhead for
buffering pages, we have to be sure that the usage pattern of our algorithm reuses
buffered pages in an appropriate amount. If pages are buffered on the SSD, but not
reused anymore, the computational overhead for holding them buffered on the SSD is
not justified.

Considering our join algorithms, especially, the nested-loops as well as the block-nested-
loops join access all pages per tuple. Consequently, if all pages do not fit en bloc into
the buffers, reuse will not occur in this storage configuration and a benefit will not
be achieved. Probably, hash and sort-merge join will benefit more from the SSD as
extended buffer pool, because they access less pages and a reuse of already cached
pages has a higher probability.

6.4.2 Performance Comparison between the Traditional Con-
figuration and the Extended Buffer Pool

To make decisions, whether reached performance is an improvement to the traditional
storage configuration, we have to compare measured response times under the two con-
figurations. We choose the join of the nation and customer table, because it represents
a good scenario and the probability of reusing pages at little amount of RAM is good.
Since we are able to configure two buffer sizes when using SSD as buffer — one for the
buffer in RAM and one for the SSD buffer pool — we have to find a way to compare
both configurations. For this scenario, we observe that response times are very stable
under different sizes of the SSD buffer pool and, thus, we decide to compare the re-
sponse time under 50% buffer pool on SSD. The corresponding diagrams are depicted
in Figure 6.2. Lines with arrows display join performance under the SSD as extended
buffer pool configuration. The performance diagrams for the nested-loops and block-
nested-loops join show that response time does not improve significantly using an SSD
as additional buffer. This is caused by the cache-unfriendly access pattern of these
both strategies, although the block-nested-loops shows slightly improved performance
of around 0.5% for 10 and 20% available RAM.

Furthermore, we observe speedups for the hash join and sort-merge join on our SSD as
extended buffer pool configuration compared to the HDD configuration. However, the
performance advantages of the hash join are present up to 40% of available RAM. If
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this border is passed, the computational overhead of two buffer pools is not justifiable
and the traditional approach works better. Even considering the performance of the
sort-merge join, speedups decrease with increasing amount of available RAM.

6.4.3 Performance Under Varying SSD Buffer Pool Size

Considering our gathered data, we observe an abnormal behavior of response times
under varying buffer pool size if the available RAM is limited to not more than 30%
RAM. Normally, response times are either relatively stable with increasing SSD buffer
size or even improve. However, in some case, with increasing SSD buffer sizes, response
times first improve and at a predefined border, they get worse again. We depict gathered
data of the described scenario in Figure 6.3 where the nation and region table is joined.
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Figure 6.3: Hash join and sort-merge join under varying SSD buffer size for 10% avail-
able RAM buffer size.

As the curves for the response time indicate, there are special values of SSD buffer size
that are more advantageous than others. At the given scenario with little RAM, it
is advantageous to buffer more than 30% of the pages on the SSD to gain speedups.
However, if more than 80% of the pages are buffered, the performance decreases again.
This performance decrease arises, because storing a high amount of pages in the buffer
pool implies bigger data structures and computational overhead to provide buffer func-
tionality, which is not sufficiently compensated by performance gain of using SSDs.
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To summarize, our performance comparisons show improved performance using an SSD
as additional buffer, if pages are reused and the RAM is limited. In fact, the hash join
and sort-merge join benefit from the usage of the SSD as additional buffer. Furthermore,
in our experiments, we found out that it is only beneficial to use SSDs for buffering if
the available amount of RAM can hold at maximum 40% of the data or less.

6.5 Comparison for In-Memory Configuration

The last configuration, we want to evaluate is the configuration where all data is stored
in RAM. It is obvious, that this configuration has to be the fastest, because there is no
impact from slower persistent storage devices. However, the memory wall represents
the bottleneck to the caches here and, thus, we hope to achieve even faster response
times with varying page sizes, because caches may be used more efficiently.

The first experiment is done with a page size of 4KB and measured averages of response
times are presented in Table 6.4. While the hash join is between 23 and 44% faster
than its competitors for the join of the region and nation table, it widens the perfor-
mance advantage to up to 97% for the join of the supplier and lineitem table. As a
consequence, the hash join is the best join strategy of our four given implementations.

Average Response Time Nested-Loops
Join

Block-Nested-
Loops Join

Hash Join Sort-Merge
Join

nation & region 40 38 23 32
nation & supplier 571 565 74 104
nation & customer 8545 8503 830 1227
supplier & lineitem 1344499 1331276 33914 63643

Table 6.4: Average response time of join algorithms for the in-memory case at 4KB.

Considering response times for different page sizes, we do not discover a significant or
steady improvement of performance. This may have the reason that either we execute
our experiments on too less data, the page sizes are not well chosen to fit caches, or our
algorithms are not designed in a cache friendly way.

As a consequence for future work, we have to examine cache misses when joining bigger
tables under varying page sizes to get an idea what page sizes favor join algorithms the
most. Furthermore, we have to examine our algorithm design and its incurring cache
misses to improve their in-memory performance.

6.6 Influence of Preprocessor Usage

In the previous chapter, we have already emphasized that an implementation using
abstract classes may introduce a performance overhead because of additional required
lookups on virtual function tables. To reduce this overhead, we use preprocessor di-
rectives to implement variability in our framework. With this, we want to improve
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the performance and footprint of our framework, which also should improve response
times of join algorithms. In the following, we present whether the usage of preprocessor
directives has achieved this goal.

6.6.1 Expected Improvements in our Framework

The initial framework implementation relies on the usage of abstract classes to pro-
vide variability for the join algorithms, page replacement strategies, cursors and buffer
manager. Because of the extensive usage of abstract classes in our small framework
and before-mentioned disadvantages of them, we expect deficits between the initial
framework and the preprocessor work in the footprint of the application and also in its
performance. In the following, we present reasons for these two assumptions to clarify
why it is important to show that these assumptions hold.

Smaller Footprint

We compiled the program using the gcc with O3 optimization. This enables fast code
and the compiler optimizes code by inlining. We expect that the compiler is able to
inline some of our abstract classes, such as the page replacement strategy CLOCK
to gain performance, because it is the only class inheriting from the abstract class
PageReplacement. However, many derived classes, such as different buffer managers,
will not be able to be inlined easily. As a consequence, unnecessary code providing
variability will still be included in the resulting program.

Since preprocessor directives filter out unused code, before the program is compiled,
we state that the resulting program will have a smaller footprint. For instance, differ-
ent implementations of the buffer manager do not have to be available, reducing the
compiled code. This may also influence the performance of our framework.

Improved Performance of our Framework

As we have stated above, we expect that the resulting program will have a smaller foot-
print considering the preprocessor approach. Since programming instructions have to be
loaded into the instruction cache to be executed, the executed code should be as small
as possible. As a consequence, a reduced footprint should improve the performance.

Another aspect influencing the performance of database operations are caused by the
usage of virtual functions in our abstract classes. Using virtual functions, we implicitly
access the virtual function table to locate code to be executed. Thus, we argue that
calling a high amount of virtual functions causes performance deficits to the preprocessor
approach.

6.6.2 Comparison of Both Implementations

For comparing both implementations considering the footprint and performance, we
compile each implementation of the framework with exactly the same configuration
and measure the two properties. For determining the footprint of our programs, we
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simply take the size of the compiled source as a first examination of the footprint of
our program.

Another interesting indicator would be the memory consumption of our framework.
However, we cannot make clear decisions about memory consumption, because the
memory consumption of processed data and intermediate data structures is several
cardinalities higher than the savings from the preprocessor directive usage. Thus, mea-
suring the memory consumption does not lead to significant results.

Footprint of Applications

To measure the footprint of our framework, we compiled the four configurations of our
framework with the same workload and depict their sizes in Table 6.5. Obviously, we
are able to decrease the footprint of the variants by about 6 to 12% using preprocessor
directives. When restructuring more complex programs which usually use a high amount
of abstract classes and virtual functions, we suppose that footprint savings are even
higher.

Footprint in KB Object-Oriented Approach Preprocessor Approach

Storage on HDD/SSD 258,6 233 (9,89% less)
SSD as Extended Buffer 262,7 246,4 (6,2% less)
Storage in RAM 253,8 222,7 (12,25% less)

Table 6.5: Footprint of the four configurations of our framework.

Performance Comparison

The most significant results are achieved between the two approaches of the extended
buffer pool variant, because it uses two page replacement strategies. Considering the
performance of both implementations, we encounter performance improvements of 1 to
33%, as we depict in Figure 6.4. Here, the best performance gain is achieved when the
available RAM can hold 40% of the data, because here, functional calls of both page
replacement strategies are higher than if one of the buffer managers holds much more
pages than the other.

However, we notice that joining small tables will benefit less of the preprocessor ap-
proach than joins on bigger tables. Joining, for instance, the nation and region table
may also have a slightly worse performance than the object-oriented approach, which is
explainable by normal deviation of our results. Furthermore, since page replacements
represent a performance overhead in the object-oriented approach, joining small tables
is less beneficial.

We argue that increasing table sizes would favor the preprocessor approach and also
more complex implementations that normally use numerous abstract classes will benefit
even more from a restructuring using preprocessor directives.



6.7. Threats to Validity 77

   0 10 20 30 40 50 60 70 80 90

100

   

10

20

30

40

50

60

70

80

90

buffered pages in %

pe
rfo

rm
an

ce
 b

en
efi

t i
n 

%

Figure 6.4: Performance benefit for varying RAM sizes for block-nested-loops when
joining supplier and lineitem table using preprocessor implementation of the config-
uration with SSD as extended buffer pool.

6.7 Threats to Validity

The results that we present in this chapter rely on the proper functionality of our imple-
mentation and assumptions that we described in Chapter 5. To justify that we achieved
valid results, we discuss important points that may influence measured response times
as internal validity and state respective countermeasures to minimize these effects. Fur-
thermore, we state to which extent our results are generalizable to database operations
on database systems in the section about external validity.

6.7.1 Internal Validity

An analysis of the internal validity shows to what extent our gathered data is correct
and is not biased by other impact factors. To this end, we show how we minimize
systematic errors in our implementation.

Implementation of our Framework

For our framework, we have made some assumptions that limit the functionality of
our framework regarding the traditional database design. However, we argue that our
implementation delivers valid performance results of database operations. Furthermore,
we state that our limitations to the five-level-schema architecture do not influence the
performance of database operations significantly, as we describe in Section 5.2.2.
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Unbiased Implementation of Algorithms

Since we compare the performance of different join algorithms, it is important that
we implement each strategy on the same optimization level. With this, we guarantee
that our comparison reflects which strategy is the best for a given use case instead of
evaluating the implementation.

Considering used data structures, we rely on the functionality of the C++-standard li-
brary. Especially the hash map and sort function from the standard library are used in
our implementation. In future work, we have to implement own data structures to pro-
vide better performance. Nevertheless, at the current state we use already implemented
data structures and hope they provide comparability.

Iterative Approach to Get Valid Results

In our work, we start by analyzing different hardware devices to formulate assumptions.
With these assumptions, we evaluate the performance of join algorithms to prove our
assumptions. If our results do not meet our expectations, we argue possible impact
factors that influence our results with respect to the workload to underline the validity
of our framework.

Caching Effects

Usually every operating system is designed for improving the performance of all appli-
cations. For this, it holds useful data in RAM and, hence, improves the data access of
applications. On the one hand, it improves the performance of our algorithms, because
data access is a critical factor for database operations. On the other hand, we want to
compare the performance of database operations that cause many data accesses using
different access patterns and caching minimizes the impact of data access on the perfor-
mance. Thus, our results are biased by caching. As we have discussed in Section 6.3.2,
there are different possibilities to avoid these caching effects. With this, we are able to
compare different storage configurations in an unbiased way.

However, not only the RAM caches used data, also instruction and data caches (in L1-L3
caches) allow access to previously used data and operations. Every time an evaluation
of a join algorithm is repeated, some used data may be already cached, which distorts
our results. To minimize the impact of these caching effects, our experiments iterate
through the join algorithms. With this, different data and instructions are used so that
caching data of a single algorithm becomes almost impossible, which gives us unbiased
results.

Minimize Random Errors

Every measurement is influenced by random errors. In our experiments, random errors
are caused by concurrent processes using the same resources as our framework, such as
reading data from disk. To provide robustness against random errors, we repeat every
configuration 20 times and compute the mean value excluding outliers. Furthermore,
we do reproducibility tests to improve the validity of our results.
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6.7.2 External Validity

In the external validity, we discuss to which extent our results are generalizable to
database operations on other database management systems. To this end, we cover our
workload and our limited functionality with respect to the five-level-schema architecture
as factors that influence the external validity.

Workload

Using the typical data warehouse benchmark TPC-H, our performance evaluation holds
for most of the data warehouse queries. Since the workload includes several small
dimension tables and a huge fact table, our join performance is measured for joining
one small and one big table. Consequently, we cannot generalize our results to other
use cases where tables have nearly the same amount of tuples each. Furthermore, data
distribution and whether tuples are sorted influence the performance as well, making
our results less generalizable. As a consequence, we have to extend our evaluation to
more use cases to reach a high comprehensibility.

Limited Database Functionality

As we have described in Section 5.2.2, we limit our framework in its functionality
compared to the five-level-schema architecture. Important points to be mentioned are:

• In our framework, we assume that intermediate data structures, such as hash
tables, can be kept in RAM. In normal database management systems, these
structures are stored on pages as well to enable synchronization with the persistent
storage. With this, the memory consumption of database operations reduces by
causing additional disk accesses. Nevertheless, for our evaluation, we want to
compare the same database operation for different storage configurations. As a
consequence, our intermediate results must fit RAM, because we also want to
evaluate in-memory systems where data structures including all data have to be
available in RAM.

• Another influence factor that might correlate with the external validity is that
our tables are stored on contiguous pages. With this, we are able to compute
the storage location of a tuple by knowing its ID, length, and the first page
of the table. In contrast, database management system would store necessary
information, such as which page belongs to which table, in an additional data
structure. This overhead is omitted, here, since we state that this overhead does
not severely influence the performance of database operations. Furthermore, for
sequential scans, we can use the information in the header of pages to find the
next page without further computational overhead.

• Our framework is also limited in supported data types. At the moment, we
support data types of a predefined length and implementations for data types of
varying lengths are left open for future work. This simplifies our implementation,
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because each row has a fixed size and we are able to easily compute storage
locations of tuples. However, for future work, we have to support data types
such as varchar with varying lengths to emulate common database-management-
system functionality.

6.7.3 Conclusion Regarding Threats to Validity

To argue that our results are valid and generalizable, we listed important points that
influence validity. Concluding, we have reached a high internal validity resulting of our
iterative approach and minimizing random errors, which strengthens our comparison of
join algorithms for different storage configurations. Nevertheless, additional tests have
to be done where we eliminate the influence of caching, to further verify our results.

Considering the external validity, our workload targets typical data warehouse queries.
Furthermore, we have made some assumptions that limit the generalizability of our
results. Since implementations of database management systems differ, we have to
verify our results under different available database management systems to reach a
high external validity.

6.8 Summary of our Performance Evaluation
To summarize, we evaluated the performance of our four join algorithms under the four
storage configurations and also examined the influence of our preprocessor implemen-
tation. Our evaluation brought the following results.

Traditional Storage Configuration

If tables occupy a small amount of pages and RAM is very limited, the block-nested-
loops join is superior to the others. However, with increasing RAM and table sizes,
the hash-join is the best join algorithm. Nevertheless, the sort-merge join improves its
performance steadily with increasing RAM and we argue that its performance may be
superior to the hash join when tables are already sorted.

Replacing HDD by SSD

Unfortunately, we cannot state any results that would indicate a performance advantage
when using SSDs instead of HDDs with our evaluation. This is either the result of our
workload or caused by caching effects that keep our small data available in RAM. To
minimize these influence factors, we present different possibilities in order to get results
that reflect the difference between HDD and SSD.

Using SSDs as Extended Buffer Pool

Considering the usage of SSDs as an extension to the buffer pool, we identify perfor-
mance improvements compared to the traditional approach. However, this performance
improvement depends on the amount of available RAM. If about more than 40% of the
data fits in RAM, using an SSD to buffer often used pages creates more overhead than
it saves computational effort. When comparing the overall performance of our four
join algorithms, the hash join is still superior to the other three algorithms, because it
causes the least amount of page accesses.
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In-Memory Configuration

Our in-memory configuration shows the best performance for every algorithm, because
data access does not cause disk accesses. The bottleneck in this system is the memory
wall, which means CPU-caches work faster than the access to the RAM. As a conse-
quence, our algorithms have to be adapted to cache-friendly access patterns in future
work.

Regarding the best performing join strategy for in-memory databases, we identify the
hash join. Nevertheless, we argue that other workload including pre-sorted tables may
favor the sort-merge join and, consequently, future work has to address these possibili-
ties.

Implementation of our Framework Using Preprocessor Directives

As already assumed, we achieve improvements when avoiding abstract classes and vir-
tual functions. These improvements are visible in a reduced footprint of the application
and a slightly improved performance of our join algorithms. SInce our framework con-
sists only of few used abstract classes, we argue that a more complex system with several
abstract classes and numerous subclasses benefit even more from the usage preprocessor
directives to avoid the overhead of inheritance.

Conclusion of Join Performance

Our goal was to show that the best join algorithm changes if algorithms are executed
on different storage configurations. However, with our limited workload, we could not
observe highly differing performance advantages between join algorithms, because the
hash join seems to be superior. Nevertheless, we observed several local tendencies that,
in combination, may result in a totally different join processing. Especially the sort-
merge join has the tendency to perform better than the hash join with increasing RAM.
On a workload with sorted data, it may become the best join algorithm.
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7. Conclusion

In this work, we concentrated on the performance of database operations under dif-
ferent hardware devices. To conclude our outcome, we summarize main results of our
six contributions of this work. These contributions are: (1) deriving assumptions from
literature regarding the performance of database operations on specific hardware, (2)
presenting impact factors on database operation performance, (3) discretization of im-
pact factors to evaluate in this work, (4) comparing implementation techniques that
provide variability, (5) performance evaluation of join algorithms on different storage
configurations, (6) performance comparison regarding the two implementation tech-
niques.

Assumptions Derived From Literature

To have an overview on already published results, we reviewed papers of the main con-
ferences and stated their contributions regarding the performance of different database
operations considering a specific processing or storage device. From this, we formulate
the following assumptions:

• In-memory databases should benefit from column-wise storage and operator-at-
a-time processing. To avoid the well-known memory wall, algorithms should be
implemented cache-consciously.

• At the moment, multi-core CPUs are said to favor the hash join, but with in-
creasing SIMD capabilities, the sort-merge join should become superior.

• Considering the CPU results, the sort-merge join should perform best on the
GPU, because of its high SIMD capabilities. Nevertheless, one study showed the
superiority of the hash join on GPUs.

• Relatively new and still unpopular processing devices are FPGAs. One paper
proposes a block-nested-loops join, which reveals open issues for future work.
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• To bridge the access gap between HDD and RAM, SSDs could be used. However,
comprehensive performance evaluations of join algorithms using SSDs as extension
of the buffer pool are needed.

As a consequence, we identified a uniform evaluation of algorithms under different
hardware devices as an important goal. With this, we would be able to prove our
assumptions on a uniform methodology.

Presenting Impact Factors on Database Operation Performance

For a uniform evaluation, we had to analyze requirements and impacts for our evalua-
tion methodology. Arising from our literature review, we identified important impact
factors that influence the performance of database operations. The impact factors are
grouped into database-specific parameters, hardware parameters, algorithms, and work-
load and for a well-structured representation of their relation to each other, we created
the corresponding feature model.

Discretization of Impact Factors to Evaluate

Regarding the resulting feature model, we computed more than 3.7 million possible
configurations without considering continuous values. Since such a high amount of
evaluations is not feasible, we contributed a reasonable limitation of our feature model
leading to 16 variants to be evaluated. These variants include four different storage
configurations, where data is stored on HDD or SSD, data is stored on the HDD and
the SSD is used as an extension to the buffer pool, and all data is kept in RAM.
Furthermore, we evaluate the four join algorithms nested-loops join, block-nested-loops
join, hash join and sort-merge join under different buffer and page sizes.

Comparison of Implementation Techniques for Variability

For a uniform evaluation, we implemented a framework for executing database opera-
tions under varying hardware and impact factors. The standard implementation focuses
on the use of the object-oriented programming paradigm using abstract classes to pro-
vide variability. However, we argue that abstract classes and especially virtual functions
may introduce an unwanted performance overhead in our processing and present an-
other possibility to implement variability by using preprocessor directives.

Performance Comparison Regarding Different Storage Configurations

Finally, we evaluated the performance of our join algorithms under the four storage
configurations and found the following results:

• On the traditional storage configuration, at limited RAM and tables consuming
only few pages, the block-nested-loops join is superior. For increasing table sizes
and availability of RAM, the hash join is the best algorithm.
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• Considering the SSD as storage device instead of the HDD, we could not observe
any performance differences. As a consequence, we give some reasons why our
results do not match our expectations.

• For the usage of the SSD to extend the buffer pool, we observe that it is only
beneficial when the RAM can hold less than 40 % of the data. Still, even for this
configuration, the best join algorithm is the hash join.

• The in-memory configuration shows highly improved performance of join algo-
rithms. However, the hash join is superior to the other join algorithms for every
evaluated parameter and workload configuration.

Although, we have not found a highly differing performance between our join algorithms,
we argue that there are tendencies that may lead to different performance behaviors.
These tendencies have to be evaluated in future work.

Performance Comparison Regarding Implementation Techniques

Using our preprocessor implementation, we observe slight improvements in the footprint
of our framework and the performance of our join algorithms. Since our framework uses
only a few abstract classes, we argue that more complex systems using several abstract
classes and complex inheritance hierarchies benefit even more of the tailoring using
preprocessor directives.
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8. Future Work

Since our work represents the first step to an evaluation of the performance of different
database operations, there are numerous steps that have to be carried out to extend the
functionality of our framework and evaluate more impact factors on database operation
performance. In the following we present important points to be addressed in future
work categorized by their occurrence in our feature model.

Database-Specific Factors

Considering the database-specific factors, we have to do several extensions to the given
framework to reach more comprehensiveness. One property that is different to nor-
mal database management systems are our supported data types. At the moment,
we support data types of fixed length. However, to provide more database manage-
ment functionality, our framework has to handle data types of varying lengths such as
varchar.

Furthermore, at the moment, only one page replacement strategy is implemented. Fu-
ture evaluations should include different page replacement strategies that are proposed
in literature to reach more comprehensiveness in our evaluation.

At the moment, our framework works on row-oriented tables. However, considering
in-memory configurations, column-oriented storage models are favored more. Conse-
quently, we have to extent our implementation to also support a column-oriented view
on our data. With the inclusion of column-oriented tables, the possibility to imple-
ment different materialization strategies have to be possible as well to give a conclusive
performance evaluation.

Considering our processing models, we have to extend our system to also support
operator-at-a-time processing. Especially caches should benefit from this processing,
because they incur less instruction cache misses.
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Hardware Parameters

There are still open questions arising from our evaluation considering the usage of SSDs
replacing the HDD. Unfortunately, in our evaluation, we did not observe differences
between the usage of the SSD or the HDD as storage device. This phenomenon could
be explained because our algorithms cause too less random accesses, to many writes,
suboptimal page sizes are chosen, or caching effects benefit the HDD. To eliminate these
impacts, we have to repeat our evaluation for bigger tables or under exhausted RAM
capacity.

Considering our processing devices, our processing is done single-threaded at the mo-
ment. For our database algorithms, it could be beneficial to partition the data and
perform the database operations under several threads each having its own partition of
data. Hence, parallelization of database operations is left open for future work.

Furthermore, our evaluations should be repeated on an FPGA and GPU. Especially
the GPU with its SIMD capabilities may be beneficial for the sort-merge join and,
hence, is worth an evaluation. Additionally, since the FPGA is still pretty uncom-
mon for database operations, it yields a big potential for future work. Currently, only
block-nested-loops joins were executed on the FPGA and further implementations and
evaluations are required to make reasonable statements about advantageous properties
of FPGAs for database co-processing.

Database Operation Implementations

At the moment, our performance evaluations are limited to the four join algorithms
nested-loops, block-nested-loops, hash and sort-merge join. For a comprehensive eval-
uation, different implementations of the sort and hash functions have to be evaluated.
Since the implementation of the best sort function is related to the best sort operation,
further evaluations for remaining database operations have to be done. This includes
sorting, aggregation and selection.

Considering complex query plans, we should evaluate the processing of pipelined database
operations. For instance, a selection could be executed on one table and the result is
joined with another table. With this possibility, we are able to justify or falsify tradi-
tional optimization rules with our framework for the new hardware.

Furthermore, an adaptation of our algorithm design to provide cache-consciousness for
in-memory configuration has to be done. With this, we avoid the impact of the memory
wall and we are able to examine its impact.

Impact Factors of Workload

Our workload is limited to the standard benchmark for data warehouse applications. As
a consequence, our evaluation should be extended to consider different data distributions
and table sizes. Furthermore, especially for the sort-merge join, pre-sorted data is an
important data property that has to be examined as well as indexed data.
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Metrics of Database Operation Performance

Another important point for future work concerns the metrics that are evaluated for
the database operations. For our evaluation, we used the response time of algorithms,
because we evaluated one database operation. Further metrics could be the throughput
when considering several database operations.

An important characteristic of database operations is also the energy consumption of
the algorithms. Especially considering green computing, algorithms consuming little
amount of energy are needed, which makes an additional evaluation of their energy
consumption worth.
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A. Appendix

In the appendix, we present our gathered performance measurements. For each value
in the following tables, we took 20 repetitions and removed the two fastest and slowest
response times. From the resulting 16 values, we computed the average response time in
µs and depict it here. To keep the table heads short, we use the following abbreviations:
B = buffer size of RAM for HDD or SSD as persistent storage device, or buffer size of
SSD when used as extension to the buffer pool, PS = page size, NLJ = nested-loops
join, BNLJ = block-nested-loops join, HJ = hash join, SMJ = sort-merge join.

The appendix is structured as follows. We start to introduce the performance results of
our object-oriented implementation and present corresponding response times for each
of the four storage configurations and continue with our performance results of each of
the four storage configuration for the implementation using preprocessor directives.

A.1 Object-Oriented Approach

A.1.1 Traditional Configuration with HDD as Persistent Stor-
age Device

B NLJ BNLJ HJ SMJ

10 127 129 227 230
20 137 130 231 234
30 134 130 229 235
40 136 48 48 150
50 182 48 47 84
60 165 48 48 88
70 73 44 35 37
80 68 43 35 40
90 68 43 34 37

nation join region at 4KB page size

B NLJ BNLJ HJ SMJ

10 104 92 252 255
20 108 91 263 256
30 106 88 259 251
40 106 90 258 257
50 168 91 258 255
60 55 41 35 43
70 57 40 37 46
80 54 41 32 43
90 55 42 33 39

nation join region at 8KB page size
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B NLJ BNLJ HJ SMJ

10 131 111 364 362
20 134 111 362 360
30 140 111 358 358
40 136 110 362 366
50 138 110 356 357
60 69 47 41 42
70 82 45 40 43
80 77 44 39 44
90 341 41 38 47

nation join region at 16KB page size

B NLJ BNLJ HJ SMJ

10 1123 1513 810 831
20 1279 671 267 500
30 1211 618 114 422
40 1122 615 113 423
50 1135 618 104 336
60 1128 607 103 257
70 1245 602 102 258
80 540 606 104 143
90 551 610 92 112

nation join supplier at 4KB page size

B NLJ BNLJ HJ SMJ

10 964 1196 903 915
20 979 1212 905 923
30 977 585 87 430
40 990 581 87 427
50 1003 575 90 431
60 994 586 85 321
70 1071 583 86 320
80 552 563 83 110
90 551 570 86 114

nation join supplier at 8KB page size

B NLJ BNLJ HJ SMJ

10 1025 1201 1340 1337
20 1014 1200 1339 1342
30 1016 1197 1337 1335
40 1050 565 90 378
50 1058 557 96 385
60 1084 559 91 379
70 539 539 85 109
80 534 539 85 112
90 529 543 84 112

nation join supplier at 16KB page size

B NLJ BNLJ HJ SMJ

10 16383 8950 1313 5941
20 16235 8712 1326 5818
30 16311 8733 1303 5749
40 16282 8611 1264 5514
50 16150 8551 1176 4502
60 16352 8494 1150 4196
70 16101 8423 1131 3360
80 16151 8367 1120 2909
90 16179 8341 1104 2139

nation join customer at 4KB page size

B NLJ BNLJ HJ SMJ

10 12823 8083 1097 5620
20 12851 8151 1086 5354
30 12846 8165 1047 5257
40 13025 8102 1018 5231
50 12981 8173 1001 5110
60 12967 8039 986 3924
70 12843 8048 972 3695
80 13081 7979 964 2951
90 13073 7900 955 2114

nation join customer at 8KB page size
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B NLJ BNLJ HJ SMJ

10 11631 7937 1077 5719
20 11780 8001 1069 5305
30 11821 7960 1063 5157
40 11775 7979 982 5005
50 11841 7992 969 4941
60 11700 7926 950 4826
70 11909 7942 945 4742
80 12115 7892 938 3938
90 12027 7800 936 2627

nation join customer at 16KB page size

B NLJ BNLJ HJ SMJ

10 2265501 1353062 44588 292937
20 2310508 1349168 44416 294683
30 2364565 1334618 43765 272841
40 2371004 1321191 43192 244117
50 2371629 1338200 42497 219763
60 2374726 1309719 41818 190953
70 2361495 1297175 41145 158623
80 2368053 1290375 40492 129700
90 2380012 1287772 39880 101289

supplier join lineitem

at 4KB page size

B NLJ BNLJ HJ SMJ

10 1895533 1339623 40256 296341
20 1972448 1330637 40380 324242
30 2011974 1321228 39980 336060
40 2008404 1307344 39640 268267
50 2013284 1293293 39118 265882
60 2020866 1282381 38644 223303
70 2021924 1284416 38218 175057
80 2016093 1267810 37706 144859
90 2015204 1256938 37239 105351

supplier join lineitem

at 8KB page size

B NLJ BNLJ HJ SMJ

10 1783067 1334487 38496 369004
20 1824250 1326472 38764 408206
30 1904210 1308613 38577 431933
40 1912141 1303270 38471 439028
50 1913167 1290362 37906 434277
60 1905996 1277029 37518 301582
70 1897547 1264311 37131 291254
80 1897070 1255253 36727 193459
90 1879094 1243861 36339 132200

supplier join lineitem

at 16KB page size

A.1.2 Configuration with SSD as Persistent Storage Device

B NLJ BNLJ HJ SMJ

10 126 126 226 228
20 135 127 230 236
30 131 129 231 234
40 137 48 49 158
50 232 51 45 88
60 180 50 46 90
70 75 43 34 36
80 68 43 35 36
90 67 43 35 40

nation join region at 4KB page size

B NLJ BNLJ HJ SMJ

10 99 87 254 257
20 119 92 260 255
30 104 85 260 256
40 106 85 264 254
50 176 91 256 253
60 56 42 33 42
70 56 40 30 37
80 58 41 31 40
90 59 40 30 42

nation join region at 8KB page size
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B NLJ BNLJ HJ SMJ

10 141 107 355 359
20 134 110 348 354
30 136 109 352 354
40 136 110 357 359
50 134 107 352 354
60 67 47 38 41
70 71 46 37 40
80 110 46 37 41
90 248 42 39 44

nation join region at 16KB page size

B NLJ BNLJ HJ SMJ

10 1119 1532 825 838
20 1291 668 269 508
30 1214 615 113 425
40 1128 615 111 424
50 1146 619 100 335
60 1128 606 99 256
70 1271 599 99 256
80 534 598 101 142
90 553 607 88 105

nation join supplier at 4KB page size

B NLJ BNLJ HJ SMJ

10 973 1221 911 942
20 981 1211 911 933
30 993 582 86 434
40 1001 575 86 436
50 1009 577 86 431
60 996 575 85 320
70 1072 566 89 326
80 541 559 81 103
90 535 561 82 103

nation join supplier at 8KB page size

B NLJ BNLJ HJ SMJ

10 1024 1204 1329 1340
20 1019 1214 1337 1342
30 1018 1207 1323 1320
40 1047 565 89 375
50 1062 565 88 373
60 1080 558 88 370
70 536 545 84 107
80 534 554 78 102
90 536 548 81 105

nation join supplier at 16KB page size

B NLJ BNLJ HJ SMJ

10 16384 8909 1319 6022
20 16271 8712 1314 5888
30 16289 8695 1306 5828
40 16279 8566 1266 5580
50 16208 8528 1172 4515
60 16364 8445 1144 4181
70 16152 8361 1127 3376
80 16170 8310 1119 2905
90 16209 8287 1095 2165

nation join customer at 4KB page size

B NLJ BNLJ HJ SMJ

10 13025 8141 1133 5689
20 12946 8242 1114 5405
30 12977 8195 1051 5339
40 13149 8196 1031 5270
50 13059 8118 1012 5177
60 13085 8078 992 4023
70 12978 8019 980 3797
80 13179 8031 967 3028
90 13255 7959 962 2163

nation join customer at 8KB page size
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B NLJ BNLJ HJ SMJ

10 11859 8242 1101 5755
20 11814 8038 1079 5352
30 11802 8064 1068 5174
40 11858 8079 984 5088
50 11868 7989 972 5012
60 11774 7972 951 4889
70 11970 8002 953 4848
80 12131 7920 940 4042
90 12184 7879 938 2703

nation join customer at 16KB page size

B NLJ BNLJ HJ SMJ

10 2277025 1364455 44693 295541
20 2315991 1358356 44456 296500
30 2375553 1345343 43907 273884
40 2382992 1330930 43194 245252
50 2380642 1346413 42656 220182
60 2384080 1320177 41939 190628
70 2370290 1309288 41312 159219
80 2362712 1301185 40663 130143
90 2392554 1299697 40036 101400

supplier join lineitem

at 4KB page size

B NLJ BNLJ HJ SMJ

10 1895456 1347056 40387 298488
20 1958584 1335473 40476 326918
30 2016777 1315447 40124 338738
40 2019597 1309133 39702 270023
50 2018440 1293575 39219 267409
60 2016907 1280511 38765 225214
70 2028193 1286527 38410 176271
80 2016353 1268319 37793 145901
90 2018409 1259188 37359 105866

supplier join lineitem

at 8KB page size

B NLJ BNLJ HJ SMJ

10 1785801 1334532 38713 366711
20 1834314 1332196 38946 405961
30 1896835 1314373 38813 428473
40 1907300 1302115 38566 436680
50 1913858 1293110 38024 430821
60 1897605 1279280 37747 300376
70 1896830 1263044 37232 290464
80 1873353 1256379 36931 193116
90 1869961 1247109 36497 131649

supplier join lineitem

at 16KB page size

A.1.3 Configuration with SSD as Extension to the Buffer Pool

B NLJ BNLJ HJ SMJ

10 166 134 99 111
20 174 133 96 108
30 176 133 95 108
40 137 137 29 36
50 137 134 28 37
60 136 132 29 37
70 135 133 28 36
80 136 131 27 37
90 137 124 74 77

100 137 130 80 80

nation join region at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 178 133 88 87
20 176 131 102 101
30 175 132 104 101
40 137 126 26 33
50 139 128 27 36
60 142 132 80 78
70 143 133 81 80
80 144 135 81 80
90 144 135 80 80

100 145 135 81 80

nation join region at 4KB page size
and 20% available RAM
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B NLJ BNLJ HJ SMJ

10 183 135 83 85
20 178 133 82 84
30 180 134 83 85
40 141 132 81 78
50 144 138 81 79
60 147 136 81 79
70 148 134 82 80
80 150 134 81 80
90 150 134 81 80

100 150 134 80 80

nation join region at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 138 57 35 48
20 139 57 37 49
30 140 52 36 50
40 143 55 36 49
50 144 56 36 53
60 148 63 36 54
70 147 66 36 51
80 147 65 36 49
90 147 66 36 54

100 150 68 36 53

nation join region at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 137 62 36 48
20 140 60 35 48
30 142 61 36 49
40 146 67 36 48
50 149 70 36 45
60 147 74 36 48
70 148 72 37 45
80 149 73 36 46
90 147 74 36 46

100 149 76 36 43

nation join region at 4KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 137 63 37 46
20 140 68 36 46
30 143 67 36 45
40 145 77 37 41
50 147 75 37 41
60 146 77 37 42
70 145 77 39 41
80 147 76 39 42
90 146 73 40 41

100 146 76 39 41

nation join region at 4KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 61 60 32 35
20 64 59 33 33
30 68 65 32 27
40 69 63 31 29
50 68 64 34 29
60 70 65 33 29
70 68 64 33 29
80 68 66 34 30
90 69 64 33 29

100 69 67 34 31

nation join region at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 61 60 35 30
20 66 60 35 33
30 66 59 33 31
40 64 60 34 29
50 65 62 30 35
60 67 59 32 31
70 65 59 30 35
80 66 60 35 28
90 66 60 35 32

100 66 59 34 32

nation join region at 4KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 63 61 34 26
20 61 58 37 28
30 64 62 34 33
40 64 59 32 30
50 62 60 36 33
60 61 59 35 29
70 62 60 37 30
80 62 60 34 33
90 61 59 35 36

100 61 61 37 28

nation join region at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 120 98 129 121
20 117 97 127 119
30 117 94 130 117
40 119 91 131 122
50 121 99 132 123
60 123 100 133 125
70 124 100 135 128
80 125 100 136 127
90 126 99 135 128

100 126 100 135 129

nation join region at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 119 99 130 124
20 119 99 131 121
30 120 100 134 125
40 123 100 133 124
50 123 100 133 123
60 126 100 135 126
70 127 100 134 128
80 129 99 135 129
90 129 100 135 128

100 129 98 132 125

nation join region at 8KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 124 100 132 120
20 124 100 131 122
30 125 100 133 123
40 127 100 135 123
50 130 99 133 125
60 133 100 136 130
70 134 100 134 122
80 135 100 133 124
90 136 99 132 122

100 135 100 133 124

nation join region at 8KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 128 101 137 129
20 127 100 134 126
30 129 99 135 127
40 132 100 135 126
50 136 101 135 129
60 137 101 135 129
70 138 101 133 125
80 138 101 134 127
90 137 103 135 127

100 137 102 136 129

nation join region at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 128 102 130 124
20 126 105 132 130
30 129 102 131 126
40 132 103 135 129
50 134 102 134 129
60 135 101 134 130
70 135 105 135 128
80 136 104 135 128
90 136 105 133 130

100 137 103 131 130

nation join region at 8KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 51 49 32 35
20 53 49 30 40
30 59 50 32 38
40 61 50 33 40
50 63 50 33 39
60 65 49 34 39
70 66 50 33 39
80 64 50 32 40
90 63 52 33 38

100 64 51 33 37

nation join region at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 55 59 32 42
20 59 56 35 40
30 64 50 33 40
40 62 50 33 40
50 63 52 31 39
60 63 51 33 39
70 64 52 34 40
80 62 51 33 39
90 64 51 34 40

100 63 52 35 38

nation join region at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 58 71 36 38
20 58 58 32 40
30 60 59 36 39
40 59 57 32 40
50 59 58 32 43
60 60 59 34 40
70 60 61 36 38
80 61 60 32 39
90 60 62 33 39

100 62 61 32 42

nation join region at 8KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 57 67 33 40
20 59 67 28 39
30 59 64 31 40
40 64 66 29 39
50 58 63 31 40
60 59 67 30 39
70 60 66 31 41
80 60 66 31 40
90 61 65 29 41

100 59 67 29 39

nation join region at 8KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 160 114 135 132
20 166 113 132 131
30 170 115 131 128
40 173 118 134 131
50 178 121 136 135
60 181 124 139 136
70 182 123 137 137
80 185 124 140 138
90 182 125 139 138

100 178 121 136 134

nation join region at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 190 123 140 135
20 187 130 141 139
30 185 137 143 140
40 186 137 141 140
50 186 139 142 138
60 185 138 139 136
70 182 137 139 135
80 182 140 141 137
90 185 146 142 140

100 185 144 138 138

nation join region at 16KB page size
and 20% available RAM
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B NLJ BNLJ HJ SMJ

10 185 153 143 141
20 185 150 143 140
30 185 154 143 141
40 186 153 149 142
50 180 143 141 137
60 182 148 143 138
70 180 142 139 137
80 183 148 146 141
90 182 144 141 138

100 178 142 141 137

nation join region at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 187 153 158 146
20 186 150 156 149
30 192 153 163 154
40 183 148 148 144
50 181 146 146 144
60 188 151 153 147
70 181 144 145 142
80 187 148 153 149
90 183 147 150 150

100 181 145 146 143

nation join region at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 716 158 166 171
20 190 150 155 157
30 192 154 160 161
40 189 150 154 154
50 182 147 147 147
60 179 146 146 146
70 180 143 146 146
80 183 151 150 147
90 185 148 153 152

100 184 148 150 144

nation join region at 16KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 345 83 45 50
20 94 86 46 53
30 98 87 47 55
40 97 89 48 51
50 98 88 47 50
60 98 88 47 50
70 98 88 47 51
80 98 87 46 49
90 96 86 44 48

100 98 87 47 51

nation join region at 16KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 156 80 46 48
20 98 86 48 51
30 98 87 47 50
40 99 89 49 52
50 96 87 47 50
60 99 88 48 52
70 98 89 48 53
80 98 88 47 52
90 97 88 46 49

100 97 88 49 54

nation join region at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 97 87 48 51
20 98 89 47 51
30 97 87 48 51
40 98 89 49 51
50 96 88 48 109
60 98 89 158 45
70 97 154 43 52
80 116 175 43 51
90 192 83 49 50

100 149 86 49 52

nation join region at 16KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 96 87 48 51
20 95 87 48 51
30 95 87 48 50
40 96 87 47 50
50 96 87 48 52
60 95 87 48 51
70 95 86 48 51
80 96 87 48 51
90 96 87 48 51

100 96 87 48 51

nation join region at 16KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 1506 1551 665 1677
20 1522 1546 429 1633
30 1536 1546 462 1623
40 1525 1548 468 1642
50 1510 1539 335 1390
60 1135 1524 298 1428
70 1126 1535 300 1438
80 1117 1524 334 1445
90 1131 1520 429 1650

100 1125 1528 453 1721

nation join supplier at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1523 669 208 433
20 1508 662 176 426
30 1518 658 192 434
40 1517 659 193 437
50 1130 658 146 364
60 1148 649 205 358
70 1140 643 206 360
80 1131 651 208 361
90 1146 646 206 361

100 1139 647 206 360

nation join supplier at 4KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 1526 608 155 380
20 1541 602 152 378
30 1145 601 150 298
40 1129 607 150 300
50 1140 602 148 297
60 1150 599 147 298
70 1137 602 148 299
80 1134 603 148 299
90 1126 607 150 300

100 1140 597 149 303

nation join supplier at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 1533 609 156 384
20 1533 605 152 381
30 1142 601 150 300
40 1127 606 150 303
50 1128 604 148 297
60 1127 608 148 300
70 1129 606 148 300
80 1129 606 149 299
90 1127 607 148 300

100 1127 610 148 300

nation join supplier at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1533 594 138 372
20 1133 593 136 289
30 1126 592 132 292
40 1136 591 133 293
50 1138 591 133 295
60 1137 590 133 295
70 1137 597 133 295
80 1144 594 134 295
90 1146 593 133 295

100 1140 598 134 295

nation join supplier at 4KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 1133 588 132 287
20 1125 586 130 287
30 1127 585 130 287
40 1133 584 132 289
50 1134 590 131 290
60 1138 588 132 291
70 1137 589 131 290
80 1140 584 131 290
90 1129 590 131 290

100 1129 586 132 290

nation join supplier at 4KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 1118 599 143 291
20 1128 589 133 289
30 1130 590 133 291
40 1125 598 135 289
50 1125 584 134 291
60 1130 591 133 290
70 1130 594 133 293
80 1128 589 132 290
90 1125 592 133 290

100 1116 594 139 291

nation join supplier at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 590 589 136 165
20 591 592 144 176
30 591 584 142 175
40 597 594 136 168
50 593 596 133 166
60 597 593 138 168
70 599 595 138 171
80 591 584 143 173
90 589 595 145 173

100 591 595 142 170

nation join supplier at 4KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 560 583 129 163
20 557 591 132 163
30 562 583 131 162
40 560 584 136 162
50 560 584 131 164
60 556 588 138 164
70 562 585 133 164
80 560 584 132 165
90 565 581 132 161

100 554 582 133 163

nation join supplier at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 1313 1231 545 3123
20 1293 1230 558 3483
30 1314 1215 556 3156
40 1293 1210 540 3114
50 1286 1208 544 3114
60 982 1208 540 3054
70 981 1202 540 3057
80 978 1218 547 3063
90 983 1205 540 3039

100 980 1211 543 3073

nation join supplier at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1284 1214 532 3404
20 1274 1217 534 3408
30 1288 1211 543 3117
40 1303 1206 546 3117
50 1294 1210 545 3128
60 983 1207 542 3046
70 972 1205 543 3042
80 969 1211 543 3047
90 979 1201 545 3035

100 981 1201 544 3038

nation join supplier at 8KB page size
and 20% available RAM



102 A. Appendix

B NLJ BNLJ HJ SMJ

10 1302 560 167 539
20 1297 563 168 539
30 994 570 157 420
40 991 571 159 423
50 989 565 159 423
60 984 563 158 426
70 978 563 160 427
80 985 564 159 426
90 992 560 158 425

100 986 560 158 425

nation join supplier at 8KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 1307 568 168 543
20 1300 565 168 544
30 981 563 157 419
40 979 563 158 421
50 982 565 158 425
60 980 564 159 425
70 985 566 161 426
80 987 559 160 424
90 987 566 159 425

100 980 570 159 428

nation join supplier at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1313 571 170 543
20 1325 571 169 552
30 988 565 164 422
40 983 561 163 424
50 983 565 160 429
60 983 565 161 429
70 988 563 160 427
80 974 568 159 425
90 995 564 161 429

100 991 566 159 426

nation join supplier at 8KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 1001 566 165 374
20 992 566 169 375
30 993 563 168 376
40 993 571 171 380
50 988 568 171 376
60 983 567 173 379
70 983 566 169 378
80 992 573 167 376
90 1003 566 167 378

100 1005 566 167 379

nation join supplier at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 988 564 168 371
20 989 570 168 378
30 995 564 167 379
40 1001 564 170 380
50 989 571 165 377
60 995 568 168 378
70 1002 568 166 377
80 991 567 169 376
90 997 565 172 379

100 999 567 168 378

nation join supplier at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 553 563 163 227
20 553 567 169 238
30 545 555 169 230
40 546 558 166 232
50 551 565 163 228
60 555 557 163 228
70 552 560 162 229
80 548 561 167 234
90 554 564 166 234

100 557 556 161 228

nation join supplier at 8KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 550 560 163 230
20 562 559 160 228
30 550 558 165 230
40 549 562 164 227
50 547 563 161 226
60 545 557 167 229
70 553 558 163 229
80 548 556 165 230
90 556 557 164 230

100 551 558 168 235

nation join supplier at 8KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 1423 1190 1184 6680
20 1430 1186 1187 6919
30 1449 1192 1182 6941
40 1042 1209 1237 10486
50 1049 1208 1242 10504
60 1049 1213 1263 10502
70 1054 1216 1280 10548
80 1056 1216 1285 10531
90 1063 1224 1304 10674

100 1061 1217 1290 10579

nation join supplier at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1494 1230 1246 7055
20 1492 1225 1246 7056
30 1499 1224 1246 7031
40 1067 1222 1302 10707
50 1071 1221 1304 10745
60 1078 1219 1299 10709
70 1073 1226 1304 10789
80 1082 1225 1309 10812
90 1070 1231 1309 10794

100 1059 1229 1305 10805

nation join supplier at 16KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 1500 1226 1251 7154
20 1492 1230 1246 7158
30 1498 1228 1251 7157
40 1084 1227 1308 10824
50 1061 1225 1312 10888
60 1080 1228 1309 10870
70 1074 1227 1315 10893
80 1081 1233 1324 11004
90 1069 1232 1309 10906

100 1062 1226 1311 10855

nation join supplier at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 1079 570 217 460
20 1084 573 213 463
30 1088 576 214 463
40 1084 573 210 462
50 1077 572 214 462
60 1083 579 211 462
70 1080 579 212 463
80 1082 572 214 463
90 1084 571 212 463

100 1083 575 212 462

nation join supplier at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1075 572 214 457
20 1082 572 212 461
30 1080 582 212 462
40 1087 571 212 462
50 1076 579 214 464
60 1078 576 212 463
70 1089 579 212 463
80 1086 572 212 464
90 1089 574 211 463

100 1080 575 212 463

nation join supplier at 16KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 1171 574 212 462
20 1121 576 212 461
30 1132 573 211 462
40 1137 574 212 464
50 1134 583 214 464
60 1135 578 211 463
70 1120 574 218 463
80 1114 579 211 462
90 1128 573 212 462

100 1147 578 211 463

nation join supplier at 16KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 645 568 206 295
20 617 559 203 301
30 621 560 204 300
40 631 567 205 299
50 624 565 211 303
60 631 562 208 304
70 620 567 203 298
80 612 565 209 301
90 616 568 207 302

100 633 563 205 300

nation join supplier at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 661 565 206 298
20 760 563 207 300
30 676 572 204 298
40 681 568 204 297
50 624 576 203 297
60 637 568 205 297
70 619 572 203 299
80 637 567 212 303
90 628 566 214 310

100 631 569 206 297

nation join supplier at 16KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 788 573 202 297
20 785 567 208 302
30 773 566 202 297
40 788 563 212 298
50 785 565 205 301
60 784 565 204 297
70 760 571 203 295
80 785 564 205 298
90 789 570 203 298

100 773 567 204 296

nation join supplier at 16KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 21853 8716 1264 3984
20 21710 8787 1288 4187
30 21702 8795 1262 4157
40 21773 8767 1254 4175
50 21790 8733 1227 4165
60 21676 8785 1201 4101
70 21647 8756 1173 4115
80 21728 8726 1161 4128
90 16222 8641 1320 3529

100 16255 8660 1320 3596

nation join customer at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 22212 9166 1390 4795
20 22185 9136 1258 4229
30 22203 9133 1243 4234
40 22270 9090 1219 4212
50 22348 9081 1196 4207
60 22308 9071 1312 5012
70 22252 9052 1292 5001
80 16673 8762 1379 3808
90 16651 8774 1372 3815

100 16647 8780 1386 3799

nation join customer at 4KB page size
and 20% available RAM
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B NLJ BNLJ HJ SMJ

10 22627 9340 1403 5124
20 22607 9303 1380 5104
30 22712 9324 1385 5112
40 22701 9313 1366 5066
50 22753 9280 1339 5043
60 22670 9281 1302 5019
70 17100 9096 1351 3735
80 17080 9124 1352 3728
90 17091 9160 1361 3730

100 17059 9126 1346 3732

nation join customer at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 22996 9535 1373 5084
20 22944 9491 1343 5128
30 22944 9566 1329 5087
40 22934 9548 1305 5086
50 22930 9522 1283 5030
60 17411 9292 1336 3759
70 17381 9309 1345 3752
80 17353 9307 1342 3738
90 17374 9345 1345 3749

100 17381 9342 1343 3747

nation join customer at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 23338 9757 1338 5098
20 23310 9800 1319 5077
30 23374 9762 1298 5073
40 23439 9728 1273 5072
50 17824 9563 1330 3755
60 17810 9575 1335 3760
70 17852 9593 1316 3754
80 17875 9589 1314 3760
90 17908 9618 1316 3750

100 17875 9613 1315 3743

nation join customer at 4KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 23685 9985 1327 5082
20 23667 9974 1288 5056
30 23710 9957 1267 5042
40 18128 9820 1273 3741
50 18186 9832 1270 3723
60 18236 9850 1267 3753
70 18182 9847 1269 3725
80 18134 9876 1268 3721
90 18153 9849 1271 3723

100 18172 9866 1267 3734

nation join customer at 4KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 23764 10055 1259 5005
20 23738 10081 1239 4990
30 18240 9910 1244 3661
40 18230 9885 1247 3644
50 18234 9902 1246 3676
60 18226 9924 1245 3680
70 18242 9872 1244 3680
80 18236 9906 1246 3663
90 18243 9938 1248 3635

100 18209 9873 1244 3654

nation join customer at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 23872 10133 1224 4936
20 18288 9911 1261 3656
30 18283 9947 1262 3659
40 18351 9961 1265 3691
50 18364 9930 1261 3689
60 18331 9923 1263 3685
70 18341 9951 1261 3682
80 18391 9937 1263 3689
90 18404 9914 1255 3681

100 18484 9953 1248 3692

nation join customer at 4KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 18423 9959 1229 3677
20 18433 9940 1232 3666
30 18434 9949 1239 3663
40 18446 9974 1233 3663
50 18458 9973 1225 3673
60 18465 9963 1226 3671
70 18402 9953 1239 3662
80 18422 10002 1245 3652
90 18485 9953 1242 3691

100 18579 9975 1236 3695

nation join customer at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 15733 7950 870 1016
20 15614 7920 889 934
30 15793 8010 965 922
40 16163 8306 970 892
50 16214 8303 1011 895
60 16305 8390 1013 884
70 16357 8418 983 872
80 16436 8571 922 858
90 13024 8520 834 968

100 13049 8554 821 974

nation join customer at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 16615 8871 830 969
20 16587 8833 826 962
30 16588 8818 839 940
40 16639 8903 863 905
50 16674 8930 858 909
60 16724 9091 774 919
70 16768 8735 891 873
80 13315 8502 1115 909
90 13309 8502 1130 908

100 13287 8476 1113 909

nation join customer at 8KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 16873 9158 1346 920
20 16881 9063 1333 913
30 16901 8935 1076 1010
40 16943 8817 1037 981
50 16908 8742 849 1013
60 16965 8741 791 999
70 13514 8508 738 1012
80 13509 8509 733 1022
90 13529 8547 744 1002

100 13539 8546 731 1018

nation join customer at 8KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 17208 9430 839 947
20 17208 9368 845 931
30 17163 9212 830 964
40 17225 9135 830 956
50 17212 9086 813 948
60 13852 8839 731 1000
70 13871 8842 734 996
80 13823 8863 740 1001
90 13852 8847 738 999

100 13886 8891 769 1014

nation join customer at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 17346 9508 797 944
20 17354 9456 784 934
30 17388 9319 820 951
40 17385 9245 810 948
50 13992 8939 798 1031
60 13989 8977 809 1023
70 13991 8955 801 1036
80 13988 8963 798 1043
90 13978 8972 795 1027

100 13923 8970 791 1019

nation join customer at 8KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 17426 9485 825 958
20 17456 9399 815 947
30 17438 9365 802 940
40 14091 9036 831 1014
50 14062 9047 825 1018
60 14064 9070 828 1016
70 14038 9066 829 1017
80 14071 9082 828 1012
90 14079 9072 832 1012

100 14061 9084 843 1011

nation join customer at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 17542 9504 813 942
20 17541 9481 809 930
30 14148 9183 810 1005
40 14185 9214 802 1000
50 14190 9184 801 1016
60 14203 9183 809 1012
70 14168 9222 802 1007
80 14201 9205 793 1013
90 14187 9181 810 1015

100 14203 9206 798 1010

nation join customer at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 17648 9471 763 1082
20 14227 9278 717 999
30 14257 9209 713 1021
40 14214 9258 708 1012
50 14247 9316 714 993
60 14256 9215 712 1017
70 14226 9257 711 1011
80 14263 9300 715 1003
90 14255 9243 717 1014

100 14237 9253 710 1018

nation join customer at 8KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 14406 9251 706 989
20 14373 9283 707 979
30 14448 9224 713 981
40 14423 9280 726 983
50 14443 9239 704 987
60 14419 9264 706 981
70 14446 9242 709 977
80 14426 9260 719 988
90 14423 9254 715 982

100 14375 9234 702 983

nation join customer at 8KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 14477 8033 945 2925
20 14471 7940 948 2968
30 14570 7961 948 2994
40 14838 7900 939 2970
50 14816 7896 936 2965
60 14739 7858 916 2938
70 14800 7837 912 2967
80 14778 7869 912 2956
90 11762 7916 904 2159

100 11741 7895 908 2171

nation join customer at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 14953 8000 968 3070
20 15006 7987 969 3072
30 15061 7977 957 3090
40 15143 7930 946 3071
50 15166 7973 937 3054
60 15144 7936 927 3048
70 15175 7942 915 3032
80 12171 7950 921 2215
90 12145 7949 925 2215

100 12160 7975 929 2211

nation join customer at 16KB page size
and 20% available RAM
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B NLJ BNLJ HJ SMJ

10 15264 8038 958 3128
20 15287 8032 952 3110
30 15292 8050 950 3107
40 15379 8036 936 3040
50 15374 7996 927 3045
60 15394 7989 914 3047
70 12356 8017 914 2223
80 12364 7996 921 2221
90 12377 8012 919 2218

100 12358 8022 920 2215

nation join customer at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 15517 8444 982 3131
20 15488 8425 969 3105
30 15479 8424 959 3086
40 15464 8408 947 3068
50 15501 8405 938 3079
60 12507 8189 985 2417
70 12507 8195 982 2410
80 12480 8189 966 2391
90 12464 8210 992 2397

100 12490 8190 982 2415

nation join customer at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 15522 8516 959 3095
20 15545 8465 962 3103
30 15571 8442 947 3084
40 15530 8429 937 3081
50 12589 8201 999 2433
60 12595 8198 983 2438
70 12599 8217 995 2434
80 12602 8214 976 2411
90 12584 8225 1004 2427

100 12618 8216 998 2437

nation join customer at 16KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 15589 8492 938 3076
20 15588 8478 932 3063
30 15592 8440 922 3049
40 12646 8250 968 2431
50 12689 8246 998 2435
60 12654 8259 974 2420
70 12657 8271 974 2422
80 12638 8267 983 2417
90 12640 8255 987 2424

100 12656 8270 978 2413

nation join customer at 16KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 15738 8497 931 3094
20 15696 8462 930 3094
30 12763 8242 955 2438
40 12763 8244 957 2451
50 12798 8252 961 2420
60 12782 8285 964 2431
70 12784 8276 956 2444
80 12809 8280 968 2440
90 12792 8282 956 2433

100 12787 8307 961 2435

nation join customer at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 15810 8530 921 3087
20 12827 8300 970 2450
30 12892 8339 960 2425
40 12877 8333 961 2435
50 12884 8330 967 2443
60 12863 8361 948 2442
70 12903 8333 952 2472
80 12901 8305 969 2507
90 12896 8317 966 2523

100 12883 8337 976 2480

nation join customer at 16KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 12882 8343 949 2447
20 12888 8361 936 2429
30 12890 8340 955 2444
40 12916 8370 945 2428
50 12901 8370 947 2437
60 12914 8375 954 2407
70 12900 8384 945 2429
80 12921 8396 980 2419
90 12925 7958 711 2036

100 12891 8380 949 2428

nation join customer at 16KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 3947124 2327863 47198 55565
20 3939728 2316784 46730 56568
30 3965173 2309259 46441 56189
40 3975175 2295532 46812 55918
50 3999301 2291101 47338 55277
60 4002348 2291926 47128 54551
70 3991476 2299337 47287 53766
80 3995036 2306901 47225 53143
90 3210327 2309908 46871 52302

100 3212194 2311221 46976 52300

supplier join lineitem

at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1047156 3204843 63215 66746
20 1037476 3181121 61902 66506
30 857315 3166916 57428 65597
40 837868 3172198 57472 64962
50 800463 3184672 57436 64349
60 809319 3189105 56896 63636
70 760936 3210802 57031 62879
80 4209147 3234025 57264 62059
90 4212787 3257005 58163 62186

100 4207781 3266030 58256 62123

supplier join lineitem

at 4KB page size and
20% available RAM

B NLJ BNLJ HJ SMJ

10 2060414 4022029 70328 73213
20 2103218 4004577 69602 72622
30 2068751 3995169 68685 71994
40 2067485 3983813 67474 71343
50 1847171 3962941 64817 70562
60 1744237 3955869 63954 69880
70 910787 3960282 63502 69023
80 906636 3973714 63785 69062
90 901507 3978122 64131 69091

100 898457 3997500 64632 69064

supplier join lineitem

at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 3028059 332874 74756 78254
20 2998465 306459 71806 77595
30 2749997 297739 70227 77031
40 2775206 317401 70311 76428
50 2719333 332091 70373 75816
60 1910043 363409 70331 75190
70 1914253 381458 71235 75065
80 1910651 396003 71321 75218
90 1909374 383188 71221 75118

100 1905295 400071 71276 75120

supplier join lineitem

at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 4027333 941320 79170 82722
20 3974128 913499 77459 82162
30 3747301 907934 75428 81299
40 3706790 928248 75779 80657
50 2906957 959707 75668 79871
60 2892572 952973 76007 79828
70 2899942 980243 76174 79956
80 2901999 969468 76177 80027
90 2902002 959623 76094 80232

100 2901500 969493 75914 79859

supplier join lineitem

at 4KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 580118 1403966 79760 85823
20 360284 1418130 79648 84750
30 353626 1411293 79754 84498
40 3885890 1430662 79171 83632
50 3888848 1438785 79267 83571
60 3894890 1443662 79573 83392
70 3890479 1441925 79274 83662
80 3887596 1435434 79280 83765
90 3892900 1424558 78546 83509

100 3890510 1422294 78494 83420

supplier join lineitem

at 4KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 1293842 1763616 82022 88151
20 1314414 1738843 81346 86272
30 594984 1713126 80789 86789
40 594783 1774754 80220 86939
50 581281 1762195 80830 86169
60 585031 1716319 80612 85971
70 583905 1756834 79990 86918
80 577810 1774194 80673 85954
90 570722 1706929 80701 85616

100 576971 1745392 79689 86782

supplier join lineitem

at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 2228159 1976390 82526 88935
20 1546246 2020399 82275 87595
30 1561034 2011900 82025 88258
40 1563865 1935955 82134 88512
50 1566228 1995999 82001 88595
60 1561136 2003191 82042 87962
70 1567714 1996645 81693 88481
80 1565859 1943044 82044 88571
90 1593774 2015654 82021 88761

100 1588075 2002773 81885 87794

supplier join lineitem

at 4KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 2497285 2089329 82240 88834
20 2524340 2144535 82255 89536
30 2487274 2105767 81729 89034
40 2478382 2083479 81797 88140
50 2503315 2075605 81923 88894
60 2482361 2104172 81818 88725
70 2481033 2093986 81431 89084
80 2493609 2079373 81611 88607
90 2498980 2055884 81603 88825

100 2502611 2103540 81717 89124

supplier join lineitem

at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 2796421 1963307 40744 42891
20 2784411 1955150 40129 42674
30 2780387 1959844 39619 42290
40 2803554 1958340 39204 41872
50 2819324 1955921 38631 41495
60 2836631 1961639 38053 41067
70 2821745 1962557 37527 40573
80 2792316 1958233 37000 40602
90 2323889 1959511 36472 39297

100 2319634 1958845 36562 39314

supplier join lineitem

at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 3613308 2423086 44492 47189
20 3591598 2418651 44105 47071
30 3379581 2421812 43621 46574
40 3381781 2424652 43264 46260
50 3385504 2416235 42600 45989
60 3367390 2419312 42197 45302
70 3322612 2421580 41782 44626
80 2811581 2419798 41201 44160
90 2811599 2420923 41216 44039

100 2808326 2421361 41264 43928

supplier join lineitem

at 8KB page size
and 20% available RAM
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B NLJ BNLJ HJ SMJ

10 3978898 2838814 47826 51362
20 3703026 2838054 47370 50503
30 3678083 2837778 46935 50142
40 3381047 2834422 46456 49732
50 3916658 2839235 45929 49222
60 3881057 2835230 45380 48788
70 3352807 2838733 44878 48139
80 3353182 2840934 44857 48174
90 3352808 2837869 44952 48154

100 3354817 2837370 44999 48144

supplier join lineitem

at 8KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 391084 3180749 50278 53382
20 247876 3178467 49964 53113
30 153443 3178085 49477 52612
40 136930 3178216 48928 52250
50 89084 3177112 48343 52225
60 3870702 3175907 47852 51141
70 3961400 3178955 47872 51224
80 4013673 3179424 47961 51193
90 4042657 3174967 48020 51256

100 4082603 3177399 48027 51157

supplier join lineitem

at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 915755 3468845 52131 55689
20 899976 3471444 51702 55401
30 895130 3467605 51337 55013
40 801037 3471534 50668 54516
50 96714 3467440 50181 54047
60 79898 3470833 50262 54105
70 70194 3470094 50294 54063
80 66945 3468487 50283 53956
90 67493 3466575 50327 54060

100 81013 3472455 50405 54068

supplier join lineitem

at 8KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 1311625 3699312 54049 58076
20 1077654 3703334 53591 57764
30 1071821 3699143 52984 57227
40 557588 3694607 52555 56527
50 552460 3696266 52631 56624
60 554064 3700979 52613 56654
70 554321 3698348 52698 56637
80 554201 3698264 52621 56618
90 557513 3696470 52673 56626

100 555488 3700279 52662 56699

supplier join lineitem

at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 1558475 3878483 54945 59013
20 1510735 3876916 54482 58588
30 1035783 3875719 53931 57918
40 1041115 3875906 53975 57943
50 1036262 3871857 53965 57859
60 1036788 3880579 54077 58062
70 1036198 3877284 54085 58122
80 1033834 3874172 53987 58005
90 1037912 3876635 53939 58109

100 1039148 3997120 55339 59380

supplier join lineitem

at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 1990120 3997177 54766 58881
20 1511566 3997157 54846 58976
30 1518159 3995808 54882 58968
40 1511234 3997146 54891 58929
50 1509977 3997421 54944 59127
60 1514041 3994565 54926 58968
70 1512231 3996005 54951 59225
80 1511853 3996442 54873 58981
90 1511509 3994849 55007 58919

100 1519505 4066467 55116 59113

supplier join lineitem

at 8KB page size
and 80% available RAM
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B NLJ BNLJ HJ SMJ

10 1986910 3809838 64070 61880
20 1982560 4062058 55175 58981
30 1992469 4066433 55330 59130
40 1980232 4066733 55428 59252
50 1987452 4063810 55159 59001
60 1984929 4065529 54988 59485
70 1981705 4062939 54930 59170
80 1989456 4062968 54908 59215
90 1987124 4066913 54909 59165

100 1981590 4063511 54849 59067

supplier join lineitem

at 8KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 2384273 1682902 37539 77897
20 2378991 1678729 34649 78149
30 2393778 1680339 34291 78352
40 2408322 1681088 33896 78201
50 2421408 1675809 33523 78041
60 2424862 1681719 33075 77948
70 2428715 1680734 32644 77403
80 2406883 1681399 32169 76063
90 1988071 1680569 31685 57767

100 1990664 1680444 31754 57902

supplier join lineitem

at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 2743751 1903871 36828 81710
20 2751481 1904560 36615 81645
30 2756736 1902067 36139 81803
40 2769105 1906379 35862 81657
50 2762918 1903206 35365 81741
60 2771777 1904528 34827 82518
70 2723392 1902283 34458 79750
80 2246005 1903728 34000 60690
90 2246118 1903918 34117 61063

100 2246468 1904132 34111 61220

supplier join lineitem

at 16KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 3045817 2093579 38217 83821
20 3035597 2099211 37998 84036
30 3064046 2101441 37638 83962
40 3048351 2098382 37222 83919
50 3034886 2097128 36716 83486
60 2997938 2097765 36356 82029
70 2511466 2099016 35909 63445
80 2514991 2099341 35996 63774
90 2512976 2098187 36022 66069

100 2511527 2098660 36052 64255

supplier join lineitem

at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 3282674 2263136 39364 85996
20 3291746 2263393 38988 86182
30 3286796 2261120 38774 85999
40 3281213 2261884 38191 85727
50 3255000 2261096 37828 84875
60 2764758 2260944 37360 66556
70 2765909 2262108 37411 66759
80 2765604 2260324 37446 66959
90 2762170 2260220 37506 67268

100 2766979 2261363 37501 67481

supplier join lineitem

at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 3567694 2414920 40112 87266
20 3570617 2413002 39928 87027
30 3566371 2412811 39373 87007
40 3537557 2411298 38949 85906
50 3072165 2412289 38686 68902
60 3075951 2411473 38692 69171
70 3079351 2409546 38704 69459
80 3075884 2408253 38740 69657
90 3077745 2412236 38819 69843

100 3079611 2411210 38848 69942

supplier join lineitem

at 16KB page size
and 50% available RAM
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B NLJ BNLJ HJ SMJ

10 3804497 2525278 40655 87736
20 3800262 2524498 40226 87772
30 3771866 2525345 39792 87047
40 3333580 2530332 39491 69747
50 3328451 2526661 39473 70634
60 3335612 2529805 39520 70253
70 3329444 2526204 39524 70405
80 3330607 2528347 39535 70782
90 3328589 2531849 39541 70877

100 3325160 2527687 39632 71398

supplier join lineitem

at 16KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 4041669 2606697 40895 87790
20 4013771 2607116 40533 86316
30 3565621 2603951 40067 69762
40 3568916 2605865 40156 70289
50 3567758 2605778 40232 70739
60 3572538 2606065 40192 70992
70 3570799 2607456 40248 71185
80 3570908 2605746 40168 71176
90 3573800 2605887 40241 71409

100 3571424 2605144 40257 71608

supplier join lineitem

at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 4235352 2665154 40896 86050
20 3809131 2663816 40436 69538
30 3810829 2663150 40530 70201
40 3810525 2664110 40555 70662
50 3810721 2663917 40559 71153
60 3809409 2663338 40508 71450
70 3808352 2663376 40491 71502
80 3804081 2664239 40521 71850
90 3801971 2663529 40456 71841

100 3806953 2663259 40472 71867

supplier join lineitem

at 16KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 4048977 2683098 40643 69054
20 4045603 2689309 40740 70035
30 4049520 2685534 40704 70930
40 4045844 2688547 40738 71367
50 4042612 2683957 40679 71689
60 4043162 2685823 40736 71917
70 4045024 2686627 40782 72078
80 4044980 2684666 40636 71996
90 4050533 2690135 40659 72185

100 4050548 2683231 40696 72266

supplier join lineitem

at 16KB page size
and 90% available RAM

A.1.4 In-Memory Configuration

PS NLJ BNLJ HJ SMJ

4KB 40 38 23 32
8KB 39 37 23 29

16KB 38 38 25 33

nation join region

PS NLJ BNLJ HJ SMJ

4KB 571 565 74 104
8KB 566 537 77 110

16KB 568 534 77 110

nation join supplier

PS NLJ BNLJ HJ SMJ

4KB 8545 8503 830 1227
8KB 8660 8331 821 1215

16KB 8523 8057 820 1206

nation join customer

PS NLJ BNLJ HJ SMJ

4KB 1344499 1331276 33914 63643
8KB 1338135 1316403 33512 62925

16KB 1305419 1286363 33428 62008

supplier join lineitem
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A.2 Implementation Using Preprocessor Directives

A.2.1 Traditional Configuration with HDD as Persistent Stor-
age Device

B NLJ BNLJ HJ SMJ

10 128 133 238 244
20 138 131 243 243
30 133 129 240 243
40 136 47 47 147
50 213 48 47 87
60 172 48 45 86
70 71 43 34 35
80 64 43 34 35
90 63 43 33 36

nation join region at 4KB page size

B NLJ BNLJ HJ SMJ

10 105 93 269 268
20 111 93 278 270
30 115 96 271 269
40 107 93 267 267
50 171 91 273 268
60 51 42 36 40
70 49 44 32 37
80 54 39 34 44
90 54 40 37 43

nation join region at 8KB page size

B NLJ BNLJ HJ SMJ

10 128 112 375 376
20 137 110 366 372
30 141 112 374 366
40 135 109 368 370
50 134 108 370 377
60 60 44 35 46
70 81 43 36 44
80 61 41 34 40
90 313 42 38 40

nation join region at 16KB page size

B NLJ BNLJ HJ SMJ

10 1149 1530 850 874
20 1281 645 276 521
30 1215 587 117 439
40 1138 592 111 438
50 1164 590 101 345
60 1145 585 98 261
70 1254 573 105 266
80 539 567 106 144
90 548 595 89 109

nation join supplier at 4KB page size

B NLJ BNLJ HJ SMJ

10 992 1210 952 981
20 1000 1227 961 985
30 1010 557 87 453
40 1019 560 88 452
50 1034 550 87 452
60 1022 567 85 335
70 1087 564 88 339
80 553 540 83 110
90 552 548 84 110

nation join supplier at 8KB page size

B NLJ BNLJ HJ SMJ

10 1043 1189 1370 1388
20 1037 1186 1364 1383
30 1030 1196 1366 1377
40 1072 542 89 392
50 1110 547 91 390
60 1093 548 91 393
70 554 545 87 114
80 554 538 85 110
90 554 548 79 102

nation join supplier at 16KB page size
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B NLJ BNLJ HJ SMJ

10 16825 8936 1331 6206
20 16647 8723 1350 6093
30 16676 8686 1298 6019
40 16664 8593 1270 5803
50 16572 8563 1177 4685
60 16720 8548 1149 4368
70 16514 8403 1137 3488
80 16547 8312 1123 2973
90 16578 8351 1092 2180

nation join customer at 4KB page size

B NLJ BNLJ HJ SMJ

10 13161 8132 1126 5925
20 13171 8236 1095 5605
30 13237 8139 1036 5570
40 13409 8205 1030 5488
50 13270 8114 1002 5374
60 13229 8053 989 4134
70 13173 7999 965 3932
80 13367 7982 962 3100
90 13382 7935 958 2184

nation join customer at 8KB page size

B NLJ BNLJ HJ SMJ

10 11996 8081 1095 5897
20 12064 8040 1059 5502
30 12111 8016 1037 5316
40 12073 7987 991 5245
50 12040 8040 958 5189
60 11919 7900 957 5008
70 12167 7943 944 4980
80 12435 7872 931 4152
90 12156 7806 928 2755

nation join customer at 16KB page size

B NLJ BNLJ HJ SMJ

10 2309367 1360272 44375 303965
20 2355085 1357109 44205 306161
30 2410022 1337117 43492 282354
40 2433138 1322488 42650 252466
50 2414083 1338468 42131 226027
60 2417982 1311260 41376 195770
70 2404695 1299934 40731 162717
80 2410054 1292312 39971 132302
90 2426069 1288209 39356 102825

supplier join lineitem

at 4KB page size

B NLJ BNLJ HJ SMJ

10 1933412 1353066 40035 308372
20 1994737 1339779 40277 336686
30 2049400 1336416 39692 350331
40 2060376 1327760 39595 279714
50 2038850 1299728 38718 274310
60 2045270 1287989 38258 229802
70 2057047 1289750 37791 179385
80 2049774 1271385 37366 148257
90 2031252 1260389 36813 107184

supplier join lineitem

at 8KB page size

B NLJ BNLJ HJ SMJ

10 1807428 1336086 38261 377155
20 1851745 1339316 38547 414984
30 1925322 1318849 38208 438785
40 1930126 1307642 37941 446374
50 1924047 1297033 37369 439572
60 1921517 1281222 37256 306588
70 1921300 1269792 36562 296770
80 1899418 1257984 36269 196613
90 1892802 1247668 35758 133536

supplier join lineitem

at 16KB page size
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A.2.2 Configuration with SSD as Persistent Storage Device

B NLJ BNLJ HJ SMJ

10 128 126 230 235
20 136 129 233 241
30 134 130 235 242
40 138 48 50 158
50 233 48 48 92
60 185 48 49 92
70 73 44 38 39
80 64 49 35 37
90 67 43 35 39

nation join region at 4KB page size

B NLJ BNLJ HJ SMJ

10 101 91 262 258
20 116 89 270 260
30 108 92 266 261
40 106 89 264 258
50 180 89 264 255
60 55 40 31 39
70 58 42 31 40
80 54 42 29 40
90 58 40 30 43

nation join region at 8KB page size

B NLJ BNLJ HJ SMJ

10 138 109 364 359
20 137 110 363 363
30 140 111 360 359
40 139 113 363 368
50 136 109 363 361
60 67 45 39 42
70 81 45 37 45
80 116 41 37 41
90 352 42 35 39

nation join region at 16KB page size

B NLJ BNLJ HJ SMJ

10 1129 1512 837 864
20 1295 644 269 515
30 1235 591 110 435
40 1138 588 109 434
50 1158 589 99 342
60 1141 581 97 259
70 1289 570 98 260
80 538 570 105 145
90 550 586 91 105

nation join supplier at 4KB page size

B NLJ BNLJ HJ SMJ

10 983 1200 934 962
20 979 1203 943 969
30 1006 556 85 444
40 1000 547 85 443
50 1017 556 86 441
60 1006 547 85 328
70 1092 541 83 328
80 540 540 79 105
90 534 536 83 105

nation join supplier at 8KB page size

B NLJ BNLJ HJ SMJ

10 1017 1175 1334 1353
20 1010 1176 1329 1335
30 1027 1178 1330 1349
40 1066 539 89 380
50 1096 540 86 381
60 1071 553 89 376
70 546 540 81 105
80 534 533 82 106
90 540 539 80 108

nation join supplier at 16KB page size
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B NLJ BNLJ HJ SMJ

10 16660 8855 1317 6182
20 16408 8703 1333 5998
30 16454 8580 1301 5948
40 16472 8530 1270 5708
50 16359 8493 1172 4622
60 16538 8450 1141 4298
70 16301 8366 1123 3447
80 16337 8297 1125 2965
90 16366 8291 1084 2194

nation join customer at 4KB page size

B NLJ BNLJ HJ SMJ

10 13131 8049 1142 5801
20 13109 8212 1109 5490
30 13066 8130 1032 5452
40 13259 8147 1030 5388
50 13167 8067 1004 5290
60 13220 8080 987 4088
70 13119 8025 970 3883
80 13287 8029 957 3085
90 13354 7954 949 2176

nation join customer at 8KB page size

B NLJ BNLJ HJ SMJ

10 11889 8027 1077 5861
20 11931 8027 1060 5430
30 11987 8021 1058 5265
40 11949 7956 979 5171
50 12000 7974 963 5085
60 11896 7947 955 5005
70 12080 7928 941 4954
80 12187 7877 928 4103
90 12146 7843 927 2739

nation join customer at 16KB page size

B NLJ BNLJ HJ SMJ

10 2291349 1351129 44461 303907
20 2343411 1351197 44253 305275
30 2398598 1333049 43538 281500
40 2416858 1319223 42831 251851
50 2407897 1336714 42342 225861
60 2406668 1310711 41493 195348
70 2396081 1296501 40852 162543
80 2389467 1289886 40158 132431
90 2415131 1288438 39564 102790

supplier join lineitem

at 4KB page size

B NLJ BNLJ HJ SMJ

10 1907386 1349963 40082 304789
20 1972170 1332948 40155 333343
30 2026284 1315422 39660 345439
40 2034684 1308268 39290 274629
50 2032892 1293677 38695 271975
60 2034368 1279610 38252 228408
70 2036886 1285963 37831 178477
80 2030278 1268401 37242 147677
90 2029801 1257227 36837 106934

supplier join lineitem

at 8KB page size

B NLJ BNLJ HJ SMJ

10 1794881 1344462 38308 375200
20 1848384 1330418 38309 415212
30 1915251 1319057 38245 437938
40 1921327 1304844 37931 446052
50 1931368 1292379 37399 439785
60 1903610 1283551 37081 305940
70 1916993 1265438 36634 295770
80 1900039 1256841 36163 195706
90 1867559 1246512 35776 133216

supplier join lineitem

at 16KB page size
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A.2.3 Configuration with SSD as Extension to the Buffer Pool

B NLJ BNLJ HJ SMJ

10 183 137 135 143
20 187 141 135 140
30 190 138 134 139
40 146 137 197 128
50 152 132 191 124
60 155 133 191 119
70 152 132 123 122
80 140 127 120 118
90 141 128 123 122

100 147 126 118 118

nation join region at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 167 128 123 126
20 176 129 123 128
30 196 131 124 133
40 180 134 192 124
50 206 130 192 128
60 221 131 189 128
70 217 137 126 120
80 201 136 128 125
90 223 137 125 124

100 217 133 127 126

nation join region at 4KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 179 134 127 130
20 259 131 127 132
30 324 131 123 130
40 216 128 185 118
50 295 129 190 120
60 323 129 189 122
70 278 134 131 124
80 247 138 126 124
90 203 138 130 124

100 287 140 130 128

nation join region at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 149 51 40 48
20 189 49 38 50
30 266 48 40 50
40 330 48 38 48
50 331 48 42 50
60 292 49 41 51
70 226 51 30 48
80 236 50 30 48
90 287 52 30 46

100 299 50 31 44

nation join region at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 139 47 35 45
20 171 47 34 53
30 193 48 33 52
40 197 47 34 52
50 222 46 36 51
60 226 49 32 53
70 225 47 34 51
80 224 48 31 54
90 228 47 32 52

100 228 47 32 48

nation join region at 4KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 169 43 42 47
20 245 44 37 48
30 299 45 39 47
40 321 48 33 55
50 309 48 34 51
60 329 48 34 52
70 298 48 36 51
80 311 47 34 50
90 317 48 34 54

100 319 49 31 55

nation join region at 4KB page size
and 60% available RAM
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B NLJ BNLJ HJ SMJ

10 86 42 30 30
20 46 46 23 29
30 42 48 29 27
40 43 48 30 26
50 42 47 28 26
60 43 47 26 28
70 43 46 29 28
80 43 46 28 27
90 43 46 26 26

100 43 46 28 26

nation join region at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 61 43 32 31
20 44 49 28 26
30 42 48 31 24
40 42 49 28 25
50 42 48 27 25
60 42 48 27 26
70 42 49 29 24
80 43 48 30 23
90 44 49 30 24

100 45 46 28 25

nation join region at 4KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 70 47 28 31
20 75 46 27 28
30 75 48 29 30
40 76 47 29 30
50 71 46 27 30
60 67 47 27 29
70 68 48 31 27
80 74 47 27 30
90 67 47 29 29

100 71 48 30 29

nation join region at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 108 92 154 140
20 121 93 156 138
30 121 92 154 136
40 122 91 153 135
50 120 92 145 131
60 126 90 154 134
70 121 90 154 134
80 123 91 153 133
90 116 91 101 106

100 117 94 98 106

nation join region at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 107 93 154 134
20 110 92 152 139
30 107 95 154 140
40 107 92 151 139
50 108 95 154 139
60 122 92 157 137
70 121 93 155 136
80 114 90 152 136
90 116 90 97 104

100 115 94 99 105

nation join region at 8KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 106 93 147 132
20 104 92 146 134
30 105 95 153 136
40 104 96 152 136
50 114 92 154 136
60 120 90 152 137
70 114 94 95 104
80 112 92 96 105
90 114 92 95 105

100 113 94 97 105

nation join region at 8KB page size
and 30% available RAM
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B NLJ BNLJ HJ SMJ

10 117 92 101 105
20 117 92 99 103
30 121 93 100 104
40 125 92 100 103
50 184 92 100 105
60 191 92 101 105
70 188 92 101 105
80 190 93 101 102
90 190 92 101 106

100 195 92 101 104

nation join region at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 119 92 101 104
20 117 89 102 104
30 129 90 101 101
40 134 92 99 102
50 194 91 99 98
60 212 90 90 100
70 228 92 93 101
80 237 91 99 105
90 226 94 101 104

100 207 91 102 105

nation join region at 8KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 46 43 24 24
20 46 43 25 26
30 51 39 22 25
40 49 43 21 26
50 45 43 22 26
60 47 42 24 25
70 46 44 20 26
80 47 42 23 25
90 46 43 25 26

100 45 44 21 26

nation join region at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 48 38 24 26
20 43 46 25 25
30 45 46 28 27
40 46 42 24 26
50 45 43 23 27
60 44 44 25 24
70 44 45 26 26
80 48 42 22 25
90 46 40 21 23

100 47 41 20 25

nation join region at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 46 44 23 26
20 48 41 20 23
30 47 42 23 27
40 70 39 22 23
50 47 42 20 25
60 47 42 24 28
70 53 40 22 23
80 60 42 24 24
90 47 41 21 25

100 47 42 20 23

nation join region at 8KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 61 39 22 27
20 48 42 21 28
30 46 42 23 24
40 46 42 23 24
50 47 45 23 24
60 58 40 21 24
70 50 41 23 24
80 48 40 20 24
90 48 42 24 24

100 53 39 22 23

nation join region at 8KB page size
and 90% available RAM



A.2. Implementation Using Preprocessor Directives 121

B NLJ BNLJ HJ SMJ

10 145 111 156 142
20 148 112 158 140
30 151 112 156 141
40 153 112 157 143
50 154 114 157 138
60 157 113 158 143
70 156 112 159 142
80 151 112 156 142
90 147 111 159 125

100 146 110 157 122

nation join region at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 132 112 158 144
20 135 113 156 142
30 146 112 156 139
40 155 111 156 142
50 156 111 157 142
60 161 112 158 138
70 154 111 155 137
80 143 109 149 137
90 146 110 159 126

100 143 108 158 126

nation join region at 16KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 149 108 149 134
20 150 109 153 137
30 150 108 152 138
40 152 112 157 142
50 148 109 152 138
60 148 110 157 142
70 149 112 167 133
80 148 112 164 131
90 148 112 166 132

100 151 112 165 132

nation join region at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 148 112 164 128
20 148 110 159 127
30 151 111 161 127
40 154 109 160 128
50 149 107 155 120
60 159 113 163 131
70 157 111 164 129
80 159 112 162 127
90 157 112 163 127

100 155 112 164 126

nation join region at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 156 111 162 126
20 168 114 162 124
30 151 112 165 128
40 173 109 161 130
50 169 110 162 127
60 172 110 161 123
70 179 109 159 125
80 189 113 163 131
90 162 111 163 128

100 183 111 162 127

nation join region at 16KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 56 41 29 23
20 57 41 27 25
30 60 41 32 25
40 56 42 27 27
50 56 42 28 26
60 55 42 27 26
70 58 42 31 29
80 59 42 32 28
90 58 42 30 30

100 54 42 31 30

nation join region at 16KB page size
and 60% available RAM
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B NLJ BNLJ HJ SMJ

10 60 42 29 27
20 59 43 30 25
30 59 41 27 24
40 56 41 27 26
50 56 41 28 25
60 58 41 29 25
70 58 41 28 25
80 54 41 29 24
90 59 41 28 23

100 58 42 29 26

nation join region at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 65 41 30 25
20 95 40 31 30
30 99 41 29 29
40 61 41 32 30
50 57 41 29 26
60 81 39 29 24
70 127 40 28 30
80 76 40 31 28
90 103 40 31 30

100 110 40 31 30

nation join region at 16KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 54 42 28 29
20 54 43 29 28
30 63 41 29 29
40 54 42 29 27
50 62 42 30 25
60 54 41 28 25
70 52 42 28 25
80 54 43 31 25
90 54 41 28 27

100 53 42 30 29

nation join region at 16KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 1698 1648 1050 3022
20 1703 1638 452 2264
30 1693 1631 371 1317
40 1702 1644 1684 16882
50 1666 1616 1035 2461
60 1208 1641 1696 16728
70 1199 1617 349 1144
80 1193 1605 645 2340
90 1181 1597 344 1108

100 1186 1598 348 1103

nation join supplier at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1685 693 407 625
20 1770 689 152 604
30 1751 679 286 583
40 1792 693 1162 2074
50 1316 688 593 715
60 1294 671 677 1404
70 1291 665 455 445
80 1269 665 485 423
90 1227 659 280 422

100 1236 663 281 421

nation join supplier at 4KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 1667 614 172 544
20 1736 609 149 460
30 1244 606 127 387
40 1324 616 546 1391
50 1275 607 312 968
60 1247 609 483 1273
70 1229 604 133 364
80 1259 606 162 397
90 1200 599 123 349

100 1215 602 113 336

nation join supplier at 4KB page size
and 30% available RAM
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B NLJ BNLJ HJ SMJ

10 1669 618 175 546
20 1852 611 146 459
30 1335 615 127 388
40 1253 617 128 389
50 1242 604 162 398
60 1259 599 140 367
70 1303 605 142 357
80 1341 611 150 355
90 1276 605 150 355

100 1258 605 152 355

nation join supplier at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1728 610 149 468
20 1472 599 147 346
30 1470 596 145 345
40 1418 596 143 344
50 1368 603 142 343
60 1306 599 144 345
70 1433 599 143 344
80 1437 598 142 344
90 1292 596 143 345

100 1298 596 143 345

nation join supplier at 4KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 1282 588 143 340
20 1305 581 139 339
30 1292 581 139 338
40 1305 584 139 337
50 1311 585 139 338
60 1298 586 139 337
70 1294 582 142 338
80 1317 589 140 337
90 1305 582 139 338

100 1315 582 139 339

nation join supplier at 4KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 1279 591 145 339
20 1486 586 140 337
30 1590 584 145 340
40 1572 584 144 339
50 1560 583 144 341
60 1590 588 144 340
70 1550 592 145 340
80 1430 587 145 340
90 1540 585 144 340

100 1595 586 146 342

nation join supplier at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 633 588 149 192
20 811 586 153 193
30 897 588 149 190
40 857 593 151 192
50 764 589 150 190
60 808 587 150 193
70 848 588 147 194
80 853 588 150 191
90 850 590 151 189

100 795 589 149 188

nation join supplier at 4KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 542 577 144 181
20 547 579 143 179
30 548 575 147 184
40 551 577 142 178
50 555 577 141 180
60 548 580 142 184
70 545 577 145 184
80 547 579 141 178
90 554 580 141 183

100 548 583 140 179

nation join supplier at 4KB page size
and 90% available RAM
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B NLJ BNLJ HJ SMJ

10 1409 1265 517 2604
20 1409 1255 579 3976
30 1418 1253 506 2815
40 1418 1255 501 2798
50 1403 1253 505 2811
60 1025 1253 539 2699
70 1031 1252 538 2697
80 1024 1250 503 3104
90 1023 1252 504 2744

100 1029 1249 504 2732

nation join supplier at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1393 1260 550 3782
20 1404 1263 553 3780
30 1420 1266 505 2809
40 1415 1261 502 2799
50 1414 1253 499 2825
60 1022 1258 541 2734
70 1018 1252 541 2709
80 1024 1256 456 3017
90 1018 1247 499 2720

100 1023 1248 503 2738

nation join supplier at 8KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 1402 575 168 609
20 1418 573 168 607
30 1041 569 163 478
40 1045 565 164 473
50 1042 566 162 476
60 1038 562 163 475
70 1023 567 139 369
80 1025 565 141 369
90 1033 566 138 370

100 1027 561 138 369

nation join supplier at 8KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 1397 564 144 472
20 1401 565 143 471
30 1060 561 138 369
40 1058 566 137 369
50 1030 560 140 370
60 1032 564 139 371
70 1023 566 138 369
80 1029 566 138 369
90 1023 567 138 372

100 1019 565 138 369

nation join supplier at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1401 566 141 467
20 1401 568 142 470
30 1040 558 137 369
40 1053 565 138 369
50 1029 564 139 372
60 1031 561 138 370
70 1022 567 139 372
80 1032 568 139 369
90 1013 565 140 370

100 1043 562 141 370

nation join supplier at 8KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 1079 561 136 307
20 1067 569 138 309
30 1033 572 137 308
40 1035 560 140 307
50 1044 560 137 309
60 1043 560 137 308
70 1035 569 136 308
80 1035 560 140 310
90 1040 562 139 309

100 1036 562 139 310

nation join supplier at 8KB page size
and 60% available RAM
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B NLJ BNLJ HJ SMJ

10 1029 559 135 309
20 1032 568 137 306
30 1048 565 136 308
40 1035 563 137 309
50 1029 562 140 309
60 1034 568 136 308
70 1039 565 136 309
80 1058 563 138 308
90 1036 556 139 309

100 1043 566 136 307

nation join supplier at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 561 555 131 176
20 543 551 137 182
30 546 550 140 180
40 554 554 133 179
50 551 552 130 177
60 547 553 138 184
70 548 552 136 179
80 553 560 131 177
90 543 553 132 180

100 547 561 138 186

nation join supplier at 8KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 549 554 132 177
20 546 552 134 180
30 544 553 134 179
40 545 547 139 182
50 547 550 134 180
60 551 554 136 179
70 542 557 132 178
80 548 553 135 178
90 548 548 137 181

100 544 554 134 181

nation join supplier at 8KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 1505 1219 606 2847
20 1515 1210 597 2823
30 1503 1217 601 2841
40 1056 1227 588 3131
50 1057 1209 586 3114
60 1043 1220 587 3126
70 1051 1215 592 3537
80 1049 1211 588 3517
90 1085 1231 593 3580

100 1086 1239 596 3620

nation join supplier at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 1506 1207 605 2824
20 1499 1215 602 2816
30 1500 1210 598 2814
40 1036 1206 584 3101
50 1057 1205 584 3097
60 1048 1203 586 3089
70 1056 1212 586 3516
80 1057 1209 585 3493
90 1054 1209 582 3530

100 1050 1225 584 3547

nation join supplier at 16KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 1499 1211 596 2817
20 1500 1204 597 2819
30 1510 1207 597 2825
40 1050 1208 586 3111
50 1040 1214 584 3112
60 1054 1209 587 3113
70 1052 1218 586 3553
80 1047 1215 584 3566
90 1059 1222 590 3605

100 1052 1214 588 3586

nation join supplier at 16KB page size
and 30% available RAM
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B NLJ BNLJ HJ SMJ

10 1060 548 135 373
20 1071 543 136 373
30 1062 548 136 374
40 1074 552 137 373
50 1066 550 136 373
60 1056 546 136 372
70 1076 553 135 375
80 1066 551 136 375
90 1076 545 138 375

100 1074 544 136 374

nation join supplier at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 1095 547 136 375
20 1095 546 136 372
30 1073 546 137 375
40 1082 557 136 375
50 1087 553 136 371
60 1078 549 136 372
70 1082 558 135 374
80 1085 553 135 375
90 1076 555 135 374

100 1091 557 135 376

nation join supplier at 16KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 1076 562 136 373
20 1077 554 134 372
30 1099 552 135 372
40 1089 563 137 374
50 1082 564 136 371
60 1090 560 138 373
70 1092 566 137 375
80 1084 559 137 374
90 1113 551 136 375

100 1082 556 138 375

nation join supplier at 16KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 562 555 136 176
20 558 546 136 169
30 551 551 135 170
40 548 552 131 170
50 541 540 131 167
60 550 542 127 167
70 555 550 129 169
80 553 554 132 170
90 542 552 129 170

100 544 542 138 174

nation join supplier at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 542 537 137 175
20 555 544 125 166
30 550 554 130 170
40 545 553 127 166
50 549 543 127 166
60 539 541 129 168
70 552 542 129 171
80 549 548 130 172
90 548 546 130 172

100 545 543 133 170

nation join supplier at 16KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 541 539 133 174
20 541 562 129 168
30 555 545 129 169
40 544 545 136 176
50 546 549 134 174
60 550 549 131 170
70 545 551 132 170
80 547 552 127 169
90 556 555 135 172

100 541 547 130 169

nation join supplier at 16KB page size
and 90% available RAM
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B NLJ BNLJ HJ SMJ

10 24212 9036 1447 6899
20 23994 9156 1411 6410
30 24013 9102 1376 6413
40 23774 8852 1325 6455
50 24163 9010 1328 6382
60 23598 8805 1278 6632
70 24082 8896 1237 6380
80 24159 8784 1260 6293
90 17220 8995 1231 4163

100 17272 8965 1233 4157

nation join customer at 4KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 24098 9337 1367 6461
20 23994 9298 1338 6448
30 23892 9282 1315 6448
40 24314 9089 1334 6320
50 24209 9230 1260 6403
60 24191 9124 1231 6376
70 23779 9224 1202 6290
80 17491 9158 1226 4207
90 17462 9186 1235 4202

100 17449 9189 1244 4200

nation join customer at 4KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 24652 9429 1330 6490
20 24552 9406 1301 6441
30 24410 9447 1277 6450
40 24418 9309 1258 6364
50 24585 9308 1228 6380
60 24469 9326 1198 6293
70 17808 9357 1212 4206
80 17837 9411 1210 4193
90 17828 9379 1179 3808

100 17829 9363 1217 4202

nation join customer at 4KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 24962 9652 1306 6409
20 24815 9652 1282 6339
30 24781 9629 1259 6360
40 24788 9586 1226 6326
50 24932 9545 1202 6286
60 18159 9514 1246 4239
70 18156 9576 1420 4142
80 18144 9606 1533 4282
90 18127 9568 1540 4291

100 18103 9571 1543 4291

nation join customer at 4KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 25142 9670 1567 6271
20 24807 9658 1543 6241
30 24903 9656 1520 6188
40 24988 9568 1493 6157
50 18328 9642 1525 4260
60 18390 9661 1524 4285
70 18317 9665 1522 4281
80 18329 9660 1516 4282
90 18349 9660 1521 4298

100 18318 9651 1519 4288

nation join customer at 4KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 25277 9696 1523 6238
20 25321 9652 1510 6188
30 25348 9650 1474 6150
40 18661 9671 1495 4271
50 18638 9681 1503 4275
60 18699 9691 1494 4273
70 18657 9698 1502 4276
80 18665 9693 1501 4272
90 18596 9703 1503 4262

100 18655 9692 1495 4251

nation join customer at 4KB page size
and 60% available RAM
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B NLJ BNLJ HJ SMJ

10 25437 9684 1475 6200
20 25514 9644 1450 6150
30 18893 9721 1470 4226
40 18948 9737 1468 4235
50 18932 9734 1467 4219
60 18909 9713 1474 4250
70 18910 9735 1475 4242
80 18856 9710 1476 4249
90 18894 9710 1472 4255

100 18882 9719 1473 4240

nation join customer at 4KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 25797 9653 1438 6138
20 19115 9756 1452 4234
30 19121 9762 1455 4234
40 19161 9723 1455 4254
50 19051 9704 1455 4236
60 19197 9764 1453 4240
70 19161 9748 1453 4245
80 19186 9740 1448 4235
90 19154 9742 1452 4246

100 19182 9722 1452 4254

nation join customer at 4KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 19085 9619 1427 4208
20 19168 9661 1426 4244
30 19231 9633 1428 4221
40 19155 9660 1430 4222
50 19133 9652 1427 4246
60 19192 9629 1430 4253
70 19235 9625 1429 4224
80 19172 9653 1427 4251
90 19189 9622 1428 4244

100 19224 9641 1428 4233

nation join customer at 4KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 17207 8462 1496 5310
20 17340 8768 955 4854
30 17385 8786 948 4833
40 17266 8677 930 4807
50 17313 8659 919 4827
60 17218 8678 898 4820
70 17295 8601 877 4752
80 17236 8576 868 4746
90 13329 8397 853 2703

100 13338 8411 851 2719

nation join customer at 8KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 17277 8776 951 4902
20 17263 8804 929 4860
30 17385 8700 922 4826
40 17365 8715 912 4831
50 17398 8661 894 4832
60 17289 8664 879 4804
70 17145 8577 857 4781
80 13440 8453 921 3141
90 13448 8471 867 2736

100 13355 8467 893 2716

nation join customer at 8KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 17500 8647 957 4893
20 17411 8726 939 4893
30 17530 8571 935 4877
40 17432 8569 919 4888
50 17525 8523 887 4866
60 17504 8513 885 4891
70 13570 8332 840 2837
80 13511 8404 1279 3507
90 13557 8415 1311 3588

100 13515 8384 1268 3521

nation join customer at 8KB page size
and 30% available RAM
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B NLJ BNLJ HJ SMJ

10 17686 8771 1615 5067
20 17755 8766 1612 5091
30 17794 8661 1684 5081
40 17795 8663 1672 5062
50 17799 8596 1646 5071
60 13879 8541 1516 3931
70 13906 8501 1519 3939
80 13975 8527 1521 3944
90 13950 8523 1525 3947

100 13953 8511 1514 3936

nation join customer at 8KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 17884 8814 1625 5077
20 17838 8769 1610 5062
30 17831 8682 1665 5051
40 17878 8643 1641 5051
50 13988 8525 1540 3943
60 13986 8525 1558 3948
70 14068 8499 1544 3966
80 14044 8533 1550 3957
90 14083 8534 1564 3967

100 14022 8505 1552 3965

nation join customer at 8KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 17961 8732 1612 5064
20 17922 8708 1615 5088
30 17914 8708 1575 5066
40 14124 8500 1539 3943
50 14096 8478 1539 3936
60 14095 8481 1546 3942
70 14136 8482 1542 3941
80 14200 8502 1552 3971
90 14151 8475 1544 3947

100 14125 8475 1545 3949

nation join customer at 8KB page size
and 60% available RAM

B NLJ BNLJ HJ SMJ

10 18008 8712 1575 5003
20 18059 8720 1553 4974
30 14204 8470 1517 3909
40 14222 8441 1532 3908
50 14238 8423 1534 3919
60 14233 8432 1536 3912
70 14216 8437 1536 3926
80 14307 8435 1530 3921
90 14307 8503 1546 3913

100 14295 8478 1527 3917

nation join customer at 8KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 18348 8643 1537 4995
20 14418 8428 1496 3922
30 14480 8438 1505 3919
40 14508 8457 1493 3918
50 14484 8458 1498 3912
60 14496 8450 1504 3945
70 14511 8460 1495 3936
80 14527 8471 1485 3932
90 14475 8457 1493 3934

100 14547 8467 1492 3942

nation join customer at 8KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 14514 8385 1482 3923
20 14527 8381 1478 3929
30 14571 8403 1477 3936
40 14596 8401 1473 3935
50 14588 8431 1473 3937
60 14586 8416 1470 3928
70 14587 8409 1479 3947
80 14661 8410 1468 3946
90 14652 8421 1471 3946

100 14617 8390 1466 3953

nation join customer at 8KB page size
and 90% available RAM
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B NLJ BNLJ HJ SMJ

10 15509 8373 900 2886
20 15487 8415 908 3200
30 15474 8490 898 3203
40 15559 8452 894 3183
50 15474 8379 869 3201
60 15505 8377 851 3186
70 15478 8315 832 3111
80 15438 8372 819 3080
90 11828 8121 834 2413

100 11777 8062 830 2399

nation join customer at 16KB page size
and 10% available RAM

B NLJ BNLJ HJ SMJ

10 15419 8408 911 3199
20 15454 8388 910 3197
30 15416 8339 883 3181
40 15418 8319 888 3152
50 15428 8310 886 3181
60 15473 8242 857 3148
70 15460 8217 813 3112
80 12172 8186 846 2471
90 12201 8193 853 2476

100 12206 8200 864 2470

nation join customer at 16KB page size
and 20% available RAM

B NLJ BNLJ HJ SMJ

10 15493 8330 886 3173
20 15435 8361 877 3170
30 15398 8347 857 3178
40 15569 8318 851 3166
50 15506 8314 836 3154
60 15439 8237 817 3151
70 12300 8270 1617 3827
80 12315 8224 1657 3878
90 12342 8274 1663 3890

100 12322 8233 1646 3899

nation join customer at 16KB page size
and 30% available RAM

B NLJ BNLJ HJ SMJ

10 15543 8268 1668 5399
20 15650 8179 1654 5420
30 15631 8227 1641 5398
40 15605 8167 1627 5391
50 15606 8125 1628 5364
60 12268 8235 1539 3919
70 12337 8160 1526 3945
80 12322 8212 1537 3932
90 12295 8178 1530 3962

100 12306 8192 1530 3949

nation join customer at 16KB page size
and 40% available RAM

B NLJ BNLJ HJ SMJ

10 15772 8215 1647 5405
20 15626 8158 1629 5423
30 15741 8190 1620 5402
40 15678 8143 1585 5402
50 12405 8140 1521 4006
60 12422 8093 1521 3994
70 12425 8132 1523 4021
80 12423 8096 1525 4016
90 12424 8122 1516 3998

100 12427 8098 1522 4059

nation join customer at 16KB page size
and 50% available RAM

B NLJ BNLJ HJ SMJ

10 15780 8140 1630 5388
20 15776 8074 1601 5381
30 15757 8047 1608 5245
40 12432 8070 1523 3951
50 12417 8055 1530 3958
60 12466 8050 1528 3966
70 12442 8067 1529 3950
80 12506 8075 1526 3945
90 12466 8060 1526 3954

100 12489 8066 1535 3938

nation join customer at 16KB page size
and 60% available RAM
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B NLJ BNLJ HJ SMJ

10 15822 8032 1603 5392
20 15850 8001 1573 5264
30 12564 8088 1554 3912
40 12493 8079 1552 3899
50 12552 8051 1547 3923
60 12513 8088 1547 3936
70 12528 8162 1554 3933
80 12569 8120 1561 3920
90 12558 8064 1552 3951

100 12519 8120 1560 3949

nation join customer at 16KB page size
and 70% available RAM

B NLJ BNLJ HJ SMJ

10 15929 8025 1573 5240
20 12809 8114 1526 3949
30 12969 8095 1550 3947
40 13015 8041 1534 3968
50 12749 8063 1530 3948
60 12882 8164 1550 3996
70 12903 8100 1533 3944
80 12935 8051 1539 3990
90 12898 8130 1550 3981

100 12915 8052 1539 3978

nation join customer at 16KB page size
and 80% available RAM

B NLJ BNLJ HJ SMJ

10 13048 8003 1522 3929
20 13035 8010 1524 3942
30 12869 7984 1522 3971
40 13114 8008 1535 3980
50 13104 8010 1518 3999
60 13183 8009 1528 3953
70 13124 8013 1533 3992
80 13179 8031 1523 3983
90 13160 8024 1517 3975

100 13162 8005 1523 3981

nation join customer at 16KB page size
and 90% available RAM

B NLJ BNLJ HJ SMJ

10 4150202 2333628 54875 55927
20 3896810 2330313 53579 55553
30 4151848 2332263 52748 54603
40 4151395 2333140 51950 53763
50 3908669 2338884 51112 52923
60 3904772 2341604 50366 51864
70 4155782 2340642 49700 51229
80 3884867 2339224 48903 50365
90 3355098 2348498 48701 48987

100 3369150 2348989 48704 49013

supplier join lineitem

at 4KB page size and
10% available RAM

B NLJ BNLJ HJ SMJ

10 855557 3178659 61377 63850
20 887676 3182167 60675 63283
30 854753 3175287 60035 62356
40 874758 3184879 59289 61492
50 895020 3182472 58397 60588
60 864267 3180640 57595 59683
70 829254 3177935 56803 58672
80 37893 3185580 56114 57360
90 47861 3178986 56488 57323

100 81132 3179938 56487 57375

supplier join lineitem

at 4KB page size and
20% available RAM

B NLJ BNLJ HJ SMJ

10 1813958 3903935 67172 69424
20 1814221 3916263 66353 68627
30 1816219 3924675 65579 68141
40 1846612 3898842 64968 67128
50 1832399 3912885 64059 66210
60 1803097 3898452 63290 65503
70 997921 3905071 62507 66988
80 1017957 3899577 63713 70607
90 1048793 3902389 63083 69530

100 1051634 3898554 63783 69723

supplier join lineitem

at 4KB page size and
30% available RAM
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B NLJ BNLJ HJ SMJ

10 2789260 236033 71704 74526
20 2785374 238617 71073 73474
30 2775480 234320 70479 72718
40 2772731 223055 69661 71930
50 2781615 230156 68659 71080
60 1963655 228752 67955 73044
70 1982875 225006 69302 79879
80 2014398 229567 69945 81463
90 2014838 235378 69609 79560

100 2017221 227560 69191 77926

supplier join lineitem

at 4KB page size and
40% available RAM

B NLJ BNLJ HJ SMJ

10 3755879 702714 76041 78729
20 3754215 703136 75150 77813
30 3759469 699884 74444 76946
40 3733980 702383 73570 76058
50 2931761 700085 72864 74663
60 2951510 691616 72904 74555
70 2975691 698459 72885 74619
80 2963704 693453 72784 74752
90 2962770 695123 72829 74622

100 2976816 696992 72795 74747

supplier join lineitem

at 4KB page size and
50% available RAM

B NLJ BNLJ HJ SMJ

10 453128 1198157 80904 81389
20 441147 1201540 79984 80569
30 407650 1206577 79233 79589
40 3905719 1196919 78364 78084
50 3939654 1195792 78411 78152
60 3956587 1215861 78451 78277
70 3969657 1192557 78435 78084
80 3964596 1203202 78471 78311
90 3960124 1196070 78368 78179

100 3948770 1198896 78267 78151

supplier join lineitem

at 4KB page size and
60% available RAM

B NLJ BNLJ HJ SMJ

10 1388652 1564302 82984 83337
20 1365066 1563134 82136 82119
30 573003 1551526 80914 81140
40 594467 1548444 80930 80971
50 632079 1561261 81090 80776
60 636530 1551612 81045 80883
70 623061 1551691 81136 80986
80 627980 1546923 81210 80787
90 620573 1564131 81152 80972

100 623573 1562001 81206 80965

supplier join lineitem

at 4KB page size and
70% available RAM

B NLJ BNLJ HJ SMJ

10 2344439 1790866 83610 83709
20 1575115 1740081 82629 82629
30 1575008 1814058 82315 82900
40 1616830 1795307 82601 82097
50 1621497 1778761 82711 82499
60 1625454 1769524 82679 82976
70 1619345 1795975 82280 82876
80 1603095 1821881 82804 82345
90 1602187 1782046 82627 82569

100 1611410 1756434 82799 83024

supplier join lineitem

at 4KB page size and
80% available RAM

B NLJ BNLJ HJ SMJ

10 2569079 1944417 83229 83795
20 2587677 1896963 83103 82991
30 2623549 1927101 82796 83390
40 2639243 1925744 83106 83320
50 2631515 1926810 82694 83178
60 2625874 1925125 82891 83392
70 2617637 1929440 82767 83556
80 2609416 1908225 83060 83215
90 2613411 1954251 82793 83496

100 2643818 1897894 83048 83117

supplier join lineitem

at 4KB page size and
90% available RAM
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B NLJ BNLJ HJ SMJ

10 2918868 1837252 36448 43355
20 2914115 1828555 36549 56086
30 2938848 1833548 35898 73728
40 2934228 1834444 35318 76172
50 2925228 1831039 34924 75929
60 2925025 1831653 34407 75175
70 2938121 1837281 33892 74447
80 2893011 1836102 33333 73064
90 2456142 1839163 33103 57981

100 2465213 1839883 33043 58236

supplier join lineitem

at 8KB page size and
10% available RAM

B NLJ BNLJ HJ SMJ

10 3434366 2235417 40163 82175
20 3444489 2236773 39782 81821
30 3439137 2237653 39265 81522
40 3437632 2233649 38790 81158
50 3464712 2232325 38413 80719
60 3445318 2231439 37897 79995
70 3400225 2233063 37281 78104
80 2951671 2234942 42283 50221
90 2968721 2235932 43931 80060

100 2995703 2232995 41775 75366

supplier join lineitem

at 8KB page size and
20% available RAM

B NLJ BNLJ HJ SMJ

10 3940812 2595090 43213 85837
20 3954110 2599807 42821 85680
30 3951308 2599038 42283 85182
40 3959608 2598480 41805 84688
50 3950897 2596203 41328 84073
60 3907849 2600151 40871 82538
70 3467640 2600054 40413 66711
80 3483110 2599118 40389 67073
90 3514526 2599235 40444 67274

100 3523628 2601072 40366 67350

supplier join lineitem

at 8KB page size and
30% available RAM

B NLJ BNLJ HJ SMJ

10 150604 2896575 45348 88592
20 133800 2896316 44999 88682
30 130275 2913347 44545 88012
40 124541 2905373 43964 87447
50 96880 2896037 43444 85846
60 3951347 2903922 43023 70531
70 3967274 2901786 43060 70884
80 3995452 2893825 43003 71109
90 4008214 2904165 43119 71372

100 4011977 2905897 43060 71454

supplier join lineitem

at 8KB page size and
40% available RAM

B NLJ BNLJ HJ SMJ

10 613652 3145126 46980 90643
20 598576 3141348 46537 90528
30 608991 3143527 46047 89837
40 569250 3142369 45601 88484
50 127659 3140846 45098 73435
60 142764 3153614 45207 73829
70 176856 3146360 45106 73980
80 184545 3138783 45063 74328
90 179142 3146065 45164 74380

100 187912 3146672 45169 74600

supplier join lineitem

at 8KB page size and
50% available RAM

B NLJ BNLJ HJ SMJ

10 1071953 3349616 48750 91875
20 1071033 3350840 48318 91225
30 1051246 3361485 47728 90210
40 585586 3351323 47273 75312
50 600262 3352000 47312 75691
60 634991 3358971 47243 76041
70 650099 3351098 47332 76236
80 651744 3349684 47340 76514
90 653412 3357813 47376 76442

100 653897 3350873 47248 76637

supplier join lineitem

at 8KB page size and
60% available RAM
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B NLJ BNLJ HJ SMJ

10 1530049 3520187 49481 92259
20 1522211 3486369 49018 91460
30 1058780 3514220 48303 76638
40 1078413 3505433 48509 76703
50 1104479 3483072 48230 77359
60 1120343 3522804 48416 77264
70 1129462 3483596 48583 77470
80 1123945 3486884 48391 77959
90 1123368 3517677 48640 77797

100 1118206 3482777 48524 78373

supplier join lineitem

at 8KB page size and
70% available RAM

B NLJ BNLJ HJ SMJ

10 1988635 3623747 49727 91566
20 1498801 3618395 48956 77452
30 1522877 3578160 49229 77398
40 1571056 3628828 49072 77740
50 1589576 3593902 49066 78351
60 1595637 3586191 49274 77982
70 1599515 3632046 49026 78673
80 1590066 3590020 49323 79121
90 1594143 3606774 49271 78635

100 1597457 3622278 49123 79239

supplier join lineitem

at 8KB page size and
80% available RAM

B NLJ BNLJ HJ SMJ

10 1945417 3661780 49261 77097
20 1969920 3653175 49192 77648
30 2011557 3684383 49332 78043
40 2036645 3680528 49162 78652
50 2045337 3660085 49296 79051
60 2063138 3654572 49421 79019
70 2057997 3684018 49339 78930
80 2051560 3680689 49104 79410
90 2061325 3664617 49367 79530

100 2045794 3653970 49319 79407

supplier join lineitem

at 8KB page size and
90% available RAM

B NLJ BNLJ HJ SMJ

10 2454826 1600190 34430 57865
20 2465909 1592232 34085 57545
30 2469416 1593175 33776 57442
40 2479128 1600627 33339 57002
50 2469815 1593763 32936 56466
60 2476392 1593896 32456 56184
70 2475298 1592926 31962 55431
80 2436662 1594566 31530 54316
90 2078514 1594607 31310 45704

100 2078840 1594200 31278 45891

supplier join lineitem

at 16KB page size and
10% available RAM

B NLJ BNLJ HJ SMJ

10 2736596 1777137 36108 60577
20 2735908 1775645 35720 60238
30 2738442 1773796 35298 60070
40 2744381 1775154 34906 59360
50 2742256 1773943 34508 59095
60 2741611 1779462 34045 58440
70 2698997 1780244 33596 57130
80 2327457 1785439 33392 48182
90 2343064 1783353 33411 48253

100 2373279 1782153 33405 48431

supplier join lineitem

at 16KB page size and
20% available RAM

B NLJ BNLJ HJ SMJ

10 2985985 1956567 37232 62093
20 2999638 1959270 36833 61743
30 2999537 1963228 36544 61437
40 3006852 1963829 36105 61347
50 2995593 1959913 35679 60763
60 2984536 1960664 35239 59581
70 2596982 1958678 34963 50403
80 2613969 1958338 34948 50602
90 2648604 1956705 34946 50775

100 2658194 1955604 34929 50922

supplier join lineitem

at 16KB page size and
30% available RAM
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B NLJ BNLJ HJ SMJ

10 3247017 2093166 38218 63698
20 3246776 2098004 37742 63385
30 3243797 2096354 37396 62888
40 3235773 2097874 36964 62239
50 3210510 2097494 36529 61153
60 2845869 2099051 36274 52552
70 2858207 2099225 36323 52725
80 2891883 2096748 36290 52864
90 2902773 2100475 36273 52973

100 2908503 2098917 36242 53244

supplier join lineitem

at 16KB page size and
40% available RAM

B NLJ BNLJ HJ SMJ

10 3513596 2231843 39056 64617
20 3518772 2230316 38675 64030
30 3503091 2226443 38228 63462
40 3462715 2231885 37828 62529
50 3114532 2231795 37589 54068
60 3129831 2228573 37629 54254
70 3160226 2226850 37569 54423
80 3167653 2231641 37535 54446
90 3169202 2232559 37530 54625

100 3171383 2228123 37497 54746

supplier join lineitem

at 16KB page size and
50% available RAM

B NLJ BNLJ HJ SMJ

10 3734095 2316295 39406 64812
20 3727987 2324690 39070 64315
30 3716747 2327018 38670 63277
40 3349895 2319506 38231 54781
50 3364579 2332387 38305 55120
60 3401487 2321048 38128 55016
70 3406325 2321039 38288 55244
80 3410633 2331040 38340 55445
90 3409873 2318491 38290 55511

100 3402879 2325222 38439 55663

supplier join lineitem

at 16KB page size and
60% available RAM

B NLJ BNLJ HJ SMJ

10 3945184 2400378 39682 64702
20 3946875 2398426 39231 63623
30 3562999 2400449 39083 55613
40 3579761 2399478 38949 56021
50 3617147 2397408 38980 56230
60 3635486 2399694 38870 56324
70 3638720 2397069 39054 56387
80 3633248 2396898 39094 56362
90 3634892 2398795 39171 56659

100 3637149 2400855 39029 56507

supplier join lineitem

at 16KB page size and
70% available RAM

B NLJ BNLJ HJ SMJ

10 3900611 2444456 39374 63808
20 3762914 2442661 39196 55326
30 3792382 2443398 39157 55771
40 3832137 2429664 39100 56372
50 3858806 2440780 39285 56503
60 3867904 2445170 39309 56298
70 3864455 2442711 39251 56605
80 3868355 2438086 39230 56720
90 3864619 2444863 39393 56744

100 3866148 2443553 39240 56752

supplier join lineitem

at 16KB page size and
80% available RAM

B NLJ BNLJ HJ SMJ

10 3983483 2463655 38804 55134
20 3997131 2455954 38978 55690
30 4030771 2458543 38885 56008
40 4062910 2464163 39139 56055
50 4077626 2463065 39009 56427
60 4081522 2458799 39047 56720
70 4085109 2462238 38979 56505
80 4082053 2463622 39033 56570
90 4089304 2456749 38846 56766

100 4087736 2463191 39030 56928

supplier join lineitem

at 16KB page size and
90% available RAM
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A.2.4 In-Memory Configuration

PS NLJ BNLJ HJ SMJ

4KB 40 38 23 32
8KB 39 37 23 29

16KB 38 38 25 33

nation join region

PS NLJ BNLJ HJ SMJ

4KB 571 565 74 104
8KB 566 537 77 110

16KB 568 534 77 110

nation join supplier

PS NLJ BNLJ HJ SMJ

4KB 8545 8503 830 1227
8KB 8660 8331 821 1215

16KB 8523 8057 820 1206

nation join customer

PS NLJ BNLJ HJ SMJ

4KB 1344499 1331276 33914 63643
8KB 1338135 1316403 33512 62925

16KB 1305419 1286363 33428 62008

supplier join lineitem



Bibliography

[ABKS13] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. Feature-
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