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Abstract

Software product lines are increasingly used to develop safety-critical and mission-
critical systems. To reason about the correctness of product lines, researchers have
developed special testing techniques and adapted formal verification techniques such
as model checking and theorem proving to the requirements of software product lines.
Existing research has focused on the strategies to enable efficient reasoning about prop-
erties of a product line. However, to reason about properties, we need a representation of
the product line such as a formal model or an implementation, as well as a specification
of the properties. The contributions of this thesis are twofold. First, we survey formal
modeling and specification techniques for software product lines to give an overview of
the state-of-the-art. Second, we propose a general taxonomy of product-line representa-
tions and classify modeling and property specification techniques for software product
lines proposed in the literature. The common taxonomy helps to understand common-
alities and differences between different types of representations including implemen-
tation, modeling, and specification. Based on the insights provided by our results, we
identify potential directions for future research.
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1. Introduction

Today, software systems must often be developed in a large variety of variants to
meet the requirements of different customers. Software Product Line Engineering is
a paradigm of software development in which multiple products that share a common
set of development artifacts are developed simultaneously [39, 125]. Each product of
a product line is considered as a combination of features. A feature is a user-visible
characteristic of a software system [81].

Software product lines are increasingly used for the development of safety-critical and
mission-critical systems in which software errors cannot be tolerated [24, 159]. For
single-system engineering, the incorporation of formal specification and verification
techniques into the development process has been shown as a possible approach to
achieve the desired correctness [33]. A challenge of ongoing research is to adapt formal
verification techniques to cope with the challenges that arise from the variability of
software product lines [151].

Each verification technique, by definition, relies on a certain specification technique to
specify properties of a system and a certain modeling or implementation technique in
which the system itself is represented. As a result, researchers have proposed several
modeling and specification techniques with varying degree of built-in variability support.
It becomes increasingly difficult for researchers to maintain an overview of the diverse
modeling and specification approaches originating from different lines of research related
to software product lines. Furthermore, it is not clear whether and how results regarding
the handling of variability from a given line of research can be applied in other contexts.
A goal of this thesis is to provide an overview of the state-of-the art in formal modeling
and specification techniques for product lines.

However, the problem to handle variability, i.e., to reduce development effort by taking
advantage of commonalities between products, is not limited to models and specifi-
cations. Instead, similar problems arise for all kind of development artifacts related
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to all phases of the development process. For instance, in the context of product-line
implementation techniques variability mechanisms have been extensively studied [151].

The underlying assumption of this thesis is that there are common principles of vari-
ability that can be discovered and investigated independently of many details of specific
artifact types. Accordingly, we think that research results from a given area such as
implementation techniques can be transfered to other kind of artifacts. We aim to
identify the common principles of variability underlying modeling, specification, and
implementation techniques to support future research. We envision the development of
fundamental variability concepts that can be applied to all kinds of development arti-
facts. On the way towards this goal, we hope that variability concepts can be fruitfully
transfered between different lines of product line research.

As a first step towards our goal to unify research regarding variability concepts for prod-
uct lines, we propose a taxonomy of product-line representations that focuses on the
mapping between representation and sets of products. Novel to our view on variability
is that we do not primarily focus on the mechanisms to transform representations as
typically done in existing research. For instance, research on implementation techniques
often focuses on mechanisms used to derive products [151]. While mechanisms of prod-
uct generation are indeed important for implementation artifacts, this is not necessarily
the case in other contexts.

We exemplify the usefulness of our taxonomy by considering research on formal mod-
eling and specification techniques. We give an overview about the state of the art in
formal modeling and specification of software product lines, and classify existing tech-
niques from the literature according to our taxonomy. Furthermore, we show that the
unifying point of view provided by this classification helps to recognize commonalities
and differences that may be fruitful for future research by identifying possible directions
for future research.

In this thesis, we make the following contributions to the research community:

• We present a taxonomy of product-line representations as a first step towards a
unifying theory of variability.

• We survey the formal modeling and specification techniques of software product
lines.

• We exemplify the suitability of our taxonomy to capture techniques from different
lines of research in a unifying way by classifying formal modeling and specification
approaches proposed in the literature according to our taxonomy.

• We discuss possible directions for future research that we have identified by con-
sidering the research area in terms of the classification.
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Research Scope The survey presented in this thesis considers formal modeling and
specification techniques that have been proposed for software product lines. It does
not cover informal or semi-formal specification approaches. Furthermore, the focus
lies on techniques that have been proposed as a means to model or specify software
systems—it does not cover pure formalizations of concepts without obvious or explicitly
mentioned practical application in the software development process. The survey covers
only specification approaches that can be used to specify the behavior or properties of
software systems—it does not cover approaches for pure variability modeling.

Structure of the Thesis In Chapter 2, we present the underlying concepts and
terminology used in this thesis. In particular, we introduce the distinction between
modeling and specification that is used to structure our literature survey. We present a
general taxonomy of product-line representations that considers variability of develop-
ment artifacts in a unifying way in Chapter 3. Based on our taxonomy, we survey and
classify modeling techniques for software product lines in Chapter 4 and specification
techniques for software product lines in Chapter 5. We exemplify the usefulness of the
novel view on the research area provided by our classification by discussing possible
directions for future research in Chapter 6. We discuss related work in Chapter 7 and
conclude in Chapter 8.
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2. Background

In this chapter, we introduce concepts and terminology used in the rest of this thesis.
In Section 2.1, we give an overview of software product lines. We introduce formal
methods in Section 2.2.

2.1 Software Product Lines

Mass-customization is a successful production paradigm in many industrial domains. It
can be seen as a trade-off between mass production in which development costs are low
but individual customer requirements cannot be satisfied and handcrafting in which all
individual requirements can be satisfied but development costs are high. The idea of
mass-customization is to assemble a product of reusable parts that can be combined in
multiple ways to satisfy individual requirements. The reusable parts can be produced
with relative low costs as they are reused between multiple products.

Software product lines apply the idea of mass-customization to software development [91].
Following the principle of mass-customization, the goal of software product lines is to
achieve a trade-off between development costs and product diversity. Software product
lines are used to develop software that is adapted to specific requirements of individual
customers [39, 125]. Instead of developing software from scratch, individual products
are developed from a set of reusable parts.

In the last two decades, feature-oriented development of software product lines has
gained momentum. In this thesis, we focus on feature-oriented software product lines
in which the whole development process is driven by the concept of features [7]. In the
following, we give a brief overview of the underlying concepts.

Features The notion of a feature has multiple facets that are hard to capture com-
pletely in a single definition. We refer to the literature for a more thorough treatise of
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the notion [7]. We give a definition sufficient for the rest of this thesis that is adapted
from the literature [81]:

Definition 2.1. A feature is a characteristic of a software system relevant to a stake-
holder.

A typical stakeholder is a customer for which a software system is being developed.
Without loss of generality, we assume this to be the case in the rest of this thesis.
Customers typically express requirements in terms of what they expect a system to do
or how something should be done. Each of these characteristics, following Definition 2.1,
can be described in terms of features. The following example illustrates a small selection
of possible features of a transaction management system:

Example 1. Features:
Base: The system provides basic functionality for transactions.
Rescheduling: Aborted transactions are rescheduled and executed again.
Locking: Transactions lock the database while performing operations.
In Private: Transactions operate on a local copy of the database.
In Place: Transactions directly operate on the database.

Products A customer might be interested in a database transaction system that
includes a set of desired features. Such a selection of desired features is called a config-
uration [7]. To satisfy the requirements of the customer, a product that incorporates
all features that belong to the desired configuration must be developed, or preferably
generated automatically.

Technically, we must distinguish between the combination of features selected in the
configuration and the actual software product that is to be developed. The configuration
is an entity of the problem space, while the actual product is an entity of the solution
space. However, it is often sufficient and convenient not to make this distinction if there
is no risk of confusion. We follow this convention and give the following definition:

Definition 2.2. A product is a combination of features.

The following example illustrates the concept of a product as a combination of features:

Example 2. Products:
A = (Base, In Private,Rescheduling)
B = (Base, In Place, Locking)

We observe that Product A shares the basic functionality, i.e., feature Base, with Prod-
uct B but differs in the selection of additional features. The commonalities of a set of
products are captured by the set of features they have in common. The differences are
captured by the features in which they differ.
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Figure 2.1: Feature Model of the Transaction Product Line

Product Line A software product line is a set of software systems that share common
artifacts and are developed simultaneously [39, 125]. We can now define a product line
by using the previously defined terminology, simply as a set of product. We always
assume an underlying set of features to be given over which products are defined. We
give the following definition:

Definition 2.3. A product line is a set of products.

We may not wish or cannot develop a product for all possible configurations. In our
transaction example, feature In Private and feature In Place cannot be selected to-
gether because we cannot choose multiple modification strategies simultaneously. A
configuration is called valid, if there is a corresponding product in the product line.

Feature Models Theoretically, a product line can be fully described by listing all
its products. However, in practice it is useful to emphasize the variability of a product
line by considering it as a set of features with rules to select a valid configuration from
them. Typically, this is done by using a feature model [7].

A feature model defines rules about the selection of features to derive a valid configu-
ration. The main rule is that if a feature is selected its parent feature must be selected,
too. The root feature must always be selected. If a feature is mandatory, it must be se-
lected if its parent is selected. If features are organized in an alternative-group, exactly
one of them must be selected if the parent feature is selected. If features are organized
in an or-group at least one of them must be selected if the parent feature is selected.

In Figure 2.1, we show a feature model for the transaction product line. Feature
Transaction is the root of the model. It is included in all products. The feature
Modification Strategy is an abstract feature, i.e., it serves merely as a means to struc-
ture the diagram and is not directly mapped to a specification—as mandatory child of
the root feature it must always be selected. Feature In Place and feature In Private
are alternatives, i.e., exactly one of them must be selected to obtain a valid feature
selection. Feature Rescheduling is optional.

So far, we have seen that features are a suitable means to capture commonalities and
differences between products of a product line. The goal of feature-oriented software
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development is to enable reuse of development artifacts, such as source code, on the
level of features by developing techniques that consider variability. Ideally, products
can be generated automatically from the code base. For this purpose, several implemen-
tation techniques have been proposed [7]. We give an introduction to annotation-based
implementation techniques in Section 2.1.1 and to composition-based implementation
techniques in Section 2.1.2.

2.1.1 Annotation-Based Implementation Techniques

In annotation-based implementation techniques, the code of all features is contained in
a single code base [7]. The mapping between parts of the code and products is defined
by means of annotations that refer to features or combinations of features. Products are
generated by removing code that does not belong to features of a given configuration.

A preprocessor manipulates the source code before compilation [7]. The mapping be-
tween code and features can be achieved by wrapping the code for a given feature into
conditional-compilation directives that depend on the selection of that feature.

The use of preprocessors is a widely used annotation-based implementation technique [7].
Preprocessors are available for several languages [67, 116, 124]. A study that explored
40 open-source projects found that conditional compilation by means of preprocessors
have been used in all projects [104]. A reason for the widespread use of preprocessors
is that they are easy to use and widely available.

A disadvantage of preprocessors is that the code for a given feature is scattered across
the code [7]. Thus, there is no separation of concerns regarding features. To overcome
this limitation, concepts to visualize all code that belongs to a feature or a set of fea-
tures in separate views have been proposed [8]. This approach called virtual separation
of concerns helps developers to understand the source code because they can look at
features in a modular fashion [8]. Another technique to improve the usability of prepro-
cessors is to highlighted code that belongs to each feature with a certain background
color to help developers with program comprehension [58].

2.1.2 Composition-Based Implementation Techniques

In composition-based implementation techniques, the source code is encapsulated into
modules that are mapped to features [7]. Individual products are derived by com-
posing modules implementing the desired features. In the following, we present the
composition-based implementation techniques feature-oriented programming, aspect-
oriented programming, and delta-oriented programming.

Feature-Oriented Programming Feature-oriented programming is a composition-
based development technique in which a product line is decomposed into features [128].
The decomposition mechanism used to implement features is based on collaboration-
based design that has been proposed as an extension of object-oriented software devel-
opment [157]. A collaboration is a set of classes or parts thereof that interact to achieve
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a certain function, i.e., it plays a certain role. For example, a transaction system, could
be implemented as a collaboration of a transaction class, and a class representing the
scheduler. A collaboration representing locking functionality could be implemented as
parts of both classes, e.g., in the form of specific methods. In this case, the individual
classes play multiple roles, i.e., different parts of them are part of different collabora-
tions.

In feature-oriented programming, each feature is mapped to a certain collaboration
encapsulated into a module [7]. Each product can be derived by composing the desired
feature modules, i.e., by merging the corresponding collaborations into a single system.

The main advantage of feature-oriented programming is the modularization of fea-
tures [7]. In contrast to object-oriented programming, the decomposition by means of
feature modules supports to modularize cross-cutting features, i.e., features that effect
multiple locations of the system [147]. Furthermore, it is based on uniform composition
principles that are easy to understand but limit the granularity of feature refinements
to the level of methods [7].

Aspect-Oriented Programming Aspect-oriented programming is an extension of
object-oriented programming in which cross-cutting concerns can be modularized [86].
A cross-cutting concern is a unit of functionality that effects different locations in the
design of a system. In our database example, feature Locking is a cross-cutting concern
as it effects parts of multiple classes. In contrast to feature-oriented programming,
which allows to modularize cross-cutting concerns by means of collaborations that can
be composed, aspect-oriented programming separates a system into a base program,
and a set of encapsulated aspects.

The base program contains a set of join points, locations at which code can be possibly
inserted [86]. Each aspect contains functionality in the form of advice. An advice is a
set of instructions that is woven into the base program at certain join points. The set
of join points for a specific advice is specified by an expression that identifies a set of
join points in the base program, a pointcut.

A well known characterization by Filman and Friedman, lists quantification and obliv-
iousness as the fundamental principles of aspect-oriented programming [61]. Quantifi-
cation describes the ability to select a set of locations that can be scattered within the
base program in the form of join points. Obliviousness means that the base program is
developed conventionally without considering possible extensions in the form of aspects
in the design.

Aspect-oriented programming can be used to implement software product lines in dif-
ferent ways [6, 9, 10, 60, 82, 112]. A simple approach is to map each aspect to a feature.
More complex mappings are possible and can be useful in practice. For simplicity, we
assume a one-to-one mapping between features and aspects in the rest of this thesis.

In contrast to feature-oriented programming, the composition mechanism of aspect-
oriented programming is more flexible and allows fine grained extensions [7]. In par-
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ticular, the support for quantification increases the ability to encapsulate cross-cutting
features. This higher expressiveness comes with the disadvantage that developers need
to learn more complex language extensions.

Delta-Oriented Programming In delta-oriented programming, a product line is
implemented as a base module and a set of delta modules [134]. A delta module
encapsulates a transformation of the base module and can add or delete classes or class
members or override existing ones. The ability to delete parts of a base program is a
fundamental difference compared to feature-oriented programming. Furthermore, delta
modules are typically mapped to expressions of features rather than single features. For
instance, a given delta module may be applied if a certain combination of features is
contained in a product.

A key characteristic that distinguishes delta-oriented programming from feature-oriented
programming and aspect-oriented programming is that it allows to remove parts of the
base product [7]. This supports a way of development in which the base system con-
tains all features and products are derived by removing functionality that belongs to
undesired features.

2.2 Formal Methods

In this thesis, we present a survey of modeling and specification techniques for software
product lines. Typically, these techniques are adaptations of techniques known from
single system engineering. In the following, we give a brief overview about selected
modeling and specification techniques from single system engineering as far as necessary
to understand the rest of this thesis. In Section 2.2.1, we give a brief overview of
formal methods and define our terminology regarding models and specifications. We
introduce selected modeling techniques in Section 2.2.2 and specification techniques
in Section 2.2.3 which we assume to be known by the reader in the rest of this thesis.

2.2.1 Overview

Computers play an increasingly important role in modern society. Important infras-
tructures such as energy, communication, medicine, finances, security, or transportation
rely on the correctness of software-intensive systems. In the case of mission-critical and
safety-critical systems, failures may have dramatic consequences as shown by known
examples [160].

Failures of mission-critical systems may have substantial financial consequences. For
instance, a defect in the floating point division unit of the Intel Pentium II has caused
a loss of about 475 million US dollars [20]. It is said that the failure of the online ticket
reservation system of a large airplane company would lead to its bankruptcy within 24
hours [20].



2.2. Formal Methods 11

Failures of safety-critical systems even threaten human lives. For instance, the catas-
trophic crash of the Ariane-5 missile in 1996 has been caused by a defect in the soft-
ware [55]. Similarly, a defect in the software of the radiation therapy machine Therac-25
has caused the death of six cancer patients because they have been exposed to an over-
dose of radiation [100].

Software Engineering aims to allow developers to develop systems with a minimal
amount of defects. One approach to achieve this goal is the use of formal methods.
Formal methods incorporate mathematically precise formalisms, languages, techniques,
and tools to model, specify and verify systems [33]. In 1962, McCarthy formulated the
idea to use computer to verify the correctness of programs, i.e., to establish that the
system under consideration possesses certain properties [110]. Since then, formal spec-
ification and verification techniques have successfully been applied in domains such as
traffic control [26], microprocessors [68, 113], electronic cash systems [145, 162], flight
control [23], and for other safety-critical systems such as the Maeslant Kering (a movable
barrier protecting the port of Rotterdam from flooding) [155].

A widely used technique to ensure correctness of software is testing, in which software
is executed with a set of given inputs called test cases. Thus, testing verifies whether
the system behaves correctly for a given subset of all possible execution paths. In
contrast, model checking is an automatic technique in which all states of a system
are exhaustively explored in a brute-force manner [20]. With model checking it can be
shown that the system truly fulfills a property because it considers all possible execution
paths. Another verification technique is theorem proving, in which the correctness of a
system is deductively shown [22, 139].

All verification techniques require a representation of the system, i.e., a model or im-
plementation, and a specification of properties that the system is expected to possess.
Experience in industrial projects indicates that the process of modeling and specifying
a software system itself already helps to identify defects and inconsistencies [94, 161].

In the following, we introduce the terminology used in this thesis regarding models
and specification. In this thesis, we distinguish between models as descriptions of
the behavior of a system and specifications as descriptions of properties the system is
expected to fulfill.

A model is a description of behavior of a system. The focus lies on how the system is
supposed to do something. A characteristic of models is that they are constructive, i.e.,
they can be used as a foundation to derive an implementation. We define the term as
follows:

Definition 2.4. A model is a description of the behavior of a system with a mathe-
matically defined semantics.

A specification is a description of properties of a system. The focus lies on what the
system is supposed to do, opposed to how it should do something.
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Definition 2.5. A specification is a description of properties of a system with a math-
ematically defined semantics.

To exemplify the difference between models and specifications, we provide an example:

Example 3. A specification states if the database is in a consistent state before
execution of a transaction, then it will be still in a consistent state after its execution.

A model provides an algorithm to be performed, e.g., how a transaction performs
operations, how it writes to a log file, how it checks for consistency, and how it reverts
the changes if necessary.

Note that the level of abstraction could have been chosen arbitrarily in both cases. On
the one hand, a specification may also define what consistency means and go into more
detail about what kind of assertions must be fulfilled in order for a database state to be
considered consistent. On other hand, the model could be operate on a more abstract
level, omitting details about how to write to a log file.

2.2.2 Modeling Techniques

This thesis includes a survey on modeling techniques for product lines. In many cases,
it is not neccessary to understand all characteristics of these modeling techniques in
detail as our focus lies on the representation of variability. However, a siginificant part
of the modeling techniques for product lines are based on transition systems. Thus, we
give a brief introduction to transition systems.

Transition Systems Transition systems are a widely used formalism to model sys-
tems [20]. A transition system can be seen as a directed graph in which nodes represent
states of a system and edges represent transitions between states. Edges can be labeled
with names of actions to describe the meaning of a transition. We give the following
definition adapted from Baier and Katoen [20]:

Definition 2.6. A transition system TS is a tuple (S , Act, →, I , AP) where

• S is a set of states,

• Act is a set of actions,

• →⊆ S × Act × S is a transition relation,

• I ⊆ S is a set of initial states.



2.2. Formal Methods 13

inactive running ready committed
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Figure 2.2: Transition System of a Product of the Transaction Product Line

A transition starts in some initial state s0 ∈ I . In each step of execution, the system
evolves according to the transition relation, i.e, a transition from the current state is
selected nondeterministically and the system evolves to the next state until a state
without outgoing transitions is reached.

Example 4. Figure 2.2 shows an example of a transition system of a single product
of the transaction product line. A transaction starts in the state inactive. After
activation it reaches the state running , in which it performs operations on the database.
When the end of transaction (EOT) is reached, the transaction either gets aborted or
committed depending on whether the performed operations preserve the consistency
of the database.

This example also exemplifies that transition systems can be used to model systems
on an arbitrary level of abstraction. In this case, details about how operations are
performed or how consistency is checked are omitted. Instead, the choice between
aborting and committing a transaction is modeled as an nondeterministic choice.

2.2.3 Specification Techniques

To specify properties that a system is expected to possess, various specification tech-
niques based on different formalisms and languages exist. In the following, we give
a brief introduction to the specification techniques that we expect the reader to be
familiar with in the rest of this thesis.

Temporal Logics So far, we have seen how systems can be modeled with transition
systems. Such transition systems are often used for model checking [20]. In model
checking all states of a transition system are systematically explored to check whether
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the system fulfills certain properties. For this purpose, it is neccessary to express such
properties formally. This is typically done by using special logics with semantics defined
over transition systems. In the following, we introduce Linear Temporal Logic (LTL)
and Computation Tree Logic (CTL), two temporal logics that are commonly used to
express properties of transition systems.

Both LTL and CTL extend propositional logic with a notion of time [20]. The main
difference between LTL and CTL is the nature of time. In LTL, time is linear, i.e., each
moment in time has a single successor. In CTL, time is branching, i.e., each moment in
time can have multiple alternative successors, resulting in a tree-like structure of time.

LTL extends propositional logic with two basic temporal operators, the next operator
X and the until operator U [20]. Given any LTL formula α, the formula Xα holds at
the current moment if and only if the property expressed by α holds in the next step.
Given LTL formulas α and β, the formula α U β expresses that property α holds at the
current moment if and only if there is a future moment in which β holds and α holds at
all moment until that future moment. Based on these basic operators, further operators
such as the operator F (eventually) and the operator G (always) can be derived. The
formula Fα expresses that property α will hold eventually in the future. Similarly, the
formula Gα expresses that property α will hold in all future moments.

As mentioned above, CTL is based on a branching notion of time. It contains the
operator A (inevitably) and the operator E (possibly) to consider the tree-like structure
of time. The formula Aα holds if property α holds on all paths starting from the
current moment. Similarly, the formula Eα holds if property α holds on at least one
path starting from the current moment. In CTL, the next operator and until operator
must be preceded by operator A or operator E to obtain a valid CTL formula. A precise
definition of the syntax and semantics can be found in the literature [20].

The expressiveness of LTL and CTL differs in the sense that some properties can be
expressed with LTL but not with CTL and vice versa. For a comprehensive comparison
of LTL and CTL regarding their suitability for specification and verification we refer to
the literature [20, 158]. For this thesis, it suffices to know that both logics are commonly
used to specify properties in the context of model checking [20].

Design by Contract Design by contract is a technique in which object-oriented
software is specified by means of method contracts and invariants [111, 115]. The
underlying principle of design by contract is based on assertions. An assertion is a
property that is expected to hold at a certain point of a program’s execution. If stated
in a formal language, assertions can be checked automatically to verify that a given
program fulfills the desired properties. In runtime assertion checking, assertions are
compiled into a program and violations are reported during execution [34].

Design by contract applies the idea of assertions to object-oriented programming by
introducing method contracts and class invariants. A method contract can be seen as
an agreement between a method and its caller. The contract consists of a precondition
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1 c l a s s Transact ion {
2 . . .
3 /∗@
4 requires opera t i ons != nu l l ;
5 ensures opera t i ons . isEmpty () ;
6 @∗/
7 void run ( ) { . . . }

Figure 2.3: Method Contract of the Transaction Product Line in JML

and a postcondition. A method relies on the properties stated by the precondition, the
caller relies on the fulfillment of the precondition after method execution. Invariants
state properties that hold in every publicly visible states of a class, i.e., for and after
calls to public methods.

The Java Modeling Language (JML) is an extension of Java that supports design by
contract [31, 97]. In JML, specifications are embedded into special Java comments as
shown in Figure 2.3. The precondition, denoted by keyword requires , states that the list
of operations must be initialized before calling method run. The postcondition, denoted
by keyword ensures , states that the list of remaining operations must be empty after
execution. For JML, there exists tool support for run-time assertion checking, static
analysis, theorem proving, and for the generation of documentation or test cases [28].
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3. Variability in Product-Line
Representations

i

Our long term goal is to develop a unifying theory of variability that can be applied
to all kind of artifacts in all phases of product line engineering. To achieve this goal,
it is necessary to consider both commonalities and differences between different types
of development artifacts regarding their representation of variability. By identifying
commonalities, it becomes possible to identify possibilities to transfer research results
from a given context to other contexts. By considering the differences, it becomes clear
in which cases this transfer is not directly possible and what kind of adaptations might
be necessary.

In the following, we propose a taxonomy of product-line representations that focuses on
the mapping between representation and sets of products. We introduce the taxonomy
in Section 3.1 and exemplify the concepts by discussing its relationship to the well
known area of implementation techniques in Section 3.2.

3.1 Taxonomy of Product-Line Representations

We propose a taxonomy of variability concepts for different kind of development ar-
tifacts that play a role in product-line engineering, such as implementation, models,
specifications including test cases, or documentation. The development of the taxon-
omy has been guided by the observation that all kinds of artifacts are means to represent
certain characteristics of a system. For instance, models and implementations represent
behavior of a system, and specifications represent properties that a system is expected
to fulfill. We introduce the notion of a product-line representation to abstract from
details from specific types of artifacts and to focus on their commonalities.
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Figure 3.1: Taxonomy of Product-Line Representations

Variability on the level of implementation has been extensively studied in the context of
feature-oriented development of product lines [151]. It appears natural to assume that
the common distinction between annotation-based and composition-based implementa-
tion techniques, as presented in Chapter 2, can also be applied to other artifacts such
as models and specifications. In this thesis, we will see that this is possible, but does
not suffice to describe the full spectrum of modeling and specification techniques. As
our goal is to support collaboration between existing lines of research, we have aimed
to incorporate these known concepts of variability into a more general taxonomy, using
more general definitions that can be applied independently of a specific research con-
text such as implementation techniques. In the following, we present our taxonomy of
product-line representations.

Product-Line Representation A product-line representation represents character-
istics such as behavior or properties of a product line. In this thesis, we will exemplify
the notion of product-line representations by classifying modeling and specification
techniques. We also discuss its relationship to known concepts from implementation
techniques. However, we intend the taxonomy to be applicable for further representa-
tion types such as informal specifications and models, documentation, and requirements
documents. We define a product-line representation as follows:

Definition 3.1. A product-line representation is a set of related development
artifacts, also called modules, that as a whole represent certain characteristics of the
products of a product line together with a mapping between modules or parts thereof
and sets of products.

Each part of the representation represents characteristics of a particular set of products.
We consider this relationship to be defined in terms of a mapping between modules of
the representation or parts thereof and sets of products. Our taxonomy distinguishes
different classes of representations by considering different characteristics of this map-
ping function.
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Figure 3.2: Commonality-Based Product-Line Representation

Commonality-Based Representation Generally, it can be said that each part of a
representation represents the commonalities of a certain set of products. If the complete
representation represents characteristics of all products of one ore more product lines,
we say it is commonality-based. We give the following definition:

Definition 3.2. A commonality-based representation is a product-line representa-
tion in which all parts of the representation are mapped to each product of one ore
more product lines.

In Figure 3.2, we illustrate the concept of commonality-based representations. The
source of the mapping is the complete representation and the target of the mapping is
a specific set of products. We distinguish between two types of commonality-based
representations. A family-wide representation represents commonalities of a single
product-line, a domain-independent representation represents commonalities of several
product-lines. We give the following definition:

Definition 3.3. If a commonality-based representation is mapped to all products of a
single product line, it is family-wide. Otherwise, i.e., if it is mapped to all products
of several product lines, it is domain-independent.

Figure 3.3 shows the concept of family-wide product-line representations. While our
taxonomy is about concepts related to the development of software product lines, we
use the simple analogy of an ice cream product line to illustrate these concepts. The
family-wide representation represents the common shape of all ice cream cones in the
ice cream product line. In Figure 3.4, we illustrate the concept of domain-independent
product-line representations. In this case, the target of the mapping are not all products
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Figure 3.3: Family-Wide Product-Line Representation

of a single product-line but all products of two product lines. The additional product-
line is similar to the previous ice cream product-line except that the ice cream is served
in cups rather than in cones. The representation represents the common characteristic
of both product lines that ice cream is served frozen.

Product-Based Representation A straight-forward way to represent a product-
line is to represent characteristics of each product in a separate module. Such a rep-
resentation is called a product-based product-line representation. The modules of a
product-based product-line representation are also called product representations be-
cause each module represents a specific product. We give the following definition:

Definition 3.4. A product-based representation is a product-line representation in
which each module is mapped to a separate product.

In Figure 3.5, we illustrate the concept of product-based representation in terms of
the ice cream product line. The representation consist of separate modules. Each
module represents characteristics of a single product. In our example, the first module
represents a small ice cream cone with a small serving of chocolate ice cream without
sprinkles. The second product represents a small vanilla ice cream cone with sprinkles.
The third product represents a large chocolate ice cream cone with sprinkles.

Variability-Aware Representation Commonality-based representations do not con-
sider variability, and product-based representations only consider variability in a trivial
sense by representing each product of a product line separately. However, in the con-
text of product lines variability-aware representations are often desired. We give the
following definition:
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22 3. Variability in Product-Line Representations

Single
Module

Annotated
Parts

Products
Composition-Based
Representation

Separate
Modules

Annotation-Based
Representation

... ...

Figure 3.6: Variability-Aware Product-Line Representations

Definition 3.5. If each part of a product-line representation is mapped to an arbitrary
set of products, i.e., if it is not commonality-based or product-based, the representation
is variability-aware.

We distinguish two types of variability-aware representations: composition-based and
annotation-based. Our notion of composition-based and annotation-based represen-
tations focus on the representation of variability rather than on mechanisms to de-
rive products as the naming may suggest. However, we have chosen these names in
order to emphasize the role they play in known concepts such as composition-based
and annotation-based implementation techniques. We further explain this relationship
in Section 3.2.

Figure 3.6 shows the concepts of composition-based and annotation-based representa-
tions. A composition-based product-line representation consists of multiple separate
modules. Each module consists characteristics of a specific set of products. This is
in contrast to product-based representations in which each module is mapped to single
products rather than sets of products. An annotation-based product-line representation
consists of a single module that represents the product-line. This module is divided in
several parts, each part representing characteristics of a set of products. Inspired by
its application in annotation-based implementation techniques, we consider these parts
as annotated parts. However, the notion of annotation should be seen in a very broad
sense. Technically, it is only essential that the source of the mapping function are parts
of a module rather than separate modules. We give the following definitions:

Definition 3.6. A variablity-aware representation is composition-based, if it con-
sists of separate modules that are mapped to sets of products.
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Figure 3.7: Feature-Based Product-Line Representations

Definition 3.7. A variability-aware representation is annotation-based, if the rep-
resentation mapping maps parts of modules to sets of products.

The distinction between composition-based and annotation-based product-line repre-
sentations refers to the source of the mapping between representation and products. We
further distinguish between feature-based and family-based representations depending
on the target of this mapping. We give the following definitions:

Definition 3.8. A feature-based (product-line) representation, is a variability-aware
representation in which each part of the representation is mapped to a set consisting
of all products that share a certain feature.

Definition 3.9. A family-based (product-line) representation is a variability-aware
representation in which each artifact of the representation is mapped to an arbitrary
set of products.

As the distinction between feature-based and family-based representations is orthogonal
to the distinction between composition-based and annotation-based representations,
it is possible to combine these concepts arbitrarily. We denote these combinations
as feature-composition-based, family-composition-based, feature-annotation-based, and
family-annotation-based.



24 3. Variability in Product-Line Representations

Products
Family-Composition-Based

Representation

+

+

Arbitrary
Sets

...

Family-Annotation-Based
Representation

...

+

+

Figure 3.8: Family-Based Product-Line Representations

We illustrate the concept of feature-based representations in Figure 3.7. In feature-
composition-based representations, each module represents characteristics related to a
specific feature, i.e. it is mapped to all products containing this feature. The first mod-
ule in our example refers to the characteristic of having sprinkles and is mapped to all
products with sprinkles. The second module represents the characteristic of having large
serving size and is mapped to all products with large serving size. Similarly, individual
parts of modules are mapped to products in feature-annotation-based representations.

The concept of family-based representation is illustrated in Figure 3.8. In family-
composition-based representations

”
we have separate modules as the source of the map-

ping. However, each module now targets arbitrary sets of products. The first module
represents characteristics of all products that have sprinkles and small serving size.
The second module represents characteristics of all products with large serving size
and chocolate flavor. Similarly, in family-annotation-based representations arbitrary
products represented, but now by parts of a single module.

In summary, we have introduced product-based, commonality-based, and variability-
aware product-line representations. Table 3.1 gives an overview about the taxonomy in
terms of the characteristics of the mapping function. Some representation classes specify
a certain number of modules. This is the case for composition-based and annotation-
based representations in which the representation consists of multiple modules or a
single module respectively. Some classes specify a certain source of the mapping.
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#Modules Mapping Source Mapping Target

Product-based - module single product
Commonality-based - representation -
Family-wide - representation all products of single product line
Domain-Independent - representation all products of several product lines
Variability-aware - - set of products, (not single, not same)
Composition-based multiple module -
Annotation-based single parts of module -
Feature-based - - all products with certain feature
Family-based - - arbitrary sets of products

Table 3.1: Overview of Product-Line Representation Taxonomy

3.2 Product-Line Representations in Implementa-

tion Techniques

We have introduced a taxonomy of product-line representations with a focus on vari-
ability handling. In this section, we explain how the taxonomy of product-line represen-
tations can be used to classify development techniques and and exemplify this by using
the example of implementation techniques. In particular, we show that the resulting
classification is a refinement of the existing distinction between annotation-based and
composition-based implementation techniques. For this purpose, we define the notion
of a product-line development technique. We give the following definition:

Definition 3.10. A product-line development technique is a technique to develop
product-line representations. In particular, it constitutes a specific notion of repre-
sentation and specifies the mapping to products. A product-line development technique
may further define transformations of the initially developed representation to derived
representations.

A product-line development technique is a generalization of techniques to develop
product-line representations. Accordingly, the notion includes implementation tech-
niques, modeling techniques, specification techniques and techniques to develop other
kinds of representations.

A product-line development technique can be classified by considering the type of its
developed product-line representation that is defined by the mapping between repre-
sentation and products. For instance, we classify a development technique in which a
product-based representation is developed as product-based. We exemplify this con-
cept by discussing the classification of common implementation techniques for software
product lines. We hope that this helps to understand the concepts of our taxonomy
before we use it to classify modeling and specification techniques in particular for read-
ers who are familiar with implementation techniques for software product lines. For
an overview of implementation techniques, we refer to Section 2.1. In Figure 3.9, we
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Figure 3.9: Product-Line Representations in Implementation Techniques

illustrate the concept of product-line implementation techniques in terms of the in-
volved product-line representations. In variability-aware implementation techniques, a
product-based representation is derived from a composition-based or annotation-based
representation, respectively. Product-based implementation techniques, are techniques
in which the source code for each product is developed separately. Common to all
implementation techniques is that we are ultimately interested in the development of
individual products, i.e., in a product-based representation on the level of compiled
programs. Thus, commonality-based representations are not used for implementation
techniques, because they do not contain enough information to derive individual prod-
ucts. However, such representations are common in specification techniques, e.g., when
specifying the common properties of a product line, as we will show. In the following,
we discuss variability-aware and product-based implementation techniques.

Variability-Aware Implementation Techniques In the literature, the distinction
between composition-based and annotation-based implementation techniques is com-
monly used [7]. However, definitions typically focus on the derivation of products.
In composition-based techniques products are composed. In annotation-based imple-
mentation techniques products are derived by removing parts of annotated artifacts.
However, the focus of our taxonomy is more general. For instance, we aim to include
development techniques that do not even include product derivation. Thus, we focus
on the representation of the product line itself by considering an abstract mapping
to products that does not necessarily implies that these products are actually derived
from the representation. For this purpose, our taxonomy of product-line development
techniques in terms of the underlying representations is appropriate as the meaning of
the mapping function focuses on representation. In particular, it is a generalization of
the traditional distinction between composition and annotation based implementation
techniques.

In composition-based implementation techniques, we develop modules that are mapped
to features and compose these modules to derive products [7]. In terms of our termi-
nology, we transform a composition-based product-line representation into a product-
based product-line representation. Feature-oriented programming and aspect-oriented
programming are instances of composition-based implementation techniques, in which
each module encapsulates the implementation of a single feature. Thus, feature-oriented
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programming and aspect-oriented programming are feature-composition-based imple-
mentation techniques. In contrast, delta-oriented programming allows developers to
express modules with expressions over features. Thus each module can be mapped to
arbitrary sets of products. Accordingly, we classify delta-oriented programming as a
family-composition-based implementation technique. We also consider the use frame-
works with plugin mechanisms as a composition-based development technique. If each
plugin encapsulates a single feature, it is feature-based, otherwise family-based.

In annotation-based implementation techniques, we develop an annotation-based product-
line representation and, again, transform it into a product-based product-line represen-
tation. This is typically, done by annotating parts of the source code that contains
the implementation of all products with information about its mapping to products.
The use of preprocessors and virtual separation of concerns are instances of annotation-
based implementation techniques [7]. Products are derived by removing code that does
not belong to a given configuration. Whether an annotation-based implementation
technique is feature-based or family-based depends on the characteristics of the anno-
tations. Only if each annotation can be mapped to single features and annotations
cannot be nested, it is feature-based. Otherwise, it is family-based. Thus, typically
annotation-based implementation techniques are family-based. The use of parameters
can also be seen as an annotation-based technique, if the parameters are used to in-
stantiate different products [7]. The use of parameters is family-based, as parts of code
may conditionally depend on them in arbitrary ways.

Product-Based Implementation Techniques A further option to develop all prod-
ucts of a product line is to use conventional development techniques without support
for automated product derivation. Typically, reuse between products is achieved by
applying design patterns, or by adhoc-reuse of components [7]. In this case, we directly
develop a product-based product-line representation. If we use techniques from single-
systems engineering, e.g., design patterns, to develop a product line, we develop each
product separately, i.e., each module encapsulates a separate product. Thus, the use of
design patterns to develop product lines is a product-based development technique. Of-
ten, product-based implementation techniques are complemented by the use of version
control systems to support the development of individual products [7].

Summary The goal of this thesis is to survey the representation of variability in
modeling and specification techniques for product lines. We believe that the underlying
variability mechanisms are largely independent of the specific artifact type. We have
proposed a taxonomy of product-line representations that can be applied to different
types of artifacts such as implementation, modeling, specification, or documentation.
We have shown that implementation techniques for product lines can be characterized
by considering the underlying representation type. We classify modeling techniques
(Chapter 4) and specification techniques (Chapter 5) following the same approach.
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4. Modeling Software Product Lines

In this chapter, we survey formal modeling techniques for software product lines regard-
ing their strategy to represent variability. We classify modeling techniques according to
our taxonomy as explained in Chapter 3. In Section 4.1, we present our classification
approach for product-line models. We survey annotation-based modeling techniques
in Section 4.2, composition-based modeling techniques in Section 4.3, and summarize
in Section 4.4.

4.1 Classification of Modeling Techniques

Building models is a major part of any engineering discipline. In traditional engineering
disciplines, models are commonly used to reason about properties of products before
they are actually built. For instance, in architecture, small versions of buildings are cre-
ated to give a vivid impression of the design before it is created. Models of automobiles
and airplanes are tested in wind-tunnels to reason about their aerodynamic properties.

In software development, models are build to represent static properties such as the
structure of a system and its components or to represent dynamic properties such
as the behavior of a system or interactions between components and processes [108].
Accordingly, models are also used in the development of software product lines. The
specific characteristic of product-line models is that multiple products that share large
parts of their behavior must be developed simultaneously. Thus, modeling techniques
that include a notion of variability have been proposed in the literature. In this thesis,
we focus on formal models as introduced in Section 2.2.

As explained in Chapter 3, we classify each development technique, i.e., modeling and
specification technique, according to its underlying product-line representations. In
Section 3.2, we have seen that our taxonomy incorporates the existing notions of imple-
mentation techniques. In the following, we elaborate our motivation to classify modeling
techniques similarly. For this purpose, it is helpful to consider the commonalities and
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Figure 4.1: Product-Line Representations in Modeling Techniques

differences of modeling techniques and implementation techniques. A model typically
abstracts from details that are not important to solve the given problem. In source
code, these details must be implemented in order to derive an executable system. The
distinction between a model and its implementation sometimes tends to be fuzzy. For
instance, in model-based refinement methods an abstract model is successively refined
to derive a concrete implementation [1, 2, 25, 80, 130, 144]. In model-driven devel-
opment, source code is automatically generated from a given model [64, 140]. Some
abstract models can be executed and executable source code may also operate on dif-
ferent levels of abstraction, e.g., a Java program could be seen as an abstract model of
its corresponding bytecode program. The difference of model and implementation lies
largely in the role they play in the development process, and less in technical differences.

For implementation techniques, the goal is to produce product-based representations.
However, if we consider modeling techniques, we do not necessarily want to derive a
product-based representation in all cases. As we will show in the following, there are
cases, in which we want to derive an annotation-based or composition-based model,
e.g., for analysis purposes. To take these cases into account, we have included the
possibility to derive arbitrary product-line representations from the initially developed
representation into the notion of a development technique. Figure 4.1 shows a taxon-
omy of modeling techniques. In modeling techniques, a product-based, composition-
based or annotation-based product-line representation is developed. Depending on the
modeling technique, further product-line representations can be automatically derived.
Note that, as in implementation techniques, commonality-based representations are not
considered. However, in the case of modeling it appears more likely that commonality-
based representations might be useful in the context of modeling, e.g., for early phases
of development. However, research for software product lines has not considered this
possibility. A reason is that conventional modeling techniques from single systems en-
gineering can be used to model the commonalities of all products. Thus, there is no
research required to develop special development techniques.

Product-based and commonality-based techniques do not require the application of
specific techniques, i.e., traditional development techniques as known from single-system
engineering can be applied to develop such models [7]. In the following, we survey
variability-aware modeling techniques for software product lines.
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4.2 Annotation-Based Modeling

In the following, we survey annotation-based modeling techniques for product lines. We
present annotation-based formalisms in Section 4.2.1 and annotation-based modeling
languages in Section 4.2.2.

4.2.1 Annotation-Based Formalisms

An important class of annotation-based formalisms are variants of transition systems,
which are often used for model checking of software product lines. Common to the
formalisms based on transition systems is that variability is encoded by adding specific
labels on transitions of a system. For an introduction to transition systems, we refer
to Chapter 2. When modeling a product line with transition systems, each product of
a product line differs in the set of transitions between states to reflect behavioral differ-
ences. Commonalities between products manifest in transitions that are common to all
products. For the purpose of model checking, properties must be specified usually in a
logic such as LTL or CTL. In this section, we focus on the models and the specification
of properties is discussed in Chapter 5.

The most basic approach to use a transition system for the modeling of product-lines,
that we call Family-TS, is to include all transitions of all products. This approach
has been discussed by Fischbein et al., mainly to motivate the development of further
extensions [62]. In this basic approach, no explicit labels are required. The implicit
meaning of a transition can informally be seen as: There is at least one product that
includes this transition.

A Family-TS can be used to reason about a limited set of properties. Consider the case
of reachability, i.e., the question whether a certain target state T is reachable from a
source state S . If the answer is negative, i.e., that T is not reachable from S , we can
conclude that this property holds for all products. However, if the answer is positive,
i.e., state T is reachable from state S , we cannot conclude that this property holds for
any product because we do not know whether all involved transitions are contained in
any single product, i.e., there is no explicit information about the mapping between
transitions and products. The Family-TS in Figure 4.2 contains all transitions from all
products of the transaction product line. We can conclude that successfully terminated
transitions are not rescheduled and executed again. The reason is that there is no
transition from state done to state running.

To include more information about the mapping between transitions and products,
Fischbein et al. proposed Modal Transition Systems (MTS) to model software product
lines [62]. A modal transition system is a transition system in which a transition is
either mandatory (must) or optional (may). Again, all transitions of all products are
included, but the additional labels reveal more information about the mapping between
transitions and products. Informally, the meaning of a must-transition is that the
transition is contained in all products, and the meaning of a may-transitions is that the
transition is contained in at least one (but not all) products.
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In Figure 4.3, we show a MTS for the transaction product line. If we consider the
example of reachability, there are now cases, in which we can reason about properties
of products. The path from state running to state committed contains only must-
transitions. We can conclude that state committed is reachable from state running in all
products of the product lines. The path between state lockedDB and state committed
includes exactly one may-transition. We can conclude that there exists at least one
product in which this is true because a may transition is included in at least one product.
However, if there are two or more may-transitions, we cannot conclude anything about
products because we do not know whether there exists a product that contains all
involved transitions.

A similar formalism based on I/O-automata instead of transition systems, proposed by
Larsen et al., has the same properties regarding the mapping between annotations and
products [93, 95]. Variability is also achieved by distinguishing between must-transitions
and may-transitions. A variant of these variable I/O-automata has been proposed to
model individual domain artifacts, i.e., the product line is composed of a set of domain
artifacts and each artifact is annotated with variability information [96].

Generalized extended modal transition systems (GEMTS) have been proposed as a
generalization of MTS [57]. In GEMTS, the modal annotations are applied to hyper-
transitions, i.e., transitions to multiple states. Intuitively, this can be seen as a set of
transitions with the same source. The informal meaning of a may-transition is that each
product contains a certain number n of the annotated transitions. Analogously, a must
transition means that each product contains at most n of the annotated transitions. The
value of the number n must be defined additionally for each hyper-transition. While
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Figure 4.3: MTS of the Transaction Product Line

GEMTS in this sense are more expressive as MTS, they do not overcome the general
limitation that relationships between individual annotations cannot be expressed.

So far, the presented approaches, Family-TS, MTS, and GEMTS, are family-annotation-
based transition formalisms because each transition can be contained in arbitrary sets
of products. However, the information about the mapping is not completely embedded
into the model, which is their main limitation. For instance, this manifests in whether
model checking algorithms are able to pinpoint specific products that violate a given
property [36]. In MTS and GEMTS, specific labels express whether a certain transition
is contained in all products or not. However, from such a model we cannot conclude
the exact set of products that is target of the mapping. To cope with this limitation
for analysis purposes, it is possible to enrich the specification technique for properties
with additional variability information, as we will show in Section 2.2.

To solve this problem directly on the modeling level, Featured Transition Systems
(FTS) have been proposed by Classen et al. [38]. The initial idea of FTS is to la-
bel each transition of an LTS with a feature, directly constituting a mapping between
the transition and this feature. The meaning of a transition labeled with feature F
can informally be read as: This transition is contained in the products that contain
feature F . In Figure 4.4, we show a FTS for the transaction product line. As each
transition can be labeled with only one feature, we have to introduce a separate feature
NonLocking as an alternative to feature Locking . Otherwise, products containing fea-
ture Locking , would still contain transitions that circumvent the Locking mechanism,
e.g., inactive → running . The reason is that features cannot remove transitions that
are contained in the base feature.
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Figure 4.4: FTS of the Transaction Product Line

The main advantage of FTS is that the information of the mapping between transitions
and products is completely revealed [38]. Consider the reachability property. If a path
leads from the source state S to the target state T, we can conclude that this path is
contained in exactly the products that contain all features that are used as transition
labels on this path. However, FTS are limited by the set of possible mappings that
can be expressed: Each transition is mapped to only one feature. To overcome this
limitation, Classen et al. have extended FTS by allowing transitions to be labeled with
feature expressions [36, 41, 42, 45]. A feature expression is a logical expression over the
set of features, which can be used to denote arbitrary sets of products. In this case, we
can replace feature NonLocking , by labeling the transitions with the logical negation of
feature Locking , i.e., with ¬Locking . By doing so, we associate this transition with all
products that do not contain feature Locking .

In Dynamic Software Product Lines (DSPLs), the set of features may change at run-
time [69] in dependence of the environment. To model DSPLs, Adaptive Featured
Transition Systems (A-FTS), have been proposed [40]. In contrast to FTS, A-FTS con-
sider variability of both the system and of its environment by distuingishing between
system features and environment features. System features can be fixed or adaptable.
Environment features can change over time, and can be observed by the system to ini-
tiate reconfigurations. This is achieved by enabling or disabling system features. The
main technical difference between FTS and A-FTS, is that the transition relation is
given as a function that defines which transitions exist, to which products they be-
long, and the current state of the system configuration and environment configuration.
However, the principle to use feature expressions to map transitions to products is the
same.
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Featured Timed Automata (FTA) are an adaption of FTS for real time systems [43].
In a real-time SPL, features cannot only change behavior but also make changes to
timing constraints of actions. In Timed Automata (TA), this is reflected in the use
of clock constraints, that define timing properties for actions such as the minimum or
maximum time required for execution. FTA extend Timed Automata in the same way
FTS extend, by using feature expressions, i.e., clock constraints are annotated with
feature expressions to define the set of products that must satisfy them.

The idea to annotate transitions of states has also been applied to petri nets [117].
Feature petri nets have been proposed to model the behavior of product lines and for
context-aware test models [118, 129]. In Feature Petri nets, the mapping between parts
of the model and products is established in the same way as in FTS, i.e., by labeling
transitions with feature expressions.

In model-based testing for produt lines, test cases for products are derived from a
model of the system [54, 121]. Oster et al. have proposed to derive test cases for
individual products from a single test-model [121]. Such a test-model can be seen as
an annotation-based model from which a product-based representation in the form of
test-cases is derived.

So far, all presented modeling formalisms are family-based with the exception of an early
variant of FTS that has been replaced by a family-based variant. Simple hierarchical
variability modeling (SHVM) has been proposed in which each variation point of a
hierarchical model is mapped to exactly one feature [135]. It is a feature-annotation
based technique in which the limitation of the mapping to target single features is
supposed to provide benefits for compositional verification.

4.2.2 Annotation-Based Modeling Languages

The previously presented annotation-based formalisms can be used to model all prod-
ucts of a product line in a single model. However, they do not primarily aim to be
directly used by engineers to specify systems but rather as a foundation for verification
techniques. In particular, they do not provide means to structure the models. Thus,
higher-level languages have been proposed for this purpose.

The language fPromela has been proposed as an input language for the SNIP model
checker, an FTS-based adaption of the SPIN model checker [35]. Figure 4.5 shows an
example of an fPromela model. A transaction is modelled as a process. A special type
features is used to declare the set of features as variables. Inside the process transaction,
guarded statements are used to annotate parts of the code with its mapping to features.
In contrast to Promela, these guarded statements are denoted by keyword gd rather
than if. The statements lockDB() and unlockDB() are only executed if feature Locking
is considered to be present. The SNIP model checker interprets the model as an FTS,
i.e., for the feature variables all possible values (true and false) are considered to reason
about all products.

State Diagram Variability Analysis (SDVA) models have been proposed as an extension
of FTS with means to express hierarchical sub-models to structure the model of a
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1 typede f f e a t u r e s {
2 bool Locking ;
3 bool Reschedul ing ;
4 } ;
5

6 f e a t u r e s f ;
7

8 proctype t r a n s a c t i o n ( )
9 {

10 . . .
11

12 gd : : f . Locking → lockDB ( ) ;
13 performOperat ions ( )
14 gd : : f . Locking → unlockDB ( ) ;
15

16 . . .
17

18 }

Figure 4.5: Example of Feature-Based Annotations in fPromela

product line [53]. This is achieved by the ability to refine states of a model by defining
a separate model. In Figure 4.6, we show an example from our transaction product
line. The state running is refined by means of a submodel that contains individual
states for read and write operations. Note that a SDVA model is composed of a set of
submodels. However, this dimension of composition is orthogonal to the mapping of
features which is achieved by means of annotation. Thus, SDVA models are classified
as family-annotation-based like FTS. The semantics of SDVA models are defined over
FTS that are derived by flattening the hierarchical structure of the model. Thus, this
modeling technique can be seen as involving a derivation step between to different types
of annotation-based representations.

Similar to formalisms based on transition systems, other modeling languages based on
different paradigms have been adapted to deal with variability.

Process-algebraic formalims have been proposed to model product lines. The ability to
model product lines is achieved by considering special variability operators. Milner’s
calculus of communicating systems (CCS), PL-CCS, has been enriched with a variant
operator as a means to implement variability [73, 133]. In the modeling language FLan,
the mapping from model to sets of products is not achieved by means of annotations
but given implicitely by treating features as first class entities [148]. FLan is a feature-
oriented language, in which variability of processes can be defined by using operators
such as alternatives. The main difference compared to PL-CCS is that Flan incorporates
capabilities to model relationships between features, as typically done in a separate
feature model. We classify both Flan and PL-CCS as family-annotation-based because
each part of the specification may belong to arbitrary sets of products.
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Figure 4.7: Example of Feature-Composition-Based Transition System by Fisler et al.

4.3 Composition-Based Modeling

So far, we have presented annotation-based modeling techniques. In the following,
we survey composition-based modeling techniques. We present composition-based for-
malisms in Section 4.3.1 and composition-based modeling languages in Section 4.3.2.

4.3.1 Composition-Based Formalisms

In the previous section, we have seen that transition-based formalisms are widely used
for annotation-based product-line models. For composition-based modeling, similar
formalisms have been proposed. All existing composition-based transition systems are
feature-based, i.e., each feature is encapsulated in a separate module.

In Figure 4.7, we exemplify a technique for composition-based modeling based on tran-
sition systems, initially proposed by Fisler et al. [63, 101–103]. In this technique, a
product-line is modelled as a base feature with a number of additional feature modules.
Intuitively, the base feature can be seen as a transition system with special transitions
that serve as extension points. At these fixed locations, feature modules can be plugged
in to extend the behavior of the model. Each feature module is modelled as a partial
transition system with special input and output transitions. In the example, feature
Locking consists of a single state. In our example, this feature can be plugged in be-
tween state inactive and state running of the base model. A limitation of this approach
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Figure 4.8: Example of Feature-Composition-Based Transition System by Liu et al.

is that feature modules cannot crosscut the base model. Thus, we have to extract
the unlocking functionality of feature Locking into a separate feature module. Feature
UnLocking can be plugged in between state ready and state aborted , or between state
done and state committed .

In Figure 4.8, we show a similar approach in which feature modules are successively
added to a base system. The transitions between states of different features are ex-
plicitely defined [105]. Thus, each feature can have multiple incoming and outgoing
transitions to arbitrary states of the base system. This allows us to incorporate both
state lockedDB and state unlockedDB in a single module. However, this approach does
not allow to replace transitions. Thus, the transition between state start and state
inactive of the base feature are included in all products. To avoid this, we would have
to extract these transitions into a separate feature NonLocking that must be included
if feature Locking is not selected.

Cordy et al. proposed a similar composition-based technique, in which the base system
is modeled as a transition system and feature modules as special transtition systems
called TS+ [44]. A TS+ is a transition system with activation conditions that express
the states of the base system from which the feature module can be reached, and return
conditions that define the set of states into which the feature module may return to the
base system.
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All of the above presented approaches, are suitable only for a closed-world assumption
of product-lines in which all features are previously known [83]. The reason is that
they rely on fixed locations at which feature modules can be plugged in. The models
of the presented approaches are intended to be used as foundation for the derivation
of products and for compositional analysis of individual features. The modularization
of features is a prerequisite for such compositional analysis and cannot be performed
based on annotation-based models.

In research regarding evolution of product lines, Finite State Machines with Variablity
(FSMv) have been proposed [114]. FSMv considers for each feature a model of its re-
quirements (FSMr) and a model of its design (FSMd). The purpose of this composition-
based approach is to support an open-world assumption of product-lines in which pre-
viously unknown features may be added to a product-line.

A further related line of research in which feature-composition-based models have been
proposed is aspect-oriented software development [5, 85, 119, 142]. These approaches
also rely on a transition system for the base system and further transition systems
to model features. The difference to the previously presented approaches is that the
considered variability is limited. That means that the aim is to modularize features, but
different combinations of features are not considered. Instead, it is typically assumed
that all features are included in the product. Despite the fact that these approaches
do not focus on variability, it is still possible that different combinations of features are
woven into a system to derive different products.

4.3.2 Composition-Based Modeling Languages

In addition to the previously presented composition-based modeling formalisms, a num-
ber of composition-based modeling languages have been proposed to model the behav-
ior of product lines. In the existing composition-based modeling languages, features
are encapsulated into separate modules, i.e., they are feature-composition-based. To
our knowledge, family-composition-based modeling languages have not been proposed
so far. However, it seems likely that such techniques could be developed by apply-
ing concepts known from family-composition-based implementation techniques such as
delta-oriented programming. In the following, we present composition-based modeling
technique based on modeling languages.

Using Conventional Decomposition Mechanisms A simple technique to feature-
composition-based modeling that has been proposed in the literature is to use a conven-
tional modeling language known from single systems engineering and use the existing
modularization mechanisms to encapsulate features.

This technique has been investigated in the case of abstract state machines (ASM) [25].
The existing decomposition mechanisms of ASM have been explored regarding their
capability to encapsulate features [21, 70]. These development methods apply the idea
of stepwise refinement to formal models: an abstract model is successively refined to
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a more concrete model, and finally to executable code. The existing modularization
mechanisms have been shown to be sufficient to modularize features for a model of Java
1.0 and its implementation on the JVM together with correctness proofs [21].

Similarly, a feature-oriented extension of Event-B has been proposed in the litera-
ture [70, 126, 143]. In this line of research, the conventional Event-B composition
mechanisms have been explored regarding their capabilities to implement and com-
pose features. The difference to the work on ASM is that a mapping between features
and modules has been explicitely considered. Both approaches can be considered as
feature-based modeling techniques, as each feature is encapsulated in a single module.
However, these techniques are not sufficient to model arbitrary features. The problem
is that they allow only one dimension of decomposition, which does not allow to express
features that crosscut the dominant decomposition structure of a system [147].

For the detection of feature interactions, the modeling language Promela has been used
to model the behavior of features [29]. However, these features can only be inserted at
fixed locations in the base program.

Feature-Oriented Extensions of Modeling Languages In research on imple-
mentation techniques the problem to encapsulate crosscutting features has been solved
by a number of composition-based implementation techniques. In the case of object-
oriented programming, that also lacks the expressiveness to encapsulate crosscutting
features, extensions with means to encapsulate crosscutting features such as aspect-
oriented programming, feature-oriented programming, or delta-oriented programming
have been proposed [86, 128, 134]. Similarly, the idea to extend an existing modeling
language with means to modularize features has been applied to modeling techniques.
A feature-oriented extension of the formal modeling language Alloy called FeatureAlloy
has been proposed by Apel et al. [11]. The main purpose of FeatureAlloy is to bridge
the gap between problem space and solution space by means of an abstract model of the
product line. A FeatureAlloy model is capabable to encapsulate the behavior of cross-
cutting features. However, the refinement of models using multiple levels of abstraction
as supported by ASM or Event-B has not been considered.

Similarly, a feature-oriented extension of state charts [109], and modeling languages to
model aspects for aspect-oriented software development have been proposed [5, 119].
Again, in these techniques, the behavior of single features can be encapsulated into
modules. These languages have in common, that features are encapsulated in modules
that can be essembled to individual products by means of predefined rules.

The language fSMV is an extension of the input language for the NuSMV model checker
and semantically based on FTS. Notable is that fSMV is a composition-based language
with semantics based on an annotation-based formalism. Similarly, Modal Sequence
Diagrams (MSD) have been proposed, in which each feature is encapsulated into a
separate module and translated to annotation-based SMV model for model checking
purposes [71] .
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Formalism/Language Feature-Based Family-Based

Formalisms
Schaefer et al. [135] SHVM X
Classen et al. [38] FTS X
Muschevici et al. [118], Püschel et al. [129] Feature Petri Nets X
Cordy et al. [41, 42, 45], Classen et al. [36], Devroey et al. [54] FTS X
Cordy et al. [40] A-FTS X
Cordy et al.[43] FTA X
Fantechi and Gnesi [57] GEMTS X
ter Beek et al. [149], Fischbein et al. [62], Asirelli et al. [16, 17, 19] MTS X
Larsen et al. [93] Modal I/O-automata X
Languages
ter Beek et al. [135] FLan X
Classen et al. [37] fSMV X
Sabouri et al. [132] Rebeca X
Devroey et al. [53] SDVA X
Classen et al. [35] fPromela X
Sabouri et al. [133], Gruler et al. [73] PL-CCS X

Table 4.1: Classification of Annotation-Based Modeling Techniques

4.4 Summary

In various lines of research, several formalisms and languages to model the behavior
of product lines have been proposed. In this chapter, we have given an overview of
modeling techniques from the literature and classified them by means of the taxonomy
of product-line representations introduced in Chapter 3.

Product-based and commonality-based modeling techniques have not been proposed in
research. Instead, research has focused on variability-aware modeling techniques.

Annotation-based techniques are used to model the behavior of all products of a product
line in a single model. Existing annotation-based modeling techniques differ in the
characteristics of the annotations used to represent variability. Some techniques allow
to define the mapping between model artifacts and products by explicitly referencing
features or feature expressions. Other techniques allow to express notions of variability
such as optionality or alternativity to represent the variability of a product line without
including information about the mapping in terms of features.

Composition-based techniques are used to encapsulate the behavior of individual fea-
tures into modules. Table 4.2 summarizes our classification of composition-based mod-
eling techniques. The proposed formalisms are based on transition systems and I/O-
automata. Whether the underlying mechanisms of feature-modularization are expres-
sive enough to express a notion of feature refinement as known from implementation
techniques is an open question as they suffer from limitations regarding their expressive-
ness, i.e., what kind of changes a feature can perform on the base system. For instance,
in many approaches features can perform changes only to predefined locations in the
base system. Similar limitations apply to some of the proposed modeling languages.
However, some of these languages apply composition mechanisms that are closer to the
mechanisms as used in implementation techniques.
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Formalism/Language Feature-Based Family-Based

Transition-Based Formalisms
Lauenroth et al. [95, 96] Variable IO-Automata X
Cordy et al. [44] Transition Systems/TS+ X
Fisler and Krishnamurthi [63], Krishnamurthi et al. [90], Li et al. [101–103], Liu et al. [105] Transition Systems X
Sipma [142] Modular Transition Systems X
Languages
Nelson et al. [119] Alloy X
Batory and Börger [21] ASM X
Gondal et al. [70], Sorge et al. [143], Poppleton [126] Event-B X
Mahoney et al. [109] State Charts X
Calder and Miller [29] Promela X
Millo et al. [114] FSMv X
Altisen et al. [5] Larissa X
Apel et al. [11] FeatureAlloy X
Greenyer et al. [71] Modal Sequence Diagrams X

Table 4.2: Classification of Composition-Based Modeling Techniques

Our survey shows that the classification by means of our taxonomy of product-line rep-
resentations is appropriate to characterize existing modeling techniques. Furthermore,
it allows to identify possible directions for future research that we discuss in Chapter 6.
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5. Specification of Product Lines

We have given an overview of modeling techniques for product lines that have been pro-
posed in the literature in Chapter 4. In the presented approaches, models are typically
developed in order to reason about their properties. Thus, specification techniques to
express properties are required. We classify specification techniques by considering the
representation type of the developed specification as introduced in Chapter 3.

In this chapter, we survey specification techniques that have been proposed to spec-
ify properties of product lines. In Section 5.1, we explain our methodology to classify
specification techniques. We present commonality-based specification techniques in Sec-
tion 5.2, variability-aware specification techniques in Section 5.3, and summarize the
results in Section 5.4.

5.1 Classification of Specification Techniques

A specification is a description of properties that a system is expected to fulfill. In the
following, we survey specification techniques for product lines that have been proposed
in the literature. As we are interested in how variability is represented in existing
specification techniques, we use the taxonomy of product-line representations to classify
specification techniques. Specification techniques may involve transformation steps to
derive further types of specifications. Figure 5.1 illustrates the notion of product-line
specification techniques. While many transformations of specifications are possible,
the initially developed specification is used to classify a given specification technique.
This reflects our focus on the specification itself that is largely independent of possible
applications such as model checking or deductive verification.

The characteristics of a specification technique largely depend on the formalism used
to model or implement the system. For instance, for model checking, a model is given
as transition system and properties are expressed in a logic that can be interpreted in
terms of the modeling formalism. If appropriate, we also discuss the characteristics
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Figure 5.1: Product-Line Representations in Specification Techniques

of the underlying modeling or implementation technique. Our taxonomy allows us to
consider the type of the underlying product line representation independent of whether
it is a model or an implementation.

Product-based specification techniques are typically not considered in research on prod-
uct lines. An exception is research on testing, in which the presence of product-specific
tests might be assumed [150]. A reason for the focus of research on variability-aware
techniques is that the number of products in a product line can be exponential in the
number of features. Thus, product-based specification techniques cannot be expected to
scale for practical applications. However, product-based specifications are often derived
for analysis purposes, e.g., for product-based analysis.

5.2 Commonality-Based Specification

In contrast to implementation and modeling techniques, commonality-based represen-
tations play an important role for specification techniques. This reflects an important
difference between specifications and models or implementations. A specification typi-
cally specifies only a subset of all possible properties of a system. While an implemen-
tation needs information about the differences between products to generate products,
a specification may only specify the commonalities. In other words, a commonality-
based representation intuitively seems to be more useful for specifications than in other
contexts such as implementation.

An advantage of commonality-based specifications techniques is that conventional for-
malisms from single-system engineering can be used. Furthermore, only properties
common to all products are specified which reduces the specification effort. This focus
on commonalities is also the main disadvantage because differences between products
cannot be specified.

In the context of analysis techniques, the presence of a family-wide specification is
often enough to exemplify research results, e.g., that a property can be checked for all
products of a product line. In the following, we give an overview of commonality-based
specification techniques used in the literature.
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5.2.1 Family-Wide Specification

A family-wide specification specifies properties common to all products of a product
line. One area of research in which family-wide specifications have been proposed is
model checking of product lines. As we have shown in Chapter 4, model checking
techniques for product-lines require a variability-aware (or product-based) model in
order to model the behavior of all products including their differences. When using
a family-wide specification, it can be checked whether all products of a product line
satisfy the specification.

An illustrative example of a family-wide specification from the literature is the pace-
maker product line, in which the property that the pacemaker must send a pulse to the
heart when no heartbeat is detected for a certain period [106]. This example indicates
a possible motivation for using a family-wide specification. As formal specification and
verification is an expensive task, we might be interested in specifying only the most
crucial properties of all products. With a family-wide specification, we deliberately do
not consider differences between individual products. Instead, we focus on the com-
monalities between all products. The underlying assumption, when using a family-wide
specification, is that checking commonalities of all products provides enough benefits.

Family-wide specification does not require special techniques to handle variability. For
instance, for transition-based formalisms used in model checking, conventional for-
malisms to specify properties such as temporal logics can be used. Accordingly, the
use of LTL has been proposed to specify properties for annotation-based modeling lan-
guages and formalisms such as Rebeca [132], SHVM [135], TS+ [44], and FTS [38].
Variants of CTL have been proposed for FTA and GEMTS [43, 57]. The real-time
logic tCTL has been proposed to specify properties for Featured Timed Automata [43].
The logic tCTL is an extension of CTL that supports the specification of properties
related to real-time [20]. Similarly, for the specification of properties for PL-CSS, the
use multi-valued modal µ-calculus has been proposed [73].

A family-wide specification can also be checked against a product-based model. In this
sense, a family-wide specification can also be seen as a product-based specification that
is common to all products. For this purpose, the use of LTL [63, 71, 90, 105] and
CTL [44, 142] to specify properties for composition-based transition systems has been
proposed.

Family-wide specification has also been used in research on testing of product lines.
Variability of test-cases, i.e., the mapping between individual test cases and features
is typically not considered explicitly in research on test cases [47]. In these cases, we
classify the testing technique as a family-wide specification technique because for all
products the same tests are typically assumed to hold [54, 84, 87–89, 123].

5.2.2 Domain-Independent Specification

Similar to family-wide specifications, domain-independent specifications have been used
to specify properties for model checking. A typical example from the literature of a
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domain-independent property is deadlock freedom [52]. Ter Beek et al. use LTL to
specify consistency between model representations of features [148].

In the context of aspect-oriented software development, specific analysis tools has been
used to check generic properties of a product line. The Java Pathfinder, a model
checking tool for Java, has been used to model check properties such as deadlock freedom
on the level of source code [156]. Similarly, the verification tool LTSA has been used
to check properties of transition systems [119]. In both cases, variability in terms of
product lines has not been explicitly considered.

5.3 Variability-Aware Specification

We have shown that commonality-based specifications can be used to specify common
properties of all products. Generally, it might also be desirable to consider differences
between products. In principle, it is possible to develop a product-based specification
for this purpose. However, the assumption in research on product lines is typically that
this does not scale as the number of products is potentially exponential in the number
of features. Thus, variability-aware specification techniques have been proposed. In the
following, we give an overview about variability-aware specification techniques proposed
in the literature. We present annotation-based specification techniques in Section 5.3.1,
and composition-based specification in Section 5.3.2.

5.3.1 Annotation-Based Specification

In annotation-based specification techniques, a single specification for all products of a
product line is developed. Individual parts of this specification represent properties of
different sets of products.

A specification technique depends largely on the characteristics of the system to be
specified. Typically, the system is either represented in terms of a model or an im-
plementation. Accordingly, most of the modeling techniques presented in Section 4.1
have been proposed together with an accompanying specification technique to specify
properties.

5.3.1.1 Feature-Annotation-Based Specification Techniques

Variable CTL has been proposed as a feature-annotation-based specification technique
to specify properties of variable I/O automata [96]. Variable CTL is extends CTL with
a variability relation that maps properties to features. The assumption is that each
property cannot be related to more than one feature.

5.3.1.2 Family-Annotation-Based Specification Techniques

Propositional Deontic Logic (PDL) has been proposed to model permitted behavior of
a system [30]. Deontic logics are capable to express notions like violation, obligation,
permission, and prohibition [65]. Asirelli et al. have recognized the capability of this
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logic to model the behavior of product lines and proposed a temporal extension as a
means to express properties of product lines modeled as MTS [18]. Their extension is
able to express dynamic properties in terms of transitions and to consider the difference
between may-transitions and must-transitions. This is achieved by means of the strong
permission operator P(α), that holds if an action α is allowed to be performed in every
way, and the weak permission operator PW (α), that holds if an action α is allowed to
be performed in some way.

To exemplify the notion of weak and strong permission, we consider an example. A
property of the transaction product line might state that transactions are allowed to
be rescheduled. Interpreted in the sense of strong permission, this would imply that
rescheduling of transactions is also allowed for successfully committed transactions.
Interpreted in the sense of weak permission, it is possible to state that rescheduling of
a transaction is allowed if this transaction has been canceled.

Obligation O(α) is defined as P(α) ∧ ¬PW (¬α), i.e. α is obligated if and only if it is
strongly permitted and no other action is weakly permitted.

According to Asirelli et al. deontic logics are a a suitable means to specify both con-
straints and behavior of product lines [15]. Obligation is a suitable concept to express
that a property must hold for all products, permission can be used to express that a
property is variable. A MTS can be characterized in terms of a deontic logic formula
by associating a logical formula to each state of the MTS, where must-transitions are
represented by obligations and may-transitions as permissions. This opens the possi-
bility to state properties of MTS in terms of deontic logic formula. Properties of the
following kind can be expressed:

• The product line permits to derive a product that fulfills a condition, e.g., to
derive a product in which rescheduling of transactions is possible.

• The product line obliges every product to fulfill a condition, e.g., that in all
products transactions can be committed.

Similarly, feature models including constraints between features can be characterized
in terms of deontic logic formula. This possibility has been proposed to overcome the
limitations of MTS to express such constraints.

The logic DHML has been developed based on the ideas of the previously described
deontic logic [15]. It is a deontic extension of Hennessy-Milner logic with Until [51, 92].
It contains the deontic operators described previously, and the CTL path operator E (Π)
that holds if there exists a path on which Π holds, and the operator A(Π) that holds if
on each of the possible paths Π holds, action operators [a]ϕ denoting that for all next
states reachable with action a, ϕ holds, the Until operator ϕUϕ′ denoting that in the
current or a future state ϕ′ holds, while ϕ holds until that state. An example of a DHML
formula for a property of the transaction product line is [abort](P(reschedule)), that
states that after the execution of action abort, action reschedule is permitted.
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A further deontic logic, vaCTL (initially called MHML), a variability-based and action-
based branching time logic interpreted over MTS has been proposed [16, 17, 19]. It can
be seen as an action-based variant of DHML. It contains an action-based variant of the
Until operator and directly allows to use deontic variants of operators. Action-based
means that it is possible to refer to transitions in the specification of properties. The
deontic interpretation of an operator, denoted by the additional symbol �, is used to
express a property that must hold for all products, i.e., it considers paths with only
must-transitions. Similarly, the use of an operator without its deontic interpretation
is used to express properties that hold for some but not all products, i.e., it considers
paths independent of the transition type.

Using the deontic interpretation of the Until operator, the property that a transaction
cannot start after it has been aborted can be expressed in vaCTL as

¬E[true {aborted} U� {start} true]

As the Until operator is used in its deontic interpretation, this property must hold for
all products. In this case, the database product line does not fulfill the property. If the
rescheduling feature is selected, a transaction can be rescheduled and activated again
after it has been aborted. However, the property

¬E[true {aborted} U {start} true]

holds as it is not restricted to must-transitions.

The proposed use of deontic logics to specify product lines is twofold. On the one hand,
these logics can be used to express constraints between features in terms of transitions
such as alternatives and exclusion to overcome the limitation of MTS to express such
contraints. On the other hand, DHML and vaCTL can be used to express behavioral
properties of the product line. A property can be required to hold for all products of a
product line, or only by some. This can be expressed by using the deontic operators.
We classify deontic logics to specify properties for product line as family-annotation-
based specifications because different parts of a specification are mapped to either all
products or to a subset of the products.

For Featured Transition Systems, feature-oriented variants of LTL and CTL, fLTL [35,
36, 42, 45] and fCTL [37], have been proposed. They support the use of feature expres-
sions as guards to specify for which products a property holds. An example for a fCTL
formula is

[¬Rescheduling] AG ¬ [rescheduled]



5.3. Variability-Aware Specification 51

that states that if feature Rescheduling is not selected, transactions are never resched-
uled.

For the adaptive variant of FTS, A-FTS, a corresponding variant of CTL called Adap-
tive Configuration Time Logic (AdaCTL) has been proposed [40]. In adaCTL, feature
formula are used to express conditions over both the system configuration and the
environment configuration of the underlying A-FTS. A further difference is that these
feature expressions can be nested within subformulas. This allows properties to consider
changes to the configuration that happen over time.

In contrast, to deontic logics as proposed for MTS, feature-oriented logics add a further
dimension of variability to the specification of properties. While deontic logics for MTS
allow to express properties that consider the different types of transitions of the under-
lying model, feature-oriented logics for FTS go one step further and support mapping
of properties explicitly to sets of products. This mapping is orthogonal to the mapping
between the transitions of the model and the products.

5.3.2 Composition-Based Specification of Product Lines

In composition-based models, each module is mapped to a set of products. In Sec-
tion 4.3, we have presented several composition-based modeling techniques. For in-
stance, the use of service diagrams has been proposed to specify the behavior of product
lines. For each feature a separate specification is developed [74]. This specification is
largely independent of the representation of the system. In the other cases, a specific
type of model or implementation is specified by enriching its modules with a set of prop-
erties that are expected to hold for the same set of products. Thus, the characteristics of
the specification can be seen as inherited from the underlying modeling technique. Ac-
cordingly, the composition-based specification techniques have been proposed to specify
properties of composition-based models.

In some of the presented techniques, the specification of the models is not explicitly
considered but a set of properties for each feature module is assumed to exist. This is the
case for CTL properties in research regarding compositional verification [95, 101–103]
for LTL properties in research on feature interactions and aspect-orientation [29, 52]
and for test cases in research on product-line testing [32, 79, 163].

Composition-Based specification of properties has been proposed for composition-based
modeling techniques. The composition-based modeling language FeatureAlloy also al-
lows to specify properties together with the model in feature modules [11]. As discussed
in Chapter 4, FeatureAlloy is a feature-composition-based language, accordingly. As it
also allows to specify properties, we classify it as a feature-based specification language
accordingly.

Feature-Composition-Based Specification In research regarding feature-oriented
programming, the specification of systems by means of method contracts and class
invariants have been proposed. Figure 5.2 illustrates the mapping between specification



52 5. Specification of Product Lines

...

Contracts

...

Feature ModulesProducts

Figure 5.2: Contracts for Feature-Oriented Programming

and sets of products. Each feature module is enriched with a separate specification. As
each feature module is mapped to a feature, the specification of a feature is transitively
mapped to the same feature.

The Java Modeling Language has been used to specify method contracts for product
lines implemented in Java [27, 152–154]. In other cases, similar contract-based languages
have been proposed [12, 14, 156]. Thüm et al. propose several approaches of contract
composition, that differ in the characteristics of the composition mechanism that is
used to refine method contracts [154]. For instance, contracts can be overridden or
merged, contract refinement can be permitted or allowed, and contract refinements
may be allowed to reference the contract of the original method.

Apel et al. introduces a notion of feature-composition-based specifications that are not
allowed to reference parts of the specification from other features [13]. We show that
our taxonomy, can be extended to include this notion by giving the following definition:

Definition 5.1. A feature-modular specification is a feature-composition-based speci-
fication in which the specification of a feature does not reference specification parts of
other features.

In this line of research, Apel et al. consider contract-based specifications, and investigate
their expressiveness regarding the possibility to detect feature interactions. The research
results imply that feature-composition-based may play an important role in the future
as they provide benefits in terms of increased modularity [122].

For aspect-oriented programming the specification of a system by means of contracts
has also been proposed. In this line of research, we can distinguish between conventional
method contracts and advice contracts. An advice contract states preconditions and
postconditions for an advice rather than for a method. Some techniques proposed in
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Figure 5.3: Contracts for Delta-Oriented Programming

the literature support the specification of a system in terms of method contracts [3,
107, 141]. Some additionally support advice contracts [3, 107, 164]. In both cases, we
classify the specification technique as feature-composition-based because each contract
is mapped to a single feature.

Family-Composition-Based Specification Similar to the use of contracts to spec-
ify properties for product lines implemented with feature-oriented programming, con-
tracts have also been proposed for delta-oriented programming [48, 137]. Figure 5.3
illustrates the principle of the underlying mapping between specification and products.
The specification inherits the mapping to products from the underlying implementa-
tion technique. Accordingly, the specification is family-composition based. It should be
noted, that this is the only family-composition-based specification technique that has
been proposed to our knowledge.

5.4 Summary

To specify properties of a product-line, specification techniques are necessary. We
distinguish between techniques by considering the type of the developed product-line
representation according to our taxonomy introduced in Chapter 3. Table 5.1 shows an
overview of our classification.

Family-wide specifications that specify properties common to all products of a single
product line have been proposed in the literature. This approach has been proposed
mainly for model checking and testing of product lines. Similarly, domain-independent
specifications have also been proposed. In the context of model checking, generic prop-
erties such as deadlock freedom can be checked independent of a specific product line.
Domain-independent specifications are not used for testing, as a test case is always spe-
cific to a certain product-line. Commonality-based specifications can be used to specify
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ü
m

et
al.

[152–154],
A

p
el

et
al.

[12,
14]

C
on

tracts
(F

O
P

)
X

X
D

am
ian

i
et

al.
[48],

B
ru

n
s

et
al.

[27]
C

on
tracts

(D
O

P
)

X
X

D
en

aro
an

d
M

on
ga

[52,
148]

L
T

L
X

U
b
ayash

i
an

d
T

am
ai

[156]
J
P

F
(verifi

cation
to

ol)
X

N
elson

et
al.

[119]
L
T

S
A

(verifi
cation

to
ol)

X
G

reen
yer

et
al.

[71],K
rish

n
am

u
rth

i
et

al.
[90],

F
isler

an
d

K
rish

n
am

u
rth

i
[63],

L
iu

et
al.

[105]
C

T
L

X
ter

B
eek

et
al.

[148],
S
ch

aefer
et

al.
[135],

C
lassen

et
al.

[38],S
ip

m
a

[142],
C

ord
y

et
al.

[44],
S
ab

ou
ri

an
d

K
h
osrav

i
[132]

L
T

L
X

C
ord

y
et

al.
[43]

T
C

T
L

X
F

an
tech

i
an

d
G

n
esi

[57]
A

C
T

L
X

G
ru

ler
et

al.
[73]

m
u
lti-valu

ed
m

o
d
al
µ

-calcu
lu

s
X

P
errou

in
et

al.
[123],

K
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properties, however the role they should play in product line development processes,
i.e., when and how they should be used, is unclear.

Annotation-based specification has been proposed, mainly in the form of deontic logics
that are used for MTS, and feature-oriented logics that have been proposed for FTS.
Deontic logics allow properties to refer to the different transition types of the underlying
formalism. Feature-oriented logics as introduced for FTS, add a further dimension of
variability to the specification of properties that is more independent of the underlying
formalism.

Composition-based specification has been proposed, mainly in the context of contract-
based specifications for composition-based implementation techniques. The mapping
between specification is constituted transitively in this case, as the specification is added
to the modules of the underlying implementation technique. Thus, the characteristics
of these specification approaches depend on the underlying implementation technique.
The question whether it is possible to use a feature-composition-based specification for
properties of a family-composition-based model or vice versa has not been considered
in research.

In research regarding testing of product-lines, variability-aware test-cases have not been
considered extensively. Typically, the characteristics of the tests that are to be applied
on a specific products are not discussed as the focus of research lies on the selection of
products, e.g., by using sampling strategies.

We have shown that the classification of specification techniques according to our tax-
onomy of product-line representations provides an insightful view on the research area.
We discuss possible directions for future research in Chapter 6.



56 5. Specification of Product Lines



6. Directions for Future Research

Our survey and classification of formal modeling and specification techniques for prod-
uct lines in the previous chapter allows us to identify promising research directions.
In the following, we present a set of possible directions for future research. For each
research direction, we formulate a set of research questions.

Gap between Problem and Solution Space Our results suggests that a significant
amount of research is related to modeling of product lines using formalisms that are
mainly intended to serve as a foundation for verification techniques [16, 17, 19, 36, 38,
40–45, 54, 57, 62, 63, 90, 93, 95, 96, 101–103, 105, 118, 129, 135, 142, 149]. However,
researchers have also recognized the need for modeling languages and proposed first
concepts [5, 11, 21, 29, 35, 37, 53, 70, 71, 109, 114, 119, 126, 132, 135, 143]. A
problem is that most of these approaches force the developer to choose a certain level
of abstraction for development. Refinement of abstraction has been identified as an
important research challenge [11, 21, 53, 70, 126, 143].

In general, there are two possible dimensions of refinement [2]. Horizontal refinement
describes the addition of functionality. The second type of refinement, vertical refine-
ment, adds more details to an abstract model. An open problem is how to cope with
refinement in the presence of variability, i.e., how to deal with the relationship between
the two possible dimensions of refinement [70]. Figure 6.1 illustrates vertical refine-
ment in the context of product lines. Horizontal refinement in a product-line context
means to add features. So far, research have merely identified the challenges of vertical
refinement of product-lines but not solved it. Open questions are whether and how
feature models should be refined, e.g., by introducing additional features during verti-
cal refinement, and how product-line representations should be refined. For instance,
it could be possible to include transformations from one representation type to other
types during vertical refinement, e.g., by transforming a commonality-based model into
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Figure 6.1: Vertical Refinement of Product-Line Representations and Feature Models

a variability-aware model. Another important challenge is to develop concepts to reuse
verification effort between different refinement levels.

Furthermore, feature-oriented notions of horizontal refinement need to be developed for
modeling languages. The research on Event-B and ASM has explored the capabilities
of existing refinement mechanisms to encapsulate features [21, 70]. In single-systems
development, typically a model is first refined horizontally until it contains the required
functionality on an abstract level. This abstract model is then refined vertically too
add further details. Whether this process is appropriate in a product-line setting is at
least questionable, and how it could be adapted is not known.

Research Questions:

• RQ 1.1: How can refinement-based development methods be used (and possibly
adapted) to develop software product lines?

• RQ 1.2: How can we deal with variability-binding between different levels of
abstraction?

• RQ 1.3: How can features be traced through multiple levels of abstraction?

• RQ 1.4: How can we save verification effort with property-preserving concepts of
refinement for feature modules?
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Empirical Evaluation of Modeling and Specification Techniques Several mod-
eling and specification techniques have been proposed in the literature. Existing eval-
uations typically focus on analysis techniques rather then modeling or specification
techniques. Characteristics such as usability could be taken into account in future
research. Special challenges for research are the suitability of modeling and specifica-
tion techniques for evolving product-lines and for multi product lines [133, 138, 150].
In multi product lines, formal specifications may use as behavioral interfaces between
related product lines [138].

Research Questions:

• RQ 2.1: What are the advantages and disadvantages of different product-line
representation types regarding usability?

• RQ 2.2: Can results regarding reusability from research on variability-aware im-
plementation techniques be applied to modeling and specification?

• RQ 2.3: What kind of specifications can be expected to be developed by software
developers to formally specify product lines?

• RQ 2.4: What kind of behavior do developers expect from a contract-language
for feature-oriented software development?

• RQ 2.5: How do modeling and specification techniques cope with evolving product
lines?

• RQ 2.6: How do modeling and specification techniques cope with multi product
lines?

Further Product-Line Representations The classification of modeling and spec-
ification techniques based on the common taxonomy of product-line representations
helps to identify research gaps. Our results show that commonality-based representa-
tions are used for specification of properties but not for modeling and implementation.
The main reason is that commonality-based representations do not contain enough in-
formation to derive products automatically. For implementation techniques this is a
necessary requirement, but not necessarily the case for modeling techniques. For in-
stance, commonality-based models might be used in early phases of development. The
role of product-based and commonality-based models within the product-line develop-
ment should be investigated in future research.

Research Questions:

• RQ 3.1: At which phases of product-line development and under which circum-
stances the use of commonality-based models should be recommended?

• RQ 3.2: How should different commonality-based models for the same product-
line be combined?
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• RQ 3.3: How can commonality-based models be refined and transformed to
variability-aware models during development?

Feature-Modular Representations Existing feature-composition-based specifica-
tion techniques are extensions of feature-composition-based implementation techniques [3,
11, 12, 14, 29, 72, 74, 79, 107, 137, 141, 152–154, 164]. In feature-composition-based
implementation techniques, feature modules typically do not refer to parts of other fea-
ture modules directly to increase the degree of modularization. Apel et al. emphasize a
notion of feature-modular specification in which the specification of each feature mod-
ule does not refer to artifacts belonging to other modules [13]. Research suggests that
feature-modular specifications can be used to express important but not all properties
of product lines [13]. The investigation of the possible role that feature-modular spec-
ifications should play in the development of product lines, in particular for other kind
of representations, is a possible direction for future research. We believe that it might
also be possible that feature-modularity can be investigated independently of specific
representation types.

Research Questions:

• RQ 4.1: Can the notion of feature-modularization introduced for specifications be
extended for other representation types?

• RQ 4.2: When should feature-modular representations be used?

• RQ 4.3: Should languages and tools enforce feature-modular representations?

• RQ 4.4: Can representations be divided into feature-modular and non-modular
parts to take advantage of both concepts?

Specification Inference for Product Lines Design by Contract has emerged as a
promising specification technique to support product-line development [3, 12, 14, 27,
48, 72, 107, 137, 141, 152–154, 164]. However, research indicates that developers may
benefit from automated techniques to infer or improve specifications. For this purpose,
static and dynamic techniques have been proposed for single-system engineering [46,
56, 66, 131]. These approaches cannot be expected to be applicable to software product
lines, as they operate on single products. Thus, they do not scale for large numbers
of products. Furthermore, concepts to map results to features are required. It is not
clear, how such approaches can be adapted for software product lines. For instance,
dynamic invariant inference is a technique to analyze execution traces to infer likely
invariants [56]. A research challenge is to adapt such techniques for the requirements of
product lines e.g., by identifying commonalities between features or to use techniques
such as variability encoding using an annotation-based representation of the product
line to reason about multiple products simultaneously. Furthermore, techniques that
are used to infer specifications might be useful for refactoring activities such as the



61

transformation of a product-based representation to a variability-aware representation
in which they may help with identification of features.

Research Questions:

• RQ 5.1: Can we adapt existing techniques for specification inference to software
product lines?

• RQ 5.2: Is it possible to infer specification candidates for multiple products by
analyzing a single product?

• RQ 5.3: Is it possible to analyze an annotation-based representation of the product
line to infer specification candidates?

• RQ 5.4: Is it possible to apply specification inference techniques for refactoring
of product lines?

Mutation Testing and Verification for Product Lines Mutation Testing is a
technique that can be used to evaluate the effectiveness of tests to find possible faults in
a given code base [78]. For this purpose, faults are automatically injected into the code
to check whether the existing tests are able to identify the faults. Given a verification
technique, the same approach can be used to evaluate the quality of a specification. In
single system engineering, mutations are inserted into the source code or byte code of
the product. A challenge of research is to adapt such techniques for variability-aware
implementation techniques. For instance, it might be possible to insert the code into
feature modules, derive an annotation-based representation to perform tests or analyses,
and trace the results back to the faulty feature modules. This technique, would further
allow researchers to evaluate and compare product-line analysis techniques, e.g., to
compare different sampling strategies for product-based testing. Practitioners could
use such techniques to increase the quality of specifications and tests.

Research Questions:

• RQ 6.1: How can we adapt mutation testing and verification techniques for soft-
ware product lines?

• RQ 6.2: How can mutation testing and verification techniques be used to evaluate
product-line analysis techniques?

• RQ 6.3: How can mutation testing and verification techniques be used to improve
the quality of tests and specifications?
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Variability Encoding Our taxonomy allows us to see commonalities of different
types of representations such as implementation and models. It appears natural that
some concepts that have been developed for a certain kind of representation may also
be applied to other kinds. For instance, variability encoding or configuration lifting
has been proposed as a technique to transform compile-time variability into run-time
variability [12, 127, 153]. This is done by transforming variability-aware source code into
an annotation-based representation on the level of running code. A challenge of research
is to develop techniques to transfer this technique on other kind of representations such
as formal models. Ideally, a uniform principle of variability encoding that does not
only apply to implementations but to product-line representations in general could to
be developed. At least, we consider it desirable to derive a set of requirements that a
representation needs to fulfill in order to apply techniques to derive an annotation-based
representation, e.g., for analysis purposes.

Research Questions:

• RQ 7.1: How can variability encoding be applied to other kinds of product-line
representations such as models and specifications?

• RQ 7.2: Is it possible to identify uniform principles of variability-encoding that
are independent of specific product-line representations?

• RQ 7.3: What requirements does a representation need to fulfill in order to sup-
port variability encoding?

Transfer of Research Results from Aspect-Oriented Software Development
Our survey has included some of the research related to aspect-oriented software de-
velopment. On the one hand, a large body of research exists for the application of
design by contract to aspect-oriented programming [3, 72, 107, 141, 164]. On the
other hand, composition-based models together with weaving mechanisms have been
proposed [5, 85, 119, 142]. The main limitation of this research, from a product-line
perspective, is that the consideration of variability is restricted, i.e., it is typically as-
sumed that all aspects are woven together into the base system resulting in only a single
product (and the base product). Aspect-oriented programming has been identified as a
possible implementation technique for software product lines [6, 9, 10, 60, 82, 112]. In
fact, aspect-oriented programming can be seen as a generalization of feature-oriented
programming for which the use of contracts has been proposed in research related to
product lines. It should be investigated to what degree techniques and research results
from research on aspect-oriented software development can be transfered to a product-
line contest. Ideally, unifying concepts that incorporate aspect-oriented programming
as well as concepts for software product lines such as feature-oriented software devel-
opment should be developed.

Research Questions:
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• RQ 8.1: Can we transfer techniques and research results from aspect-oriented
software development to software product lines?

• RQ 8.2: Can we develop unifying concepts of the underlying principles of both
aspect-oriented software development and feature-oriented development of soft-
ware product lines?

Contracts for Annotation-Based Implementation Techniques Based on our
classification of specification techniques, we have identified a dichotomy pointing to a
promising research direction. On the one hand, a large body of research in implemen-
tation techniques lies on annotation-based techniques. On the other hand, in research
on variability-aware specification techniques the use of design by contract has gained
considerable attention [3, 12, 14, 27, 48, 72, 107, 137, 141, 152–154, 164]. However,
the application of design by contract has been limited to feature-annotation-based im-
plementation techniques (FOP and AOP) and family-annotation-based implementation
techniques (DOP). The application of design by contract for annotation-based imple-
mentation techniques has not been explored, so far.

A reason for the focus of research on design by contract is its focus on its application
by software developers without expertise in formal methods [111]. As a light-weight
formal method, it can be easily applied to existing projects. Languages such as JML
are tailored to be easily adaptable by developers [98]. Similarly, annotation-based
implementation techniques are a concept that many developers are familiar with, in
the form of preprocessor directives used for conditional compilation. Considering the
practical relevance of both approaches this seems to be a promising direction for future
research.

Research Questions:

• RQ 9.1: How can design by contract be applied to annotation-based implementa-
tion techniques?

• RQ 9.2: Can research results from applying design by contract to composition-
based implementation techniques be adapted for annotation-based techniques?

Variability in Test Cases Research on testing of software product lines focuses
mainly on the underlying implementation representations rather than on the represen-
tation of the tests. For instance, a line of research aims to develop sampling strategies
to select appropriate subsets of products for testing. However, the fact that each prod-
uct may require a different set of tests is typically not considered, i.e., a family-wide
representation for tests is assumed. So far, variability has been considered by means of
techniques that derive product-based tests from an annotation-based test model. In a
case study, the possibility of using unit-tests to specify the behavior of domain artifacts
has been considered. We see the need to consider variability in test cases in future
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research. Especially, research on product-based or family-based testing should consider
how variability in tests can be represented. The role of different variability-aware test
cases in the product-line development process should be considered.

Research Questions:

• RQ 10.1: How should variability in test cases be represented?

• RQ 10.2: Which role should variability-aware test cases play in the product-line
development process?

Certification and Industrial Standards In many domains, in which the use of for-
mal methods plays an important role such as automobiles, avionics, or railway systems,
the development of systems must be performed in accordance to industrial standards
such as ISO 262626 for automobiles, that often require intensive quality assurance
measures [49, 50]. These standards typically require that each product, even if the
products are built following the product-line engineering paradigm, must be certified
separately [106]. Approaches, to adapt the product-line development process to specific
requirements of industrial standards in order to certify products based on variability-
aware representations could provide substantial by reducing development costs. Formal
models and specifications play an important role, as these domains often incorporate
model-driven engineering, product-line engineering, and are safety-critical. Thus, the
application of formal modeling and specification techniques for product lines are of great
interest for these domains. However, the certification of systems according to industrial
standards poses great challenges.

• RQ 11.1: How can model-driven development, software product line engineering,
and formal verification be incorporated into a single development process?

• RQ 11.2: How can such a development process cope with requirements of indus-
trial standards to certify products?



7. Related Work

Formal modeling and specification techniques for software product lines have been pro-
posed in various lines of research. A number of surveys include an overview of such
techniques. Similarly, there exists a number of variability taxonomies for product lines.
To our knowledge, this is the first survey with a focus on variability representation of
formal modeling and specification techniques. In the following, we give an overview
about related work and compare it to this thesis.

Most related to this thesis is a recent survey by Thüm et al. in which the authors clas-
sify analysis techniques for software product lines regarding their strategy to cope with
the variability of software product lines [151]. The classified analysis strategies include
formal verification techniques that require a formal specification. Thüm et al. distin-
guishes between product-based, feature-based, and family-based analysis techniques as
well as combinations thereof. The focus of the survey lies on analysis strategies. Thüm
et al. also sketch a classification of strategies to specify properties whose terminology
we have adapted and incorporated into our taxonomy. Generally, we have aimed to
adopt the existing terminology as introduced by Thüm et al. as far as possible. How-
ever, we apply the terms to the representation of variability rather than on analysis
strategies. The shared terminology mainly serves to see the connection between both
concepts. For instance, product-based analyses require a product-based representation
of the product line. The results presented in thesis can be seen as an extension of
this work by shifting the focus on modeling and specification techniques in contrast to
analysis techniques. Our focus is broader in the sense that we also consider techniques
that have been proposed without accompanying analysis techniques. Similarly, we do
not consider analysis techniques without accompanying specification technique such as
type checking. Furthermore, we consider the use of test cases as a possible specification
technique while testing has not been considered as an analysis technique by Thüm et
al. [151].
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Taxonomies of variability mechanisms for product lines have been proposed in liter-
ature [7, 75, 77, 146]. The focus typically lies on mechanisms that are used to bind
variability (i.e., to derive products). Jacobson et al. present a set of different vari-
ability mechanisms: inheritance, extensions, parameterization, configuration and gen-
eration [75]. This research does not focus on product lines. Jazayeri et al. discuss
variability mechanisms specific to product lines [77]. Svahnberg et al. extend this work
by explicitly considering the role of features [146]. However, these taxonomies do not
consider formal modeling or specifications. A reason is that variability is discussed on
the level of different phases of development without going into detail of how a product
line is represented at each phase. Variability of implementation techniques has been
explored intensively [7]. However, in the context of implementation techniques, the fo-
cus lies on product derivation mechanisms. In contrast, we focus on the representation
itself, resulting in a more general taxonomy. A further distinction between variability
mechanisms in existing taxonomies is the binding time of variability, i.e., the time at
which a configuration decision is realized [7, 146]. The general assumption in research on
product lines is that variability can be bound in all phases of development. Accordingly,
variability must be represented in all phases of development which is a motivation for
our general taxonomy of product-line representations. However, we have not included a
notion of binding time in our taxonomy as our goal is to reveal commonalities regarding
the representation of variability in different representation types.

In a survey about software diversity, Schaefer et al. also include an concise overview on
behavioral modeling of software product lines [136]. They distinguish between compo-
sitional, annotative and transformational approaches. We have decided not to make the
distinction between compositional and transformational approaches as this distinction is
related to mechanisms of product derivation rather than specification issues. However,
we have incorporated notions of composition-based and annotation-based representa-
tions into our taxonomy to emphasize the commonalities between implementation and
other kind of representations. However, our definition is more general in the sense
that it only considers the representation of variability rather. Furthermore, our survey
focuses on modeling and specification in more detail.

Alférez et al. compares different approaches of product-line specific requirements model-
ing [4]. They also use the common distinction between composition-based and annotation-
based approaches, exemplifying that this notion is useful for different concepts in all
phases of the development process. However, they focus on informal approaches that
are out-of-scope of this thesis.

A survey on the use of formal methods for software product lines by Janota et al. pro-
vides a sophisticated discussion of the relationship between problem space and solution
space from a formal methods perspective [76]. However, they focus on pure variability
modeling and do not consider techniques to specify behavior or properties of a system.

Apel et al. distinguish between global, variant-based, and feature-based specifications
using a slightly different terminology [13]. The notion of global specification is similar
to family-wide specification as introduced in this thesis and variant-based specifications
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are similar to product-based specifications. In contrast, we provide definitions with a
focus on the mapping between specification and products and we generalize these terms
to be applicable for arbitrary representations. Furthermore, Apel et al. introduce and
explore the notion of feature-modular specifications that is more strict than our notion
of feature-based representations [13]. In future work, it would be possible to incorporate
this notion by refining our taxonomy. We discuss possible research directions regarding
feature-modular specifications in Chapter 6.

Several surveys on product line testing exist. We have incorporated test cases as a
kind of formal specification of a software product lines [47, 99, 120]. However, our re-
sults indicate that product line-testing research typically does not consider fine-grained
variability of test cases. A similar conclusion has been drawn in a systematic mapping
study on software product line testing [47]. In this study, the question whether testing
techniques involve variability testing or commonality-testing. This distinction is related
to our classification of commonality-based and variability-aware representations.

Fenske et al. present a taxonomy of product-line reengineering activities [59]. Our tax-
onomy is related to this work, as reengineering can be seen as a transformation between
two types of product-line representations, e.g., by transforming a product-based rep-
resentation into a variability-aware representation. However, Fenske et al. focus on
representations on the level of implementation techniques. Thus, our taxonomy gener-
alizes the taxonomy of reengineering activities. In particular, reeengineering activities
are a special case of transformations between product-line representations as introduced
in our taxonomy.



68 7. Related Work



8. Conclusion

Software product lines are increasingly used to develop safety-critical and mission-
critical systems. To reason about the correctness of product lines, researchers have
adapted verification techniques, such as model checking and theorem proving to the
requirements of software product lines. Existing research has focused on the strategies
to enable efficient reasoning about properties of a product line. However, to reason
about properties, we need a representation of the product line such as a model or an
implementation, as well as a representation of the desired properties by means of a
specification.

We have presented a taxonomy of product-line representations, presented techniques
for of modeling and specification of product lines, and classified the modeling and
specification techniques for product lines according to our taxonomy. Furthermore, we
have discussed its relationship to implementation techniques. We intend this taxonomy
to be usable for many other kinds of representations such as documentation, and as a
first step towards research on variability representation for software product lines that
is independent of particular representation types. We expect the unifying view provided
by this taxonomy to be useful for research on software product lines.

The taxonomy can be seen as a generalization from the common distinction between
annotation-based and composition-based implementation techniques to other kind of
representations. We focus on the representation itself, rather than on mechanisms for
product generation. To exemplify the usefulness of our taxonomy, we have presented
possible directions for future research that we have identified by considering the research
area by means of our classification.

As far as modeling techniques are concerned, product-line research has focused on
annotation-based and composition-based techniques. A large part of the proposed tech-
niques are concerned with formalisms based on transition systems for model checking of
product lines. As a result, a large part of the proposed specification techniques consist
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of appropriate logics that can be used to express properties for model checking. An-
other focus of research is on the application of design by contract to variability-aware
implementation techniques.

Our classification based on a common taxonomy of representations has helped to identify
research gaps such as the need for concepts to apply design by contract to annotation-
based implementation techniques. We distinguish between models that are used to
express behavior of a system and specifications that are used to express properties that
the system is expected to fulfill. Our impressions is that variability-aware specification
techniques have gained less attention as variability-aware modeling techniques. In par-
ticular, variability-aware representations of test cases should be considered in future
research. Another example is the application of commonality-based representations
for modeling of product lines. While commonality-based models do not require spe-
cial modeling techniques, the potential role of commonality-based models within the
product-line development process is unclear.

By comparing research related to specification of product lines, with research in the
context of single systems engineering, it is also possible to identify possible directions of
research. For instance, specification inference has not been adapted to software product
lines but may lead to fruitful results. We have also identified mutation testing as a pos-
sible technique to support researchers to evaluate analysis techniques and practitioners
to evaluate a given specification or set of test cases.

Our focus on modeling and specification rather than on analysis has helped to iden-
tify research related to aspect-oriented software development with results potentially
transferable to product line research. Furthermore, the general notion of product-line
representation suggests that research results for a specific type of representation might
be transfered to other types. For instance, we have identified variability-encoding of
modeling languages, i.e., the derivation of an annotation-based representation as possi-
ble research direction.

Furthermore, our survey makes clear that practical evaluation has focused on analysis
rather than on specification. Evaluation of the usability of modeling and specification
approaches from a developers point of view has not been considered explicitly in the lit-
erature. A large part of the techniques presented in this survey, the LTS-based modeling
formalisms and corresponding specification techniques are not even aimed to be used by
engineers directly but rather as a foundation for automatic analysis or for higher-level
specification languages. Generally, we see large potential in further research on higher-
level modeling languages, especially regarding refinement-based modeling techniques.

We have seen that the common taxonomy helps to understand commonalities and dif-
ferences between implementation techniques, modeling techniques, and specification
techniques resulting in a set of possible directions for future research. We hope our
classification to be extended for further types of representations. In the long term,
we hope to identify general variability concepts as a solid foundation for all types of
representations in the software product line development process.
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vey of Model-Based Software Product Lines Testing. In Model-based Testing for
Embedded System, pages 339–381. CRC Press, Boca Raton, FL, USA, September
2011. (cited on Page 67)

http://github.com/sonatype/munge-maven-plugin


Bibliography 83

[121] Sebastian Oster, Ivan Zorcic, Florian Markert, and Malte Lochau. MoSo-PoLiTe
- Tool Support for Pairwise and Model-Based Software Product Line Testing.
In Proc. Int’l Workshop Variability Modelling of Software-intensive Systems (Va-
MoS), pages 79–82, New York, NY, USA, 2011. ACM. (cited on Page 35)

[122] David L. Parnas. On the Criteria to be used in Decomposing Systems into Mod-
ules. Comm. ACM, 15(12):1053–1058, December 1972. (cited on Page 52)

[123] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le Traon.
Automated and Scalable T-wise Test Case Generation Strategies for Software
Product Lines. In Proc. Int’l Conf. Software Testing, Verification and Validation
(ICST), pages 459–468, Washington, DC, USA, April 2010. IEEE. (cited on

Page 47 and 54)

[124] Jörg Pleumann, Omry Yadan, and Erik Wetterberg. Antenna: An Ant-to-End
Solution For Wireless Java. Website, 2011. Available online at http://antenna.
sourceforge.net/; visited on November 22nd, 2011. (cited on Page 8)
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