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Abstract

Feature-oriented programming is a paradigm to develop software product lines, in which
products can be generated by composing feature modules. Design by contract is a devel-
opment methodology, in which methods are specified by annotating them with contracts.
Researchers propose to use such contracts to specify feature modules in order to perform
different product-line analysis-techniques such as verification and automated detection of
feature interactions.

We have found six approaches to specify feature modules with contracts in literature. These
approaches differ in the way specifications can be refined. Each of them relies on a cer-
tain way in which contracts are composed. So far, these contract composition mechanisms
must be applied manually for each product. Thus, the evaluation of applications that rely on
contracts in feature-oriented programming is laborious, error-prone, or not feasible at all.

We formalize the underlying composition mechanism for each existing approach considering
possible interpretations, variations, and combinations. Based on our formalization, we pro-
vide tool support that can be used to specify feature modules with contracts expressed in the
Java Modeling Language. Our tool is integrated into an integrated development environment
that provides support for the whole product-line engineering process. Furthermore, it allows
the developer to choose the desired contract composition mechanism for each product line.
We performed four case studies to evaluate the applicability of different contract composition
mechanisms.





Acknowledgments

I would like to thank my advisors Thomas Thüm and Prof. Gunter Saake for giving me
the opportunity to write this thesis. Without the outstanding support of Thomas, this thesis
would not have been possible for many reasons. I thank for all his advice, for all his effort,
for endless hours of discussion, for all the patience when listening to my ideas and questions,
and especially for all his trust in me and my capabilities.

I thank Dr. Ina Schaefer for valuable discussion and everyone else who commented on my
thesis, such as the participants of the FOSD-Meeting, 2012 in Braunschweig.

For their support with FeatureHouse, I would like to thank Dr. Sven Apel, Dr. Christian
Kästner, and Jörg Liebig.

Furthermore, I thank Martin Hentschel for discussion and insights about semantics of the
Java Modeling Language.

Finally, I thank my family and friends, especially my girlfriend Katharina, for the moral
support.





Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

2 Background 7
2.1 Software Product Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Feature-Oriented Programming . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Method Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Design by Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Design by Contract in Feature-Oriented Programming 17
3.1 Definition of Contract Specification Approaches . . . . . . . . . . . . . . . . 19

3.1.1 Plain Contracting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Contract Overriding . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Keyword original (Explicit Contract Refinement) . . . . . . . . . 36

3.1.4 Consecutive Contract Refinement . . . . . . . . . . . . . . . . . . . 37

3.1.5 Pure Method Refinement . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Feature-oriented Programming with JML . . . . . . . . . . . . . . . . . . . 51

3.2.1 Contract Composition in JML . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Extended features of JML . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Tool Support 59
4.1 Extension of FeatureIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



x Contents

4.2 Extension of FeatureHouse . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Composition Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Evaluation 71
5.1 Validation of contract composition mechanisms . . . . . . . . . . . . . . . . 73
5.2 Evaluation of contract composition mechanisms . . . . . . . . . . . . . . . . 74
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Related Work 85
6.1 Specifications in Product-line Engineering . . . . . . . . . . . . . . . . . . . 85
6.2 Contracts in Single-System Engineering . . . . . . . . . . . . . . . . . . . . 87

7 Conclusion 89

8 Future Work 93

Bibliography 97



List of Figures

1.1 Visualization of the relationship between cost-effectiveness, complexity a
and reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Feature model for franking machine product line . . . . . . . . . . . . . . . 9

2.2 Visualization of step-wise development . . . . . . . . . . . . . . . . . . . . 10

2.3 Example of feature-oriented programming . . . . . . . . . . . . . . . . . . . 12

2.4 Feature structure tree representing a feature from the franking machine prod-
uct line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Example of plain contracting . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Example of contract overriding . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Example of consecutive contract refinement . . . . . . . . . . . . . . . . . . 39

3.4 Variability model for contract composition mechanisms. . . . . . . . . . . . 51

3.5 Example of consecutive contract refinement in JML . . . . . . . . . . . . . . 53

3.6 Example of keyword also . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Comparison of keyword original in different granularities . . . . . . . . . 56

3.8 Example of multiple preconditions . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 FeatureHouse composition process . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Excerpt from the FeatureBNF grammar for JML . . . . . . . . . . . . . . . . 64

4.3 Lexical states to distinguish JML and Java . . . . . . . . . . . . . . . . . . . 65



xii List of Figures

4.4 Grammar production representing a JML method specification . . . . . . . . 66

4.5 Screenshot of FeatureIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Feature model of case study NumbersSPL. . . . . . . . . . . . . . . . . . . . 75

5.2 Excerpt of case study NumbersSPL specified with contract overriding . . . . 76

5.3 Excerpt of case study NumbersSPL specified with explicit contract refinement 76

5.4 Excerpt of case study NumbersSPL specified with consecutive contract re-
finement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Feature model of case study IntegerSetSPL. . . . . . . . . . . . . . . . . . . 79

5.6 Feature model of case study UnionFindSPL. . . . . . . . . . . . . . . . . . . 80

5.7 Feature model of case study PokerSPL. . . . . . . . . . . . . . . . . . . . . 81



List of Tables

3.1 Properties of plain contracting. . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Properties of plain contracting without ε-contracts. . . . . . . . . . . . . . . 26

3.3 Properties of plain contracting without ε-conditions. . . . . . . . . . . . . . . 28

3.4 Properties of contract overriding. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Properties of contract overriding without ε-contracts. . . . . . . . . . . . . . 34

3.6 Properties of contract overriding without ε-conditions. . . . . . . . . . . . . . 35

3.7 Properties of conjunctive contract refinement. . . . . . . . . . . . . . . . . . 41

3.8 Properties of cumulative contract refinement. . . . . . . . . . . . . . . . . . 42

3.9 Properties of consecutive contract refinement. . . . . . . . . . . . . . . . . . 43

3.10 Overview of fulfilled properties of conjunctive contract refinement, cumula-
tive contract refinement, and consecutive contract refinement. . . . . . . . . . 45

3.11 Overview of fulfilled properties of plain contracting, contract overriding, con-
junctive contract refinement, cumulative contract refinement, and consecutive
contract refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Overview of case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



xiv List of Tables



1. Introduction

How can we build software that works? According to Parnas [64] there are two approaches
we can follow in order to achieve this goal.

The first is to use mathematical methods to reason about the correctness of software. This ap-
proach is being researched in the field of formal methods. The idea to use the computer to rea-
son about its own programs was originally stated by McCarthy in 1962 [53]. In 1967, Floyd
refined this idea by proposing a verifying compiler that automatically checks the correctness
of a program [25]. There has been a lot of progress in formal methods and they have success-
fully been used in domains such as traffic control [33], microprocessors [26] [57], electronic
cash systems [72] [83], flight control [13], and for other safety-critical systems such as the
Maeslant Kering (a movable barrier protecting the port of Rotterdam from flooding) [78].
However, the use of formal methods in industry is still more exception than rule [82]. The
task of constructing a verifying compiler has turned out to be very challenging and has been
restated by Hoare in 2003 as a grand challenge for the software engineering community [31].

Formal methods require developers to write a formal specification of the software to be build.
Developers have to consider every aspect of the software intensively in order to express re-
quirements of the software precisely. Experience in industrial projects suggest that specifying
a software system formally provides valuable insights that prevent errors from being propa-
gated into late development phases [41] [82] [41].

The second approach to develop correct software is to structure it in a manner that allows
programmers to build and understand software systems as an aggregation of smaller program
units. The systematic development of programs as a set of modules allows the developer to
understand each module in isolation [62] [21]. Progress in this area of software engineering
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complexity

cost-effectiveness

reliability

Figure 1.1: The interdependent relationship of cost-effectiveness, complexity and reliability
in software development

has manifested in several programming paradigms, methodologies and languages that provide
different kinds of modules and composition. Object-oriented programming has emerged as a
wide-spread paradigm in which software is designed and built as systems of communicating
objects [55].

Researchers in the area of software engineering are not only concerned with correctness but
also need to find ways to build complex software systems cost-efficiently. It is especially
challenging to achieve all of these desired properties simultaneously because they are in-
terdependent. Figure 1.1 illustrates the relationship between complexity, reliability and cost-
effectiveness. When software developers want to improve one of these properties, at least one
of the other properties is effected negatively. Increasing the complexity of software usually
results in increased costs and/or a reduced reliability. Similarly, the decision to increase relia-
bility results in increased costs and/or a reduced complexity (e.g., by reducing functionality).

One of the fundamental ideas in software engineering to reduce development costs is to take
advantage of commonalities between software artifacts by reusing certain parts of software.
A significant part of the success of object-oriented programming can be traced back to the
means of reuse it provides [47]. A method can be called from multiple callers, and is therefore
a simple means of reuse. Inheritance provides a mechanism of reuse inside class hierarchies.
The idea to build software systems from a set of reusable components is as old as software
engineering as a field [54]. However, there is a trade-off between usability and re-usability of
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such software components. General components such as software libraries and off-the-shelf
tools (e.g., database management systems) provide high reusability and are commonly used
ways to achieve a form of reuse. However, the price for their re-usability is a rather low
usability (i.e., components usually need to be adapted to solve a given problem).

Software product lines (also called program families) aim to solve this trade-off by taking
advantage of commonalities between a set of products inside a specific domain [20] [66].
This provides a high rate of reuse for highly specialized components. The vision of software
product line engineering is to achieve a level of mass-customization as known from other
industries, such as automobiles. Different variants of a product can be assembled from a
set of core assets providing a high grade of variability. Each variant can be distinguished in
terms of features, where a feature describes a property of interest for a stakeholder that also
serves as a configuration option [67]. Software product lines have been successfully applied
in practice and proven to be a cost-effective way to produce complex software systems—by
developing multiple related products simultaneously [81].

Feature-oriented programming (FOP) is a paradigm in which programs are assembled from
a set of feature modules [67]. A feature module encapsulates all classes and class frag-
ments that belong to a particular feature. While feature-oriented programming emerges as
a promising paradigm to develop software product lines efficiently, the aspect of reliability
moves into the focus of attention by academia and industry [3] [10] [23] [35]. Mission-
critical and safety-critical applications as they are needed in domains such as automobiles,
avionics or embedded systems in general often have hard limits on resources which makes
mass-customization of software even more desirable. Furthermore, these applications require
a high grade of reliability.

Meyer proposes design by contract as a design principle for the development of object-
oriented programs, which aims to increase reliability of software. [56]. He introduces the
notion of method contracts as a means to specify the behavior of programs. The callers of a
method guarantees that a certain precondition holds when calling the method. In return, the
method guarantees to fulfill a certain postcondition after execution. The specification in com-
mon design by contract languages is expressed in the style of the implementation language,
which allows developers without rigorous training in formal methods to achieve a high reli-
ability. Meyer argues that the notion of contracts, which are a form of formal specification,
allow modular reasoning and can also be used as a design guideline (i.e., methods do not
have to check the preconditions), which leads to a more efficient implementation. Further-



4 1. Introduction

more, contracts are executable instructions that can be used as input for several verification
tools [16].

As we have stated above, feature-oriented programming can be used for efficient development
of software product lines and design by contract can be used to achieve a high grade of
reliability. Recently, Thüm et al. suggested to apply design by contract to feature-oriented
programming [77]. We believe that the combination of these two approaches may result in
a software development methodology that helps to develop reliable software systems cost-
effectively. Furthermore, we expect that the combination of design by contract and feature-
oriented programming can be fruitful for both research communities. On the one hand, the
acceptance of formal methods might be increased because their costs are reduced when they
are applied in a product-line fashion. It is possible to specify each feature in a product line
separately and to compose the specification of each product automatically. On the other
hand, several FOP-specific problems such as automated detection of feature interactions can
be solved using design by contract [69]. Furthermore, verification approaches that take the
variability in the product line into account can be investigated [73].

Traditional design by contract as it was introduced for object-oriented programming cannot
be applied in feature-oriented programming directly, because in feature-oriented program-
ming contracts may be refined [77]. Existing tools for feature-oriented programming allow
features to introduce classes, methods, and fields as well as to refine existing ones [11] [5] [6].
When introducing methods, they can be enriched with contracts, but it is not clear how con-
tracts should be defined when methods are refined. Thüm et al. propose five different ap-
proaches to specify features with contracts expressed in the Java Modeling Language (JML):
plain contracting, contract overriding, explicit contract refinement, consecutive contract re-
finement, and pure method refinement [77]. Another approach, cumulative contract refine-
ment, is used for the automated detection of feature interactions [69]. Each approach relies
on a specific way in which contracts are composed. So far the composition of contracts had
to be performed manually, due to lack of tool support.

Goal of this Thesis

The goal of this thesis is to provide tool support for design by contract in feature-oriented
programming that supports the necessary contract composition mechanisms for these ap-
proaches. As a first step, we identify and formalize the required contract composition mech-
anisms that must be used during feature composition for each existing approach. We also
consider possible variations and combinations of these approaches.
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Based on the results of our formalization, we provide a tool that supports design by con-
tract in feature-oriented programming. Our tool is based on FeatureHouse [5], a framework
for the composition of software artifacts. Furthermore, it is integrated into FeatureIDE [74],
an integrated development environment for feature-oriented software development. Our tool
allows the developer to decide which specification approach to use, by choosing the appro-
priate composition mechanism. We have validated our definitions of contract composition
mechanism by using our tool on existing case studies, in which contract composition had to
be performed manually. Furthermore, we have used our tool support to perform four case
studies, in which we have compared the applicability of the different contract composition
mechanisms in practice.

Structure of this Thesis

We give an overview of the necessary background to understand this thesis and its context in
Chapter 2. Chapter 3 includes our definitions of contract specification approaches including
a formalization of the underlying contract composition mechanisms and implementation de-
cisions specific to the Java Modeling Language. In Chapter 4, we present our tool support for
design by contract in feature-oriented programming that is based on the results of the previ-
ous chapters. Chapter 5 covers the evaluation of our tool support and contract composition
mechanisms. We give an overview of related work in Chapter 6 and conclude in Chapter 7.
In Chapter 8, we sketch future work.
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2. Background

This chapter introduces the underlying concepts used in this thesis. Section 2.1 gives a defi-
nition of software product lines and Section 2.2 introduces feature-oriented programming as
an implementation technique for software product lines. We give an overview about method
contracts in Section 2.3.

2.1 Software Product Lines

Software product lines are families of related software products [20] [66]. Northrop defines
a software product line as "a set of software-intensive systems sharing a common, managed
set of features that satisfy the specific needs of a particular market segment or mission and
that are developed from a common set of core assets in a prescribed way" [20]. A feature
can be any property of interest for stakeholders. The members of a software product line are
called products (variants) and can be distinguished in terms of features. Each product can be
described by a set of features [34].

Software product lines can be used in any application area of software development that
requires the development of similar products sharing certain features. A typical example
for a domain in which software product lines can be applied are embedded systems [14].
To exemplify the notion of software product lines we will consider the domain of franking
machines.1 Franking machines are devices that are used to process mail automatically in
order to weigh, frank, and seal it. In order to fit different customer requirements franking

1While franking machines are real devices, the example domain presented in this thesis is a simplified,
merely fictional notion to exemplify the discussed concepts.
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machines are typically offered in many different variants: From simple machines that can
only process one envelope at a time, to machines that are able to process large stacks of
mail in different sizes and weights. Some machines offer extended features such as Internet
connection to download postal tariff changes and software updates. Furthermore, franking
machines are usually sold to customers from different countries, which results in different
user-interface languages, currencies, stamps, and tariff systems.

Software for embedded devices often has to be developed in different variants to suit differ-
ent customer needs [14]. In theory, it is possible to develop one program that can be used
for all different franking machine variants. However, resources like memory and processing
power are limited and relative expensive for embedded devices such as the franking ma-
chines. Therefore, we want to create a software product that contains exactly the necessary
functionality for each type of franking machine. It is possible to develop and maintain each
variant of the software independently. Traditionally, version control systems can be used to
keep track of variants, and a new variant can be created by creating a new branch. An existing
variant is copied to this branch and the required changes are made. However, this approach is
very limited in the number of variants that can be managed efficiently. Consider the situation
of finding and fixing a bug in one of these variants. Does the bug-fix need to be applied in
other variants? And if yes, in which variants? Another problem is that creating a new variant
is complex and expensive, which means that it is usually not feasible to develop variants in
advance. The idea of software product lines is to consider variability of software systems
explicitly. Instead of developing a single product first and thinking about creating variants
afterwards a whole set of products is planned from the beginning.

The software product line development process starts with the domain engineering phase [66].
The domain engineering phase consists of an initial domain analysis, followed by domain im-
plementation.

During domain analysis, a domain (e.g, franking machine software) is chosen and possible
variants are identified. The results of domain analysis are typically expressed in a feature
model [34]. A feature model can be represented graphically by a feature diagram. In a
feature diagram, features are arranged hierarchically [34]. It describes valid combinations of
features that can be used to build variants. Figure 2.1 shows a feature model for our franking
machine software product line. The feature model defines rules that must be followed in
order to build a variant of the product line. Combinations of features that are allowed by a
feature model are called valid configurations.



2.2. Feature-Oriented Programming 9

Figure 2.1: Feature model for franking machine product line

The hierarchical structure of a feature diagram implies the following meaning: If a feature is
selected, the parent feature must be selected, too (e.g., if Spain is selected to be included in a
variant, Country must be also be selected in order to get a valid variant). Mandatory features
must be selected if their parent feature is selected. (e.g., Weighing, Franking, and Sealing
must be selected if their parent is selected). Features that are not marked as mandatory are
denoted as optional features and can either be selected or not selected (e.g., Printer connection
is optional and can be selected if Standard Operating Features is selected). Alternatively,
features can have one of several group types. The group type Alternative implies that exactly
one of the child features must be selected (e.g., exactly one of the countries must be chosen).
Group type Or demands that at least one of the child features must be selected. Abstract
features are not mapped to implementation artifacts. They are used to structure the feature
diagram. Features that are not abstract are denoted as concrete features.

2.2 Feature-Oriented Programming

After domain analysis the domain implementation can be performed. There are several im-
plementation techniques for software product lines. Assuming the use of object-oriented pro-
gramming the core assets could be a set of classes, templates, libraries, or a framework, from
which the other variants can be derived. A possible approach for domain implementation is
to use feature-oriented software development. In feature-oriented software development the
mapping between code-artifacts and features is made explicit and features can be generated
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∅

{C}
{C, I}I

{C, H}
H

C

{B}
{B, G}G

{B, F}
F

B

{A}
{A, E}E

{A, D}
D

A

Figure 2.2: In stepwise development, program variants are derived by successive refinement
of the program, starting from the empty program. In traditional stepwise development each
edge represents an implementation decision, in feature oriented programming each edge rep-
resents a feature. Technically, a product is defined as an ordered set of implementation deci-
sions/features.

automatically based on a configuration. Several techniques for the feature oriented imple-
mentation of code artifacts have been suggested [80]. Kästner et al. distinguish between
compositional and annotative feature-oriented implementation techniques [36]. In composi-
tional approaches, features are represented as distinct modules that can be composed auto-
matically. Annotative approaches require to create a mapping between features and source
code fragments by explicitly marking source code fragments.

This work focuses on feature-oriented programming, a compositional approach, in which the
core assets are feature modules. Each feature module encapsulates an increment in func-
tionality implementing a feature. Feature-oriented programming has been suggested as an
extension of object-oriented programming [67], but can be generalized to support different
languages and non-code artifacts [4]. Parnas proposes stepwise refinement to develop soft-
ware product lines [63]. Figure 2.2 illustrates the principle of stepwise refinement. The
developer starts with the empty program (denoted by the symbol ∅) and makes an implemen-
tation decision (e.g., introducing a method) resulting in a different program variant. Thus,
a program variant can be described as an ordered set of implementation decisions. Batory
proposes to apply step wise refinement on the level of features, in order to develop software
product lines to achieve a better scalability [12]. In case of object oriented languages, a fea-
ture module can introduce classes, methods or fields or refine classes and methods. Figure 2.3
shows the composition of feature Processing and feature Low Ink Warning. Feature Process-
ing contains basic functionality that is needed for our franking machine software. Feature
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Low Ink Warning contains the code that is used to display a warning if the ink level is below
a certain level.

Keyword original is used to reference the body of the original method, similar to the key-
word super() to reference the implementation of a super class, as used in object-oriented
programming.

Superimposition

In feature-oriented programming a variant is build by composing a set of features. A possible
approach for the composition of features is superimposition of feature structure trees [5].

A feature-structure tree (FST) is a hierarchical representation that organizes the structural ele-
ments of a feature such as packages, classes, fields, or methods (or any other non-code or code
artifact) [5]. Figure 2.4 shows a feature structure tree from our franking machine example.
Each node in a feature structure tree has a name and a type (e.g., class FrankingMachine
is represented by a node with the name FrankingMachine and the type class). We distinguish
between terminal nodes (i.e., nodes without children) and non-terminal nodes (i.e., nodes
with children). Feature structure trees can represent any kind of software artifact that can be
expressed as an hierarchically structure.

Superimposition is a language independent composition method based on merging of tree
structures. When superimposing two FSTs, their nodes are merged recursively based on their
names, types, and relative positions. If two nodes have the same name, type and relative
position they are merged. Nodes that cannot be matched this way are added to the FST at the
current position. Two non-terminal nodes are merged by merging their children recursively.
Terminal nodes are merged following language- and type specific composition rules.

When we refer to feature composition in this thesis, we always assume superimposition as
the underlying composition mechanism. Formally, feature composition is described by the
feature composition operator • defined over the set of features F [8].

• : F × F → F

v = Fn • Fn−1 • ... • F1

A variant v is the result of a feature composition. Technically, it is not necessary to dis-
tinguish between variants and features because a variant is also a valid feature. The result
of superimposition is a new FST, that can again be used as input for superimposition with
another FST. Thus, superimposition can be used to compose an arbitrary number of FSTs
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class FrankingMachine { {Base}
void process(Letter letter){
weigh(letter);
frank(letter);
seal(letter);
}

}

•

class FrankingMachine { {Low Ink Warning}
void process(Letter letter){
if(inkLevel < inkLimit ){

displayLowInkWarning();
return;

}
original();

}
}

=

class FrankingMachine { {Base, Low Ink Warning}
void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 2.3: Feature Low Ink Warning refines class FrankingMachine by overriding
method process. Keyword original is used to reference the original method body.
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Type: Package

Name: core

Type: Class

Name: FrankingMachine

Type: Field

Name: inkLevel
. . .

Type: Method

Name: process

Figure 2.4: Feature structure tree representing a feature from the franking machine product
line.

subsequently. Feature composition is associative, but not commutative (i.e., the result of the
operation depends on the order in which two features are composed). Associativity, is desired
for feature-oriented programming because it provides more freedom for the composition pro-
cess [8].

2.3 Method Contracts
The notion of method contracts plays a central role in this thesis. Method contracts are a
special form of assertion used to specify the behavior of methods. Section 2.3.1 introduces
the concept of assertions and summarizes its main benefits. We give an overview of design by
contract, a software development methodology, which coined the term of method contracts
as used in this thesis.

2.3.1 Assertions

An assertion, in its general sense, is a property that must hold at a certain point of program
execution. Initially, assertions were proposed as a means to simplify the understanding of
a complex function. In 1945, Alan Turing proposed to use assertions that allow a human
checker to reason about a large function step-by-step [79] [58]. Assertions state properties
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that can be checked in independently. If all assertions are considered to be fulfilled, one can
conclude that the whole routine is correctly implemented.

For the rest of the thesis, we focus on such assertions that can be interpreted automatically,
i.e. assertions that are stated in a formal language and usually embedded into program code
to define the state of execution in which they apply. Such assertions can be used to verify
that a given program fulfills properties of interest(stated as assertions). A straight-forward
use of assertions is to include the assertions in an executable form in the compiled program,
which will report an error if one of them is not fulfilled. This technique is known as runtime
assertion checking [19].

The concept of assertions has proven to be adaptable to new programming concepts such as
object-oriented programming and is still a key principle in formal methods. Hoare reports
that about 250,000 lines of code of Microsoft Office are assertions [31].

According to Turing, assertions provide two key benefits [79]: modularity of reasoning (i.e.,
smaller implementation units can be analyzed in isolation) and blame assignment (i.e., it is
easier to locate the source of errors).

2.3.2 Design by Contract

Design by contract is a method for software construction [56] [32]. It can be seen as an ex-
tension of assertions to object-oriented programming. In design by contract, the developer
assumes a contract between a method and its caller. This contract is expressed formally in
terms of pre- and postconditions. A method can rely on the properties stated by its precondi-
tion, while the caller can rely on the precondition to be fulfilled by the method. Furthermore,
it is possible to define class invariants to state properties that must hold in every publicly
visible state of execution (i.e., for and after calls to public methods).2

Some languages (e.g., Eiffel and Spec#) have native support for design by contract. For other
languages there are extensions available (e.g., Java Modeling Language as an extension of
Java).

We use the Hoare-style notation {φ}m{ψ} to express a method m with precondition φ and
postcondition ψ. The precondition states properties that must be fulfilled when the method
is called and the postcondition expresses properties that must be fulfilled after method exe-
cution. A contract c = {φ}m{ψ} states two properties: Precondition φ must be fulfilled and

2There is no final consensus about the semantics of invariants. Possible definitions may also include private
method calls
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φ =⇒ ψ must be fulfilled (i.e., if the precondition is fulfilled, the postcondition must be
fulfilled, too).

We use the Java Modeling Language to exemplify the use of design by contract. The Java
Modeling Language is a behavioral interface specification language. It allows developers
to specify classes and methods on a semantic level [18] [43]. One of the design goals of
the Java Modeling Language was to be easily understandable by Java developers without
formal training in specification methods [45]. Therefore, it uses regular Java syntax enriched
by a set of new keywords. Java Modeling Language specifications are embedded inside
Java comments (i.e., they are ignored by Java compilers). A subset of the Java Modeling
Language can be used to apply design by contract, i.e. class invariants and method contracts
can be expressed in JML [44]. Since, Java Modeling Language is a formal language it can
be processed automatically to reason about the program. There are tools for Java Modeling
Language that support run-time assertion checking, static analysis, and the generation of
documentation or test cases [16].

Design by contract transfers the key benefits of assertions to object-oriented programming.
Leavens et al. list the following benefits [56]:

• Modularity of Reasoning - Contracts define an interface for methods. The developer
can reason about a given method by considering only the contracts of called methods
instead of their implementation. Thus, a method can be understood modularly.

• Blame Assignment - When an error is found contracts can be used to identify the source
of this error. When a precondition is not satisfied the blame can be put on the caller.
Analogously, the method implementation can be blamed in the case of a broken post-
condition.

• Efficiency - Methods can rely on their precondition to be fulfilled when they are exe-
cuted. Thus, methods can perform less checks on the validity of arguments to avoid
redundant calculations.

• Documentation - Contracts express the intention of the developer. By only examining
the implementation of a method, a developer can not distinguish between essential and
arbitrary implementation details. Furthermore, he can often not decide whether an
implementation is correct or not. By expressing all important properties of a method in
its contract, the developer can distinguish between the intended behavior and the actual
implementation.
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3. Design by Contract in
Feature-Oriented Programming

In the last chapter, we have introduced superimposition as a possible implementation tech-
nique for feature-oriented development of software product lines. In this thesis, we use super-
imposition to compose source code annotated with contracts. Superimposition can be used
to compose all types of code artifacts that fulfill the following requirements [5]:

• The code artifact must be convertable into a feature-structure tree.

• The nodes of this tree must be identifiable by its relative position, its name, and its type.

• A node can only contain one node with the same name and type.

• Terminal nodes must provide rules for composition or cannot be composed.

Object-oriented languages usually fulfill these requirements and can be used in feature-
oriented programming [4]. Design by contract is a development method that uses contracts
to specify object-oriented languages [56] [32]. Languages that support design by contract are
object-oriented languages that provide the possibility to specify methods with contracts [19].

We conclude that it is generally possible to use superimposition as an implementation tech-
nique for design by contract in feature-oriented programming. Contracts can be represented
in a feature-structure tree as child nodes of methods. Each method can only have one con-
tract. Thus, each node with the type method can only have one child node with the type
contract. A unique name is not necessary to identify the node representing a contract. We
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can use a default name, as long as it is the same name for every contract. When two methods
are composed, the corresponding contracts are also composed following a language-specific
rule.

We do not need to know the composition rules to conclude that object-oriented languages
with support for method contracts can be used for feature-oriented programming using su-
perimposition. The details of these rules become important when we consider the purpose of
the contracts. The specification of feature modules with contracts recently gained attention of
researchers [77] [76] [69] [75]. They have been used as a means to specify software product
lines and for specific applications such as the automated detection of feature interactions [69].

There are multiple ways to specify a software product line with contracts. One possible ap-
proach to specify a software product line is to specify each product separately [73]. However,
the number of products in a software product line might be large (up-to exponential in the
number of features). Thus, such a product-based specification approach is only applicable
for small product lines.

The specification effort can be reduced by specifying each feature module separately, and
generating the specification for each product automatically [77]. This can be done by enrich-
ing feature modules with contracts [77].

In feature-oriented programming, feature modules can introduce classes, methods, and fields.
Furthermore, methods can be refined (i.e. they are overridden during feature composition).
When applying design by contract to feature-oriented programming, method introductions
can be enriched with contracts. However, it is not clear how the corresponding composition
of two contracts should be performed. Generally, it is not obvious which approach developers
should use to specify features.

Thüm et al. propose five approaches to specify contracts in feature-oriented programming:
plain contracting, contract overriding, consecutive contract refinement, explicit contract re-
finement and pure method refinement [77]. Another approach is used for the detection of
feature interactions [69]. We refer to this approach as cumulative contract refinement. These
approaches differ in their expressiveness (i.e., on the set of programs that can be specified
using a particular approach). More expressive approaches give the developer more freedom
when specifying methods, but can lead to less understandable specifications. Less expres-
sive approaches usually lead to simpler specifications, but may not be applicable in certain
situations [77].

We propose to distinguish two aspects of each specification approach. First, each specifica-
tion approach describes how developers should specify features with contracts. We call these
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descriptions contract specification strategies. Furthermore, each approach relies on a certain
way in which contracts are composed during feature composition. We refer to these rules as
contract composition mechanisms.

Consider the example of contract overriding, which is discussed in more detail later. On the
one hand, it describes a contract specification strategy: Developers specify each method re-
finement with a complete specification of its behavior. On the other hand, contract overriding
relies on a contract composition mechanism that composes two contracts by returning the
original contract as a result.

We found ambiguities in the informal descriptions of contract specification approaches for
feature-oriented programming. We provide more precise definitions of the specification ap-
proaches to provide a foundation for further research and tool development. Thus, we discuss
the intended contract specification strategy for each specification approach, and formalize the
underlying contract composition mechanisms in Section 3.1.

We define the specification strategies informally because they are intended to be applied by
developers rather than machines. The contract composition mechanisms are supposed to be
applied automatically by a tool. Therefore, we specify them formally. Our formalization is
independent of a certain specification language such as the Java Modeling Language. Sec-
tion 3.2 discusses the application of the theoretical concepts in the Java Modeling Language
and language-specific properties that are not covered by the general definitions.

3.1 Definition of Contract Specification Approaches

The goal of this section is to define existing contract specification approaches. We define each
contract specification approaches by distinguishing between contract specification strategies
(ways to formulate contracts) and contract composition mechanisms (ways to compose two
given contracts). The contract specification strategy can be seen as a guideline for the devel-
oper that must be followed in order to apply a certain contract specification approach. Each of
these approaches also relies on a certain contract composition mechanism, that defines how
the automatic composition of contracts is performed.

In the following, we discuss the existing contract specification approaches by giving an in-
formal definition of the intended contract specification strategy and give formal definitions
for each contract composition mechanism. The derivation of some of these definitions re-
quired us to make decisions on how to interpret existing descriptions of contract specification
approaches. In these cases, we discuss the alternative interpretations.
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The notion of a method contract is essential for both contract specification strategies and
contract composition mechanisms. We define the term method contract as follows:

Definition 1 (Method Contract). Let P be the set of all propositional predicates and M the

set of all methods. A method contract c is a triple (φ,m,ψ), where φ, ψ ∈ P and m ∈ M . φ

is called the precondition of m, and ψ is called the postcondition of m. We denote the set of

all possible method contracts with C.

Based on our definition of method contracts, we formalize each contract composition mech-
anism by defining a function • : C × C → C that performs the desired operation. This
function is similar to the feature composition operator, but describes feature composition on
the level of methods and contracts. We define such a function • for each contract composition
mechanism that we formalize.

An interesting property of any feature composition operator is associativity ((A • B) • C =

A • (B • C)). This attribute is generally desired because it provides more freedom for the
composition process [8]. Associativity allows tools to perform the composition in more than
only one order. Thus, we analyze for each contract composition mechanism whether it is
associative.

Thüm et al. distinguish between contract composition mechanisms that allow or prohibit the
following types of contract refinement [73]:

• Weakening of contracts describes the ability to refine a contract in such a way that the
contract is weaker than before. Given a method contract c = {φ}m{ψ}, a refining
contract c′ = {φ′}m{ψ′} and their composition cres = {φres}(m •m){ψres} the im-
plications φres =⇒ φ and ψres =⇒ ψ are always true if weakening of contracts is
not supported. If weakening of contracts is allowed these implications may be broken.

• Strengthening of contracts describes the ability to refine a contract in such a way
that the contract is stronger, or more strict than before. Given a method contract
c = {φ}m{ψ}, a refining contract c′ = {φ′}m{ψ′} and their composition cres =

{φres}(m •m){ψres} the implications φres =⇒ φ and ψres =⇒ ψ are always true if
strengthening of contracts is not supported. If strengthening of contracts is not allowed
allowed these implications may be broken.

• Behavioral subtyping states that the composition of two classes will always be a behav-
ioral subtype of the base class. Technically, this means that strengthening of contracts
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is allowed and weakening of contracts is not allowed. Behavior subtyping is term that
usually refers to inheritance in object-oriented programming. We use it in the context
of feature composition. The relationship between these two notions is that if feature
composition ensures behavioral subtyping, this means that the resulting class is a be-
havioral subtype of the class subject to refinement.

We analyze for each contract composition mechanism whether it supports weakening of con-
tracts, strengthening of contracts, behavioral subtyping, or none of these properties.

Furthermore, a method contract {φ}m′ • m{ψ} states two properties. The first property is
that the precondition must be fulfilled (i.e, φ must be ensured). The second property is that
if the precondition is fulfilled, then the postcondition must be fulfilled, too (i.e., φ =⇒ ψ

must be ensured). The result of contract composition can be classified, by which of these
properties are fulfilled for a given contract composition mechanism. We classify each contract
composition mechanism according to this classification.

3.1.1 Plain Contracting

Thüm et al. propose plain contracting as a simple contract specification approach for methods
in feature-oriented programming [77]. The idea of plain contracting is that there is only one
contract for any given method in the product line. The developer may specify a method with a
contract, when the method is initially introduced. A feature may refine the implementation of
an existing method, but not the contract. A goal of plain contracting is that the developer can
rely on contracts not to be changed by feature refinements. Figure 3.1 shows an example in
which method process is refined. Feature Base introduces method process and the cor-
responding contract. The precondition states that parameter letter must not be null. The
postcondition states that after execution the letter can be expected to be weighted, franked,
and sealed. Feature Low Ink Warning refines method process. It adds an additional check
whether there is enough ink in the device. If the ink level is too low, a warning is displayed.
The implementation is refined, but the contract is not changed.

The advantage of this approach is its simplicity [73]. The specification effort is relative
low, because method refinements do not need to be specified. However, the applicability of
plain contracting is rather limited [77]. The developer is able to refine the implementation
of methods, but cannot refine the contract. Thus, the initial contract has to be defined in
a way that conforms to all variants that include the same method. From the opposite per-
spective, feature-specific method refinements, such as the additional ink check inside method
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class FrankingMachine { {Base}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@*/

void process(Letter letter){
weigh(letter);
frank(letter);
seal(letter);
}

}

•

class FrankingMachine { {Low Ink Warning}
void process(Letter letter){
if(inkLevel < INK_LIMIT )

displayLowInkWarning();
original(letter);
}

}

=

class FrankingMachine { {Base, Low Ink Warning}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@*/

void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 3.1: Plain contracting allows developers to define methods when introducing con-
tracts. It does not allow to refine contracts.
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process, cannot be specified with plain contracting. We give the following informal defini-
tion of the contract specification strategy for plain contracting as proposed by Thüm et al [77].

Definition 2 (Plain Contracting: Contract Specification Strategy). In plain contracting any

method introduction may be specified with a contract. Method refinements can only change

the implementation of a method, but not its contract. Thus, method refinements are not speci-

fied with contracts. The developer must ensure that any method inside a given feature module

is either a method refinement in all products or a method introduction in all products.

The idea of plain contracting is that contracts cannot be refined. However, we need to define
a contract composition mechanism because our goal is to give definitions for contract-aware
feature composition. Thus, it is necessary to specify the handling of contracts during feature
composition. The contract composition mechanism that is required for plain contracting must
ensure that the result of the composition of two contracts is identical to the original contract.
The developer can just assume method refinements not to include contracts. However, our
definition subsumes the more general case in which method refinements include contracts by
treating a method without contract as having an empty contract.

Definition 3 (Plain Contracting: Contract Composition Mechanism). We define the contract

composition mechanism for plain contracting as follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} = {φ}m′ •m{ψ}

Following this definition, the resulting contract for m′ •m is always identical to the contract
of the method subject to refinement m. This definition is directly based on the informal
description of plain contracting.

Proposition. The contract composition mechanism for plain contracting is associative.

Proof. Let C be the set of all method contracts. Given a contract composition operator for
plain contracting with • : C × C → C, {φ′}m′{ψ′} • {φ}m{ψ} = {φ}m′ •m{ψ}.

Given three contracts c1 = {φ}m{ψ}, c2 = {φ′}m′{ψ′}, c3 = {φ′′}m′′{ψ′′}, c ∈ C.

Then

({φ′′}m′′{ψ′′} • {φ′}m′{ψ′}) • {φ}m{ψ}
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Contract Composition Mechanism Plain Contracting
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{φ}m′ •m{ψ}
Associative yes

Ensured preconditions:
φ yes
φ′ no

Ensured postconditions:
φ =⇒ ψ yes
φ′ =⇒ ψ′ no

Expressiveness:
Weakening no

Strengthening no
Behavioral subtyping no

Table 3.1: Properties of plain contracting.

= ({φ′}m′′ •m′{ψ′}) • {φ}m{ψ}

= {φ}m′′ •m′ •m{ψ}

= {φ′′}m′′{ψ′′} • {φ}m′ •m{ψ}

= {φ′′}m′′{ψ′′} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in general (c1 • c2) • c3 = c1 • (c2 • c3).

When two contracts are composed, plain contracting ensures that the result ensures the pre-
condition of the contract subject to refinement. If it is fulfilled, it ensures that the original
postcondition is also fulfilled. Plain contracting does not allow to weaken or strengthen con-
tracts, because contracts cannot be refined. We summarize all properties of plain contracting
in Table 3.1.

The distinction between contract specification strategy and contract composition mechanism
provides several insights. When using the contract composition mechanism of plain contract-
ing, method refinements cannot change the contract of a method. On first sight, this may seem
sufficient to specify a product line as described in the contract specification strategy of plain
contracting. Given a configuration and a certain composition order, it is possible to determine
for each method in a feature module whether they are introductions or refinements. However,
when considering the whole software product line a method can be both an introduction and a
refinement, depending on the configuration (e.g., in the case of an optional method introduc-
tion). This means that a contract composition mechanism alone cannot enforce all required
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properties of plain contracting. The developer must avoid such situations. Thus, we have
included this requirement in the contract specification strategy of plain contracting.

Furthermore, there are several details of plain contracting that have not been discussed, yet.
In the case of method introductions without a contract (i.e., a method is introduced but has no
contract) it is not intuitively clear for us, whether a refinement should be allowed to introduce
a contract. The idea of plain contracting is that only method introductions include contracts.
We use this definition directly to follow the principle of simplicity, which was proposed as
the underlying motivation of this approach. Our definition conforms to this decision as we
identify a missing contract with the empty contract, denoted by ε.

We identify a method without a contract as a method with an empty contract. Thus, when
a method is introduced without a contract, it is not possible to define a contract for it in a
refining feature. The alternative would be to allow developers to introduce one contract for
each method instead of allowing them to introduce contracts only for method introductions.
This requires to modify the contract composition mechanism to handle the case of empty
contracts separately. We give a definition of a contract composition mechanism for plain
contracting that allows developers to refine empty method contracts. We call this approach
plain contracting without ε-contracts, referring to the identification of missing contracts with
the empty contract ε.

Definition 4 (Plain Contracting without ε-Contracts: Contract Composition Mechanism).
We define the contract composition mechanism for plain contracting without ε-contracts as

follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} =

{φ}m′ •m{ψ} if φ 6= ε ∨ ψ 6= ε

{φ′}m′ •m{ψ′} otherwise

Proposition. The contract composition mechanism for plain contracting without ε-contracts

is not associative.

Proof. We give a counterexample. Let C be the set of all method contracts. Given a contract
composition operator for plain contracting without ε-contracts as defined in Definition 4.
Given three contracts c1 = {ε}m{ε}, c2 = {φ}m′{ψ}, c3 = {φ′}m′′{ψ′},

c ∈ C, φ 6= ε, ψ 6= ε.
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Contract Composition Mechanism Plain Contracting without ε-contracts
Definition: {φ′}m′{ψ′} • {φ}m{ψ} ={

{φ}m′ •m{ψ} if φ 6= ε ∨ ψ 6= ε

{φ′}m′ •m{ψ′} otherwise
Associative no

Ensured preconditions:
φ yes
φ′ no

Ensured postconditions:
φ =⇒ ψ yes
φ′ =⇒ ψ′ no

Expressiveness:
Weakening no

Strengthening no
Behavioral subtyping no

Table 3.2: Properties of plain contracting without ε-contracts.

Then

({φ′}m′′{ψ′} • {φ}m′{ψ}) • {ε}m{ε}

= ({φ}m′′ •m′{ψ}) • {ε}m{ε}

= {ε}m′′ •m′ •m{ε}

6= {φ}m′′ •m′ •m{ψ}

= {φ′}m′′{ψ′} • {φ}m′ •m{ψ}

= {φ′}m′′{ψ′} • ({φ}m′{ψ} • {ε}m{ε}).

It can be seen that, in this case (c1 • c2) • c3 6= c1 • (c2 • c3). Thus, the contract composition
operator is not associative.

Plain contracting without ε-contracts is a modification of plain contracting that allows de-
velopers to add contracts to methods with empty (missing) contracts in feature refinements.
The price we have to pay is the loss of associativity. We summarize the properties of plain
contracting without ε-contracts in Table 3.2.

Additionally, the contract specification strategy can be altered to require a non-empty con-
tract for each method introduction. This means that every method must be specified with a
contract. This approach can be used to apply design by contract as a development method.
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When using design by contract, every method is specified with a contract and the developer
only relies on contracts of methods rather than implementation details. The result is that
the case of empty contracts can be assumed to never occur. Both definitions of the contract
composition mechanism for plain contracting are equivalent under this assumption.

It is possible that a method introduction only contains a precondition(or only a postcondi-
tion). Both contract composition mechanisms defined above do not allow a method refine-
ment to introduce a postcondition (or a precondition) to this contract. We give a definition
of a contract composition mechanism that allows developers to introduce for each method
exactly one precondition and one postcondition during feature composition. This mechanism
is not associative. We give a definition of this variation of plain contracting that we call plain
contracting without ε-conditions.

Definition 5 (Plain Contracting without ε-Conditions: Contract Composition Mechanism).
We define the contract composition mechanism for plain contracting without ε-conditions as

follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} =



{φ}m′ •m{ψ} if φ 6= ε ∧ ψ 6= ε

{φ′}m′ •m{ψ} if φ = ε ∧ ψ 6= ε

{φ}m′ •m{ψ′} if φ 6= ε ∧ ψ = ε

{φ′}m′ •m{ψ′} if φ = ε ∧ ψ = ε

Proposition. The contract composition mechanism for plain contracting without ε-conditions

is not associative.

Proof. We give a counterexample. Let C be the set of all method contracts. Given a contract
composition operator for plain contracting without ε-conditions as defined in Definition 5.
Given three contracts c1 = {ε}m{ε}, c2 = {φ′}m′{ψ}, c3 = {φ′′}m′′{ψ′}, c ∈ C, φ 6=
ε, ψ 6= ε.

Then

({φ′}m′′{ψ′} • {φ}m′{ψ}) • {ε}m{ε}

= ({φ}m′′ •m′{ψ}) • {ε}m{ε}

= {ε}m′′ •m′ •m{ε}
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Contract Composition Mechanism Plain Contracting without ε-conditions
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{φ}m′ •m{ψ} if φ 6= ε ∧ ψ 6= ε

{φ′}m′ •m{ψ} if φ = ε ∧ ψ 6= ε

{φ}m′ •m{ψ′} if φ 6= ε ∧ ψ = ε

{φ′}m′ •m{ψ′} if φ = ε ∧ ψ = ε

Associative no
Ensured preconditions:

φ yes
φ′ no

Ensured postconditions:
φ =⇒ ψ yes
φ′ =⇒ ψ′ no

Expressiveness:
Weakening no

Strengthening no
Behavioral subtyping no

Table 3.3: Properties of plain contracting without ε-conditions.

6= {φ}m′′ •m′ •m{ψ}

= {φ′}m′′{ψ′} • {φ}m′ •m{ψ}

= {φ′}m′′{ψ′} • ({φ}m′{ψ} • {ε}m{ε}).

It can be seen that, in this case (c1 • c2) • c3 6= c1 • (c2 • c3). Thus, the contract composition
operator is not associative.

Plain contracting without ε-conditions is a modification of plain contracting without ε-contract
in which the developer is allowed to introduce preconditions (or postconditions) in method
refinements if the method subject to refinement does not have a precondition (or postcon-
dition). We summarize the properties of plain contracting without ε-condition in Table 3.3.

Summary

Plain contracting is a simple approach to specify methods in feature-oriented programming.
It relies on a contract composition mechanism that does not allow method refinements to
refine contracts. This contract composition mechanism is associative, if it allows developers
to introduce contracts in method refinements in the case that the method subject to refinement
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does not have a contract already. This is achieved by identification of a missing contract with
the empty contract ε.

There are some possible alternatives about how methods without contracts can be handled
when using plain contracting. The first is to require that every method must be specified. This
approach can be used when applying design by contract as a development method, where the
developer only relies on contracts rather than on implementation details.

The second possibility is to require that every method introduction must contain a contract.
However, in this case the situation must be avoided that a method can be both an introduction
and a refinement depending on the configuration.

The third possibility is to modify the contract composition mechanism to allow feature re-
finements to refine empty contracts. We give a definition for this alternative mechanism that
allows developers the refinement of such empty contracts. This approach is called plain con-
tracting without ε-contracts. However, it is not associative which means that any feature
composition that uses this mechanism to compose contracts is also not associative. Further-
more, the granularity of this approach can be reduced by allowing developers not only to
override empty contracts but also empty preconditions and empty postconditions separately.
We denote this approach by plain contracting without ε-conditions.



30 3. Design by Contract in Feature-Oriented Programming

3.1.2 Contract Overriding

Contract overriding allows the developer to specify both method introductions and method
refinements to include contracts [77]. When a method is refined, the existing contract will be
overridden by the refining contract.

Figure 3.2 shows an example in which method process is refined. The initial contract is
replaced by the refining contract during composition to include the desired changes. The
precondition of the new contract is the same in both the base feature and the refinement. It is
generally often necessary to duplicate the original method contract or parts of it and include
it in the refining contract.

Definition 6 (Contract Overriding: Contract Specification Strategy). When using contract

overriding both method introductions and method refinements may be specified with a con-

tract. Method refinements override the contract of the original method. Thus, each method

refinement must include a contract that completely specifies the behavior of the method after

refinement.

Our formalization of the contract composition mechanism for contract overriding has a sim-
ilar structure as the one for plain contracting. The difference is that the resulting contract is
equivalent to the contract of the refinement, instead of the base contract.

Definition 7 (Contract Overriding: Contract Composition Mechanism). Contract composi-

tion for contract overriding is defined as follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} = {φ′}m′ •m{ψ′}

Proposition. The contract composition mechanism for contract overriding is associative.

Proof. Let C be the set of all method contracts. Given a contract composition operator for
contract overriding with • : C × C → C, {φ′}m′{ψ′} • {φ}m{ψ} = {φ′}m′ •m{ψ′}.

Given three contracts c1 = {φ}m{ψ}, c2 = {φ′}m′{ψ′}, c3 = {φ′′}m′′{ψ′′}, c ∈ C.

Then

({φ′′}m′′{ψ′′} • {φ′}m′{ψ′}) • {φ}m{ψ}

= {φ′′}m′′ •m′{ψ′′} • {φ}m{ψ}
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class FrankingMachine { {Base}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@*/

void process(Letter letter){
weigh(letter);
frank(letter);
seal(letter);

}
}

•

class FrankingMachine { {Low Ink Warning}
/*@requires letter != null;

@ensures (inkLevel >= INK_LIMIT) ==>
@ (letter.isWeighted() && letter.isFranked()
@ && letter.isSealed());
@*/

void process(Letter letter){
if(inkLevel < INK_LIMIT ){

displayLowInkWarning();
return;
}

original(letter);
}

}

=

class FrankingMachine { {Base, Low Ink Warning}
/*@requires letter != null;

@ensures (inkLevel >= INK_LIMIT) ==>
@ (letter.isWeighted() && letter.isFranked()
@ && letter.isSealed());
@*/

void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 3.2: Contract Overriding always overrides the original contract when refining a
method.
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Contract Composition Mechanism Contract Overriding
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{φ′}m′ •m{ψ′}
Associative yes

Ensured preconditions:
φ no
φ′ yes

Ensured postconditions:
φ =⇒ ψ no
φ′ =⇒ ψ′ yes

Expressiveness:
Weakening yes

Strengthening yes
Behavioral subtyping no

Table 3.4: Properties of contract overriding.

= {φ′′}m′′ •m′ •m{ψ′′}

= {φ′′}m′′{ψ′′} • {φ′}m′ •m{ψ′}

= {φ′′}m′′{ψ′′} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in general (c1 • c2) • c3 = c1 • (c2 • c3).

Contract overriding ensures that the resulting contract fulfills the precondition of the refining
contract. If it is fulfilled, it ensures that the corresponding postcondition is also fulfilled. Con-
tract overriding supports to weaken and to strengthen contracts by overriding. We summarize
all properties of contract overriding in Table 3.4.

When a method introduction does not include a contract, a contract may be introduced by a
refinement. This follows directly from the definition of the contract composition mechanism
for contract overriding. However, if a method refinement does not include a contract, any
existing contract is overridden by the empty contract. Thus, the result of composition will
not include a contract in this case. If this behavior is not desired, it is necessary to change the
contract composition mechanism to handle the case of method refinements without contract
separately. The downside of this approach is that the resulting contract composition mech-
anism is no longer associative. We give a definition for this alternative mechanism, that we
call contract overriding without ε-contracts.
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Definition 8 (Contract Overriding without ε-contracts: Contract Composition Mechanism).
Contract composition for contract overriding is defined as follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} =

{φ′}m′ •m{ψ′} if φ 6= ε ∨ ψ 6= ε

{φ}m′ •m{ψ} otherwise

Proposition. The contract composition mechanism for contract overriding without ε-contracts

is not associative.

Proof. We give a counterexample. Let C be the set of all method contracts. Given a contract
composition operator for contract overriding without ε-contracts as defined in Definition 4.
Given three contracts c1 = {ε}m{ε}, c2 = {φ′}m′{ψ}, c3 = {φ′′}m′′{ψ′}, c ∈ C.

Then

({ε}m{ε} • {φ′}m′{ψ′}) • {φ}m′{ψ}

= {φ′}m′′ •m′{ψ′} • {φ}m{ψ}

= {φ}m′′ •m′ •m{φ}

6= {φ′}m′′ •m′ •m{ψ′}

= {ε′}m′′{ε′} • {φ′}m′ •m{ψ′}

= {ε}m′′{ε} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in this case (c1 • c2) • c3 6= c1 • (c2 • c3).

Thus, the contract composition operator is not associative.

Contract overriding without ε-contracts is a modification of contract overriding in which
methods without a contract do not override the contract of the method subject to refine-
ment with the empty contract. We summarize all properties of contract overriding without
ε-contracts in Table 3.5.

The developer might want to override only a precondition or only a postcondition. We give
a definition of a contract composition mechanism that provides this behavior. We call this
approach contract overriding without ε-conditions.
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Contract Composition Mechanism Contract Overriding without ε-Contracts
Definition: {φ′}m′{ψ′} • {φ}m{ψ} ={

{φ′}m′ •m{ψ′} if φ 6= ε ∨ ψ 6= ε

{φ}m′ •m{ψ} otherwise
Associative no

Ensured preconditions:
φ no
φ′ yes

Ensured postconditions:
φ =⇒ ψ no
φ′ =⇒ ψ′ yes

Expressiveness:
Weakening yes

Strengthening yes
Behavioral subtyping no

Table 3.5: Properties of contract overriding without ε-contracts.

Definition 9 (Contract Overriding without ε-Conditions: Contract Composition Mechanism).
We define the contract composition mechanism for contract overriding without ε-conditions

as follows:

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} =



{φ′}m′ •m{ψ′} if φ 6= ε ∧ ψ 6= ε

{φ}m′ •m{ψ′} if φ = ε ∧ ψ 6= ε

{φ′}m′ •m{ψ} if φ 6= ε ∧ ψ = ε

{φ}m′ •m{ψ} if φ = ε ∧ ψ = ε

Proposition. The contract composition mechanism for contract overriding without ε-conditions

is not associative.

Proof. We give a counterexample. Let C be the set of all method contracts. Given a contract
composition operator for contract overriding without ε-conditions as defined in Definition 9.
Given three contracts c1 = {ε}m{ε}, c2 = {φ′}m′{ψ}, c3 = {φ′′}m′′{ψ′}, c ∈ C.

Then

({ε}m{ε} • {φ′}m′{ψ′}) • {φ}m′{ψ}
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Contract Composition Mechanism Contract Overriding without ε-Conditions
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{φ′}m′ •m{ψ′} if φ 6= ε ∧ ψ 6= ε

{φ}m′ •m{ψ′} if φ = ε ∧ ψ 6= ε

{φ′}m′ •m{ψ} if φ 6= ε ∧ ψ = ε

{φ}m′ •m{ψ} if φ = ε ∧ ψ = ε

Associative no
Ensured preconditions:

φ no
φ′ yes

Ensured postconditions:
φ =⇒ ψ no
φ′ =⇒ ψ′ yes

Expressiveness:
Weakening yes

Strengthening yes
Behavioral subtyping no

Table 3.6: Properties of contract overriding without ε-conditions.

= {φ′}m′′ •m′{ψ′} • {φ}m{ψ}

= {φ}m′′ •m′ •m{φ}

6= {φ′}m′′ •m′ •m{ψ′}

= {ε′}m′′{ε′} • {φ′}m′ •m{ψ′}

= {ε}m′′{ε} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in this case (c1 • c2) • c3 6= c1 • (c2 • c3).

Thus, the contract composition operator is not associative.

Contract overriding without ε-conditions is a modification of contract overriding in which
methods without a contract do not override the contract of the method subject to refine-
ment with the empty contract. We summarize all properties of contract overriding without
ε-conditions in Table 3.6.

Summary

Contract Overriding is a contract specification approach that allows features to refine con-
tracts by overriding them. The contract of the original feature is overridden. We have given
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three alternative definitions of contract overriding. They differ in the handling of missing or
empty contracts. The first does not distinguish between contracts and missing or empty con-
tracts. Thus, when a method refinement does not include a contract, the original contract will
be overridden by the empty contract. We assume this behavior might be counter-intuitive
and requires to introduce specification clones if a method refinement does not change the
contract.

The alternative is to define the composition mechanism in a way that empty contracts do not
override contracts. This can be done by considering complete contracts, or pre- and post-
conditions separately. Contract overriding without ε-contracts does not override a contract
if the refining method has no contract. If the refining method has only a precondition but
no postcondition, the original postcondition will be overridden by the empty postcondition.
Contract overriding without ε-conditions does not override a precondition (or postcondition)
if the refining method has no precondition (or postcondition). The downside of both alterna-
tives is that these mechanism are not associative. Only contract overriding, in which empty
contracts override contracts by default is associative.

3.1.3 Keyword original (Explicit Contract Refinement)

Explicit contract refinement is a contract specification approach that is based on overriding
contracts [77]. The difference to contract overriding is that the developer can reference the
original contract from inside the contract refinement by using the keyword original. This
is a technique developers in feature-oriented programming are familiar with because it is sim-
ilar to the way methods are refined. When keyword original occurs inside a precondition
it references the original precondition, when it occurs inside a postcondition it references the
original postcondition. The keyword original can be used additional with the previous
defined composition mechanisms. However, it does not influence the result of composition
in the case of plain contracting because contract refinements are ignored by this approach.

Our definition of explicit contract refinement is an extension of contract overriding that sup-
ports the use of keyword original.

Definition 10 (Explicit Contract Refinement: Contract Specification Strategy). When using

explicit contract refinement both method introductions and method refinements may be spec-

ified with a contract. Method refinements override the contract of the original method. Thus,

each method refinement must include a contract that completely specifies the behavior of the

method after refinement.
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The underlying contract composition mechanism is also an extension of the mechanism used
for contract overriding. We give a definition that is more general in the sense that it can be
applied to extend any contract composition mechanism, including but not limited to contract
overriding, contract overriding with ε-contracts, and contract overriding with ε-conditions.
The application of the definition of keyword original on contract overriding leads to
the contract composition mechanism of explicit contracting. This allows us to extend other
mechanisms for support of keyword original.

Definition 11 (keyword original). Given a contract composition mechanism, as a func-

tion t: C × C → C. We can modify t to support keyword original by replacing t by t′

with t′(c) = t(f(c, o)), c ∈ C, o ∈ {true, false}, where o represents the support for keyword

original of the given contract specification technique(i.e. function f performs the neces-

sary transformations related to keyword original before the actual contract composition

takes place).

We define function f as follows:

f : C × C × {true, false} → C × C

f({φ}m{ψ}, {φ′}m′{ψ′}, o) =

({ψ}m{φ}, {ψ′}m′{φ′}) if o = false

({φ}m{ψ}, {φ′ • ψ}m′{ψ′ • ψ}) if o = true ,

where {φ′ • ψ} = φ′′, where φ′′ is derived from φ′ by replacing each occurrence of keyword

original by φ.

Explicit contract refinement is a contract specification approach that allows the developer to
avoid specification clones (in comparison to contract overriding) by referencing the original
contract. It relies a composition mechanism that extends the contract composition mechanism
for contract overriding with support for keyword original.

The combination of a given contract composition mechanism with support for keyword
original does not change the properties of the contract composition mechanism that we
have discussed. For a given method contract with keyword original it is always possi-
ble to express the same contract by directly including the referenced specification. However,
when considering the variability of the whole product line, keyword original does change
the semantics of a given composition mechanism, as we have seen above.

3.1.4 Consecutive Contract Refinement

In consecutive contract refinement, method introductions can be specified with contracts and
method refinements can introduce new contracts that must be fulfilled in addition to the orig-
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inal contract [77]. The idea is that both the original contract and the contract introduced by
the refinement must not be violated.

Figure 3.3 shows an example of consecutive method refinement. Feature Base introduces
method process, that performs the processing of letters. The precondition states that a
letter must not be null and the postcondition states that each letter is weighted, franked, and
sealed after execution. Feature Low Ink Warning refines method process by adding a
check of the ink level. If it is too low, a warning is displayed before processing the letter as
usual. The contract of the method refinement does only specify the additional behavior. The
precondition states that the field inkLevel must not be null. The postcondition states that
if the ink level is too low, a corresponding warning is displayed. The result of composition is
a method, that includes both contracts. In this case, we use the JML keyword also which
expresses this behavior.

This directly leads to our definition of the contract specification strategy for consecutive
contract refinement.

Definition 12 (Consecutive Contract Refinement: Contract Specification Strategy). When

using consecutive contract refinement both method introductions and method refinements

may be specified with a contract. The intended meaning of a method refinement including

a contract is that the new contract must be fulfilled in addition to the original contract. For

the resulting method both contracts must be fulfilled.

We identified three alternative interpretations of the informal requirement stated by Thüm et al. [77].
We refer to these approaches as conjunctive contract refinement, cumulative contract refine-
ment, and consecutive contract refinement. The most simple variant is to require that all
preconditions and postconditions must be fulfilled. We call this approach conjunctive con-
tract refinement and define the composition mechanism as follows:

Definition 13 (Conjunctive Contract Refinement: Contract Composition Mechanism).

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} = {φ′ ∧ φ}m′ •m{ψ′ ∧ ψ)}

Proposition. The contract composition mechanism for conjunctive contract refinement is

associative.
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class FrankingMachine { {Base}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@*/

void process(Letter letter){
weigh(letter);
frank(letter);
seal(letter);
}

}

•

class FrankingMachine { {Low Ink Warning}
/*@requires inkLevel!=null;

@ensures(inkLevel < INK_LIMIT) ==> display.warning==INK_WARNING;
@*/

void process(Letter letter){
if(inkLevel <INK_LIMIT ){

displayLowInkWarning();}
original(letter);
}

}

=

class FrankingMachine { {Base, Low Ink Warning}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@also
@requires inkLevel!=null;
@ensures(inkLevel < INK_LIMIT) ==> display.warning==INK_WARNING;
@*/
void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 3.3: Consecutive contracting allows developers to add a contract when refining a
method. The original contract and the refined contract both have to be fulfilled in the compo-
sition.
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Proof. Let C be the set of all method contracts. Given a contract composition operator for
conjunctive contract refinement with • : C×C → C, {φ′}m′{ψ′}•{φ}m{ψ} = {φ′∧φ}m′•
m{ψ′ ∧ ψ)}.

Given three contracts c1 = {φ}m{ψ}, c2 = {φ′}m′{ψ′}, c3 = {φ′′}m′′{ψ′′}, c ∈ C.

Then

({φ′′}m′′{ψ′′} • {φ′}m′{ψ′}) • {φ}m{ψ}

= ({φ′′ ∧ φ′}m′′ •m′{ψ′′ ∧ ψ′}) • {φ}m{ψ}

= {(φ′′ ∧ φ′) ∧ φ}m′′ •m′ •m{(ψ′′ ∧ ψ′) ∧ ψ}

= {φ′′ ∧ (φ′ ∧ φ)}m′′ •m′ •m{ψ′′ ∧ (ψ′ ∧ ψ)}

= {φ′′}m′′{ψ′′} • ({φ′ ∧ φ}m′ •m{ψ′ ∧ ψ})

= {φ′′}m′′{ψ′′} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in general (c1 • c2) • c3 = c1 • (c2 • c3).

Conjunctive contract refinement ensures that the resulting contract fulfills both preconditions
of the composed contracts. If they are both fulfilled, it ensures that both corresponding post-
conditions are also fulfilled. Conjunctive contract refinement allows feature refinements to
strengthen contracts by adding additional pre- and postconditions that must be fulfilled. How-
ever, it does not allow to weaken contracts, because all properties of the contract subject to
refinement are ensured by the result of composition. We summarize all properties of contract
overriding in Table 3.7.

Conjunctive contract refinement is more restrictive than would be necessary to apply the
idea of consecutive contract refinement as proposed in literature. The reason is that requires
both preconditions to be fulfilled at the same time which would not be the case if a method
had multiple contracts. The question whether this approach is appropriate is related to the
question if a precondition must hold for every contract or if the contract only requires the
implication: If the precondition is fulfilled, then the postcondition must be fulfilled. Runtime-
Assertion checking tools, usually assume that a precondition must be fulfilled, because they
generate corresponding assertions and report any violation of pre- or postconditions [19].

We derive an alternative contract composition mechanism by changing the composed precon-
dition. Instead of requiring all preconditions to hold, we consider it sufficient when one of
them is fulfilled (i.e., if one of the preconditions is fulfilled, all the postconditions must be ful-
filled). This approach is also used by researchers for the detection of feature interactions [69].
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Contract Composition Mechanism Conjunctive Contract Refinement
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{ φ′ ∧ φ}m′ •m{ψ′ ∧ ψ)}
Associative yes

Ensured preconditions:
φ yes
φ′ yes

Ensured postconditions:
φ =⇒ ψ no
φ′ =⇒ ψ′ no

Expressiveness:
Weakening no

Strengthening yes
Behavioral subtyping yes

Table 3.7: Properties of conjunctive contract refinement.

We define this approach as a contract composition mechanism and call it cumulative contract
refinement.

Definition 14 (Cumulative Contract Refinement: Contract Composition Mechanism).

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} = {φ′ ∨ φ}m′ •m{ψ′ ∧ ψ)}

Proposition. The contract composition mechanism for cumulative contract refinement is as-

sociative.

Proof. Let C be the set of all method contracts. Given a contract composition operator for
cumulative contract refinement with • : C×C → C, {φ′}m′{ψ′}•{φ}m{ψ} = {φ′∨φ}m′ •
m{ψ′ ∧ ψ)}.

Given three contracts c1 = {φ}m{ψ}, c2 = {φ′}m′{ψ′}, c3 = {φ′′}m′′{ψ′′}, ci ∈ C.

Then

({φ′′}m′′{ψ′′} • {φ′}m′{ψ′}) • {φ}m{ψ}

= ({φ′′ ∨ φ′}m′′ •m′{ψ′′ ∧ ψ′}) • {φ}m{ψ}

= {(φ′′ ∨ φ′) ∧ φ}m′′ •m′ •m{(ψ′′ ∧ ψ′) ∧ ψ}
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Contract Composition Mechanism Cumulative Contract Refinement
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{ φ′ ∨ φ}m′ •m{ψ′ ∧ ψ)}
Associative yes

Ensured preconditions:
φ no
φ′ no

Ensured postconditions:
φ =⇒ ψ yes
φ′ =⇒ ψ′ yes

Expressiveness:
Weakening no

Strengthening yes
Behavioral subtyping yes

Table 3.8: Properties of cumulative contract refinement.

= {φ′′ ∨ (φ′ ∧ φ)}m′′ •m′ •m{ψ′′ ∧ (ψ′ ∧ ψ)}

= {φ′′}m′′{ψ′′} • ({φ′ ∨ φ}m′ •m{ψ′ ∧ ψ})

= {φ′′}m′′{ψ′′} • ({φ′}m′{ψ′} • {φ}m{ψ}).

It can be seen that, in general (c1 • c2) • c3 = c1 • (c2 • c3).

Cumulative contract refinement ensures that the resulting contract fulfills both postconditions
of the composed contracts if one of the corresponding preconditions is fulfilled. It does not
allow to weaken contracts, in the sense used in this thesis. However, it does allow to weaken
preconditions by adding additional preconditions disjunctively and to strengthen postcondi-
tions by adding additional postconditions that must be fulfilled. It does not ensure for a single
precondition of original contracts that it must be fulfilled, but it ensures that if a certain pre-
condition is fulfilled, the corresponding postcondition must be fulfilled, too. We summarize
all properties of contract overriding in Table 3.8.

Cumulative contract refinement is less restrictive than conjunctive contract refinement. How-
ever, there are cases in which it demands the fulfillment of a postcondition without the related
precondition to be fulfilled. We assume this is often not feasible, because the postcondition
can usually not be fulfilled without the corresponding precondition (otherwise the precondi-
tion would have been unnecessary).
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Contract Composition Mechanism Consecutive Contract Refinement
Definition: {φ′}m′{ψ′} • {φ}m{ψ} =

{ φ′ ∧ φ}m′ •m{ψ′ ∧ ψ)}
Associative yes

Ensured preconditions:
φ no
φ′ no

Ensured postconditions:
φ =⇒ ψ yes
φ′ =⇒ ψ′ yes

Expressiveness:
Weakening no

Strengthening yes
Behavioral subtyping yes

Table 3.9: Properties of consecutive contract refinement.

This problem leads us to the third interpretation, which is similar to the notion of behavioral
subtyping as known from class hierarchies in object-oriented programming [48]. We define
contract composition for consecutive contract refinement as follows:

Definition 15 (Consecutive Contract Refinement: Contract Composition Mechanism).

• : C × C → C

{φ′}m′{ψ′} • {φ}m{ψ} = {φ′ ∨ φ}m′ •m{(old(φ) =⇒ ψ) ∧ (old(φ′) =⇒ ψ′)}

The occurrence of variables in a postcondition usually refers to their value after method
execution. Function old is used to refer to the values of variables of a condition in the state
before method execution.

Consecutive contract refinement ensures that both original postconditions must be fulfilled,
if the corresponding preconditions are fulfilled. However, it does not enforce that all precon-
ditions must be fulfilled. Consecutive contract refinement is associative. The proof can be
done analogously to the previous proofs of associativity, but the necessary transformations
to show the equivalence are rather long and do not provide much insight. Instead, we only
sketch the proof and skip some details. We give an overview of all properties in Table 3.9.

Proposition. The contract composition mechanism for consecutive contract refinement is

associative.
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Proof Sketch. Let C be the set of all method contracts. Given a contract composition op-

erator for consecutive contract refinement with • : C × C → C, {φ′}m′{ψ′} • {φ}m{ψ} =
{φ′ ∨ φ}m′ •m{(old(φ) =⇒ ψ) ∧ (old(φ′) =⇒ ψ′)}.

Given three contracts c1 = {φ}m{ψ}, c2 = {φ′}m′{ψ′}, c3 = {φ′′}m′′{ψ′′}, ci ∈ C.

Then

(c1 • c2) • c3 = {φ′′ ∧ φ′ ∧ φ}m′′ •m′ •m{(φ′′ =⇒ ψ′′) ∧ (φ′ =⇒ ψ′) ∧ (φ =⇒ ψ)},
and

c1 • (c2 • c3) = {φ′′ ∧ φ′ ∧ φ}m′′ •m′ •m{(φ′′ =⇒ ψ′′) ∧ (φ′ =⇒ ψ′) ∧ (φ =⇒ ψ)}.

It can be seen that, in general (c1 • c2) • c3 = c1 • (c2 • c3).

The definitions we have given do not achieve the goal of consecutive contract refinement that
methods can be assumed as having multiple contracts. The reason is that it is generally not
possible to express the semantics of multiple contracts in only one contract. Consider two
contracts A = {φ}m{ψ} and B = {φ′}m′{ψ′}. Contract A states two properties that must
be fulfilled. First, precondition φ must be fulfilled. Second, if precondition φ is fulfilled,
postcondition ψ must be fulfilled (i.e. φ =⇒ ψ). Analogously, contract B states that
precondition φ′ must be fulfilled and that φ′ =⇒ ψ′ must be true.

Table 3.10 gives an overview of which properties of the original contracts are enforced by
our three definitions. Having two contracts would mean that all four properties of the original
contracts(φ, φ′,φ =⇒ ψ, φ′ =⇒ ψ′) must be fulfilled. However, it is generally impossible
to find such a definition. Any contract that requires both φ′, φ in its precondition, cannot
ensure that ψ is ensured if only φ is true (i.e., φ =⇒ ψ cannot be ensured).

All three definitions of the contract composition mechanism assume that no empty pre- and
postconditions can occur. However, this assumption is too restrictive. When composing two
contracts, the result contains conditions in which pre- and postconditions are used inside a
propositional expression. These conditions can be empty. We must define for each case how
the empty contract is evaluated when it occurs inside a propositional expression.

When using conjunctive contract refinement, the empty condition can only occur inside a
conjunction. If we define that the empty condition evaluates to true in all cases, the composi-
tion works as intended.

In the case of cumulative contract refinement we must distinguish between pre- and postcon-
ditions. In a precondition, the empty condition can occur only inside a disjunction and must
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Conjunctive
Contract
Refinement

Cumulative
Contract
Refinement

Consecutive
Contract
Refinement

Associative yes yes yes
φ yes no no
φ′ yes no no

φ =⇒ ψ no yes yes
φ′ =⇒ ψ′ no yes yes
Weakening no no no

Strengthening yes yes yes
Behavioral subtyping yes yes yes

Table 3.10: Overview of fulfilled properties of conjunctive contract refinement, cumulative
contract refinement, and consecutive contract refinement.

evaluate to false. However, this assumption is not sufficient, because it leads to an unsatisfi-
able precondition if all preconditions are empty. Thus, this case must be handled separately.
However, this leads to more complex composition rules that must distinguish between a pre-
condition that cannot be satisfied because all preconditions used to compose it are empty and
a precondition that cannot be satisfied for other reasons. In a postcondition, the empty con-
dition can occur only inside a conjunction and must evaluate to true. The result, is that in all
cases a missing contract is treated as desired.

Consecutive contract refinement is even more complicated. Preconditions must be handled
like in cumulative contract refinement. The same problems arise. For empty postconditions,
it is sufficient when empty conditions evaluate to true. The result is that a missing condition
has no influence on the resulting expressions. It ensures the same properties of interest as
cumulative contracting but is more likely to be applicable because it does not require that
preconditions must be fulfilled without the corresponding preconditions being fulfilled. It is
also similar to the notion of behavioral subtyping from object-oriented inheritance.

Summary

The idea of this specification approach is that contracts must be composed in a way, such
that the resulting contract can be viewed as a method with two contracts. It is generally not
possible to express all properties of two contracts in a single contract. Thus, it is not possible
to find a composition mechanism that ensures these properties. Instead, we have defined
three alternative contract composition mechanisms for the specification approach consecutive
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contracting. They all have in common that they allow strengthening of contracts, but not
weakening (i.e. they follow the behavioral subtyping principle).

Conjunctive contract refinement is the only approach that ensures that both preconditions
and both postconditions must be fulfilled. However, this property also makes it the most
restrictive one. It does not ensure that if only one of the original preconditions is fulfilled that
the corresponding precondition must be fulfilled.

Cumulative contract refinement is less restrictive, because it only requires that one of the
original preconditions must be fulfilled. Thus, method callers can rely that the resulting con-
tract ensures that if he provides one of the original preconditions the corresponding original
postcondition is fulfilled. However, this approach imposes difficulty for method implementa-
tions. They must ensure that both preconditions are fulfilled if only one of the corresponding
preconditions is fulfilled. Thus, this approach is only applicable if the postcondition can
be fulfilled without the corresponding precondition being fulfilled. We assume that this is
generally not possible because in this case the precondition was not necessary at all.

The composition mechanism consecutive contract refinement is named after the specification
approach because we believe this definition comes closest to the desired properties of this
specification approach.

We have identified that the handling of empty contracts must be considered explicitly if there
absence cannot be assumed.

3.1.5 Pure Method Refinement

Pure method refinement is a specification approach for contracts in feature-oriented program-
ming [77]. It relies on the ability of certain specification language for contracts, in which
methods of the specified class can be called and executed. The Java Modeling Language
supports this for methods that are marked as pure, which denotes that the method cannot
influence existing objects. In feature-oriented programming it is possible to refine methods.
Thus, it is possible to refine contracts semantically, by refining the implementation of pure
methods.

The underlying, implicit assumption of pure method refinement as proposed in literature
is that methods are specified in a way similar to plain contracting [77]. Thus, it can be
seen as a modification of plain contracting in which features can be refined by refining pure
methods. However, it is possible to combine pure method refinement with other approaches.
We could assume any of the previously defined contract composition mechanisms and allow
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the refinement of pure contracts (by changing the contract specification strategy to allow it).
If we do not mention that a specific specification approach supports the use of pure method
refinement we assume that it is never used.

The advantage of pure method refinement is that contract refinements can be of finer granu-
larity compared to other approaches. It is possible to place multiple pure method calls into
one pre- or postcondition. Each of these pure methods can be refined individually.

We assume, a downside of pure method refinement is that each part of the specification that
may be subject to refinement, must be defined by a pure method call. Thus, the specification
of features is less flexible than their implementation. In feature-oriented programming, the
developer can generally refine any method as long as it exists. When using pure method
refinement, the developer can refine all methods but the corresponding contract can only be
refined if a pure method call is used or introduced.

Whether the need to put specifications that may be refined in pure methods is an advantage
or disadvantage depends on the used specification strategy. It is a disadvantage if the devel-
oper does not suspect this behavior and must create pure methods in the base program when
specifying methods in a refinement. It can also be an advantage if pure method calls are used
to specify parts of the specification that may be refined by features.

We do not define a contract composition mechanism because it can be used directly with any
of the previously defined mechanisms. However, our definitions of the previous approaches
assume that pure method refinement is not used. If pure method calls are allowed, the result-
ing contract specification approach supports both weakening and strengthening of contracts
because pure methods can be refined arbitrarily.

We believe, that the combination with plain contracting is the most promising. It allows
the developer to express behavior that must not be violated by any feature directly inside
contracts rather than in pure methods. Properties that may be changed by features can be
specified inside pure methods. This is applicable for properties of different granularity from
single values that may be changed to whole methods that are specified inside a single pure
method.

3.1.6 Summary

Our goal is to develop tool support for the application of design by contract in feature-oriented
programming. We considered six approaches to specify contracts in feature oriented pro-
gramming that are used in software product line research: plain contracting, contract over-
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riding, explicit contract refinement, consecutive contract refinement, cumulative contract re-
finement, and pure method refinement. These approaches have been described informally in
existing work and leave several open questions.

We propose to distinguish two characteristics for each of these approaches. First, the way
in which developers must specify contracts, the contract specification strategy. Second, the
way in which two contracts are composed during feature composition, the contract compo-
sition mechanism. This distinction is useful when trying to understand a given specification
approach. It turns out that existing descriptions of approaches focus on describing the speci-
fication strategy in some cases. In other cases they focus on the composition mechanism.

We provide definitions of contract specification strategies and contract composition mech-
anisms for feature-oriented programming. A contract specification strategy is intended to
be a guideline for developers. Thus, we focus on defining the main idea of each strategy
informally and discuss several alternatives and extensions.

Each contract specification strategy assumes and relies on a specific contract composition
mechanism. We give formal definitions of contract composition mechanisms, because they
are intended to be implemented by tools. Thus, it is desirable to specify them precisely.
Each contract states two properties: its precondition must be fulfilled, and if it is fulfilled the
postcondition must hold. The three definitions differ in the properties of the original contracts
that must be fulfilled for the resulting contract. Ideally, all properties should be fulfilled.
However, this is not possible. On the one hand, we want that both original preconditions
must be fulfilled. On the other hand, we want that if we provide a certain precondition the
corresponding postcondition must be fulfilled. However, we cannot expect the method to
ensure one of the original postconditions by only providing the corresponding precondition
because its precondition requires that both must be fulfilled.

Table 3.11 summarizes the fulfilled properties for each composition mechanism. Some prop-
erties of contract composition mechanisms are not reflected in this overview (e.g., cumulative
contract refinement is more restrictive than consecutive contract refinement because the post-
condition requires that both original postconditions must be fulfilled in all cases).

The contract composition mechanism for plain contracting must ensure that contracts can-
not be refined. We propose three alternative definitions that differ in the case that not every
method has both pre- and postconditions. The advantage of these alternative definitions is
that the developer is more flexible when introducing contracts. They allow to introduce con-
tracts in method refinements, if the method subject to refinement does not have a contract
(have the empty contract ε) in the previous refinement. Plain contracting without ε-contracts
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does this on the level of whole contracts and plain contracting without ε-conditions distin-
guishes between pre- and postconditions. The downside of both approaches is that they are
not associative—a property that is desired because it provides more freedom for composition
tools.

We propose three alternative contract composition mechanism that differ in the way missing
(empty) contracts are handled. The question is whether a method refinement without a con-
tract (i.e. with empty contract ε) should override the original contract. This is the default
behavior of contract overriding. It is applicable if the developer follows a strategy in which
this is reflected (i.e. if an empty contract overrides a contract, this should be the intention
of the developer). We define contract overriding without ε-contracts and contract overrid-
ing without ε-conditions analogously to the similar definitions of plain contracting. They do
not override contracts (pre- and postconditions) if the method refinement does not include
one. Again, contract overriding is generally associative, but these modifications destroy this
property.

However, contract overriding is not very flexible when it comes to feature composition A
method refinement must include the whole specification as it is needed in the product. Gener-
ally, there are optional features that may have to be considered in the specification. However,
this cannot be done using this approach.

We define explicit contract refinement as contract overriding with additional support for key-
word original. Theoretically, it is possible to allow the same support for other approaches
like consecutive contract refinement. Thus, we define original in a way that can be combined
with an arbitrary contract composition mechanism.

We propose three definitions of contract composition strategies, including the ones described
for consecutive contract refinement and cumulative contract refinement in literature. The
third one is the most restrictive and we call it conjunctive contract refinement. When using
conjunctive contract refinement, the result of composition ensures that both original precon-
ditions and both original postconditions must be fulfilled. Cumulative contract refinement
is less restrictive for the precondition: only one of the original preconditions must be ful-
filled. Consecutive contract refinement also ensures that at least one precondition must be
fulfilled. Furthermore, the original postconditions must be fulfilled only in the case that the
corresponding precondition is fulfilled.

Pure method refinement describes the possibility to refine specifications by refining pure
methods [77]. These pure methods are side-effect free methods that can be called from inside
contracts. Thus, by refining pure methods the specification can be refined.
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Figure 3.4: Variability model for contract composition mechanisms.

We view pure method refinement not as a specification approach but more like an optional
extension for other approaches. It does not specify a contract specification strategy, but one is
needed because we need to handle the composition of contracts in a certain way. A possible
application of pure method refinement is to combine it with plain contracting. Contracts can
generally not be refined and must be fulfilled in all products. The exception are specifications
expressed in pure methods. They can be refined by usual feature composition.

As stated above, it is possible to combine specification approaches with support for keyword
original or pure method refinement. Figure 3.4 shows a feature model that describes a
product line of contract composition mechanism. This product line contains 17 valid config-
urations. However, the combination of plain contracting and keyword original is possible
but not useful because contracts cannot be refined.

We have given definitions of composition mechanism for all existing approaches to specify
contracts in feature-oriented programming. We have discussed advantages and disadvan-
tages of different contract composition mechanisms and possible variations. Our definitions
are language-independent and may be applied to different languages. We discuss how to
implement these mechanisms in the next section.

3.2 Feature-oriented Programming with JML

The last chapter provided a definition of possible contract specification approaches in a
language-independent way. In Section 3.2.2 we discuss important differences between the
basic concept of design by contract and its support in JML. We discuss concrete realization
possibilities for the proposed contract composition mechanisms in Section 3.2.1. Further-
more, the results of this chapter are used as a basis for our tool support.
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3.2.1 Contract Composition in JML

We defined contract composition approaches in a general, language-independent fashion.
We now give an overview of how the underlying contract composition mechanisms can be
implemented in JML. In some cases, the definitions can be applied directly. In other cases, it
is necessary to consider certain details.

Plain Contracting/Contract Overriding

Plain contracting and Contract Overriding can be performed in JML straight-forwardly. Both
approaches can be implemented similarly, and distinguish in the contract that is used as the
result of composition. As far as tool-support is concerned it could be useful to permit refining
methods from containing contracts instead of ignoring them during composition.

We assume that plain contracting and contract overriding without ε-contracts are the vari-
ations that were assumed as composition mechanisms in existing work. We evaluate this
assumption in Chapter 5.

Consecutive contract refinement

For consecutive contract refinement, we suggest two alternative implementation techniques.
The first alternative is to apply the definition of consecutive contract refinement or one of the
alternative definitions (cumulative contract refinement, conjunctive contract refinement), as
defined in Section 3.1, directly. Alternatively, it is possible to concatenate multiple specifica-
tion cases by using the keyword also. Figure 3.5 shows the implementation of this approach
in JML. Keyword also is semantically equivalent to consecutive contract refinement [42].

Keyword Original

JML does not have native support for keyword original. We extended the JML language
definition by support for keyword original. Some details regarding specific JML features
are discussed in the next section.

3.2.2 Extended features of JML

The Java Modeling Language is a behavioral interface specification language that provides a
great variety of means to specify Java programs. Design by contract is a software develop-
ment methodology that evolved from language features of the Eiffel programming language.
JML supports design by contract as a subset while providing a huge number of extending
features. In the following section we will explain the major differences between the basic
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class FrankingMachine { {Base}
/*@requires letter != null;

@ensures leter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@*/

void process(Letter letter){
weigh(letter);
frank(letter);
seal(letter);
}

}

•

class FrankingMachine { {Low Ink Warning}
/*@requires inkLevel != null;

@ensures (inkLevel >= INK_LIMIT) ==>
@ (letter.isWeighted() && letter.isFranked()
@ && letter.isSealed());
@*/

void process(Letter letter){
if(inkLevel < INK_LIMIT ){

displayLowInkWarning();
return;}

original(letter);
}

}

=

class FrankingMachine { {Base, Low Ink Warning}
/*@requires letter != null;

@ensures (inkLevel >= INK_LIMIT) ==>
@ (letter.isWeighted() && letter.isFranked()
@ && letter.isSealed());
@*/

void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 3.5: Example of consecutive contract refinement in JML.
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class FrankingMachine { {Base, Low Ink Warning}
/*@requires letter != null;

@ensures letter.isWeighted() && letter.isFranked()
@ && letter.isSealed();
@also
@requires inkLevel!=null;
@ensures(inkLevel < INK_LIMIT) ==> display.warning==INK_WARNING;
@*/
void process(Letter letter){
if(this.inkLevel < INK_LIMIT )

displayLowInkWarning();
weigh(letter);
frank(letter);
seal(letter);
}

}

Figure 3.6: Keyword also can be used to define multiple specification cases in JML

concepts of design by contract and the features that JML provides. We argue that while JML
offers extended specification possibilities, the contract composition mechanisms can still be
applied.

Multiple Specification Cases

Considering the core principle of design by contract, every method can have exactly one
precondition and one postcondition. However, JML supports the use of multiple method
contracts (specification cases) for one method, by connection them with the keyword also.
Figure 3.6 shows the usage of such specification cases. For plain contracting, multiple spec-
ification cases do not impose any problems. The difference is that method introductions are
allowed to be specified with multiple specification cases in this case.

When applying contract overriding in JML, it is necessary to consider the case of multiple
specification cases. We suggest the convention that when a contract is overridden, the whole
contract including all specification cases is replaced with the new contract. An alternative
approach would be to distinguish between different specification cases and override them
separately. However, JML does not provide means to reference specification cases explicitly
(such as names for specification cases). Therefore, specification cases would have to be
referenced implicitly by their relative position. However this leaves several open questions,
such as what happens if the number of specification cases in the refined method does not
match the one of the refining method.
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Multiple specification cases also need to be considered when using keyword original. We
propose to support different granularities by distinguishing three keywords:

• Keyword originalSpec:
Keyword originalSpec refers to the whole method specification. This approach
can be used when the developer wants to specify a new property of a method and the old
specification should still hold. Consecutive contract refinement uses the same approach
but implicitly includes the keyword original to each method. This keyword can be
implemented by adding the new part of specification as a new specification case using
keyword also.

• Keyword originalCase:
Keyword originalCase refers to a specific specification case. However, specifica-
tion cases cannot be referenced explicitly and must therefor be matched by the order in
which they appear.

• Keyword original:
Keyword original refers to a specific assertion clause type within a specific speci-
fication case. All matching clauses will be merged into one conjunction that is inserted
at the position of the keyword original.

Figure 3.7 shows the use of the different versions of keyword original. The result of all
versions is similar except for the position in which the specification cases occur in the result.

These three approaches can also be combined by providing three keywords that can be used
as needed.

When considering consecutive contract refinement, we can exploit the ability to specify mul-
tiple specification cases by adding the contract of the refining method as a novel specification
case. This is done by concatenation of specification cases and connecting them with keyword
also.

Multiple Pre- and Postconditions

In JML it is possible to define multiple pre- and postconditions for each specification case.
However, it is possible to transform multiple pre- and postconditions to a contract with
only one pre- and postcondition. A given set of preconditions (or postconditions) S =
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/** Return this + b (the sum of this and b). */ Base
/*@ requires b != null;

@ ensures \result != null;
@ ensures JMLDouble.approximatelyEqualTo(
@ this.realPart() + b.realPart(),
@ \result.realPart(),
@ tolerance);
@ also
@ requires tolerance != null;
@*/

Complex add(Complex b);

/** Return this + b (the sum of this and b). */ Refinement (originalSpec)
/*@ /original_spec

@ also
@ ensures JMLDouble.approximatelyEqualTo(
@ this.imaginaryPart() + b.imaginaryPart(),
@ \result.imaginaryPart(),
@ tolerance);
@*/
Complex add(Complex b);

/** Return this + b (the sum of this and b). */ Refinement (originalCase)
/*@ /original_case

@ also
@ ensures JMLDouble.approximatelyEqualTo(
@ this.imaginaryPart() + b.imaginaryPart(),
@ \result.imaginaryPart(),
@ tolerance);
@ also
@ /original_case
@*/
Complex add(Complex b);

/** Return this + b (the sum of this and b). */{ Refinement (original)
/*@ requires \original;

@ ensures \original;
@ ensures JMLDouble.approximatelyEqualTo(
@ this.imaginaryPart() + b.imaginaryPart(),
@ \result.imaginaryPart(),
@ tolerance);
@ also
@ requires /original
@*/
Complex add(Complex b);

Figure 3.7: This example shows how method add can be refined using the different versions of
keyword original. Keyword originalSpec refers to the whole specification defined in
feature Base while originalCase refers to single specification cases. The first occurrence
of originalCase refers to the first case etc. Keyword original refers to the type of
clause it is used in, e.g. requires /original in the first specification case refers to all
requires clauses in the first specification case of feature base.
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/** Return this + b (the sum of this and b).
/*@ requires letter!=null;

@ requires letter.isWeighted();
@ requires letter.isFranked();
@ ensures letter.isSealed();
@*/

void seal(Letter ){...};

/** Return this + b (the sum of this and b). */
/*@ requires letter!=null

@ && letter.isWeighted()
@ && letter.isFranked();
@ ensures letter.isSealed();
@*/

void seal(Letter ){...};

Figure 3.8: Multiple pre- or postconditions can be transformed into a single contract with
only one pre- and postcondition.

{φ1, φ2, ..., φn} can be replaced by a single precondition (postcondition) containing the ex-
pression

∧
1≤i≤n φi. Figure 3.8 shows how multiple preconditions can be replaced while

preserving semantics. The result is that this feature does not restrict the applicability of our
definitions, because we can avoid these cases by performing the transformation automati-
cally during feature composition. Thus, developers do not have to avoid multiple pre- and
postconditions when specifying methods.

Different Assertion Types

JML allows developers to specify preconditions using requires clauses and postconditions
using ensures clauses. However, there are multiple additional types of clauses that can be
used to specify properties of a given method. Important examples are signals and assignable

clauses. Signals clauses specify a set of possible exception types that may be thrown by the
method. Assignable clauses specify a set of variables that can be modified during method
execution. In this thesis we focus on boolean assertion types (i.e., assertion types that can be
evaluated to a boolean value). However, it is possible to define a composition operator for
other types (e.g., concatenation with removing duplicates to compose two lists of assignable
variables)

3.2.3 Summary

In this chapter, we have sketched how our definitions of contract composition mechanisms
can be implemented in JML. We have taken characteristics of the Java Modeling Language
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that extend the notion of a contract into account. The most important differences that are
relevant for contract composition are support for multiple specification cases, multiple pre-
and postconditions and different assertion types. Multiple specification cases demand special
treatment for composition mechanisms, especially when using keyword original. How-
ever, they also provide a convenient possibility to implement consecutive contract refinement
by using keyword also. Multiple pre- and postconditions can be considered as syntactic
sugar because it is possible to transform them in equivalent contracts with only one pre- and
postcondition. Different assertion types have to be considered when developing tool sup-
port because some types are expressed as lists rather than propositional expressions. Thus it
is necessary to develop type-specific composition mechanisms such as the concatenation of
signals clauses.



4. Tool Support

In the last chapter, we discussed how to specify feature modules using the Java Modeling
Language. So far, the composition of features had to be performed without tool support.
The goal of our tool is to support design by contract in feature-oriented programming with
Java Modeling Language. The tool should be integrated into a development environment to
increase usability. Our tool allows users to develop feature modules using Java Modeling
Language and automatically perform contract-aware feature composition to generate vari-
ants. Furthermore, the tool allows users to switch between different contract composition
mechanisms during runtime in order to compare specification approaches.

In this chapter, we present our tool support for design by contract in feature-oriented pro-
gramming. We extended FeatureHouse to support the Java Modeling Language and inte-
grated this version of FeatureHouse into FeatureIDE. Section 4.1 gives a short introduction
to FeatureIDE and explains the integration of our tool. In Section 4.2 we describe our exten-
sion of FeatureHouse that supports the Java Modeling Language. Known limitations of our
implementation are summarized in Section 4.3.

4.1 Extension of FeatureIDE

We extended FeatureIDE with support for contracts in feature-oriented programming ex-
pressed in the Java Modeling Language. The implementation of contract composition mech-
anisms is based on our results of Section 3.2. FeatureIDE is a framework for feature-oriented
software development and deployed as plug-in for Eclipse [74]. It can be installed through
the Eclipse Marketplace or by downloading it from the FeatureIDE website. FeatureIDE is
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open-source, which allows us to extend it to suit our needs. Furthermore, it supports the
developer in all phases of the software product line development process (i.e., domain engi-
neering and application engineering). FeatureIDE integrates tools for different implementa-
tion techniques for software product lines. We only sketch such aspects of the framework
that are necessary to understand our implementation.

In FeatureIDE, domain analysis is supported by a graphical editor that can be used to create
and edit feature models. Several views provide additional support during this phase. Editors
and views related to this phase are independent from the implementation of code artifacts and
shared between all implementation tools integrated in FeatureIDE. Thus, our tool support can
benefit from this part of FeatureIDE without additional work.

When creating a new project, FeatureIDE will generate the initial project infrastructure such
as a feature model, and folders for feature modules and configuration files. The feature model
can then be edited graphically, while FeatureIDE automatically manages the mapping from
features to code artifacts. Furthermore, FeatureIDE provides a configuration editor to select
the desired features to build a variant. This provides instant feedback for the developer in the
case of compiler errors.

For domain implementation, FeatureIDE provides support for a variety of tools support-
ing different implementation techniques, namely feature-oriented programming [67], aspect-
oriented programming [38] [37], preprocessor directives [59] [65], and delta-oriented pro-
gramming [68]. One of the integrated tools that supports feature-oriented programming is
FeatureHouse [5].

We extended FeatureIDE to support choosing between different composition mechanisms
when using FeatureHouse. The user can use a configuration file (contract.style) to spec-
ify which composition mechanism to use for each project. The configuration file must be
placed in the configuration folder provided by FeatureIDE projects. The choice for a certain
composition mechanism is propagated to FeatureHouse by passing each line in the config-
uration file as a command-line parameter. Possible parameters are: plain_contracting, con-
tract_overriding, consecutive_contract_refinement. Support for keyword original can be
activated by additionally using the parameter "original". Pure method refinement is supported
by default, without the need for a parameter.

4.2 Extension of FeatureHouse
The core functionality of our tool support is based on FeatureHouse. FeatureHouse is a frame-
work for the composition of software artifacts. FeatureHouse can compose software artifacts



4.2. Extension of FeatureHouse 61

written in different languages (e.g., source code, test cases, models, documentation) [5]. Fea-
tureHouse includes FSTComposer, a tool for superimposition of feature structure trees as
described in Section 2.2, and FSTGenerator that provides support for integrating new lan-
guages.

Figure 4.1 visualizes the composition of code artifacts in FeatureHouse. An input file is pro-
cessed as a stream of characters by a language-specific lexical analyzer. The lexical analyzer
is capable of processing the character stream and provides a stream of tokens that serves as in-
put for the corresponding parser. The parser performs the actual processing. It takes the token
stream from the lexical analyzer as input and creates the corresponding feature structure tree
as output. When composing two features containing the same class, the parser will create a
feature structure tree for each of them. These feature structure trees are composed by the tool
FSTComposer of FeatureHouse using superimposition. Terminal nodes with same name and
type are composed according to type-specific composition rules. Finally, a language-specific
pretty printer creates the resulting output files.

We extended FeatureHouse by support for the Java Modeling Language. Currently, our ex-
tension of FeatureHouse supports plain contracting, contract overriding, and consecutive con-
tract refinement—combined with optional support for keyword original and pure method
refinement. We define these approaches in Section 3.1. Furthermore, our extension supports
JML language levels 0-3 as described in the JML reference manual [46] and Java 1.5 features
(e.g. Java‘s generics) [27].

In order to extend FeatureHouse with support for the Java Modeling Language we have to
provide a lexical analyzer, a parser, a pretty printer and all necessary composition rules, to
perform the composition of terminal nodes in the FST. The FSTGen tool of FeatureHouse
automates the creation of the lexical analyzer, the parser, and the pretty printer based on a
FeatureBNF grammar that defines the desired language. Thus, we developed a FeatureBNF
grammar for the Java Modeling Language. Furthermore, we implemented JML-specific com-
position rules to extend FeatureHouse with support for JML.

4.2.1 Grammar

The first step to integrate support for a new language into FeatureHouse is to develop a
FeatureBNF grammar that defines the language precisely. A FeatureBNF grammar consists
of two parts: the first part includes directives that are used to build the lexical analyzer. Our
first approach to develop a FeatureBNF grammar for JML was to use the JML Grammar
defined in the JML reference manual and translate it into a FeatureBNF grammar. However,
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Figure 4.1: Visualization of the composition process in FeatureHouse.
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this approach turned out to come with several problems. First, the JML grammar as defined in
the reference manual contains several errors, that require an extensive knowledge of the Java
language specification to correct. Our first attempts to correct these errors resulted in errors
in the Java subset of the grammar. Thus, our grammar did not recognize some correct Java
programs as conforming to the grammar. Second, the grammar does not always distinguish
between the Java subset and the JML subset of the language explicitly in all cases. This
made it even more difficult to identify errors. Third, the JML grammar supports only Java
1.4 language features, but we wanted to support Java 1.5 features.

To avoid the above mentioned problems with the JML grammar we started from an exist-
ing Java 1.5 FeatureBNF grammar provided by FeatureHouse and extended it with support
for JML. We give a brief overview about how to use the FeatureBNF language to define a
language. We explain only features that are important to understand our implementation.
However, there are additional features provided by the FeatureBNF language that may be
useful when developing a grammar for other languages [4].

As far as the lexical analyzer is concerned, we had to perform two main changes to the
existing FeatureBNF grammar for Java 1.5 for Java Modeling Language support.

First, we added JML-specific keywords to the list of strings that are recognized as tokens
by the parser. We added 148 additional keywords to the Java grammar to support all JML
language features as defined in the JML Reference Manual [46]. Figure 4.2 shows an excerpt
of our FeatureBNF grammar, which defines JML-specific keywords. Each keyword definition
consists of a name that can be used to reference the keyword in grammar rules and a string
defining the character sequence that is recognized as a token representing the keyword.

The second change is related to the fact that JML specifications are placed inside special Java
comments. The problem is that Java comments are usually skipped by the lexical analyzer.
We extended the lexical analyzer by adding a second lexical state in which JML-specific
processing is performed. Each production is then marked with the set of lexical states in
which they are applied (and ignored in all other states). In Figure 4.2 the Java keywords are
marked with <Java, JML> which means that these keywords are visible in both lexical states.
The JML-specific keywords are marked with <JML> which denotes that these keywords are
only visible in the lexical state named JML. This distinction is necessary because valid Java
identifiers are reserved keywords in JML. Thus, they can be used in the Java subset of JML,
but not inside JML-comments.
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//Java keywords
<Java, JML>
TOKEN :
{

< ABSTRACT: "abstract" >
| < ASSERT: "assert" >
| < BOOLEAN: "boolean" >
| < BREAK: "break" >
| < BYTE: "byte" >
| < CASE: "case" >
...

< VOLATILE: "volatile" >
| < WHILE: "while" >
}

//JML keywords
<JML>
TOKEN :
{

<ORIGINAL: "\\original">
| < MODEL: "model" >
| < SPEC_PROTECTED: "spec_protected" >
| < GHOST: "ghost" >
| < PURE: "pure" >
| < INSTANCE: "instance" >
...
| < NORMAL_EXAMPLE: "normal_example" >
| < MODEL_PROGRAM: "model_program" >
}

Figure 4.2: Excerpt from the FeatureBNF grammar for JML: Definition of reserved key-
words.
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Javastart JML

JML-comment-start

JML-comment-end

JML tokenJava token

Figure 4.3: The lexical analyzer distinguishes two lexical states representing JML and Java.

When the lexical analyzer finds the beginning of a JML comment it switches to the lexical
state in which JML is processed correctly. When the JML comment ends the lexical analyzer
switches back to the state in which only Java is processed. Thus, the lexical analyzer im-
plements a finite state automaton with two states. This behavior is visualized in Figure 4.3.
The automaton starts in the state Java in which Java keywords are recognized as tokens. Pro-
cessing of a beginning JML comment triggers the automaton to switch into the state JML in
which JML keywords are recognized as tokens.

The second part of the FeatureBNF grammar includes all grammar productions in Backus-
Naur form. The changes we have made to grammar productions can be divided into two
types: additional JML-specific grammar rules and changes to the existing Java rules that
specify where a JML construct can be used. This distinction is useful, because we tried to
minimize changes to existing rules to avoid undesired behavioral changes to the Java subset
of the grammar. The additional rules for JML are derived from the JML grammar as defined
in the JML reference manual [46].

The granularity in which implementation units are translated into FSTs is a design decision
that must be made for every language. Given an object-oriented language, we could decide
that refinements on class level are sufficient for our needs and translate whole classes into
terminal nodes that can be composed. Alternatively, classes can be treated as non-terminal
nodes, which contain a child element for each field and method. In this case, methods could
be translated to terminal nodes, allowing composition rules that perform on method level. It
would also be possible to introduce terminal nodes at even finer levels of granularity: method
definitions can be treated as non-terminals, while the list of parameters could be a terminal,
allowing to specify a rule that performs refinement on the parameters of a method. An ex-
ample from our implementation is that we added method specifications as a child node to
method definitions to distinguish between a method and the corresponding contract.
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Figure 4.4 shows an example of three grammar productions representing a method specifi-
cation, a (general) specification, and a specification case sequence. The first rule is anno-
tated with @FSTNonTerminal(). This means that a method specification will be trans-
lated into a non-terminal FST-node by the JML parser. Productions that are marked with
@FSTTerminal() will be translated into terminal nodes. In this case we must specify the
name of the composition rule to be used when composing this type of terminal node. We can
see that specification case sequences (SpecCaseSeq) are terminal nodes which are composed
following a rule called ContractComposition. The specified rule is automatically mapped to
a Java class with the same name (in this case ContractComposition).

@FSTNonTerminal()

MethodSpecification:

[<ALSO>] Specification

;

Specification:

@\% SpecCaseSeq @&

|

@\% SpecCaseSeq RedundantSpec @&

;

@FSTTerminal(compose="ContractComposition")

SpecCaseSeq:

SpecCase (LOOK_AHEAD(3) AlsoSpecCase )*

;

Figure 4.4: Grammar production representing a JML method specification

The production for method specifications in Figure 4.4 starts with the name MethodSpeci-
fication followed by a colon. A MethodSpecification starts with the keyword also followed
by a Specification. The pointy brackets indicate that ALSO refers directly to a token named
ALSO. The brackets around them mean that the keyword also is optional. A Specification is
either just a SpecCaseSeq or a SpecCaseSeq followed by a RedundantSpec. The operator "|"
marks a decision (i.e., the parser has two possibilities to continue). Another type of decision
can be seen in the production SpecCaseSeq. The pattern "(production)*" means that the pro-
duction can occur zero or more times at this position. The parser needs to make a decision
on how often to match the production. In some cases, the parser cannot make the right deci-
sion based on the previously processed tokens alone. This leads to incorrect behavior of the
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parser. We can instruct the parser to use a look-ahead which instructs the parser to consider
a number of additional tokens (i.e., to look ahead in the token stream) to solve this problem.
The downside of using a look-ahead is that it decreases the performance of the parser.

Finally, the example in Figure 4.4 contains the directives "@%" and "@&". These are instruc-
tions for the pretty printer that indicate to insert the beginning and end of JML comments at
this place. It is necessary to include such directives because the information about where a
JML comment begins and ends would be lost. We extended FeatureHouse to support this in
addition to existing directives that refer to whitespace characters.

4.2.2 Composition Rules

As we have explained, we need to provide composition rules in addition to the FeatureBNF
grammar. These composition rules contain the implementation that performs the merging of
two terminal nodes with a certain type. We provided a new composition rule for contract com-
position. Technically, the composition rule is defined for specification case sequences, which
allows us to handle multiple specification cases as an atomic unit representing the method
contract. The composition rule implements contract composition techniques as described in
Chapter 3.

4.3 Known limitations
It was necessary to change the behavior related to Java comments in FeatureHouse. Tradi-
tionally, FeatureHouse copies Java commentaries in a feature refinement into the composed
class. We had to disable this feature, because JML-comments are also Java-comments but
need special treatment by our extension of FeatureHouse. Furthermore, we had to change the
order in which terminal nodes are included in the composition, because the standard behav-
ior would copy method contracts below the method definition while in JML they are usually
written above the method definition.

Furthermore, Java Modeling Language allows specifications to be written inside separate files
rather than directly in the Java source files. However, our implementation does not support
this possibility, but could be extended.

4.4 Summary
We have developed tool support for design by contract in feature-oriented programming.
Our tool supports the composition of contracts defined in the Java Modeling Language using
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Figure 4.5: Screenshot of FeatureIDE

different contract composition techniques. It allows the developer to combine feature-based
specification with product-based verification. This approach reduces the specification effort
compared to product-based specifications because we do not have to specify each product
separately. Furthermore, our tool allows developers to use existing JML tools to be applied
on generated products. This includes specification type-checking, runtime debugging, static
analysis, and verification [16].

We integrated our tool into FeatureIDE, which provides the benefits of a sophisticated de-
velopment environment and support for the whole development process including feature
modeling and configuration of variants. Figure 4.5 shows a screenshot of FeatureIDE with
our extension. There are several views and editors that support developers when developing
software product lines.

Technically, our tool support was developed using FeatureHouse. The main artifacts that we
developed is a language-definition in form of a FeatureBNF grammar and contract-specific
composition rules implemented in Java. The FeatureBNF grammar conforms to language
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levels 0-3 of the JML Reference Manual and additionally supports Java 1.5 features such as
generics.
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We have defined different approaches to specify contracts in feature-oriented programming
and formalized the required contract composition mechanisms. We defined three alternative
mechanisms for plain contracting, three for contract overriding, and three for consecutive
contract overriding. Contract overriding and consecutive contract refinement can be com-
bined with keyword original, resulting in another six approaches. Furthermore, each ap-
proach can be combined with pure method refinement. In addition to the variations we have
discussed, programs can also be specified completely (heavyweight specification), or only
certain properties of a program can be specified (lightweight specification). This results in at
least 48 approaches that can be used to specify contracts in feature-oriented programming.

Which contract specification approach should be used?

The usual answer to such a question is that it depends on the situation. What kind of product
line are we developing? How many features does it contain? What is the relationship be-
tween features? What kind of properties are we specifying formally? Do we want to specify
properties that must be fulfilled by a subset of all products? What is the purpose of the spec-
ification? What kind of analysis should be performed? All these questions may influence the
applicability of a given specification approach.

Ideally, we would compare all possible approaches regarding their applicability for the de-
velopment of different kinds of product lines. However, we face several problems:

• Feature-oriented programming is a novel paradigm and publicly available examples
of its usage, such as open-source projects, are hardly available. Thus, the mining of
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software repositories as performed in other disciplines (e.g., by searching open source
repositories) is not applicable.

• Design by contract in feature-oriented programming has not been applied for large
product lines.

• The effort needed to develop realistic product lines (no toy programs) using feature-
oriented programming and the Java Modeling Language is high. Limited resources do
not allow us to develop sophisticated case studies with representative product lines.

We conclude, that we cannot evaluate contract composition as performed by our tool on a set
of projects that is representative for the whole development paradigm. As a result, we use the
following strategy:

• We have derived composition mechanisms based on informal descriptions. To validate
that our definitions conform with the intended meaning for each approach we use our
tool on product lines that have been developed as case studies by other researchers, in
which the composition was performed manually. If our tool is capable to perform the
required compositions, we gain confidence that our formalization of contract composi-
tion mechanisms conforms to their intended meaning.

• To evaluate contract composition mechanisms we have performed a set of case stud-
ies. Each case study focuses on simple characteristics that are likely to occur in most
product lines.

• We focus on evaluating contract composition mechanisms, rather than specification
strategies. If a composition mechanism is not applicable in a situation that is likely to
occur in real product lines, we can conclude that any specification strategy that relies
on this mechanism is generally not applicable. However, if a composition mechanism
is applicable, we can only conclude that the use of certain specification strategies is
technically possible.

Thus we validate our definitions of contract composition mechanisms by using our tool on
existing case studies, in which contracts have been composed manually and evaluate the ap-
plicability of contract composition mechanisms by performing case studies. Our case stud-
ies aim to cover common characteristics of feature-oriented programming, rather than being
representative for the whole paradigm. In each case study, we analyze the applicability of
different contract composition mechanisms.
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We present the results of the validation of our definitions of contract composition mechanisms
in Section 5.1. The evaluation of the applicability of contract composition mechanisms is
presented in Section 5.2, and summarize the results in Section 5.3.

5.1 Validation of contract composition mechanisms
Thüm et al. have performed five case studies to evaluate different contract specification
approaches for feature-oriented programming [77]. In these case studies, the contract com-
position had to be performed manually because no tool support was available.

The first case study, BankAccount, is a product line that represents a bank account with
typical operations on it (e.g. deposit and withdrawal) [77]. It was specified using explicit
contract refinement. We have experienced, that our tool was able to perform the desired
operations as expected (i.e. the results conform to the manual composition). However, only
the variant of keyword original that references a single clause (rather than a whole case
or the complete specification) has been used. Furthermore, the result of a composition in
which the refining method has no contract is a method with the original contract. Thus, the
underlying composition mechanism that was assumed by the developers is contract overriding
without ε-contracts, as defined in Section 3.1.

Case study ExamDB is a product line of programs that manage the result of exams for stu-
dents [77]. It was specified using pure method refinement. Thus, we validate our assumption
that the underlying contract composition mechanism is usually plain contracting. We have
found pure methods that are specified with contracts. These contracts were not refined. The
intention is that the refinements of such contracts is not allowed. Thus, our assumption that
plain contracting has been used as composition mechanism seems correct.

The third case study, DiGraph, is a product line of graph libraries. It does not contain any
method refinements and is specified using plain contracting. All three definitions of plain
contracting can be applied because methods are not refined.

Paycard is a case study in which a product line of smart cards that can be used for electronic
money transactions has been specified using consecutive contract refinement. We did not
have access to the composition results in this case. Thus, we cannot validate our tool on this
case study. The same applies to case study IntList, in which we do not have access to the
composition results.

To summarize, we were able to gain some confidence that our definitions of contract composi-
tion mechanisms specify the intended behavior. Our tool is capable to perform the necessary
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transformations, but in some cases we cannot validate the intended result. Furthermore, the
use of alternative variations of a given contract composition mechanism (e.g. regarding ε-
contracts) has not been considered in these case studies. Thus, we can only draw conclusions
for certain cases:

• Pure method refinement assumes plain contracting as underlying composition mecha-
nism.

• The underlying mechanism of explicit contract refinement is contract overriding with-
out ε-contracts (with support for keyword original).

5.2 Evaluation of contract composition mechanisms
In this section, we give an overview of the product lines we have developed in our case studies
and experiences we have made when specifying them.

Case Study NumbersSPL

For the case study NumbersSPL we extracted a product line from a given product. It is based
on a Java program representing complex numbers and operations on them, that is part of the
JML project and was specified using the Java Modeling Language by Gary T. Leavens.1 We
extracted a feature that only supports real numbers instead of complex numbers and use this
as a base feature for our software product line.

Figure 5.1 shows the feature model of NumbersSPL. Feature Real is mandatory and the base
feature of this product line. Feature Complex refines feature Real by adding support for
complex numbers. It should be noted that the concept of complex numbers subsumes the
concept of real numbers. This is why we have chosen to implement Feature Complex as an
optional refinement rather than an alternative.

Feature Real introduces the interface Numbers including the definition and specification of
eight methods and one model method (only visible inside contracts). Feature Complex refines
six of the methods introduced by feature Complex and introduces one new method definition
(that returns the value of the imaginary part of the complex number) and one model method.

The products defined by NumbersSPL include only specifications and no implementation.
Furthermore, the amount of variability is rather low, as it contains only two products. How-
ever, it would be possible that the NumbersSPL can be a part of a product line including more

1http://www.eecs.ucf.edu/ leavens/JML/index.shtml
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Figure 5.1: Feature model of case study NumbersSPL.

features and actual implementations. We view the NumbersSPL as an instance of an optional
feature refinement rather than an example of a typical product line.

Experiences with NumbersSPL

The product line developed in case study NumbersSPL could be completely specified with
contract overriding, explicit contract refinement, and consecutive contract refinement. These
solutions are semantically equivalent, but differ in the lines of code used to specify method
refinements. Feature Real is the same for all approaches, because it only includes method
introductions. Feature Complex includes 172 lines of code when using contract overriding,
150 lines of code when using explicit contract refinement, and 145 lines of code when using
consecutive contract refinement.

When using contract overriding we have to include the original contract as defined in feature
Real in the contract refinements in feature Complex. An example is the refinement of method
mul(Complex b) which multiplies the current number with b. Figure 5.2 shows the con-
tract for this method. The contract of this method, as it is introduced in feature Real, only con-
siders multiplication of real numbers. The refinement adds specification regarding the imag-
inary part of the complex number. However, the contract refinement must include the whole
specification about the real part. As a result, the contract of method mul(Complex b)

includes 14 lines of cloned specification and one additional line to specify the handling of the
imaginary part of the complex number. Only the last line of the contract includes behavior
specific to feature complex, the rest is a duplicate of the original contract.

We did not experience situations in which the alternative definitions of contract overriding
(with different handling of empty contracts), as described in Section 3.1, would have had an
influence on the specification. The reason is that there is no method that is refined more than
once to generate a product in this case study.

When using explicit contract refinement rather than contract overriding it is possible to avoid
the above mentioned specification clone by using keyword original. Figure 5.3 shows
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/** Return this * b (the product of this and b). */ { {Complex}
/*@ requires_redundantly b != null;

@ requires !Double.isNaN(this.magnitude() * b.magnitude());
@ requires !Double.isNaN(this.angle()) && !Double.isNaN(b.angle());
@ ensures_redundantly \result != null;
@ ensures JMLDouble.approximatelyEqualTo(
@ this.magnitude() * b.magnitude(),
@ \result.magnitude(),
@ tolerance);
@ ensures similarAngle(this.angle() + b.angle(),
@ \result.angle());
@ also
@ requires_redundantly b != null;
@ requires Double.isNaN(this.magnitude() * b.magnitude())
@ Double.isNaN(this.angle()) Double.isNaN(b.angle());
@ ensures Double.isNaN(\result.realPart());
@ ensures \result.imaginaryPart() == 0.0;
@*/
Complex mul(Complex b);

Figure 5.2: Excerpt of case study NumbersSPL specified with contract overriding

/** Return this * b (the product of this and b). */ {Complex}
/*@ /original_case

@ also
@ requires /original;
@ ensures /original && \result.imaginaryPart() == 0.0;
@*/
Complex mul(Complex b);

Figure 5.3: Excerpt of case study NumbersSPL specified with explicit contract refinement

the refinement of method mul using explicit contract overriding. We have used keyword
original_case to refer to the first specification case (separated by keyword also). Fur-
thermore, we included the precondition and postcondition of the second specification case,
while adding the specification of the imaginary part to the postcondition.

We can see that it is necessary to know details about the structure of the contract subject to re-
finement when using keyword original_case because cases cannot be referenced explic-
itly, but have to be identified by their position (i.e. when using keyword original_case
in the n-th specification case, it refers to the n-th specification case of the original contract).
In this case, we could have avoided this by referring to the whole specification with keyword
original_spec, but this is not always possible.

When using consecutive contract refinement, we do not need to use keyword original

because the original contract is implicitly included in the result of composition. Figure 5.4
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/** Return this * b (the product of this and b). */ {Complex}
/*@ensures \result.imaginaryPart() == 0.0;

@*/
Complex mul(Complex b);

Figure 5.4: Excerpt of case study NumbersSPL specified with consecutive contract refine-
ment

shows the refinement of method mul(Complex b) specified with consecutive contract
refinement. This contract includes only the additional specification that is directly related to
the method refinement in feature Complex.

The contracts in this case study include pure method calls. As an example, the contract
of method mul(Complex b) calls the pure method magnitude() to express the re-
sult of multiplication of two numbers in terms of the product of both magnitudes. Method
magnitude() is refined by feature Complex to calculate the correct magnitude for complex
numbers. The information about how to calculate the magnitude for a number can be found
at only one location, avoiding the need to refine each location at which this information is
needed. Thus, the use of pure methods can reduce specification clones, just like the use of
methods can reduce code clones.

The distinctive characteristic of case study NumbersSPL is that it includes an optional feature
with method refinements. The optional feature extends the base feature (i.e., the original con-
tracts are not violated). In such a case, it is feasible to use any approach that supports strength-
ening of the original contract. It is desirable to use an approach that enforces that contracts
cannot be weakened, because this avoids possible sources of error (unintended weakening).
Consecutive contract refinement is the only approach that provides this property. However,
when pure method refinement is allowed, these pure methods must be specified with a con-
tract or it is possible to change the specification in an arbitrary way. When a pure method is
specified with a contract, this contract must be refined according to the rules of consecutive
contract refinement. Thus, the properties of consecutive contract refinement are transfered to
the use of pure method refinement.

Plain contracting, as expected, cannot be used to specify this product line in which contracts
are subject to refinement.
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Case Study IntegerSetSPL

IntegerSetSPL is a case study, in which we followed the same approach as in case study
NumbersSPL. We started from a program specified with the Java Modeling Language. The
program, in this case, is also part of the JML project and was developed by Gary T. Leavens.

Figure 5.5 shows the feature model of the IntegerSetSPL. The base feature IntegerSet contains
public methods insert(), remove(), and isMember() and their specifications. The
implementation is provided by one of the alternative child features resulting in two possible
products. The public interface of class IntegerSet including their contracts is defined in
feature IntegerSet and should not be violated in any product.

Feature TreeSet and feature HashSet are alternative features. They refine method IntegerSet
by providing the actual implementation. The main difference between this case study and
NumbersSPL is that the represented characteristic is the use of alternative features rather
than an optional feature.

Experiences with IntegerSetSPL

We were able to use all specification approaches, but it was not necessary to refine contracts.
Our first observation is that for each method that can be specified using plain contracting, it is
also possible to use consecutive contract refinement. The reason is that consecutive contract
refinement subsumes plain contracting if method refinements are not specified with contracts.

Furthermore, we observed that it is possible to specify feature-specific behavior with plain
contracting in our case study. This is realized by defining a contract for each method that must
be implemented by one or more feature refinements. This specification cannot be refined, but
it is possible to specify additional methods with new contracts.

This is the first case study in which we explicitly had to answer the question whether we
should use contract overriding with or without ε-contracts, as introduced in Section 3.1. We
experienced that the former forces the developer to specify each method refinement with a
full specification clone of the original contract, while the latter does not override the original
contract if the refinement has no contract.

Case Study UnionFindSPL

The next case study, UnionFindSPL, is a product line in which each product describes a
variation of the Union-Find algorithm [70]. In the previously described case studies, we have
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Figure 5.5: Feature model of case study IntegerSetSPL.

used existing programs specified with contracts and derived a product line. In this case study,
we developed both implementation and specification.

All products in the UnionFindSPL implement the same operations:

• UnionFind(int n) - a constructor to initialize a data structure of size n,

• void union(int p, int q) - a method to connect elements p and q,

• boolean connected(int p, int q) - returns true if p and q are in the same component (i.e.,
if p and q are connected),

• int find(int p) - returns the identifier of the component for p

• int count() - counts the number of components

Figure 5.6 shows the feature model of the union find product line. Feature UnionFind is
mandatory and introduces the class UnionFind which includes the above mentioned oper-
ations. For the methods connected and find, it only contains the specification and no
implementation. The implementation of both methods is alternatively provided by feature
QuickFind or feature QuickUnion. These implementations differ in details of the underly-
ing data structure, resulting in different performance of operations. Feature QuickUnion can
optionally be refined by feature Weighted, which modifies the algorithm in a way that the
underlying data structure is always a balanced tree. In this case, a comparator is needed, that
is provided by one of the alternative features CompareBySize or CompareByHeight.

Furthermore, feature Weighted can be refined by feature PathCompression, which adds sup-
port for path compression (i.e. each node is directly connected with the root of its compo-
nent). Finally, feature PathCompression can be refined by feature WithHalving, which is a
special case of path compression in which the length of any traversed path is reduced.
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Figure 5.6: Feature model of case study UnionFindSPL.

Experiences with UnionFindSPL

We were not able to specify the product line using plain contracting. It would have been pos-
sible to specify it in a way abstracting from the different properties of products, but restricting
on a specification of the common properties.

We could specify the product line using contract overriding, consecutive contract refinement,
and explicit contract refinement. In this case, there was no significant difference in the lines
of code for each of these variants. While contract overriding introduced some specification
clones, they mostly contained only few lines of code resulting in no signification increase in
the overall lines of code. Similarly, explicit contract refinement introduces some additional
uses of keyword original.

We were also able to specify the product line using pure method refinement (based on plain
contracting), but we experienced that we did not take advantage of the fine granularity of
refinements provided by pure method refinement, because we introduced one pure method
for each contract subject to refinement.

Case Study PokerSPL

In case study PokerSPL, we extracted features from an existing open-source project in order
to develop a product line. The project is a poker system specified with contracts in JML.
Figure 5.7 shows the feature model of our product line. We extracted 10 features. The only
mandatory features are feature Player and feature Table. Feature Cards contains additional
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Figure 5.7: Feature model of case study PokerSPL.

functionality for poker cards. The maximum number of cards a player can hold at a time
is refined by the alternative child features of feature Cards. Additionally, optional feature
Wager allows players to bet money while playing. The amount of money that can be bet
in one turn can optionally be limited to the amount that is currently in the pot by feature
PotLimit. A minimum amount of a wager can be introduced by feature Blinds. This amount
can optionally be increased automatically between rounds.

Experiences with PokerSPL

We were able to specify the product line using contract overriding, explicit contract refine-
ment and pure method refinement (with plain contracting). The use of plain contracting
(without pure method refinement), does not allow us to refine methods. However, it would
have been possible to decide that we are not interested in specifying feature-specific proper-
ties. In this case, plain contracting can always be used.

When using explicit contract refinement, we used keyword original in two contracts.
When using contract overriding, these method contracts must explicitly express the specifi-
cations of the method subject to refinement. Thus, they include specification clones.

In this case study, we have experienced an advantage of pure method refinement. When
using pure method refinements, we could specify properties such as the maximum number
of cards using pure method calls. These pure methods are refined in other features. When
using the other approaches, we rather used the field in which the maximum number of cards
is saved for the implementation. Thus, pure method refinements can provide a decoupling of
implementation and specification. Consider the case of an error in the implementation of the
field that defines the maximum number of cards. This error cannot be found by verification,
because both the specification and implementation contain the same error. In this case, the
coupling between specification and implementation is a disadvantage.
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NumbersSPL IntegerSetSPL UnionFindSPL PokerSPL
Plain Contracting no yes no no

Contract Overriding yes yes yes yes
Explicit Contract Ref. yes yes yes yes

Consecutive Contract Ref. yes yes yes no
Pure Method Ref. yes yes yes yes

Table 5.1: Overview of case studies and contract specification approaches that could be used
to specify them. For pure method refinement we assume plain contracting as underlying
composition mechanism. For all other approaches we assume that pure method refinement is
not allowed.

5.3 Summary

We performed four case studies in which we developed software product lines and examined
which specification approaches can be used to specify them with contracts. We have consid-
ered cases, in which the product line was developed using different strategies. Three product
lines, namely NumbersSPL, IntegerSetSPL and PokerSPL are based on existing single prod-
ucts specified with the Java Modeling Language. We developed and specified UnionFindSPL
based on the descriptions of different algorithm variations.

Table 5.1 summarizes which approach could be used to specify the product lines in our case
studies. Plain contracting (without pure method refinement) could be used to specify only
one of four case studies. Contract overriding and explicit contract refinement could be used
for all four case studies. Consecutive contract refinement could be used specify three of four
case studies. Pure method refinement based on plain contracting could be used for all case
studies, but in only one case study we used the fine granularity of specifications provided by
this approach.

Plain contracting seems to be applicable in less situations than the other approaches. How-
ever, we doubt that this result can be generalized. The question whether plain contracting
is appropriate is more a design decision rather than an intrinsic property of a given product
line. It is always possible to decide that we only want to specify the behavior that is common
to all products. However, in our case studies we mostly assumed that we wanted to specify
feature-specific behavior. Thus, the observation that we could not use plain contracting is
not surprising. Generally, plain contracting can be used for any product line in which we
want to specify common behavior rather then feature-specific behavior. However, as we have
seen in case study IntegerSetSPL, it is still possible to specify feature-specific behavior if it
is expressed in method introductions rather then refinements.
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Contract overriding was applicable in all our case studies. However, in all cases it would
have been better to use explicit contract refinement or consecutive contract refinement to
avoid specification clones. Additionally, we did not experience any benefits that the use of
contract overriding could provide compared to these alternative approaches. Furthermore, we
expect that larger product lines in which a given method is refined multiple times by optional
features would not even allow the use of contract overriding, because the required variability
cannot be expressed in the contracts.

Explicit contract refinement was also applicable in all case studies. When plain contracting
was also a possible alternative the use of contract overriding did not provide any advantage,
because method refinements were not specified with contracts. In each case study, explicit
contract refinement could be used instead of contract overriding, while avoiding specification
clones by using keyword original.

Consecutive contract refinement could be used in three of four case studies. It is more re-
strictive than explicit contract refinement. This restrictiveness is the reason why it cannot be
applied in some cases. However, when it could be applied the specification is shorter, because
we do not have to include any explicit references to keyword original. Furthermore, it
ensures that contracts are not accidentally weakened.

Pure method refinement could be used to specify three of the four case studies. In case study
NumbersSPL pure method refinements could not be used, because the case study contains
only contracts and no implementation. However, the contracts of pure methods had to be
refined, which means that the implementation would have to be refined, too. The only case
in which we experienced pure method refinement to be superior to other approaches was the
case study PokerSPL, in which it provided a convenient way to specify properties of fine
granularity.

The product lines we have used to evaluate specification approaches contain some typical
characteristics of feature-oriented programming. However, we cannot generalize the results
to larger product lines because we expect that large product lines used in practice may impose
requirements on specification approaches that cannot be predicted.

As far as our tool is concerned, we have validated each product of the product lines using
a type checker for the Java Modeling Language. If our composition mechanism generated
invalid products, either the product line or our composition tool contains an error. In fact, we
have used this approach to debug the specification while developing the case studies. This
is an example of product-based analysis, that our tool promised to support. However, we
have not evaluated larger case studies, in which the generation of all products might not be
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possible. In the case of larger product lines it might be useful, to generate a subset of products
based on heuristics (e.g. pair-wise combinations [61] [17]).

When comparing our tool with the manual composition of contracts, we experienced that the
effort needed to specify the product line could be reduced. This advantage increases with
the number of products in a product line. In the case study NumbersSPL, our tool did not
reduce the number of methods that need to be specified, because the number of features and
products were equal. Furthermore, composition of contracts is a task that is error-prone when
performed manually.

However, when automating this task, it becomes necessary to define the used composition
mechanisms precisely, as we have done in Section 3.1. This is both an advantage and disad-
vantage. It is an advantage because it is possible to rely on certain characteristics of specifi-
cations when composing them (e.g., in the case of plain contracting or consecutive contract
refinement). However, it is also an disadvantage because it does not allow the developer to
decide on details of each composition separately.



6. Related Work

In this thesis, we used method contracts in feature-oriented programming to formally specify
software product lines. Many applications related to the verification of software product lines
require formal specifications. As a result, multiple approaches to specify software product
lines have been proposed by researchers. Thüm et al. distinguishes between product-based,
feature-based, family-based, and global specification approaches [73]. We give an overview
of existing work on specification of software product lines as far as they are related to this
thesis.

6.1 Specifications in Product-line Engineering
Feature-based Specification

The application of design by contract to feature-oriented programming, as used in this thesis,
is a feature-based specification approach. Feature-based specification refers to approaches
that specify each feature separately [73]. Apel et al. use feature-based specifications for
model checking [9]. Another application for feature-based specification is the composition
of proofs to verify software product lines [76]. The used specification technique is similar to
contract overriding. Cumulated contract refinement has been used in a specification approach
for the automated detection of feature interactions [69]. These works focus on the applica-
tions that rely on specifications rather than the specification approaches itself. Thüm et al.
moves the specification itself in the focus of attention by proposing design by contract as
a specification approach for feature-oriented programming and considering alternative ap-
proaches [77]. This thesis can be seen as building directly on top of this work, by providing
tool support and formalizing contract composition techniques.
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Product-based Specification

Another approach to specify software product lines is to specify each product individu-
ally [73]. An advantage of this approach is that no product-line specific specification tech-
niques must be considered. Specifying each product separately can be performed by using
conventional specification approaches. However, product-based specification does not scale
well, because the number of product generally grows exponentially to the number of fea-
tures [73].

Global Specification

Another approach that can be performed using conventional specification approaches is to
define a specification that must be fulfilled by every single product of the product line [73].
In the case of our running example, the franking machine product line, we could specify
that each product must properly weight, frank, and seal envelopes. However, we could not
specify any properties that are not shared by every product. This approach has been consid-
ered in the domain of medical devices [50], and for verification of product lines using model
checking [22] [39] [49]. Plain contracting, as defined in this thesis, is a feature-based specifi-
cation approach. However, it could be used to specify a global specification if the developer
takes into account that it does not enforce a global specification automatically in the case of
optional features introducing method contracts. The developer has to ensure that alternative
method introductions cannot introduce different contracts.

Family-based Specification

We have seen that a global specification does not take into account the variability of a product
line. By using the knowledge about variability in a product line it is possible to derive a
specification with variable parts that depend on the selection of specific features or feature
combinations [73].

Contracts in Delta-oriented programming

Delta-oriented programming is a programming paradigm in which delta modules are com-
posed to generate products of a product line. The main difference to feature-oriented pro-
gramming is that delta modules can also remove classes, fields and methods. Contracts has
been considered as a means to specify delta modules. Bruns et al. use the Java Modeling
Language to specify delta modules [15]. A core module is specified with contracts as usual.
The delta language that is used to define delta modules is extended to support operations such
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as adding and removing contracts. Hähnle et al. use a special syntax to specify delta modules.
They restrict the possible changes performed by a delta module to enforce a Liskov principle
(analogously to behavioral subtyping) for delta-oriented programming. The goal is to allow
modular reasoning, similar to consecutive contract refinement as discussed in this thesis.

6.2 Contracts in Single-System Engineering
We have discussed different approaches to specify software product lines. However, contracts
are not only used to specify software product lines. Contracts, as a special kind of assertion,
can be seen as a general concept independently from software product lines.

Assertions as a means to specify properties that must hold at certain states of program execu-
tion are a traditional concept in software development. The topic of this thesis, the application
of method contracts to feature-oriented programming as suggested by Thüm et al., blends in
with prior work that suggests ways of applying the principle of assertions to novel develop-
ment paradigms. Meyer proposes design by contract which applies the principle of assertions
on the level of classes and methods to object-oriented programming[56]. Several extensions
of object-oriented programming that introduce new forms of abstractions raise the question
how method contracts can be applied to them.

Contracts for Components

Component-oriented software development is a development methodology. It introduces the
notion of components that encapsulate multiple classes [60]. The vision of this development
paradigm is that developers provide a marketplace of independently developed components
that can be used to assemble larger programs. In order to enable correct reuse of components
they must provide a well-defined interface that defines how this component can be used and
the expected behavior. Contracts have been proposed by several researchers to specify the
interface of components [51] [24]. The main difference to contract composition, as used
in this thesis, is that components can only be aggregated and not refine each other. Features,
unlike components, are not self-containing units of implementation. Thus, the composition of
contracts as discussed in this thesis has not been considered in component-oriented software
development.

Contracts in Aspect-Oriented Programming

Aspect oriented programming, introduces aspects as abstractions, orthogonal to classes. Aspect-
orientation subsumes feature-oriented programming and provides extended abilities in spec-
ifying the way in which an aspect is composed with the rest of the program [7]. Design by
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contract has been suggested to specify aspects [52] [2] [71] [84] [40]. Contracts have also
been suggested for the detection of behavioral conflicts in aspect-oriented programming [28].
While being a very related approach, research in aspect-oriented programming does not take
variability into account (i.e., the absence of aspects is usually not considered).

Contracts in Context-Oriented Programming

Context-oriented programming is a paradigm in which runtime-variability is achieved by
assigning functionality to different layers [29]. The goal is to provide means to change im-
plementation depending on the current context of the software (e.g., mobile devices must
adapt to the available services in the current environment). Layers have been used to achieve
variability in design by contract by assigning contracts to certain layers (features) [30]. Com-
position of contracts has not been considered in this research area.

Composition of Specifications

The terminology of composition and refinement of specifications is also used in research work
about specification theories. However, the meaning of these terms in this context differs from
the one used in this thesis. The composition of specifications refers to the aggregation of
specifications rather than the more general sense discussed in this thesis [1]. The refinement
of contracts usually expresses a relationship between contracts, which can be viewed as one
contract being a sub-contract of another contract. Contrary, in feature-oriented programming
composition is not limited to aggregation.



7. Conclusion

The application of design by contract to feature-oriented programming has been proposed as
a means to specify features in software product lines [77] [76] [69] [75]. In feature oriented-
programming, programs are assembled by composing classes and methods. Recent work
raised awareness to the question of how methods can be specified with contracts [77].

Existing descriptions of possible contract specification approaches for software product lines
are formulated informally. Thus, we identified possible interpretations and give precise def-
initions of these approaches. For each specification approach, we distinguish between the
strategy developers must follow to specify features (i.e., the contract specification strategy)
and the mechanism that is used by tools to compose two contracts during feature compo-
sition (i.e., the contract composition mechanism). We give formal definitions for contract
composition mechanisms, which provided several insights:

• Plain contracting is a contract specification approach, in which the idea is that every
method in a software product line is specified only once. Our formalization of its
underlying composition mechanism made clear, that this property cannot be expressed
in terms of a feature composition operator alone. The developer must be aware that
in the case of alternative method introductions (i.e., a method may be introduced by
different features) the resulting contract of that method may vary between products.

• Consecutive contract refinement is a contract specification approach, in which the com-
position of two contracts is expected to fulfill both the original contract and the new
contract. Here, our formalization also made clear that this desired property cannot be
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achieved by any resulting contract. However, we proposed three alternative formaliza-
tions (with different semantics) and discussed their advantages and disadvantages.

• We have to consider a number of alternative variations for each specification approach.
For plain contracting, we have defined three possible contract composition mechanisms
that differ in the handling of methods without contract. Analogously, we have defined
three variants of contract overriding. For consecutive contract refinement, we have
defined three alternative contract composition mechanisms that differ in their restric-
tiveness regarding preserved properties.

• Associativity is a generally desired property for feature composition that provides tools
more freedom for feature composition [8]. The formalization of contract composition
mechanisms allows us to reason about associativity for each approach. This provides
useful information about the applicability of these approaches. We identified that con-
tract overriding, as used in existing work, is not associative. We proposed alternative
definitions that are associative. The difference of these alternative composition mech-
anism is the handling of methods without contract. When using contract overriding,
researchers can now choose the appropriate mechanism depending on whether asso-
ciativity is required. We proposed similar modifications for plain contracting. Plain
contracting can either be associative or allow method refinements to introduce con-
tracts if the method subject to refinement has no contract.

Several applications that make use of contracts in feature-oriented programming have been
proposed by researchers. However, the actual composition of contracts had to be performed
manually or with rather limited tool support. This approach to composition is error-prone
and laborious.

We developed tool support that allows the developer to express contracts in Java Modeling
Language in feature-oriented programming and to compose contracts. Thus, existing tools
for JML can be used off-the-shelf for testing or verifying products.

For our tool support, we developed a FeatureBNF grammar that supports Java 1.5 and the
Java Modeling Language (Levels 0-3) as defined in the JML reference manual [46]. We used
FeatureHouse to generate a parser based on this grammar. Furthermore, we provide contract-
aware rules for feature composition supporting different composition mechanisms. It is pos-
sible to choose between different contract composition mechanisms: plain contracting, con-
tract overriding, consecutive contract refinement. These mechanisms can be combined with
the use of keyword original and pure method refinement. The combination of contract
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overriding and keyword original is known as explicit contract refinement. Consecutive
contract refinement with support for keyword original has not been considered yet, but
is possible. However, plain contracting does not allow contract refinement. Accordingly, it
cannot be combined with the use of keyword original.

We integrated our tool into FeatureIDE, a framework for feature-oriented development of
software product lines. We expect that the integration of our tool support into FeatureIDE
makes it easier for other researchers and developers to use our tool for case studies and
applications that require the specification of feature modules. Furthermore, our tool allows
the developer to combine feature-based specification with product-based verification. By
specifying features rather than products the specification effort is relative low. Furthermore,
it is possible to use existing tool support for JML on products generated by our tool. Thus,
it is possible to apply specification type-checking, runtime debugging, static analysis, and
verification for each product. We refer to Burdy et al. for an overview of existing JML
tools [16].

Furthermore, we developed four case studies to evaluate our tool. As far as our tool is con-
cerned, we have experienced that the effort to specify product lines can be reduced com-
pared to manual composition. We made extensive use of the possibility to type-check the
generated specification of the products in our case studies. This serves as an example and
proof-of-concept of product-based analysis in which the specification effort is reduced by
feature-based specification.

We have experienced that the applicability of plain contracting is rather a design decision than
a property of a given product line. Developers can simply decide to specify only properties
that are common to all products and use plain contracting. However, if the developer decides
that feature-specific specifications are desired, plain contracting is generally not applicable.
Our results suggest that contract overriding is in all cases inferior to explicit contract refine-
ment. However, explicit contract refinement makes it necessary to extend the specification
language to support keyword original. Consecutive contract refinement is more restric-
tive than explicit contract refinement which can be both an advantage and disadvantage. It
allows the developer and tools to rely on certain properties of contracts. Method callers do
not have to be aware of contracts in all features. It is sufficient to consider only one feature.
However, it cannot be used in situations that require to break these properties.

The results of this thesis provide several benefits for researchers. Our definitions of contract
specification approaches allow developers to describe the underlying contract composition
mechanism precisely by distinguishing specification strategy and composition mechanism
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explicitly. This distinction makes clear that certain properties cannot be ensured by a com-
position mechanism alone, but have to be considered by the developers. We have proposed
several variations for each composition mechanism and described their advantages and dis-
advantages. Furthermore, we provide tool support that can be used to compare different
specification approaches by developing software product lines in which contracts are ex-
pressed in the Java Modeling Language. Our tool simplifies the development of case studies
by automating contract composition.



8. Future Work

This thesis aims to provide a foundation for future research related to the application of
method contracts in feature-oriented programming. We defined contract specification strate-
gies and proposed several modifications to existing approaches. We formalized possible con-
tract composition mechanisms that can be used for feature oriented programming. In future
work, it should be investigated whether and how our formalization can be applied to related
paradigms, namely aspect-oriented programming and delta-oriented programming.

In this thesis, we have focused on method contracts. However, the handling of invariants
must be considered in future work.

A special case of pure methods are model methods, which are only visible for the specifica-
tion. The refinements of model methods should be considered. These approaches need to be
compared to the contract specification techniques used in this thesis.

Our comparison of contract specification techniques for feature modules has focused on ex-
pressiveness. Thüm et al. also takes the usability of approaches into account. We think it
is desirable to investigate the human factor of specifications even more. Empirical studies
are needed to investigate the influence on the developer by different approaches. Are speci-
fications easily understandable? Is it easy to recognize errors? Investigating such questions,
could provide useful insights related to the applicability of specification approaches.

The Java Modeling Language enforces specification inheritance (i.e., subclasses inherit the
specification of their superclass). Thus, specifications can be changed by changing the class
hierarchy. It should be investigated how this concept relates to contract-aware feature com-
position.
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We developed tool support that can be used for contracts expressed in the Java Modeling
Language in feature-oriented programming. In future work, we plan to provide several ex-
tensions to our tool. We integrated it into FeatureIDE, which allows the use of several useful
editors and views that help the developer when using our tool. However, we plan to extend
FeatureIDE by several views for design by contract in feature-oriented programming. These
views can provide additional information such as statistics about the usage of contracts. How
many features contain contracts? How many features refine contracts? So far, such questions
have to be answered manually by exploring the source code. We expect that it will be helpful
to automate the generation of such information.

Our tool support is also intended to serve as the basis for applications related to the verifi-
cation of product lines. In this thesis we focused on the feature-based generation of product
specifications. Other verification approaches, such as the generation of a meta program from
a specified product line may impose unique requirements on specification of features. Future
work should take the requirements for novel verification techniques for the specification into
account.

Furthermore, our tool support allows to perform type-checking of contracts for generated
products. In future work, type-checking approaches for software product lines that take the
variability into account should be extended to support contracts.

Another possible extension of our work is to support choosing between composition meth-
ods for each method rather than for each product line. This could be realized by additional
keywords in the specification language. This possibility gives the developer more freedom
when specifying product lines and may lead to novel combinations of existing approaches
with possibly synergistic effects.

So far, we have hardly discussed design by contract as a development method rather then only
a means to specify functionality for automated analysis. Design by contract as a development
method means that the developer when designing a system only relies on properties stated in
contracts rather than implementation. It should be investigated in further detail, whether
the traditional benefits of design by contract as a development method provides the same
advantages (e.g. modular reasoning) for feature-oriented programming as it promises for
object-oriented programming.

To answer the question whether a certain methodology such as design by contract in feature-
oriented programming provides a real benefit for developers, it is not sufficient to show
whether it is possible to use it but it needs to be shown that it is efficient. But the practi-
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cal usefulness of a tool, is always depended on the way it is used. If the result is not as
desired it could be that either the tool is bad, or the tool is used in a wrong way.

Thus, we believe it is desirable to gather practical knowledge about the application of con-
tracts in feature-oriented programming in form of best practices, similar to code-conventions,
and design patterns in object-oriented programming, for design by contract in feature-oriented
programming. We believe, that this is a topic that should be addressed for feature-oriented
software development in general. Thus, we believe it is desirable to share existing product
lines with other researchers by making them publicly available. SPL2go is a repository for
feature-oriented software product lines. All product lines we have developed in our case
studies are available on SPL2go1, a repository for feature-oriented software product lines.
We hope that researchers will increasingly share case studies and product lines in order to
gather a large collection of product lines for future research.

1spl2go.cs.ovgu.de
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