
University of Magdeburg

Department of Computer Science

Master’s Thesis

Optional Composition - A Solution to the Optional

Feature Problem?

Author:

Constanze Adler

Matriculation Number:

184594

December 17th, 2010

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
Dr.-Ing. Christian Kästner

Institute of Technical & Business Information Systems

Adler, Constanze:
Optional Composition - A Solution to the Optional Feature Problem?
Master’s Thesis, University of Magdeburg, 2010.

Acknowledgements

At this point, I would like to thank Christian Kästner for advising this thesis. Thank
you for the discussions about this topic and helpful suggestions. Special thanks for
reading all the drafts of this thesis and the critical view, which helped to improve this
thesis.

I would like to thank my fellow student Christian Becker for the fantastic time during
the study. Furthermore, I thank him for his compiler and the introductive help with
the handling of it. Also, I would like to thank for the review of drafts of this thesis,
which was much helpful.

Many thanks to Thomas Thüm, who provided the LATEX-template for this thesis and
the help with the feature models in FeatureIDE.

Special thanks to my husband, Simon Adler, who supported me a lot after the birth of
our little daughter, so I was able to finish this thesis. He also read drafts of this thesis
and his criticism was very helpful for the improvement of this thesis.

Contents

List of Figures viii

List of Tables ix

List of Code Listings xii

List of Acronyms xiii

1 Introduction 1

2 Background 5
2.1 Software Product Lines . 5
2.2 Software Product Line Implementations 8

2.2.1 Preprocessor Approach / Conditional Compiling 9
2.2.2 Feature-Oriented Programming 10
2.2.3 Aspect-Oriented Programming 14
2.2.4 Feature Interaction . 15

2.3 Compiler . 16

3 Problem Statement 19
3.1 Optional Feature Problem . 19
3.2 Software Derivatives . 20
3.3 Preprocessor . 24
3.4 From Optional Weaving to Optional Composition 26

3.4.1 Optional Weaving . 26
3.4.2 Optional Composition . 27

3.4.2.1 Explicit Optional Composition 28
3.4.2.2 Implicit Optional Composition 29

4 Compiler Extension 31
4.1 FOP Compiler . 31
4.2 Extension for Explicit Optional Composition 33

4.2.1 Design . 33
4.2.2 Implementation . 34

4.3 Extension for Implicit Optional Composition 36
4.3.1 Design . 36

vi Contents

4.3.2 Implementation . 36

5 Case Study 41
5.1 Expression Problem . 41

5.1.1 Software Derivatives . 43
5.1.2 Preprocessor approach . 47
5.1.3 Optional Composition . 49

5.2 Chat SPL . 53
5.2.1 Software Derivatives . 55
5.2.2 Preprocessor Approach . 60
5.2.3 Optional Composition . 62

6 Discussion 65
6.1 Comparison . 65

6.1.1 Separation of Concerns . 66
6.1.2 Code Replication . 67
6.1.3 Variability . 68
6.1.4 Additional Effort . 69
6.1.5 Summary . 71

6.2 Suggestion . 72

7 Conclusion 75

Bibliography 79

List of Figures

2.1 Feature model . 6

2.2 An overview of domain and application engineering adopted from [Käs10] 7

2.3 Example collaboration model . 11

2.4 AHEAD composition . 12

2.5 Superimposition of FSTs . 13

2.6 Interacting features [Käs07] . 16

2.7 Phases of a compiler adopted from [ALSU08] 16

3.1 Interaction of Logging and Encryption 19

3.2 Feature interaction: Gui - Contactlist | Console - Contactlist 20

3.3 Software derivatives adopted from [KAuR+09] 22

3.4 Optional Composition . 22

3.5 Optional Weaving [Käs07] . 26

3.6 Optional Composition . 28

4.1 Scheme of the FOP Compiler [Bec10] 32

4.2 FOP Compiler changes for explicit optional composition 33

4.3 FOP Compiler changes for implicit optional composition 36

5.1 Feature model of SPL expression problem 42

5.2 Feature model of SPL expression problem - Software Derivatives 44

5.3 Collaboration model of SPL expression problem - Software Derivatives 45

5.4 Collaboration model of SPL epression problem - Optional Composition 50

5.5 Feature model chat SPL similar to [Sch09] 53

5.6 Feature model of chat - Software Derivatives 56

viii List of Figures

5.7 Collaboration model of chat - Software Derivatives 57

5.8 Collaboration model of chat - Optional Composition 62

List of Tables

5.1 Feature interactions of SPL expression problem 42

5.2 Abbreviations from the feature model 43

5.3 Feature interactions of chat SPL . 54

6.1 Characteristics of the case study expression problem 67

6.2 Characteristics of the case study chat 67

6.3 Comparison of the approaches . 71

x List of Tables

List of Code Listings

2.1 An extract of class Message from Chat in object-oriented design 9

2.2 An extract of class Message from Chat in preprocessor design 10

2.3 An example for the order of feature composition 14

2.4 Message - basis implementation . 15

2.5 Aspect for Encryption . 15

3.1 Class Gui from feature GUI . 21

3.2 Class Gui from feature Contactlist . 21

3.3 Contactlist feature . 23

3.4 Derivative of GUI and Contactlist . 23

3.5 GUI Feature - Preprocessor approach 25

3.6 Contactlist Feature - Preprocessor approach 25

3.7 Aspect Contactlist - Optional Weaving 27

3.8 Class Gui from feature Contactlist - Explicit Optional Composition . . 28

3.9 Class Gui from feature Contactlist - Implicit Optional Composition . . 29

4.1 Excerpt from the Scanner file Keywords.flex 34

4.2 AST additions for explicit optional composition 34

4.3 Parser additions for explicit optional composition 34

4.4 Class Program, sequence for explicit optional composition 35

4.5 Front end with extension of compiler switch 37

4.6 Class Program, sequence for implicit optional composition 38

5.1 Interface Exp, feature Core (CK) - Software Derivatives 46

5.2 Class Test, Feature Core (CK) - Software Derivatives 46

5.3 Interface Exp, Feature Print (CP) - Software Derivatives 46

5.4 Class Test, Feature Print (CP) - Software Derivatives 46

5.5 Class Test - Preprocessor approach . 48

5.6 Class Plus - Preprocessor approach . 49

5.7 Class Plus (feature Plus) - Optional Composition 51

xii List of Code Listings

5.8 Class Plus (feature Print) - Optional Composition 51

5.9 Class Plus (feature Eval) - Optional Composition 51

5.10 Class Test (eature Plus) - Optional Composition 51

5.11 Class Gui (Derivative GUI/Encryption) - Software Derivatives 58

5.12 Class Gui (Derivative GUI/Logging) - Software Derivatives 58

5.13 Class Gui (Derivative GUI/Logging/Encryption) - Software Derivatives 58

5.14 Class Gui (feature Encryption) - Preprocessor 61

5.15 Class Gui (feature Logging) - Preprocessor 61

5.16 Class Gui (feature Encryption) - Optional Composition 63

5.17 Class Gui (feature Logging) - Optional Composition 63

List of Acronyms

AHEAD Algebraic Hierarchical Equations for Application Design
AOP Aspect-Oriented Programming
AST Abstract Syntax Tree

FOP Feature-Oriented Programming
FST Feature Structure Tree

GUI Graphical User Interface

IDE Integrated Development Environment
IRC Internet Relay Chat
ITMD Inter-Type Member Declaration

LOC Lines of Code

OOP Object-Oriented PArogramming

SoC Separation of Concerns
SPL Software Product Line
SSL Secure Sockets Layer

xiv List of Acronyms

1. Introduction

Any types of software like software applications and computer games are developed from
providers for several platforms. According to the platforms, different requirements have
to be met. Using a personal computer, high resolutions can be used and a lot of primary
storage is available. But, porting this software to a smart phone, less hardware resources
are available. So functionalities must be deleted or for other platforms functions must
be added, e.g. when another input device like a touch pad might be used.

Therefore, software developers have to implement a tailored solution, which just con-
tain the functionalities for the correspondent platform. From the view of an economist,
the effort of the adaption to all the required platforms should be minimized. A dis-
advantage of these tailored software solutions is, that existent source code cannot be
completely reused, because the functionalities or concerns are not implemented in soft-
ware modules. So these functionalities cannot be changed without further effort by
other functionalities, for example the control of a keyboard as input device cannot
simply be changed into the control of a touch pad.

An approach, which facilitates the generation of variants out of a common code base, is
the approach of Software Product Lines (SPLs) [BCK05, PBvdL05]. So, software can
be offered as tailored solutions with several different functionalities and concurrently
the source code can be reused efficiently. For the development of such a SPL, an
implementation strategy is necessary, which modularizes the concerns, to make the
functionalities optional.

Such an implementation technique is the Feature-Oriented Programming (FOP). Here,
the concerns are implemented in enclosed modules, called features [Pre97, BSR03].
These features are the main aspect of FOP. The basic idea of FOP is the decompo-
sition of a software system in terms of the features it provides [AK09]. The aim of
this decomposition is to create a well-structured software, that can be tailored to the
requirements of the user and the application scenario. Typically, from a set of features,
many different variants can be generated. These variants share common features, but
differ in other features. Let us compare this with the offer at the fast food restaurant

2 1. Introduction

Subway. They are selling sandwiches, with a base of roll covering. The bread can be
selected out of 4 varieties. These are the mandatory features. The sorts of salad, like
tomatoes and paprika, are arbitrary optional features. So there can be generated some
variants, due to the needs of the customer.

An important problem of implementing SPLs is, that features, although being concep-
tual independent, may interact in their implementation which is namely the optional
feature problem, when the interacting features are optional ones. A feature interac-
tion is a situation where two or more features exhibit an unexpected behavior that
does not occur when these features are used in isolation [AK09]. Because paprika and
tomatoes from the previous example do not interact, let us take the standard example
for this problem: a phone with two features call waiting and call forwarding, besides
basic functionalities. Using these features in isolation, they work fine, but when used
in combination, it is unclear what to do with an incoming call on a busy line. This
call is either forwarded or announced; in either case, the expected behavior of one of
the features is compromised [CKMRM03]. There are several solutions to dissolve these
dependencies and to recover the volitional variability.

One quite new approach to solve the optional feature problem is the optional weaving
approach [LARS05, Käs07], which is the base of the optional composition approach
developed in this thesis. During compilation, the optional weaving skips parts of the
implementation of a feature, if necessary, when the interaction feature was not selected
for generating the variant. This approach tries to solve these dependencies between
optional features somewhat automatic.

The unacknowledged question is, whether the optional composition is a solution to the
optional feature problem or not and if it has benefits compared to other approaches,
that require a higher manual effort. In this thesis, we develop a prototyping tool for
the optional composition, evaluate and discuss the results of the optional composition
to the other approaches on the basis of case studies. Finally, we compare the optional
composition to the other approaches and we discuss the general suitability and try to
answer the question whether it is a solution or not and give recommendations for the
usage of the selected approaches and future work.

Structure of the Thesis

First of all, we present the backgrounds of SPLs and their implementations, in Chap-
ter 2. There, we go into detail of the conditional compiling, the FOP and the Aspect-
Oriented Programming (AOP) for the implementations of SPLs. Furthermore, we
present the backgrounds of the feature interactions and the necessary technical terms
for compilers.

In Chapter 3, we go into detail on the optional feature problem. Moreover, we focus on
the solutions to this problem and introduce the approach of software derivatives, the
preprocessor approach, the optional weaving and the optional composition.

Chapter 4 deals with the necessary technical extensions, we made to the compiler, to
make the optional composition possible. We present the compiler and the necessary

3

extensions by concept and the technical implementation, which are important for the
evaluation.

In Chapter 5, we introduce two case studies, the expression problem and a chat soft-
ware. They are chosen, because they are different in their feature characteristics. The
expression problem has a repeating pattern of feature interactions where each feature
has a limited amount of functionality. The chat is in contrast a more practical example
where the features have to interact in a defined way for the desired functionality of the
application. This case is more practical driven. Each approach was implemented for
each case, so, at the end we can present reasonable advantages and disadvantages of
each approach that could be identified. Here, we focus on the different outcomes of the
approaches themselves. In Chapter 6 we discuss and compare the approaches by using
objective but also subjective attributes for the comparison, because clarity and error
correction in the source code are essential for software development.

We conclude this thesis in Chapter 7 and review the future work.

4 1. Introduction

2. Background

In this chapter, we discuss the backgrounds for the undertanding of the optional com-
position. First of all, we present Software Product Lines (SPLs), which are a mean in
software development techniques for reusability and to generate customized software
variants. Secondly, we introduce implementations for SPLs where we focus on Feature-
Oriented Programming (FOP) and Aspect-Oriented Programming (AOP). At the end
we introduce some terms of compiler construction which are needed to understand the
compiler extensions we made in this thesis for optional composition.

2.1 Software Product Lines

Traditionally, software is developed for one customer, so we can say there is one system
one time. So, every software development starts with a requirements analysis regarding
to the customer. After designing, implementing and testing phases this development
process results in a single software product [Käs10]. In contrast, SPL development
focuses on multiple similar software systems in one domain with a common code base
[BCK05, PBvdL05]. With such an approach it is possible to generate software solutions
which are tailored for different customer needs. Such a tailored solution, generated from
a SPL is called variant. Therefore SPLs provide the opportunity of reusability of code
and to generate several variants for several customers within the domain. Thus, the
SPLs gain more and more importance in the last years [BCK05, PBvdL05].

Let us explain the most relevant terms for SPLs with the help of the sandwiches of
the fast food restaurant Subway which fit a product line. Tim and Mary are going to
Subway for eating a chicken fajita sandwich. Tim wants the cheese-oregano bread and
Mary likes the honey oat one. After selecting a bread, which is one of the selectable, but
mandatory features, they have to make a choice which salad ingredients, also selectable,
but optional, features, they would like to have on their sandwich. Mary takes salad,
tomatoes, olives, cucumber and paprika whereas Tim leaves out the olives but takes the
pepperonis. At the end they have to choose the dressing - Mary fancies honey mustard
dressing and Tim the hot Mexican southwest one. So, they get two variants of the

6 2. Background

chicken fajita sandwich after finishing their order. To make it clear: The ingredients of
the sandwich are the features and the composition of the selected features (ingredients)
is the variant (the submarine sandwich) and the domain are submarine sandwiches.

The development of a SPL is divided into two categories, the problem space and the
solution space [CE00]. The problem space is responsible for the domain analysis and
the transformation of the customers requirements into features, whereas the solution
space deals with the implementation and the generation of the variants.

Problem Space

In the problem space the domain of the SPL will be defined and analyzed. Therefore,
domain specific knowledge is needed to find adequate features. We use feature as a
single unit of a SPL which is a function or characteristic of a software system visible
for the user. In literature several definitions for the term feature can be found. Kang
et al. [KCH+90] define a feature in the following way:

A feature is a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems.

A list of further definitions can be found in [AK09].

According to the domain engineering within the problem space, features are defined
and their dependencies to each other are pointed out. For modeling these features and
their dependencies feature models are popular [KCH+90, CE00, Bat05].

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

Obligatory

Mandatory

Alternative

Or

Figure 2.1: Feature model

We show an example of such a feature model in Figure 2.1. The features Chat, Connec-
tion and UI are mandatory features, so they are always required. Logging, SecureCon,
Auth and all others with a non-colored full circle on top are obligatory features, i.e. these
features are optional ones. As user interface (feature UI) a Graphical User Interface
(GUI) (feature GUI) or a console (feature Console) can be chosen alternatively. Some

2.1. Software Product Lines 7

dependencies can not be mapped to the tree, therefore the tree can be extended with
boolean expressions. In this example, the feature FormattedMsg which is a colored
text message implies the feature GUI (FormattedMsg ⇒ GUI). Features modeled
with the darker blue represent an implementation unit, containing the source code of
the feature and features modeled with the lighter blue represent organization units for
structuring the feature model. Although this example is small sized with its just eight
selectable features, 384 variants can be generated.

Besides graphical representation, feature models can be mapped to logic formulas or
grammars (e.g. GUIDSL as a grammar [Bat05]) which can be used easily for further
processing.

To generate a variant, a choice out of features from the feature model must be made.
The feature model can help the customer to make his choice or to ask for more features,
which can be added at any time.

Problem Space Solution Space

D
o
m

a
in

 e
n

g
in

e
e
ri

n
g

A
p

p
li
c
a
ti

o
n

 e
n

g
in

e
e
ri

n
g

Domain
knowledge Mapping

Cusomers
needs

Feature
selection Variant

New
Requirements

Features Common
implementation

artifacts

Domain analysis

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

Requirements analysis Variant configuration/
generation

Domain implementation

Figure 2.2: An overview of domain and application engineering adopted from [Käs10]

Solution Space

In the solution space the itemized features will be implemented. Therefore various
techniques are possible, which will be introduced in Section 2.2.

8 2. Background

To illustrate the separation into problem and solution space, domain and application
engineering, we show Figure 2.2.

In the domain engineering within the problem space, the domain knowledge will be
transformed during the domain analysis into a feature model. This model will be
changed by the requirements analysis in the problem space of application engineering
when customers needs are respected. Here, the features according to the needs of
the customer are selected. The domain implementation in the solution space of domain
engineering is done after the mapping of the domain analysis to it. In this part, features
are implemented with the corresponding languages and tools. After the selection of the
features within the requirements analysis, the customer specific variant can be generated
from the common implementation artifacts in the solution space of the application
engineering.

2.2 Software Product Line Implementations

In software development, large software is divided into several smaller units called mod-
ules. These modules alleviate the implementation and maintainability of the resulting
software. This procedure is called Separation of Concerns (SoC) in the literature which
was introduced by Parnas and Dijkstra [Par72, Dij82, Dij97]. The SoC is the major
goal of SPL implementations.

First of all, the object-oriented software design could be used for implementing SPLs,
because it is established and has techniques (classes and inheritance) to write modular
software [Fla02]. But it is not always possible to modularize all concerns with the
object-oriented approach simultaneously. Kiczales et al. [KLM+97] and Tarr et al.
[TOHS99] show the limitations of the SoC. Mostly concerns belonging to the core
functionality of the program cannot be modularized. Furthermore, there are concerns
appearing on many points within the program, so that they crosscut it, the so called
crosscutting concerns [KLM+97]. An example for these crosscutting concerns is the
logging functionality of a program.

Let us look at a little example to illustrate the stated problems. The class Message in
Listing 2.1 contains not only the core functionality of the chat for sending Messages,
but also the features History and Encryption. So, this class contains code of multiple
features which is called code tangling [KLM+97]. Furthermore, it is most likely that
the encryption algorithms will be used at other points in the software, too. This is
called code scattering. These two problems may not be seen in this little example,
but looking on more complex programs classes implement much more features and
these features are shared with a lot of other classes. A typical example is the feature
Transaction in a database. There the localization of code belonging to one feature (the
feature traceability) can become expensive. So object-oriented software development is
not suitable for implementing SPLs, because optional features cannot be implemented
optional with such a design.

We have shown, that for implementing SPLs we need techniques to build up optional
features. Therefore, code belonging to a feature must be traceable, which is made diffi-
cult by code tangling and scattering. So, we focus on techniques which minimize these

2.2. Software Product Line Implementations 9

1 public class Message{
2 String content;
3 ArrayList history = new ArrayList(); //for logging
4 Encryption enc;
5 //more functionality
6 public void sendMessage(){
7 history.add(content); //logging
8 content = enc.encryptMessage(content); //encryption
9 sendContent(content);
10 }
11 }

Listing 2.1: An extract of class Message from Chat in object-oriented design

problems. Kästner et al. [KAK08] divides the implementation into two strategies: an-
notative approach and compositional approach. Annotative approaches mark the code
and delete it before compilation and can be implemented with preprocessors [Käs10].
Compositional approaches encapsulate the code of features in single modules, compose
it to a selected variant and can be implemented via Frameworks [JF88], Components
[SGM02], FOP or AOP.

Because the discussed approach to solve the optional feature problem was originally
inspired of AOP and we transferred to FOP we focus on these two implementation
strategies in the following sections. However, parts of our solution are inspired by
preprocessors, so we will now start with this approach.

2.2.1 Preprocessor Approach / Conditional Compiling

The preprocessor approach or conditional compiling is a representative of annotative
approaches. For example, in programming languages like C/C++ it is possible to
annotate the code with preprocessor statements like #ifdef X #endif and so to compile
the program conditionally [HJ95].

Listing 2.2 demonstrates the use of preprocessor statements for the implementation of
SPLs. It shows the same implementation as Listing 2.1, but the singular features are
framed by the #ifdef statements. So this parts of code are just compiled, when the
features (macros) Logging and/or Encryption are defined with a #define statement.
Otherwise this code is left out.

This approach uses well-known techniques and is therefore accepted among program-
mers. Simple preprocessors are available for almost all programming languages. An-
other advantage is, that an existing program can be refactored with these annotations
to a SPL easily. But within research this approach is seen critical [Spe92, KS94]. Im-
plementing crosscutting features is difficult, because the annotations for one feature
are necessary in many classes (problem of code tangling and scattering). Furthermore,
the usage of annotations can be error-prone. Having many annotations can result in
confusing source code, that complicates the maintenance of software. So preprocessor
annotations can be used interlaced and fine-grained annotations allow to make singular
tokens optional.

10 2. Background

1 public class Message{
2 String content;
3 #ifdef Logging
4 ArrayList history = new ArrayList();
5 #endif Logging
6 #ifdef Encryption
7 Encryption enc;
8 #endif Encryption
9 //more functionality
10 public void sendMessage(){
11 #ifdef Logging
12 history.add(content);
13 #endif Logging
14 #ifdef Encryption
15 content = enc.encryptMessage(content);
16 #endif Encryption
17 sendContent(content);
18 }
19 }

Listing 2.2: An extract of class Message from Chat in preprocessor design

These problems can be reduced by using disciplined annotations [KA09], i.e. limiting
the expressive power of annotations by just allowing the annotation of classes, methods
and statements. This prevents the risk of making errors by annotating tokens like just
a closing bracket, which is left out, when a feature is not selected.

Having introduced the approach of preprocessors for SPLs here, we go further to another
approach in the next section, the FOP.

2.2.2 Feature-Oriented Programming

Feature-oriented software development is a paradigm for the construc-
tion, customization and synthesis of large-scale software systems. [AK09]

As quoted above from Apel and Kästner, FOP is a paradigm to implement SPLs. As
stated in Section 2.1, features are the modules of a SPL; they are the most important
parts in FOP. The idea of FOP is to separate a software system into the features it
provides, so that it can be tailored to the customer needs and be composed to several
variants. Because of the decomposition of the software into features a 1:1 mapping
between the feature model and the implementation can be made. This is an advantage
in contrast to the object-oriented approach. Therefore code belonging to a feature
can be traced, modified and maintained easily and the problem of code tangling and
scattering is minimized [Pre97, BSR03].

FOP uses object-oriented design as basic structure, because it is an established and
common concept of programming. But we have shown in Section 2.2 that the object-
oriented approach cannot map features to implementations with a 1:1 mapping. There-
fore FOP extends the object-oriented design with the opportunity of splitting classes

2.2. Software Product Line Implementations 11

to make the 1:1 mapping possible. Features implemented from a set of classes is called
collaboration and the part of a class implementing one feature is called role. Fig-
ure 2.3 displays the context of such a collaboration model. This model is a simplified
model of the Chat. The class Server plays roles in the features Core and SecureCon.
The feature GUI consists of the collaboration of the classes Gui and Client.

ChatLineListenerServer Client Connection TextMessage Gui

Core

ConCore

SecureCon

MsgCore

GUI

CollaborationsRoles

Figure 2.3: Example collaboration model

For SPL development two prominent representatives of FOP, namely FeatureHouse
and Algebraic Hierarchical Equations for Application Design (AHEAD), are used. But
within this thesis we use a FOP Compiler for Java prototyped by Becker [Bec10],
because we could extend this compiler for our purposes which we explain in Chapter 4.
This compiler implements both approaches, AHEAD and FeatureHouse in parallel, so,
they can be used within one tool. The FOP Compiler and AHEAD are representatives
for the Java group, FeatureHouse is in use for several languages (Java, C# and XML)
and can be easily extended for other languages [AKL09]. There exist also representatives
for other programming languages, namely FeatureC++ [ALRS05] for the C++ group
and Xak for XML, which we will leave out here, because we concentrate on the Java
language representatives.

AHEAD

AHEAD is developed by Batory et al. [BSR03]. They use stepwise refinement to
implement the FOP approach. A basic implementation is extended stepwise by the
functionality of the selected features. AHEAD uses an extension of Java called Jak
for implementing the features within refinements. The individual features are grouped
into blocks via the layer keyword. The classes within the feature, if they refine classes
from other features, are marked with the refines keyword. The same for this classes
constructors. For method refinements a Super() call invokes the original method which
should be refined. For composing the features AHEAD uses the mixin approach [SB02].
This approach generates one class per role with the appropriate hierarchy, renames the
classes so that the last incoming refinement gets the original name and the Super()

is replaced by a super call. Figure 2.4 illustrates the procedure of AHEAD. The class
Message is refined by the features Encryption and FormattedMsg. In the figure an
example is shown representative for class and method refinements. Additionally the
resulting code after composition of the Jak files to one Jak file are shown with the
resulting class hierarchy.

12 2. Background

class Message{
 ...
}

refines class Message{
 private String encryptedContent;
 ...
}

refines class Message{
 private Color c;
 ...
}

Message.jak

Message.jak

Message.jak

class Message{
 void print(){
 System.out.println("Message" + content);
 }
}

refines class Message{
 void print(){
 Super().print();
 System.out.println("encypted Message"
 + encryptedContent);
 }
}

refines class Message{
 void print(){
 Super().print();
 System.out.println("Color" + c);
 }
}

Class Refinement Method Refinement

class Message$$Base{
 void print(){
 System.out.println("Message" + content);
 }
}
class Message$$Encryption extends Message$$Base{
 private String encryptedContent;
 void print(){
 super.print();
 System.out.println("encypted Message"
 + encryptedContent);
 }
}
class Message extends Message$$Encryption{
 private Color c;
 void print(){
 super.print();
 System.out.println("Color" + c);
 }
}

Message.jak
Composition

Figure 2.4: AHEAD composition

2.2. Software Product Line Implementations 13

FeatureHouse

FeatureHouse [AKL09] is another approach for the implementation of FOP. In contrast
to AHEAD this approach does not use additional keywords, but a formalization de-
veloped by Apel et al.[ALMK08]. This formalization, called feature algebra, is used to
analyze the similarities of the several techniques to implement the singular roles. It also
shows that FOP can be adopted for other software artifacts, not just for programming
languages.

The basic idea of FeatureHouse is to superimpose Feature Structure Trees (FSTs)
[AKL09] Within these FSTs, features are modeled as trees reflecting the structure
of their software artifacts. A FST can have terminal and non-terminal nodes, where
non-terminals are the inner nodes of the tree including the root, they are transparent,
can have children, have a name and a type, but do not contain any content. So they
can be superimposed easily. Whereas terminals are the leaves of the tree, also having
a name and a type, but contain further content, therefore, their superimposition is not
trivial.

Figure 2.5 shows a small example of the superimposition of FSTs. The basis class
Message has the children nodes content and print and the class Message to superimpose
has the children nodes encryptedContent and print (red colored). The result is a FST
of the basic Message with added encryptedContent and an superimposed print.

Message

encryptedContent print

Message

content print encryptedContent content print

Message⚫ =

de.ovgu.chat de.ovgu.chatde.ovgu.chat
package

class

field method

package package

classclass

field field fieldmethod method

Figure 2.5: Superimposition of FSTs

Order of Composition

Within feature composition the order of features play an important role, which counts
for both approaches, AHEAD and FeatureHouse. Apel et al. show that [ALMK08] the
feature algebra mentioned above the composition of features is not commutative, i.e
compositing feature A with feature B must not result in the same as the composition of
B with A. Let us illustrate this with a small example in Listing 2.3. A basis is composed
with two features A and B. According to the order of composition, the resulting output
will be ”green blue text” or ”blue green text”.

For the definition of the feature composition order, both approaches use a file where the
selection of features and the order of composition is defined. AHEAD uses an equation
file and FeatureHouse an expression file. This order is also relevant for optional features.
When feature A refines feature B and feature B will be composed after feature A, it

14 2. Background

1 public class MyColor{ /∗ Basis Feature∗/
2 void paint(){
3 System.out.print(" text ");
4 }
5 }
6 refines public class MyColor{ /∗ Feature A∗/
7 void paint(){
8 System.out.print(" green ");
9 Super().paint();
10 }
11 }
12 refines public class MyColor{ /∗ Feature B∗/
13 void paint(){
14 System.out.print(" blue ");
15 Super().paint();
16 }
17 }

Listing 2.3: An example for the order of feature composition

comes to a clash. This will be shown within the case study of the expression problem
in Section 5.1.

In this section, we presented the FOP as a method to implement SPLs. Furthermore,
we introduced two prominent representatives of this programming paradigm. In the
next section, we will show how AOP can be used for SPL development.

2.2.3 Aspect-Oriented Programming

As we stated at the beginning of this chapter, the original optional weaving approach
was inspired by AOP, so we will now introduce it very briefly.

AOP is another programming paradigm which can be used to implement SPLs. It aims
at the modularization of crosscutting concerns which we introduced in Section 2.2.
Kiczales et al. [KLM+97] present the idea of AOP. They suppose to implement cross-
cutting concerns as aspects to eliminate code tangling and scattering. The software
basis is implemented with traditional programming concepts like Object-Oriented Pro-
gramming (OOP). Additional features are implemented with the concept of pointcuts
and advice. An aspect weaver builds the program consisting of the aspects representing
additional features and the software basis.

As AOP aims at the separation of crosscutting concerns, it allows static and dynamic
extensions, where homogeneous extensions are achieved by quantification. Now, let us
go into detail, what an aspect is. An aspect manipulates class hierarchies, can add
methods and fields into a class, can extend methods with additional code and catches
events like method calls or field accesses and then executes additional or alternate code.
Static extensions are done by Inter-Type Member Declarations (ITMDs), i.e. adding a
method X to a class Y, whereas dynamic extensions are done by the joint point model.
The joint point model comprehends three elements: joint point, pointcut and advice.
A joint point is an event, e.g. a method call or field access, during program execution.

2.2. Software Product Line Implementations 15

A pointcut selects joint points and an advice is the code which will be executed when
a pointcut selected a joint point. So, if a pointcut matches a joint point the advice
with the additional or alternate code will be executed. Furthermore, let us explain the
quantification, because we will need it later on, when reflecting the optional weaving
in Section 3.4.1. Quantification is an important characteristic of pointcuts. Pointcuts
quantify joint points by declaration and can choose several joint points. For example
an advice D is always executed, when a method X in class Y is called. Or an advice E
is executed when any field in class Y is accessed. Another possibility is to execute an
advice F, when anywhere in the system a public method is called and a method X was
called before.

1 class Message{
2 void print(){
3 System.out.println("Message " + content);
4 }
5 }

Listing 2.4: Message - basis implementation

1 public aspect Encryption {
2 pointcut encMessage(Object o): call(∗ Message.print());
3 void after() : print(){
4 System.out.println(" encrypted Message " + encryptedContent);
5 }
6 }

Listing 2.5: Aspect for Encryption

In Listing 2.4 we show a basic implementation for the print method of the class Message.
Listing 2.5 implements the feature Encryption within the pointcut model of AspectJ
which is a prominent example for AOP in the Java group. First of all the aspect is
defined. In line 2 of Listing 2.5 we define the pointcut where the advice (line 3 to 6)
shall operate, namely when the method print() of Message is called. The keyword after

within the advice indicates that this code will be executed after the original method
print().

Now, having seen how SPLs can be implemented with preprocessors, FOP and AOP
we need to introduce another fact which occurs among feature implementation, when
features are going to interact.

2.2.4 Feature Interaction

Mainly from the telecommunication industry the occurrence of feature interactions is
known [CKMRM03]. A feature interaction is a situation where two or more features
behave unexpected which does not occur when they are used in isolation. The standard
example is a phone with the additional two features call forwarding and call waiting :
Using them in isolation everything works fine, but when using in combination it is
unclear what to do when an incoming call meets a busy line. The call is either forwarded
or signalized, so in either case one of the feature’s behavior is compromised.

16 2. Background

A B

Figure 2.6: Interacting features [Käs07]

A feature interaction can be illustrated like in Figure 2.6. This image represents the
code base of two features A and B, where the interaction is illustrated with the in-
tersection of both. When two features interact, it is an interaction of first order and
when three features interact, it is an interaction of second order [LBL06]. If there are
optional features interacting with each other these interactions lead to the optional
feature problem which we discuss in detail in Chapter 3. Further, the solutions to this
problem are reviewed there: software derivatives, preprocessor, optional weaving and
optional composition.

2.3 Compiler

In this section we briefly introduce some terms of compiler construction which we use
within Chapter 4 where we explain necessary compiler extensions for the optional com-
position.

front-end

back-end

Compiler

lexical analysis
(scanner)

syntax analysis
(parser)

semantic analysis

intermediate code
generation

code optimization

code generation

source code

target
programm

symbol
table

Figure 2.7: Phases of a compiler adopted from [ALSU08]

2.3. Compiler 17

Figure 2.7 shows the two singular phases of a common compiler, the front-end and
back-end [ALSU08]. The front-end is responsible for the analysis of the source code and
the back-end for the synthesis analysis. First of all, in the front-end the source code
comes through the scanner where the lexical analysis takes place. The result is altered
in the syntax analysis, where it is send through the parser. The resulting Abstract
Syntax Tree (AST) proceeds the semantic analysis where the attention is turned on the
type and error checking. In the synthesis phase the AST comes through a generator
where intermediate code is created. This code will be optimized in the phase of code
optimization. At the end, the final code is generated and results in the target program.

The extension of the compiler, made in this thesis, is limited to the front-end. Therefore
we concentrate within explanation on the phases within the front-end in the following
and leave out the phase of the back-end.

Scanner

In the lexical analysis, the scanner reads the source code in and organizes the characters
into meaningful sequences, called lexemes. Each lexeme will be assigned to a token,
where a token consists of a token name and optional attributes. These tokens are
handed over to the next phase into the parser.

Parser

The parser uses the tokens from the scanner to generate a tree-like structure, which
exhibits the grammatical structure of the token stream. This generated AST is char-
acterized by inner nodes which represent the operations. The children of these inner
nodes represent the arguments of these operations. The AST is then transferred to
the semantic analysis. Furthermore, the parser generates the symbol table used in the
semantic analysis.

Semantic Analysis

Within the semantic analysis the AST and symbol table are checked if they are se-
mantic consistent with the help of the language specification. This phase collects type
information and saves them within the AST or in the symbol table, so it can be used
for the construction in the phases of the back-end. An important component in this
phase is the type checking, i.e. the compiler assures that each operator executes the
adequate operation. Another point is the type conversion which is done in this phase,
according to the language specification.

18 2. Background

3. Problem Statement

In this thesis, the question of a solution for the optional feature problem by the optional
composition approach shall be answered. Therefore, we explain the optional feature
problem and possible solutions to this problem in this chapter. As solutions software
derivatives, preprocessor approach, optional weaving and the in this thesis developed
optional composition are introduced here.

3.1 Optional Feature Problem

As stated in Section 2.2.4, feature interactions are a key part of feature-oriented designs.
If these interactions take place between optional features they lead to the optional
feature problem [LARS05, Käs07, KAuR+09]. This problem appears when two or more
interactions of optional features occur and these features show another behavior than
being used in isolation.

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

Logging Encryption

Figure 3.1: Interaction of Logging and Encryption

Let us illustrate the stated problem with an appropriate example. For security reason,
the chat needs some encryption and logging, so messages are not transferred as plain

20 3. Problem Statement

text. The logging is for collecting status information, which are printed out at the
console. Now, let us take a look at the problem space. The features Encryption and
Logging in the chat interact with each other (see Figure 3.1). Here the feature Logging
means that all methods have to print out their status. So that means for the solution
space that the method send from class Client is refined by a print of the status, which
will be something like “message will be sent” to the console. The feature Encryption
also refines this method by encrypting the message before sending. That is, seeing both
features in isolation, no problem. When both features are selected the status message
is not modified that an encrypted message was sent.

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

Contactlist

GUI

GUI Contactlist

Console Contactlist

Figure 3.2: Feature interaction: Gui - Contactlist | Console - Contactlist

Let us take a closer look at two other interacting features: GUI and Contactlist. The
contact list of the chat user must be displayed within the Graphical User Interface
(GUI). Therefore, the feature Contactlist refines the createAndShowGui method (see
Listing 3.2) of the main class of the GUI feature. But, GUI and Console are alternate
features (see Figure 3.2). So, Contactlist contains a refinement for the main class of
the Console feature, too. What will happen if Contactlist refines GUI, but instead of
GUI, Console was selected to generate the variant of the chat? With Feature-Oriented
Programming (FOP) this variant could not be generated, because the refinement of
an absent class will result in an error for the Software Product Line (SPL). Always,
the selection of Contactlist will result in an error with FOP, unless splitting it into two
separate features - one Contactlist for GUI and one for Console. Another opportunities
will be opened by the software derivatives, the preprocessor approach, optional weaving
and optional composition.

We will introduce four approaches to overcome this problem in the next sections. First
of all, the approach of software derivatives will be presented

3.2 Software Derivatives

The first approach we present is the approach of software derivatives. The basic idea of
this approach is to break up the dependencies of the features and to encapsulate the code

3.2. Software Derivatives 21

1 layer GUI;
2 public class Gui extends JFrame implements ChatLineListener,

ActionListener{
3 /∗ some fields ∗/
4 public Gui(String title, Client client) {
5 //initializing
6 }
7 public void createAndShowGui(){
8 // gui will be created here
9 }
10 public void newChatLine(TextMessage tm) {
11 // this method gets called every time a new message is received

(observer pattern)
12 }
13 public void actionPerformed(ActionEvent evt) {
14 // sending message if button pressed
15 }
16 }

Listing 3.1: Class Gui from feature GUI

1 layer Contactlist;
2 import javax.swing.JList;
3 public refines class Gui {
4 public void createAndShowGui() {
5 Super().createAndShowGui();
6 Contacts contacts = new Contacts();
7 JList contactList = new JList(contacts.getContactList());
8 add("West",contactList);
9 this.repaint();
10 }
11 }

Listing 3.2: Class Gui from feature Contactlist

22 3. Problem Statement

implementing the interactions in separate modules. This idea was first published by
Prehofer [Pre97]. He“lifted“ the interactive code out of the features and therefore, called
these code fragments lifter. Based on this idea, Liu et al. [LBN05, LBL06] developed
the approach of software derivatives and an associated algebra. This approach suggests
to swap the code, responsible for the interaction, into an additional derivative feature.
It is called derivative because it is derived from the features it connects. We use the
naming convention also used by Kästner et al. [KAuR+09] A/B for a derivative feature
which was derived from the features A and B. We show a visual representation of this
approach in Figure 3.3.

A/B

A

B C

a) b)

Figure 3.3: Software derivatives adopted from [KAuR+09]

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

ContactlistGUI

GUI/Contactlist

Figure 3.4: Optional Composition

Let us explain this approach with an example. We take again the features GUI and
Contactlist into account (see Figure 3.4). We said in the section before, that we need
a mechanism to map the code where both features are selected. GUI is implemented
like in the section before, but we split Contactlist into the feature Contactlist and the
derivatives for the features GUI and Console. So, we have now the possibility to swap
the interactive code into the derivative feature called Gui/Contactlist, where we can
add the contacts to the GUI (see Listing 3.4).

We show in Figure 3.3 that this approach does not scale concerning the number of
derivative features. This was pointed out by Liu et al. [LBN05] and approved by

3.2. Software Derivatives 23

1 layer Contactlist;
2 public class Contacts { //Feature Contactlist
3 private String[] contacts;
4 public Contacts(){
5 contacts = new String[4];
6 contacts[0] = "Tim";
7 contacts[1] = "Mary";
8 contacts[2] = "Martin";
9 contacts[3] = " Judith ";
10 }
11 public String[] getContactList(){
12 return contacts;
13 }
14 }

Listing 3.3: Contactlist feature

1 layer Contactlist;
2 import javax.swing.JList;
3 public refines class Gui { // Derivative Gui/Contactlist
4 public void createAndShowGui() {
5 Super().createAndShowGui();
6 Contacts contacts = new Contacts();
7 JList contactList = new JList(contacts.getContactList());
8 add("West",contactList);
9 this.repaint();
10 }
11 }

Listing 3.4: Derivative of GUI and Contactlist

24 3. Problem Statement

Kästner [Käs07] within a case study. A quadratically growth of the maximum number
of derivatives were suggested with the number of features. We will prove this within our
own case study in Chapter 5. However, the encapsulation of interactions in derivatives
is expensive according to the number of features and their interactions, which we discuss
in detail in Chapter 5 and Chapter 6. So, we would like to introduce another approach
to overcome the stated optional feature problem, in the next section.

3.3 Preprocessor

Now, we would like to introduce the preprocessor approach. We use the FOP im-
plementation as base. The feature interactions are integrated via nested preprocessor
statements, as introduced in Section 2.2.1. So, we combine the annotative approach
with the compositional approach as suggested from [KA08]. For this reason, the inter-
action code is just used when both features are selected. Let us illustrate this with the
features GUI and Contactlist from our chat. The main class from GUI is the same
like the other approaches, except the surrounding #ifdef tag (see Listing 3.5). The
interactive code in Listing 3.6 is surrounded by the preprocessor statement for selecting
the GUI and the Contactlist feature to include this code just when both features are
chosen.

3.3. Preprocessor 25

1 #ifdef GUI;
2 public class Gui extends JFrame implements ChatLineListener,

ActionListener{
3 /∗ some fields ∗/
4 public Gui(String title, Client client) {
5 //initializing
6 }
7 public void createAndShowGui(){
8 // gui will be created here
9 }
10 public void newChatLine(TextMessage tm) {
11 // this method gets called every time a new message is

received (observer pattern)
12 }
13 public void actionPerformed(ActionEvent evt) {
14 // sending message if button pressed
15 }
16 }
17 #endif Gui

Listing 3.5: GUI Feature - Preprocessor approach

1 #ifdef Contactlist
2 #ifdef GUI
3 import javax.swing.JList;
4 public refines class Gui {
5 public void createAndShowGui(){
6 Super().createAndShowGui();
7 Contacts contacts = new Contacts();
8 JList contactList = new JList(contacts.getContactList());
9 add("West",contactList);
10 this.repaint();
11 }
12 }
13 #endif GUI
14 #endif Contactlist

Listing 3.6: Contactlist Feature - Preprocessor approach

26 3. Problem Statement

3.4 From Optional Weaving to Optional Composi-

tion

In this section, we discuss another approach to resolve the optional feature problem, the
optional composition. We transferred the original optional weaving approach, which is
implemented with the means of Aspect-Oriented Programming (AOP), to FOP with
the means of FOP, so we decide to rename the approach to optional composition. The
transfer was done to see if it is possible to implement this approach with FOP. First
of all, we introduce the original optional weaving approach and then bring our optional
composition approach in.

3.4.1 Optional Weaving

The first idea for the optional weaving approach was published by Leich et al. [LARS05].
Their idea was to leave the interaction code of two features in one of these features
and just weave it with the means of AOP concepts when both features are selected.
Figure 3.5 illustrates this idea of having the interaction code of feature A and B in
an optional part of feature B. The approach of Leich et al. [LARS05] uses wild cards
defined by join points in pointcuts which are robust against changes of features and
composition. However Ceasar [MO04] and FeatureC++ [ALRS05] combine FOP and
AOP, the idea is that the programmer is free to decide using aspects or mixins, but this
“looks like a hack” [LARS05]. Therefore, Leich decided to declare methods within mixins
with the keywords before, after and around as optional, i.e. if there is no method to
refine, these refinements will be ignored. So this approach is implicitly defined by the
signature of the refined method.

Figure 3.5: Optional Weaving [Käs07]

Now, let us come to the example, for the optional weaving. We again take features
GUI and Contactlist from our chat into consideration. For class Gui from feature
GUI, we have always the same implementation (see Listing 3.1 in Section 3.1). The
aspect Contactlist from feature Contactlist contains the interaction code of GUI and
Contactlist and of Console and Contactlist. The pointcut, which matches the Gui joint
point is executed after the call of the createAndShowGui method, when the feature
GUI belongs to the feature selection, otherwise the advice is left out. The matching
pointcut of the Consoles constructor is called after the constructors call. Here, the
advising method is left out as well, if the feature Console is not selected.

We introduced the optional weaving approach here, and now, we would like to present
the results of a case study from literature with this approach, which brings us to the
optional composition approach.

3.4. From Optional Weaving to Optional Composition 27

1 aspect Contactlist{
2 after(): call (∗ Gui.createAndShowGui()){
3 Contacts contacts = new Contacts();
4 JList contactList = new JList(contacts.getContactList());
5 add("West",contactList);
6 this.repaint();
7 }
8 after(): call (Console.new()){
9 Contacts contacts = new Contacts();
10 String[] list = contacts.getContactList();
11 for(int i = 0 ;i< list.length; i++)
12 System.out.println(list[i]);
13 }
14 }

Listing 3.7: Aspect Contactlist - Optional Weaving

Discussion

In this part, we bring out the results of a case study for the optional weaving approach
implemented with AspectJ, done by Kästner [Käs07]. In comparison to the approach
of software derivatives, introduced in Section 3.2, for the optional weaving approach it
is not necessary to create a derivative feature. But the disadvantages were significant.
He points out, that it is not possible to reference optional classes, methods or member
variables in the optional advice statements, so that code replication becomes necessary.
Secondly, he states, that optional weaving is possible for advice statements but not for
Inter-Type Member Declarations (ITMDs). The target for the ITMDs must exist and
so they cannot be optional. So all extensions belonging to the interaction are woven
anyway, if they do not belong to the optional advice. The last disadvantage directs the
scope problem which hinders the advising methods in optional classes. To define an
advice the target class must be in the scope of the aspect, i.e. in Java style it must be
imported by the import statement. When this class is removed from the compilation
an error occurs within the aspect at the import statement. Finally, he states that the
optional weaving is no solution to the optional feature problem because of these lacks
at this time.

However, these lacks lie in the character of AspectJ and other representatives of the
AOP which lead us to the approach within FOP which we developed during this thesis
and call optional composition and introduce in the next section.

3.4.2 Optional Composition

Our approach of optional composition is derived from the optional weaving approach,
introduced in Section 3.4.1. For technical reasons, the approach of optional weaving
is just applicable with AspectJ with restrictions, so we transferred it to Jak, the FOP
extension of Java. Further, we would like to see, if this approach is portable to FOP. We
distinguish between two approaches, the implicit and the explicit optional composition,
which we will introduce in the following sections. We show the visual representation of

28 3. Problem Statement

this approach for our example for both, the explicit and implicit optional composition
in Figure 3.6.

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

ContactlistGUI

Figure 3.6: Optional Composition

3.4.2.1 Explicit Optional Composition

The first approach of the optional composition is the explicit optional composition. In
order to solve the optional feature problem, we make methods and classes, belonging to
the interactions of the features, explicitly optional by using the keyword optional. When
this feature is in the compilation unit, the optional code will be compiled, otherwise
not. For this approach the intersection of a feature A and a feature B must be manually
marked by the optional keyword to strictly delimit the interaction code from the code of
the several features. Therefore, this approach is comparable to a preprocessor behavior,
introduced in Section 3.3, that just operates at functions and not at simple statements,
because code cluttered with preprocessor statements is difficult to read and maintain,
according to the Linux kernel coding style1. Another point is, that the programmer must
always have the feature model in mind, to place the optional tags with the accordant
feature to the appropriate place, because the order of composition plays an important
role.

1 import javax.swing.JList;
2 optional GUI public refines class Gui {
3 optional GUI public void createAndShowGui(){
4 Super().createAndShowGui();
5 Contacts contacts = new Contacts();
6 JList contactList = new JList(contacts.getContactList());
7 add("West",contactList);
8 this.repaint();
9 }
10 }

Listing 3.8: Class Gui from feature Contactlist - Explicit Optional Composition

1see /Documentation/SubmittingPatches in the Linux source

3.4. From Optional Weaving to Optional Composition 29

Let us come again to the example of the feature interaction between Gui and Contactlist.
The original class Gui from feature GUI is the same implementation as in Section 3.1
(see Listing 3.1). This class Gui is introduced, when the feature GUI is selected. The
refinement of this class Gui (see Listing 3.8) by the feature Contactlist is introduced,
when Contactlist is selected. The marking of this class by the optional keyword operates,
that this class is compiled, when the feature GUI is selected, otherwise this refinement
is ignored and not compiled.

The explicit composition is similar to the preprocessor approach, because the interac-
tions are framed by the optional keyword instead of preprocessor statement. Therefore,
we developed a more automatic method to realize the optional composition, which we
call implicit optional composition and describe in the next section.

3.4.2.2 Implicit Optional Composition

In this part, we introduce the implicit optional composition approach, which is in con-
trast to the explicit optional composition an automatic approach. It is characterized
by the ignorance of class or method refinements by the compiler, when the original
class, the one to refine, is not present. This means, that the code of the interaction
of two features is automatically left out when just one of the features is selected, and
the original class is absent, because the feature introducing this class is not selected.
So, the compiler decides, whether to include or exclude the class refinement. Thus, the
programmer does not have to be aware of the feature model, in contrast to the explicit
optional composition, because he does not have to specify the interacting feature, to
which the refined class belongs.

1 import javax.swing.JList;
2 public refines class Gui {
3 public void createAndShowGui(){
4 Super().createAndShowGui();
5 Contacts contacts = new Contacts();
6 JList contactList = new JList(contacts.getContactList());
7 add("West",contactList);
8 this.repaint();
9 }
10 }

Listing 3.9: Class Gui from feature Contactlist - Implicit Optional Composition

We again take the example of the interaction features Gui and Contactlist into con-
sideration (see Figure 3.6). The implementation of class Gui in feature GUI is the
same as well as in Listing 3.1 in Section 3.1. The implementation of the intersection
between GUI and Contactlist is just a normal refinement (see Listing 3.9), although
these features are optional. That is why the compiler decides, when GUI is within the
feature selection, to include the refinement of class Gui in the compilation, or when its
not selected the compiler leaves this refinement out.

30 3. Problem Statement

In this chapter, we explained the optional feature problem and introduced three ap-
proaches to solve this problem. We illustrated the approach of software derivatives, the
preprocessor approach and the optional composition approach with its two characteris-
tics. In Chapter 5 we take a closer look to these approaches within case studies and will
answer the question, whether the optional composition can solve the optional feature
problem or not and compare it to the other approaches. In the next chapter, we present
the compiler extensions for the explicit and implicit optional composition approaches.

4. Compiler Extension

In the previous chapter, we introduced the optional composition approach. Because
the evaluation of this approach is the major goal of this thesis and to make a realistic
evaluation in Chapter 6 with the case studies in Chapter 5, we need a tool to implement
the optional composition approach. Therefore, we extend a compiler, that supports
this approach. So, this chapter describes, which technical changes we had to make
the compiler, to realize the optional composition. Thus, we introduce the native FOP
Compiler from Becker [Bec10] in this chapter which we extended, and we present the
extensions we had to make for the explicit and implicit optional composition.

4.1 FOP Compiler

For the reason of not starting from scratch to implement a compiler, we built on an exis-
tent implementation. The FOP Compiler from Becker [Bec10] was implemented within
the JastAdd [SS07, Ekm06] compiler framework. The compiler works with Java and its
FOP extension Jak. We use Jak as FOP extension, so that we can use existent projects,
that we just extend. Another compiler build with the JastAdd compiler framework is
Fuji1 ([AKL+11]), developed at the university of Passau. Other compilers like Alge-
braic Hierarchical Equations for Application Design (AHEAD) or FeatureHouse use a
two-tier method for compilation, i.e. the FOP source code is composed into native
source code, which is then compiled by a standard compiler. Therefore, not all FOP
specific errors can be detected, so we decided to extend Becker’s compiler, because
this compiler leaves out the intermediate step, i.e. the program is compiled from the
FOP source code directly. In principal it does not matter if we use the Fuji compiler
or the compiler from Becker, because both use the JastAdd Compiler Framework and
implemented the AHEAD and FeatureHouse approach. But, we decided to use Becker’s
compiler, because he works in the same research group and is present for call backs.

This native FOP compiler combines the ideas of FeatureHouse and AHEAD. Let us
explain the construction of this compiler. In Figure 4.1, the scheme of this compiler is

1see http://www.fosd.de/fuji

http://www.fosd.de/fuji

32 4. Compiler Extension

Jak files
from
all

features

class
files

FOP Compiler

Scanner/
Parser

Feature
Selection

Transfor-
mation

Verifi-
cation

Back-
End

AST
feature
specific

AST

AST
of a

variant

equation / expression
file

(feature order and selection)

Figure 4.1: Scheme of the FOP Compiler [Bec10]

shown to illustrate the singular steps, that we will bring up briefly. The compiler scans
all features within the scanner component and then the parser generates an Abstract
Syntax Tree (AST) from all features of the project. An additional scan of the equation
or expression file, representing the order and the selection of the features, will be done
at the beginning of the feature selection part. The information from these files are used
to decide which parts of the AST can be left out or deleted, because of belonging to a
non-selected feature. These files are also used to determine the order of the composition
of the selected features. So a feature specific AST is handed over to the transformation
part.

In the transformation component the features are composed by using the concept of
superimposition of Feature Structure Trees (FSTs) (see Section 2.2.2). As a result the
AST of a variant is accomplished. This variant AST is then tested for semantic errors
in the verification component. Finally the variant AST is transformed into byte code
within the default back-end of the compiler framework.

Here, we introduced the FOP compiler, which we modified for the purposes of optional
composition. We start with the explanation of the explicit optional composition, be-
cause the implicit solution then is easier to understand. We need both solutions because
of the fact, that more than two features can interact with each other, but this is dis-
cussed later on in chapters Chapter 5 and Chapter 6. In the next section we describe
the extension of this compiler for the explicit optional composition.

4.2. Extension for Explicit Optional Composition 33

4.2 Extension for Explicit Optional Composition

In this part, we describe the necessary changes to provide the explicit optional compo-
sition. The goals of the optional composition are to eliminate derivative features and
hold the feature interaction inside one of the interacting features, but for all that the
feature interaction is encapsulated. So, just the necessary source code is compiled in
the compiler. This approach shall be simply integrated in existent source code and the
work flow.

4.2.1 Design

In this part, we specify the design of the compiler extension for the explicit optional
composition. We show in Figure 4.2 that the changes to the compiler take effect for the
explicit optional composition in the scanner and parser component. We introduce a new

Jak files
from
all

features

class
files

FOP Compiler

Scanner/
Parser

Feature
Selection

Transfor-
mation

Verifi-
cation

Back-
End

AST
feature
specific

AST

AST
of a

variant

equation / expression
file

(feature order and selection)

changes for
explicit optional

composition

Figure 4.2: FOP Compiler changes for explicit optional composition

keyword, optional, because the existent keywords are not usable to realize the optional
behavior. We use the optional keyword as preposition in combination with the feature
name to mark classes and methods being optional. For this reason, this approach is
comparable to the software derivative approach. Being not finer in granularity than the
methods level is more clearly on the code level according to the Linux Guidelines2 and
achieves the encapsulation of the feature interaction. For using the optional keyword,
we have to introduce it to the scanner component of the compiler. The scanner converts
the optional keyword with the feature name into a token during the lexical analysis, so
the scanner must be modified. Further, the new token is processed in the parser, where
the token of the optional statement is transferred to a node in the AST. This node is a
marker for the syntax branches in the AST. If the feature behind the optional keyword
is not selected, the node representing the optional statement will be deleted and their
children as well. But, if the feature is selected, the node with the optional statement is
deleted, but their children take the place of the optional node in the AST.

2see /Documentation/SubmittingPatches in the Linux source

34 4. Compiler Extension

4.2.2 Implementation

In this part, we explain the implementation details of the compiler extension for the
explicit optional composition. For the realization of the explicit optional composition,
we added the new optional keyword to the scanner. In Listing 4.1 this optional keyword
is introduced and a terminal node with the name is generated.

1 "optional" { return sym(Terminals.OPTIONAL); }

Listing 4.1: Excerpt from the Scanner file Keywords.flex

For the changes to the parser, we must define, where in the AST this optional nodes
can be placed. First, we made methods optional, because we have just cases within
our case studies, where the interaction is placed in methods. So, we created an AST
node representing the optional statement for methods. These AST nodes are generated
by the compiler framework and therefore, they must be described in a JastAdd spe-
cific grammar (see Listing 4.2). We extend the method declaration with the optional
keyword and the feature name, so we can fall back to the method declaration, when
interpreted the statement in front of the method declaration. Thus, we built a language
construction, consisting of the keyword optional followed by the name of the feature
concerning this code, followed by a native method declaration.

1 OptWeav_Stmt : BodyDecl ::= <Feature:String> MethodDecl;

Listing 4.2: AST additions for explicit optional composition

Then, the parser must be modified. Lines 1 - 4 of Listing 4.3 show the position of the
optional statement in the AST. The following lines describe the production rule for the
optional method declaration, where the keyword optional is followed by an identifier
and the method declaration.

1 BodyDecl class_member_declaration
2 = opt_method_declaration.o
3 {: return o; :}
4 ;
5
6 BodyDecl opt_method_declaration
7 = OPTIONAL IDENTIFIER method_declaration.m
8 {: return new OptWeav_Stmt(IDENTIFIER, m); :}
9 ;

Listing 4.3: Parser additions for explicit optional composition

The last step is the adaption of class Program, where the AST nodes are processed.
We distinguish between refine nodes and class nodes [Bec10]. Class nodes represent the
class in the AST and refine nodes represent the refinements within the AST. In line 10
of Listing 4.4, we extract the feature behind the optional keyword so, we can compare

4.2. Extension for Explicit Optional Composition 35

it to the given feature list and decide whether the method must be deleted or not. In
line 20 of Listing 4.4, we delete the optional statement from the AST and insert the
method declaration to the AST when the given feature was in the feature list (see lines
21 to 23, Listing 4.4)

1 public class Program extends ASTNode<ASTNode> implements Cloneable {
2 public void addRefinesStmts(ClassDecl originalclassdecl,

ReferenceType refinesNode) {
3 List<BodyDecl> refinesStmts = null;
4 List<BodyDecl> copyRefinesStmts = null;
5 /∗more code∗/
6 for (ASTNode child : refinesStmts){
7 if (child instanceof OptWeav_Stmt){
8 OptWeav_Stmt weave = (OptWeav_Stmt) child;
9 String feat = weave.value.toString();
10 boolean mustWeave=false;
11 for (String feature: featureList){
12 String[] args = feature.split(" [" + System.

getProperty(" f i l e . s epa ra to r ")+"] ");
13 if (args[args.length−1].equals(feat)){
14 mustWeave = true;
15 break;
16 }
17 }
18 int i = copyRefinesStmts.getIndexOfChild(child);
19 copyRefinesStmts.removeChild(i);
20 if (mustWeave){
21 copyRefinesStmts.insertChild(weave.getMethodDecl(),i

);
22 }
23 i = refinesNode.getIndexOfChild(copyRefinesStmts);
24 if (i>−1) refinesNode.removeChild(i);
25 ((Refine_Class) refinesNode).setBodyDeclList(

copyRefinesStmts);
26 }
27 }
28 for (ClassDecl decl : class_decl){
29 /∗ analogous to loop for refine statements∗/
30 }
31 return refinesNode;
32 }
33 /∗more functionality∗/
34 }

Listing 4.4: Class Program, sequence for explicit optional composition

In this section, we presented the extension of the compiler concerning the explicit op-
tional composition approach. But introducing a new keyword and the preprocessor
like behavior result in additional expense for programmers. Therefore, we introduce
the compiler extension for the implicit optional composition, that does without a new
keyword, in the next part.

36 4. Compiler Extension

4.3 Extension for Implicit Optional Composition

In this section, we show, how we changed the compiler to afford the implicit optional
composition. This approach can be seen as extension to the explicit optional composi-
tion, that is why the goals are the same as listed in Section 4.2. But, for this approach
the keyword is not necessary, because it is an automated approach, so the manual effort
is lower than with the explicit optional composition approach.

4.3.1 Design

Jak files
from
all

features

class
files

FOP Compiler

Scanner/
Parser

Feature
Selection

Transfor-
mation

Verifi-
cation

Back-
End

AST
feature
specific

AST

AST
of a

variant

equation / expression
file

(feature order and selection)

changes for
implicit optional

composition

Figure 4.3: FOP Compiler changes for implicit optional composition

Figure 4.3 illustrates that the changes take effect in the transformation component. So,
the scanner and parser are not modified. For FOP, the class refinement is composed
with the original class from the feature, which introduced this class. Therefore, it is
necessary, that this original class exists in the AST, otherwise this code cannot be
composed. But, to automate the optional composition we look up the AST for the
original class and when it is present, we compose the original class with the refinement,
otherwise we throw the refinement away.

4.3.2 Implementation

In contrast to the explicit version, where we introduced a keyword, we implement a
compiler switch optional to the compiler’s front end (Listing 4.5, line 24) for the implicit
optional composition approach. We use this switch to eliminate some error messages, so
refinements can be left out when the original class is missing without throwing an error.
This denotes, that the interactive code, embedded in one of the two interacting features,
can be left out, when just one of the features is selected. Further this interactive code
will be used when the second feature is selected, because the class to refine will exist
then.

Listing 4.6 shows the sequence of class Program where the transformations for the
implicit optional composition will be done. First of all, a checking of whether the
original class is present or missing will be done. When the original class is present, the
optional switch will not take effect. But when the original class is missing the optional
switch will throw the refinement away and leave it out of the compilation unit (see lines
9 - 10 and lines 20 - 21 of Listing 4.6).

4.3. Extension for Implicit Optional Composition 37

1 public class Frontend extends java.lang.Object {
2 public boolean process(String[] args, BytecodeReader reader,

JavaParser parser) {
3 program.initBytecodeReader(reader);
4 program.initJavaParser(parser);
5 initOptions();
6 processArgs(args);
7 /∗ process compiler switches ∗/
8 if(program.options().hasOption("−f e a tu rehouse ")){
9 System.out.println("FeatureHouse");
10 program.fstComposer();
11 }
12 else{
13 program.searchinASTforClassandRefinesStmt();
14 program.transformAST(program.options().hasOption("−op t i ona l "

));
15 }
16 /∗process errors...∗/
17 return true;
18 }
19 protected void initOptions() {
20 Options options = program.options();
21 options.initOptions();
22 /∗ several options added∗/
23 options.addKeyOption("−f e a tu rehouse ")
24 options.addKeyOption("−op t i ona l ");
25 }
26 /∗ more code ∗/
27 }

Listing 4.5: Front end with extension of compiler switch

38 4. Compiler Extension

1 public class Program extends ASTNode<ASTNode> implements Cloneable {
2 public void transformAST(boolean optional) {
3 boolean flag = false;
4 Refine_Class refClass=null;
5 for (Refine_Class ref : refines_stmt) {
6 /∗ check original class is present...∗/
7 if (!flag && optional && refClass!=null){
8 flag = optional;
9 CompilationUnit cu = (CompilationUnit) refClass.

getParent().getParent();
10 cu.setFromSource(false);
11 }
12 /∗ set error if !flag and !optional ∗/
13 }
14
15 for (Refine_Interface ref : refine_interfaces) {
16 /∗ check original interface is present...∗/
17 if (optional && !flag)
18 {
19 flag = optional;
20 CompilationUnit cu = (CompilationUnit) ref.getParent().

getParent();
21 cu.setFromSource(false);
22 }
23 /∗ set error if !flag and !optional ∗/
24 }
25 }
26 /∗more functionality∗/
27 }

Listing 4.6: Class Program, sequence for implicit optional composition

4.3. Extension for Implicit Optional Composition 39

In this chapter, we presented the details of the prototyping tool for the optional compo-
sition. We have shown our changes for the implicit and explicit optional composition,
so, we can do our case studies to evaluate whether the optional composition is a solution
for the optional feature problem or not. Therefore, the next chapter deals with the case
studies.

40 4. Compiler Extension

5. Case Study

In this chapter, two case studies are presented to compare the different approaches,
introduced in Chapter 3, for the implementation of possible solutions for the optional
feature problem. The implementations are done with the software derivatives, prepro-
cessor and optional composition. The two case studies are representative examples for
feature interactions and are suitable to compare advantages and disadvantages of the
different approaches. First of all, we introduce the expression problem as case study,
which is a simple example as usual and it demonstrates the problems well, in a small
area. Because the expression problem is more a generic example, a chat implementation
will be introduced afterwards as a more concrete and practical case. The different facets
of a chat are features for an application. Former case studies have shown the complexity
of this domain [Sch09]. We will see, that these features also may interact, which are
resolved with the different approaches as well. At the end of each case study, we discuss
in short the advantages and disadvantages of solving the optional feature problem. In
the following Chapter 6, we use the case studies as a basis to abstract the advantages
and disadvantages of the approaches in general and try to make a recommendation for
their usage.

5.1 Expression Problem

The expression problem is a well-known problem [Rey94, KFF98, Coo90] in program-
ming languages to introduce new methods and data types in a type safe manner. The
expression problem is described as fundamental problem of variability in Software Prod-
uct Lines (SPLs)1.

Here, we introduce the expression problem, which is a general concept in programming
tasks to compose complex expressions out of smaller and less complex expressions. We
focus on mathematical problems as an obvious example, where a complex equation is
composed out of smaller expressions like a couple of additions and subtractions. Each

1see http://www.cs.utexas.edu/˜schwartz/ATS/EPL/index.html

http://www.cs.utexas.edu/~schwartz/ATS/EPL/index.html

42 5. Case Study

Expression

Base

Core Number

Plus Neg Eval

Figure 5.1: Feature model of SPL expression problem

of these operations are expressions implemented as features. For a business variation of
a calculator just a small subset of operations is required, whereas a scientific variation
requires a lot more operations and consequently more features. Figure 5.1 shows an
example of a feature model of the expression problem applied as base for the case
study. We focus on the binary mathematical operation addition (Plus), the unary
mathematical operation negation (Neg), the evaluation operator (Eval) and a print
statement to present the expression (Print). These features are optional ones and
sufficient to demonstrate the interaction problems and the methods to solve them,
because the implementation of other operators will be straightforward. Indeed, beside
these operators we also need terminal symbols for the operations, so additionally we
introduce a feature Number. The main application with some test cases is implemented
in a feature called Core. Core and Number are mandatory features.

Core Number Print Eval Plus Neg

Core - - - - - -
Number x - - - - -
Print x x - - - -
Eval x x - - - -
Plus x - x x - -
Neg x - x x - -

Table 5.1: Feature interactions of SPL expression problem

The features Plus and Neg must be created by the base application, therefore, they
interact with the Core feature. The features Print and Eval add a print method
and an evaluation method to the features Number, Plus and Neg. And because these
methods must be called, the features Print and Eval interact with the Core. Table 5.1
summarizes all interactions of the SPL. These interactions will be resolved with the
approaches introduced in the previous chapters.

We use the implementation of the derivative approach from Batory2, the implemen-
tation of the preprocessor approach from Kästner and our own implementation of the
optional composition approach. In the next section, we start with the software deriva-
tive approach.

2see http://www.cs.utexas.edu/˜schwartz/ATS/EPL/index.html

http://www.cs.utexas.edu/~schwartz/ATS/EPL/index.html

5.1. Expression Problem 43

5.1.1 Software Derivatives

In this section, we introduce the software derivative implementation of the expression
problem. This SPL contains five features: Print, Eval, Num, Plus and Neg. These
features are structuring nodes in the feature model in Figure 5.2. The source code is
implemented within the software derivatives in the branch of the All feature. These
derivatives cannot be selected by the user, they are automatically chosen, when the
feature requires an accordant derivative. The names of the derivatives are abbreviated

Abbreviation Derivative of

CK Core and Kore
CE Core and Eval
CP Core and Print
BK BaseNumber and Kore
BE BaseNumber and Eval
BP BaseNumber and Print
NK Neg and Kore
NE Neg and Eval
NP Neg and Print
PK Plus and Kore
PE Plus and Eval
PP Plus and Print

Table 5.2: Abbreviations from the feature model

(Figure 5.2), so the abbreviations and the acceptations of them are listed in Table 5.2.
All features from the left branch with the nodes Ops and Str interact with any feature
of the middle branch with the nodes Structs and Op. Batory dissolved all interactions
into the derivatives, so there is no feature implementing source code except the deriva-
tive features. For each feature the depending functionality has to be implemented in
an own derivative. The Core feature has a core functionality and is directly interacting
with Plus and Eval. Because of the subdivision into derivatives, a separate implemen-
tation for core is required, which is named Kore to avoid name clashes, for all these
possible interactions. Just for our small expression example with just two expressions,
12 derivatives had to be implemented.

Implementation

The derivative CK implements the core functionality, i.e. the base test class containing
the main method. The derivative CE contains the evaluation and the derivative CP
includes the print functionality for the core feature. Analog to this the derivatives
BK, BE, BP, NK, NE, NP, PK, PE and PP implement core, evaluation and printing
functionalities to base number (Num), negation (Neg) and addition (Plus), respectively.

These explained derivative features has been implemented within five classes: Test,
Num, Exp, Neg and Plus. The roles which these classes play in the several features are

44 5. Case Study

R
o
o
t

to
p

E
va

l
N

e
g

N
K

N
E

N
P

⇔
N

e
g

N
K

⇔
P

lu
s

⇔
∧

E
va

l
C

E

⇔
∧

P
rin

t
C

P

∧
⇔

N
e
g

E
va

l

∧
⇔

P
lu

s

E
va

l

∧
⇔

N
e
g

P
rin

t

∧
⇔

P
lu

s

P
rin

t

F
igu

re
5.2:

F
eatu

re
m

o
d
el

of
S
P

L
ex

p
ression

p
rob

lem
-

S
oftw

are
D

erivatives

5.1. Expression Problem 45

listed in the collaboration model in Figure 5.3. Test represents the main class, Num
represents the base number, Exp stands for expression, Neg implements the negation
and Plus implements the addition.

P
lu
s

E
xp

T
es
t

N
um

N
eg

CK

CE

CP

BK

BE

BP

NK

NE

NP

PK

PE

PP

Figure 5.3: Collaboration model of SPL expression problem - Software Derivatives

This implementation of the SPL has just feature interactions of first order, i.e. two
features interacting with each other. Thus, we introduce one example to illustrate the
implementation of this approach. Let us take a look at the features Core and Print,
i.e. we take the derivatives CK and CP into consideration. CK contains the interface
Exp and the class Test. Exp is the interface for all expressions that appear in this SPL.
Within this derivative this interface is introduced without any abstract methods (see
Listing 5.1).

The class Test from CK (see Listing 5.2) adds a class declaration and introduces class
variables and the empty main method declaration. The derivative CP also contains the
interface Exp and the class Test. So, it refines the interface Exp by adding the abstract
toString method (see Listing 5.3). CP changes the class Test by refining the main
method by adding a call of the printtest() method and adding the printtest() method
(see Listing 5.4).

Evaluation

An advantage of this approach is that the feature interactions are dissolved without
redundancy. Furthermore the Feature-Oriented Programming (FOP) is usable for this
approach without any changes. For this SPL five features are mapped into twelve soft-
ware derivatives, which is manageable for the introduced SPL. But to come back to
the initial variation of the business calculator, three additional expressions (subtrac-
tion, multiplication and division) might be added. Per expression three derivatives are
generated, because any expression has to be evaluated printed and implemented to the
core. So nine additional derivatives would be necessary to represent this features. Be-
cause a scientific variant would have more expressions, the number of derivatives would

46 5. Case Study

1 layer CK;
2 interface Exp {
3 }

Listing 5.1: Interface Exp, feature Core (CK) - Software Derivatives

1 layer CK;
2 class Test {
3 static Exp e;
4 public static void main(String args[]) {
5 }
6 }

Listing 5.2: Class Test, Feature Core (CK) - Software Derivatives

1 layer CP;
2 refines interface Exp {
3 String toString();
4 }

Listing 5.3: Interface Exp, Feature Print (CP) - Software Derivatives

1 layer CP;
2 refines class Test {
3 public static void main(String args[]) {
4 Test.printtest();
5 Super(String[]).main(args);
6 }
7
8 static void printtest(){
9 }
10 }

Listing 5.4: Class Test, Feature Print (CP) - Software Derivatives

5.1. Expression Problem 47

increase dramatically. Here, the feature model (see Figure 5.2) is confusing, because
of the derivative features and the structural features, but for presentation and discus-
sions they can be hidden. Nevertheless, the derivatives have to be implemented and
maintained. A more detailed discussion is done in Chapter 6.

In this part, we described the implementation of the software derivative approach for
the expression problem SPL. In the next section, we introduce the implementation of
preprocessor approach for this SPL.

5.1.2 Preprocessor approach

In this section, we present a method to resolve feature interactions with a preprocessor.
In some high level programming languages like C++ and C a preprocessor step is a
common and necessary step during compilation, thus other languages like Java does not
require a preprocessor, but it can be used as an extension to the language. In languages
where the preprocessor is already available, it would be an obvious way to resolve
feature interactions and to assure that unnecessary parts of the source code will not be
compiled into the resulting executable. The preprocessor approach uses preprocessor
statements to mark the features, as we explained in Section 2.2.1 and Section 3.3.

Implementation

As example for the preprocessor implementation, we use the same feature model of the
expression problem case study as shown in Figure 5.1. A code detail of the implementa-
tion of the class Test is shown in listing Listing 5.5, while the detail of implementation
of the class Plus is shown in listing Listing 5.6. The Plus feature needs an evaluation,
a printing and a call in the core. So, it interacts with the three features Eval, Print
and Core. The implementation of the interaction with Eval and Print is shown in lines
21-28 and lines 42-50 of Listing 5.5 and in Listing 5.6 We have shaded the several
features to not losing the track of the features.

Evaluation

An advantage of the preprocessor approach is, that a preprocessor is a well-known and
accepted programming tool and is an inherent part of the compilation process in some
programming languages. The functionality of a preprocessor can also be integrated in
languages where preprocessors are not inherent like Java, where we were using an exten-
sion. So, existent systems can be extended with the preprocessor approach. Listing 5.5
shows a disadvantage of the preprocessor approach: The interactive code is tangled in
this class. So, the Separation of Concerns (SoC), the major goal of SPL implemen-
tations, is not achieved. The features are not modularized, because they are marked
with preprocessor statements in the main class. Colors may be used to support the
interpretation of the source code, but the higher the number of expressions, the more
preprocessor statements and consequently macros are needed. Furthermore, the pre-
processor macros can not overlap (see line 21-28 Listing 5.5), which results in extreme
cases, when more than two features interact. All these problems are not fatal for this
special case, but the class Test becomes more and more confused, if more example code

48 5. Case Study

1 class Test {
2 static Exp e;
3 public static void main(String args[]){
4 #ifdef PRINT
5 Test.printtest();
6 #endif PRINT
7 #ifdef EVAL
8 Test.evaltest();
9 #endif EVAL
10 }
11 #ifdef EVAL
12 static void evaltest(){
13 #ifdef NUM
14 e=new Num(1);
15 System.out.println(" eva l (1) = " + e.eval());
16 #endif NUM
17 #ifdef NEG
18 e=new Neg(new Num(1));
19 System.out.println(" eva l (Neg (1)) = " + e.eval());
20 #endif NEG
21 #ifdef PLUS
22 e=new Plus(new Num(1),new Num(2));
23 System.out.println(" eva l (1+2)=" + e.eval());
24 #ifdef NEG
25 e=new Neg(new Plus(new Num(1),new Num(2)));
26 System.out.println(" eva l (−(1+2))=" + e.eval());
27 #endif NEG
28 #endif PLUS
29 }
30 #endif EVAL
31 #ifdef PRINT
32 static void printtest(){
33 #ifdef NUM
34 e=new Num(3);
35 System.out.println(" p r in t (3) = " + e);
36 #endif NUM
37 #ifdef NEG
38 e=new Neg(new Num(5));
39 System.out.println(" p r in t (Neg (5)) = " + e);
40 #endif NEG
41 #ifdef PLUS
42 e=new Plus(new Num(5),new Num(7));
43 System.out.println(" p r in t (5+7) = " + e);
44 #endif PLUS
45 }
46 #endif PRINT
47 }

Listing 5.5: Class Test - Preprocessor approach

5.1. Expression Problem 49

1 package tmp;
2 #ifdef PLUS
3 class Plus implements Exp {
4 Exp x;
5 Exp y;
6 Plus(Exp x, Exp y){
7 this.x=x;
8 this.y=y;
9 }
10 #ifdef EVAL
11 public int eval(){
12 return x.eval() + y.eval();
13 }
14 #endif EVAL
15 #ifdef PRINT
16 public String toString(){
17 return x + " + " + y;
18 }
19 #endif PRINT
20 }
21 #endif PLUS

Listing 5.6: Class Plus - Preprocessor approach

will be added. We discuss the advantages and disadvantages of this approach in more
detail in Chapter 6 during comparison with the other approaches.

In this part, we introduced the implementation of the preprocessor approach for the
case study of the expression problem and in the next section, we show the approach of
the optional composition for this case study.

5.1.3 Optional Composition

In this section, we introduce the implementation of the optional composition approach
for the case study of the expression problem. As we distinguished in previous chapters
between explicit and implicit optional composition, we focus in this implementation
on the implicit optional composition. But in some configurations we need the explicit
version for implementation details, so we use a combination of the implicit and ex-
plicit optional composition. We use this hybrid approach, because the explicit optional
composition is similar to the preprocessor approach and the implicit approach cannot
dissolve all interactions. For example, an interaction between two optional features and
a mandatory feature cannot be realized with the implicit approach, because the classes
of the mandatory feature will always exist, and so the refinements cannot be ignored,
when one of the optional features is selected. Therefore we use the hybrid approach for
the case study.

50 5. Case Study

Implementation

Again we are implementing the expression problem with the feature model shown in
Figure 5.1 The collaboration model in Figure 5.4 shows the roles the classes play in

P
lu
s

E
xp

T
es
t

N
um

N
eg

Core

Number

Eval

Print

Plus

Neg

Figure 5.4: Collaboration model of SPL epression problem - Optional Composition

the collaborations (features) as it was explained in Section 2.2.2. As we stated in the
section before, any mathematical expression has to be evaluated, printed and used in
the main program. Therefore we show the implementation of the Plus feature and
its interactions with Print, Eval and Core. As shown in Listing 5.7, the class Plus
of feature Plus implements the constructor for Plus and class variables. The feature
Print refines the class Plus if feature Plus is selected, by adding a toString() method
returning the string of the expression (see Listing 5.8) to the code of base source code
of the class Plus in Listing 5.7. Listing 5.9 shows, that the feature Eval refines the
class Plus if feature Plus is selected, by adding an eval() method returning the result
of the addition. Listing 5.10 shows the integration of the Plus feature into the main
program, if feature Print and/or feature Eval was selected. In the method printtest()
(lines 3-7 of Listing 5.10) the first call is the Super()- call, which calls the previous
version of this method in order of the composition of the features. Then, an object of
Plus is generated and printed to the console output. The method eval() in lines 8-12
of Listing 5.10 also contains a Super()- call to bind the other versions of this method
into the variant during compilation. Here, an object of Plus is generated as well and
the result of its eval() method is printed. The optional tags in line 3 and 8 are needed,
because this class is introduced by feature Core and neither by Print nor by Eval so
this methods would be compiled anyway if the optional tag was left out, no matter
what features are selected except Plus.

Now, let us come to a problem which occurred during the straightforward implementa-
tion of this approach. For this case study this approach could not be compiled, because
the order of composition hindered it. To explain this behavior, we list the order of
composition: Core, Num, Print, Eval, Plus, Neg. And here is the trap: Print and Eval
refine Num, Plus and Neg, but when Print comes along Plus and Neg, it does not refine
them, because they do not exist at this moment of compilation. So, we decided to
reorder and that was the new order: Core, Num, Plus, Neg, Print and Eval. But this
is not the whole truth - it clashes during compilation again. The clash comes from the
problem, that Num, Plus and Neg refine the printtest() method in the main class Test,
which is introduced not till the refinement of Print takes effect. For the eval() method

5.1. Expression Problem 51

1 layer Plus;
2 public class Plus implements Exp{
3 Exp x;
4 Exp y;
5 Plus (Exp x, Exp y){
6 this.x = x;
7 this.y = y;
8 }

Listing 5.7: Class Plus (feature Plus) - Optional Composition

1 layer Print;
2 public refines class Plus {
3 public String toString(){
4 return x + " + " + y;
5 }
6 }

Listing 5.8: Class Plus (feature Print) - Optional Composition

1 layer Eval;
2 public refines class Plus {
3 public int eval(){
4 return x.eval() + y.eval();
5 }
6 }

Listing 5.9: Class Plus (feature Eval) - Optional Composition

1 layer Plus;
2 public refines class Test {
3 optional Print static void printtest(){
4 Super().printtest();
5 e = new Plus(new Num(5), new Num(7));
6 System.out.println(" p r in t (5+7) = " + e);
7 }
8 optional Eval static void evaltest(){
9 Super().evaltest();
10 e = new Plus(new Num(1), new Num(2));
11 System.out.println(" eva l (1+2)="+ e.eval());
12 }
13 }

Listing 5.10: Class Test (eature Plus) - Optional Composition

52 5. Case Study

in the class Test, the problem is analog. We found a workaround for this case study,
which can not be generalized, but works for this special case. The feature Num is a
mandatory feature, Print is optional. So, we shifted the introduction of the printtest()
method from the Print feature to the Num feature. We shifted the introducing eval()
method from Eval to Num as well. So the case study was able to compile, which is
important for the discussion later on in Chapter 6.

Evaluation

An advantage of the optional composition is that it works implicitly, i.e. the refinements
are ignored, if the original class does not exist. This is an advantage, because the
programmer does not have to have the feature model in mind during programming.
But this leads also to a disadvantage. We had to switch off the error propagation
to realize this implicit working, so debugging and maintaining might be hard even
impossible, when more expressions are added to this SPL, because the compiler cannot
detect, whether this refinement should be ignored or the base class is missing based on
an error. So, the explicit version of the optional composition can be seen advantageous
with its optional keyword. But here a disadvantage can be seen as well: The annotations
with the optional keyword on the method layer are similar to the #ifdef statements of
the preprocessor, and so the source code can also become confusing, if the SPL of this
case study would be extended with additional mathematical operations. We discuss the
advantages and disadvantages of this approach more detailed in Chapter 6.

Now, having presented the case study of the expression problem with the three ap-
proaches as solutions to the optional feature problem, we saw that the approach of
software derivatives is the most expensive one with respect to the manual effort of re-
solving and encapsulating the feature interactions, but it separates the features from
their interactions considerably. The preprocessor approach “pollutes” the source code
with the preprocessor annotations and the optional composition approach did just work
with a trick for this case study. Because of this awareness and the fact, that this case
study was more or less a generic example, we will present a chat implementation as a
case study, in the next section.

5.2. Chat SPL 53

5.2 Chat SPL

In this part, we introduce the case study with the implementation of a chat SPL. There
exist a lot of chat programs, like pidgin, trillian, skype, on several platforms. All of
them have in common, that they provide a contact list and the user can chat with the
people from this list. They use a protocol for the transfer of the messages, the messages
can be colored and be decorated with emoticons. We adopted the chat SPL from
Schulze [Sch09] after the domain analysis. We figured out the most requirements for
the messages, the message history, the format of a message, the encryption of a message
and the support of message protocols. Further requirements are authentication, logging,
a secure connection and a selectable user interface. Logging achieves the crosscutting
concern and leads to higher order feature interactions. We summarized the features in
a feature model in Figure 5.5.

Chat

Connection

SecureCon Messages

ProtocollSupport

IRC

MsgHist FormattedMsg Encryption

Auth

Accounting

Contactlist

Logging UI

GUI Console

⇒FormattedMsg GUI

Figure 5.5: Feature model chat SPL similar to [Sch09]

The feature Chat represents the base application, which contains the client and server
architecture. The implementation of the connection is held by the mandatory feature
Connection. This connection can be secured with the optional feature called Secure-
Con. The mandatory feature Messages contains the text message implementation which
can be extended by four optional features. The structural feature ProtocolSupport has
just the feature IRC which stands for the chat protocol. Other alternative protocols
like HTTP or FTP would be possible, but for the discussion of the principle feature
interaction one protocol is sufficient. Another optional feature is the message history
(MsgHist), which writes outgoing and incoming messages to a history file. Additionally,
we have a feature to change the message format (FormattedMsg), so the user can change
the color of the text. To secure the message transfer, some encryption would be neces-
sary. Therefore, we added an optional Encryption feature. The last features belong to
the branch of the node Connection and implement the authentication. The Contactlist
feature contains the contacts and the UserProfiles feature implements the authentica-
tion of the user. Because a chat application is a distributed application and we have a
lot of features manipulating the base program, we need some debugging mechanism to

54 5. Case Study

C
h
at

C
on

n
ec

ti
on

S
ec

u
re

C
on

M
sg

H
is

t

M
es

sa
ge

s

C
on

so
le

G
U

I

IR
C

C
on

ta
ct

li
st

F
or

m
at

te
d
M

sg

U
se

rP
ro

fi
le

s

E
n
cr

y
p
ti

on

L
og

gi
n
g

Chat - - - - - - - - - - - - -
Connection - - - - - - - - - - - -
SecureCon x - - - - - - - - - - -
MsgHist x - - - - - - - - - -
Messages - - - - - - - - -
Console x - - - - - - - -
GUI x - - - - - - -
IRC x - - - - - -
Contactlist x x - - - - -
FormattedMsg x - - - -
UserProfiles x x x x - - -
Encryption x© x© x© x© x© x© x© - -
Logging x x x x x x x x x x x x -

Table 5.3: Feature interactions of chat SPL

monitor the different stages of the program during processing. So, the optional feature
Logging adds a console output to every method of any feature and therefore interacts
with all features. The right branch contains the user interface, which is separated
into two alternative features: the feature GUI is an implementation for the Graphical
User Interface (GUI) and the feature Console for a console variant. Most interactions
are between the features representing the user interface and the other features. We
summarized the feature interactions in Table 5.3. The “x” in the table represents the
interactions between two features and the “ x©” implies interactions between three fea-
tures. In our case the third feature is the Logging. The feature SecureCon interacts
with the Chat feature (the base application), because the Client and Server class must
implement the Secure Sockets Layer (SSL) protocol to guarantee the secure connection
between the clients and the server. The MsgHist feature also interacts with the base
application, because the messages are logged from the server and the client. The user
interface features interact with the base feature as well, because they must be created
by the application. The Internet Relay Chat (IRC) protocol must be implemented to
the client and server, so that the feature IRC also interacts with the base feature Chat.
The feature Contactlist interacts with both user interface features, GUI and Console,
because the contacts have to be shown to the user. The feature FormattedMsg interacts
just with GUI, because it colors the text messages, which is not possible in the console
variant. The authentication is done by the feature UserProfiles. The user must log
in to the server, so UserProfiles interact with Chat, the connection must be activated,
so this feature interacts with the Connection feature. UserProfiles interact with the

5.2. Chat SPL 55

user interface features as well, thus, the user can enter the user name and password
for authentication. Now, let us come to the Encryption feature, which has all the in-
teractions between three features. The third feature of this combination is always the
Logging feature. Messages have to be encrypted and decrypted, so it is obvious, that
Messages, FormattedMsg and UserProfiles interact with the Encryption. For display-
ing the messages to the user, the user interfaces need the opportunity to decrypt the
text, and so they are also interacting with Encryption. As we already said, the Logging
feature interacts with all features, for debugging purposes.

To dissolve the feature interactions we use the same approaches as in the first case
study (see Section 5.1). Here we introduced the principle structure of the chat and the
functional range, that each feature represents. In the following section, we describe the
implementation of the feature interactions by the approach of software derivatives.

5.2.1 Software Derivatives

In this part we describe the implementation of the approach of software derivatives
for the chat case study. The approach of software derivatives dissolves the feature
interactions from the features into derivative features (see Section 3.2).

Implementation

As we have already seen in the expression problem case study (Section 5.1.1), the feature
model for the software derivatives is more complex than for the other approaches. We
already said, that the derivative features can be hidden, but this does not change
the need of implementing them. We have dissolved the interactions into 28 derivatives
shown in the feature model in Figure 5.6. Because we have not only feature interactions
of two features like in the expression problem case study, we divided the branch of the
derivatives in the feature model into two branches. One branch for derivatives of two
interacting features and the other branch for the derivatives of three interacting features.
In this model we count 22 interactions with two features and 7 interactions with three

features. Figure 5.7 shows the collaboration model of the software derivative version of
this chat. We see that 15 classes play 62 roles in 42 features.

Now, let us introduce an example to illustrate a feature interaction of first and second
order. We take a look at the features GUI (as one representative of a user interface), En-
cryption and Logging. When a chat has an encryption, the message must be encrypted
when send from the input of the GUI to the client and decrypted when displayed to
the user in the GUI. We dissolved this interaction in the GUI Enc derivative feature.
This derivative contains the changes to the class Gui (see Listing 5.11). Listing 5.12
shows the interaction between the GUI and the Logging feature. To any method of
the class Gui we add a status message, which is printed at the console output. The
derivative Log Gui Enc contains the interaction of all three features: GUI, Encryption
and Logging. We added a console output to the newChatLine() method of class Gui,
because the message is encrypted at this moment (see Listing 5.13).

56 5. Case Study

C
h
a
t

C
o
re

C
o
n
n
e
c
tio

n

C
o
n
C

o
re

S
e
c
u
re

C
o
n

M
e
s
s
a
g
e
s

M
s
g
C

o
re

P
ro

to
c
o
llS

u
p
p
o
rt

IR
C

M
s
g
H

is
t

F
o
rm

a
tte

d
M

s
g

E
n
c
ryp

tio
n

A
u
th

A
c
c
o
u
n
tin

g

C
o
n
ta

c
tlis

t

L
o
g
g
in

g
U

I

G
U

I
C

o
n
s
o
le

∧
⇔

E
n
c
ryp

tio
n

G
U

I
G

U
I_

E
n
c

∧
⇔

E
n
c
ryp

tio
n

M
s
g
H

is
t

M
s
g
H

is
t_

E
n
c

∧
⇔

E
n
c
ryp

tio
n

C
o
n
s
o
le

C

o
n
s
o
le

_
E

n
c

∧
⇔

E
n
c
ryp

tio
n

IR
C

IR

C
_
E

n
c

∧
⇔

E
n
c
ryp

tio
n

F
o
rm

a
tte

d
M

s
g

F
o
rm

a
tte

d
M

s
g
_
E

n
c

∧
⇔

E
n
c
ryp

tio
n

U
s
e
rP

ro
file

s

U
s
e
rP

ro
file

s
_
E

n
c

∧
⇔

E
n
c
ryp

tio
n

M
s
g
C

o
re

M

s
g
C

o
re

_
E

n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

G
U

I
L
o
g
_
G

U
I_

E
n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

M
s
g
H

is
t

L
o
g
_
M

s
g
H

is
t_

E
n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

M
s
g
C

o
re

L
o
g
_
M

s
g
C

o
re

_
E

n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

C
o
n
s
o
le

L
o
g
_
C

o
n
s
o
le

_
E

n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

IR
C

L
o
g
_
IR

C
_
E

n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

F
o
rm

a
tte

d
M

s
g

L
o
g
_
F

o
rm

a
tte

d
M

s
g
_
E

n
c

∧
∧

⇔
L
o
g
g
in

g

E
n
c
ryp

tio
n

U
s
e
rP

ro
file

s

L
o
g
_
U

s
e
rP

ro
file

s
_
E

n
c

∧
⇔

C
o
n
s
o
le

C

o
n
ta

c
tlis

t
C

o
n
s
o
le

_
C

o
n
ta

c
tlis

t

∧
⇔

C
o
n
s
o
le

U

s
e
rP

ro
file

s

∧
⇔

G
U

I
C

o
n
ta

c
tlis

t
G

U
I_

C
o
n
ta

c
tlis

t

∧
⇔

G
U

I
U

s
e
rP

ro
file

s

∧
⇔

G
U

I
F

o
rm

a
tte

d
M

s
g

G
U

I_
F

o
rm

a
tte

d
M

s
g

∧
⇔

L
o
g
g
in

g

S
e
c
u
re

C
o
n

L
o
g
_
S

e
c
u
re

C
o
n

∧
⇔

L
o
g
g
in

g

M
s
g
H

is
t

L
o
g
_
M

s
g
H

is
t

∧
⇔

L
o
g
g
in

g

C
o
n
s
o
le

L
o
g
_
C

o
n
s
o
le

∧
⇔

L
o
g
g
in

g

G
U

I
L
o
g
_
G

U
I

∧
⇔

L
o
g
g
in

g

IR
C

L
o
g
_
IR

C

∧
⇔

L
o
g
g
in

g

C
o
n
ta

c
tlis

t
L
o
g
_
C

o
n
ta

c
tlis

t

∧
⇔

L
o
g
g
in

g

F
o
rm

a
tte

d
M

s
g

L
o
g
_
F

o
rm

a
tte

d
M

s
g

∧
⇔

L
o
g
g
in

g

U
s
e
rP

ro
file

s

L
o
g
_
U

s
e
rP

ro
file

s

∧
⇔

L
o
g
g
in

g

E
n
c
ryp

tio
n

L
o
g
_
E

n
c

D
e
riva

tive
s

T
w

o
F

e
a
tu

re
D

e
riva

tive
s

U
I_

D
e
riva

tive
s

C
o
n
s
o
le

_
C

o
n
ta

c
tlis

t
C

o
n
s
o
le

_
U

s
e
rP

ro
file

s
G

U
I_

C
o
n
ta

c
tlis

t
G

U
I_

F
o
rm

a
tte

d
M

s
g

G
U

I_
U

s
e
rP

ro
file

s

E
n
c
ryp

tio
n
D

e
riva

tive
s

C
o
n
s
o
le

_
E

n
c

G
U

I_
E

n
c

M
s
g
H

is
t_

E
n
c

IR
C

_
E

n
c

F
o
rm

a
tte

d
M

s
g
_
E

n
c

U
s
e
rP

ro
file

s
_
E

n
c

M
s
g
C

o
re

_
E

n
c

L
o
g
g
in

g
D

e
riva

tive
s

L
o
g
_
M

s
g
H

is
t

L
o
g
_
G

U
I

L
o
g
_
C

o
n
s
o
le

L
o
g
_
IR

C
L
o
g
_
F

o
rm

a
tte

d
M

s
g

L
o
g
_
U

s
e
rP

ro
file

s
L
o
g
_
S

e
c
u
re

C
o
n

L
o
g
_
C

o
n
ta

c
tlis

t
L
o
g
_
E

n
c

T
h
re

e
F

e
a
tu

re
D

e
riva

tive
s

L
o
g
_
M

s
g
H

is
t_

E
n
c

L
o
g
_
G

U
I_

E
n
c

L
o
g
_
C

o
n
s
o
le

_
E

n
c

L
o
g
_
IR

C
_
E

n
c

L
o
g
_
F

o
rm

a
tte

d
M

s
g
_
E

n
c

L
o
g
_
U

s
e
rP

ro
file

s
_
E

n
c

L
o
g
_
M

s
g
C

o
re

_
E

n
c

L
o
g
_
M

s
g

C
o

re

∧
⇔

Lo
g

g
in

g
 M

sg
C

o
re Lo

g
_M

sg
C

o
re

F
igu

re
5.6:

F
eatu

re
m

o
d
el

of
ch

at
-

S
oftw

are
D

erivatives

5.2. Chat SPL 57

C
lie
n
t

A
u
th
M
e
ss
a
g
e

C
h
a
tL
in
e
Li
st
e
n
e
r

C
o
n
n
e
ct
io
n

C
o
n
so
le

C
o
n
ta
ct
s

Core

ConCore

Console

ContactList

Encryption

Fo
rm

a
tt
e
d
Te
x
tM
e
ss
a
g
e

U
se
rP
ro
fi
le
s

R
e
v
e
rs
e

R
o
t1
3

S
e
rv
e
r

M
sg
Lo
g
g
e
r

Te
x
tM
e
ss
a
g
e

G
u
i

E
n
cr
y
p
ti
o
n

FormattedMsg

GUI
IRC

MsgCore
SecureCon

MsgHist

UserProfiles

Console_Contactlist

Console_Enc

Log_MsgCore_Enc

Log_Console

Log_Contactlist

Log_FormattedMsg_Enc

Log_GUI_Enc

Log_IRC_Enc

Log_MsgHist_Enc

Log_UserProfiles_Enc

Log_Console_Enc

Log_UserProfiles

Log_MsgHist

Log_IRC

Log_GUI

MsgCore_Enc

MsgHist_Enc

GUI_UserProfiles

Log_MsgCore

GUI_FormattedMsg

IRC_Enc

Log_Enc

Log_SecureCon

Log_FormattedMsg

UserProfiles_Enc

GUI_Enc

GUI_Contactlist

FormattedMsg_Enc

Logging

Console_UserProfiles

Figure 5.7: Collaboration model of chat - Software Derivatives

58 5. Case Study

1 layer derGUI_Enc;
2 refines class Gui{
3 public void newChatLine(TextMessage tm) {
4 //encrypt/decrypt with rot13 and reverse
5 tm.setContent(tm.getContent());
6 Super(TextMessage).newChatLine(tm);
7 }
8 }

Listing 5.11: Class Gui (Derivative GUI/Encryption) - Software Derivatives

1 layer derLog_GUI;
2 refines class Gui{
3 refines Gui(String title, Client client){
4 System.out.println("Gui c rea ted ");
5 }
6 public void createAndShowGui(){
7 System.out.println("Gui . createAndShowGui () ");
8 Super().createAndShowGui();
9 this.repaint();
10 }
11 public void newChatLine(TextMessage tm) {
12 System.out.println("Gui . newChatLine (TextMessage tm) ");
13 Super(TextMessage).newChatLine(tm);
14 }
15 public void actionPerformed(ActionEvent evt) {
16 System.out.println("Gui . act ionPerformed (ActionEvent evt) ");
17 Super(ActionEvent).actionPerformed(evt);
18 }
19 }

Listing 5.12: Class Gui (Derivative GUI/Logging) - Software Derivatives

1 layer derLog_GUI_Enc;
2 public refines class Gui {
3 public void newChatLine(TextMessage tm) {
4 System.out.println("GUI : new cha t l i n e with encrypted message");
5 Super(TextMessage).newChatLine(tm);
6 }
7 }

Listing 5.13: Class Gui (Derivative GUI/Logging/Encryption) - Software Derivatives

5.2. Chat SPL 59

Evaluation

The feature model of this approach displays the manual effort of dissolving the feature
interactions. The feature model increases from original 13 implementing features up
to 42 features. This is more than a triplication of the number of features. Here the
manual effort for a clear decomposition is quite high compared to the advantage of
encapsulation of the feature interactions.

Here, we presented the chat case study for the part of software derivatives and in the
next part we introduce the preprocessor approach for this case study.

60 5. Case Study

5.2.2 Preprocessor Approach

In this section we present the implementation of the chat case study with the prepro-
cessor approach. We saw in Section 5.1.2 that the usage of preprocessor statements
leads to confusing source code, when these statements are applied to single statements.
Therefore, we decided to use the preprocessor in combination with the FOP suggested
by Kästner [KA08] and described in Section 3.3. So, we use the preprocessor statements
to leave out methods and classes, but not for annotating fine granular statements. Thus,
this approach becomes comparable to the other approaches.

Implementation

For the implementation, we use the feature model introduced in Section 5.2 and shown
in Figure 5.5. We implemented the chat with this approach, but we limit ourselves
to describe one representative example. As this example, we discuss the preproces-
sor with the interaction between GUI, Encryption and Logging as in Section 5.2.1.
Listing 5.14 shows the interaction code of GUI and Encryption which is located in the
feature Encryption. This class refines the method newChatLine() with the encryption
or decryption. The intersection of these two features is done by nested preprocessor
statements (see lines 1-2 of Listing 5.14). The feature interaction of GUI, Logging and
Encryption is shown in Listing 5.15. In this source code we have the nested prepro-
cessor statements as well. But we can see a specific characteristic in this listing. To
realize the feature interaction of all three features, we had to implement the method
newChatLine() twice, one with Encryption and the other without (see lines 12 - 23
Listing 5.15).

Evaluation

As in the previous case study, we have the advantage that the preprocessor is an inherent
part of programming languages and so existent systems can be extended easily. A
disadvantage of this approach is the redundant code produced by a feature interaction
of three features. This contradicts to the aim of the SPL to avoid redundant code. This
disadvantage comes from the fact, that we limited the usage of preprocessor statements
to the level of classes and methods as suggested in the Linux guidelines3, so that we
cannot exclude single statements. This limitation we did to be comparable to the other
approaches, but therefore, we produce code replication for interactions between more
than two features. Nevertheless, we achieve with these restrictions a better SoC and
modularity, because we apply the preprocessor statements to the FOP source code. We
give a more detailed discussion in Chapter 6.

In this section, we described the implementation of the preprocessor approach for this
case study. In the next part, we will introduce the implementation with the optional
composition approach for this chat case study.

3see /Documentation/SubmittingPatches in the Linux source

5.2. Chat SPL 61

1
2 #ifdef Encryption
3 #ifdef GUI
4 refines class Gui{
5 public void newChatLine(TextMessage tm) {
6 //encrypt/decrypt with rot13 and reverse
7 tm.setContent(tm.getContent());
8 Super(TextMessage).newChatLine(tm);
9 }
10 }
11 #endif GUI
12 #endif Encryption

Listing 5.14: Class Gui (feature Encryption) - Preprocessor

1
2 #ifdef GUI
3 #ifdef Logging
4 refines class Gui{
5 refines Gui(String title, Client client){
6 System.out.println("Gui c rea ted ");
7 }
8 public void createAndShowGui(){
9 System.out.println("Gui . createAndShowGui () ");
10 Super().createAndShowGui();
11 this.repaint();
12 }
13 #ifdef Encryption
14 public void newChatLine(TextMessage tm) {
15 System.out.println("Gui . newChatLine (TextMessage tm) \n

encrypt ion on");
16 Super(TextMessage).newChatLine(tm);
17 }
18 #endif Encryption
19 #ifndef Encryption
20 public void newChatLine(TextMessage tm) {
21 System.out.println("Gui . newChatLine (TextMessage tm) ");
22 Super(TextMessage).newChatLine(tm);
23 }
24 #endif Encryption
25 public void actionPerformed(ActionEvent evt) {
26 System.out.println("Gui . act ionPerformed (ActionEvent evt) ");
27 Super(ActionEvent).actionPerformed(evt);
28 }
29 }
30 #endif Logging
31 #endif GUI

Listing 5.15: Class Gui (feature Logging) - Preprocessor

62 5. Case Study

5.2.3 Optional Composition

In this section, we describe the implementation of the optional composition approach for
the chat case study. We use again the feature model shown in Figure 5.5 and described

C
lie
n
t

A
u
th
M
e
ss
a
g
e

C
h
a
tL
in
e
Li
st
e
n
e
r

C
o
n
n
e
ct
io
n

C
o
n
so
le

C
o
n
ta
ct
s

Chat

Connection

Console

ContactList

Encryption

Fo
rm

a
tt
e
d
Te
x
tM
e
ss
a
g
e

U
se
rP
ro
fi
le
s

R
e
v
e
rs
e

R
o
t1
3

S
e
rv
e
r

M
sg
Lo
g
g
e
r

Te
x
tM
e
ss
a
g
e

G
u
i

E
n
cr
y
p
ti
o
n

FormattedMsg

GUI

IRC

Messages

SecureCon

MsgHist

UserProfiles

Logging

Figure 5.8: Collaboration model of chat - Optional Composition

in Section 5.2. We use the combination of the explicit and implicit optional composition
as well as in Section 5.1.3. We use this hybrid approach, because the implicit variant
can not dissolve all interactions and the explicit variant is similar to the preprocessor
approach. To get an overview of the implemented classes and their refinements, we show
in Figure 5.8 the collaboration model for this approach. There, we have 15 classes and
13 features, and we can see the refinements the features apply to the classes. Here, 15
classes play 49 roles in 13 features. So, Encryption, for example, introduces the classes
Encryption, Rot13 and Reverse and refines the classes AuthMessage, Client, Console,
Gui and TextMessage.

Implementation

We implemented the whole SPL with this approach, but demonstrating all feature
interactions here would go beyond the scope of this thesis. So, let us come to an imple-
mentation example, where we again take GUI, Encryption and Logging into consider-
ation. The interaction between GUI and Encryption is represented by the refinement
of the class Gui by the Encryption feature is shown in Listing 5.16. The interaction

5.2. Chat SPL 63

1 refines class Gui{
2 public void newChatLine(TextMessage tm) {
3 //encrypt/decrypt with rot13 and reverse
4 tm.setContent(tm.getContent());
5 Super(TextMessage).newChatLine(tm);
6 }
7 }

Listing 5.16: Class Gui (feature Encryption) - Optional Composition

1 import java.awt.event.ActionEvent;
2 refines class Gui{
3 refines Gui(String title, Client client){
4 System.out.println("Gui c rea ted ");
5 }
6 public void createAndShowGui(){
7 System.out.println("Gui . createAndShowGui () ");
8 Super().createAndShowGui();
9 this.repaint();
10 }
11 public void newChatLine(TextMessage tm) {
12 System.out.println("Gui . newChatLine (TextMessage tm) ");
13 Super(TextMessage).newChatLine(tm);
14 }
15 public void actionPerformed(ActionEvent evt) {
16 System.out.println("Gui . act ionPerformed (ActionEvent evt) ");
17 Super(ActionEvent).actionPerformed(evt);
18 }
19 }

Listing 5.17: Class Gui (feature Logging) - Optional Composition

64 5. Case Study

of the features GUI and Logging is resolved by the refinement of class Gui shown in
Listing 5.17. To compare this to the preprocessor approach (see Listing 5.15) we see,
that the method newChatLine() is just implemented once. The optional composition
approach is not designed to handle more than one method in different occurrences in
one class, so the implementation of a feature interaction of second order is impossible.
We will discuss potential solutions of this problem in the discussion in Chapter 6.

Evaluation

In this part of the case study, we discovered, that with the optional composition ap-
proach, just feature interactions of two features can be dissolved. This is a disadvantage
compared to the other approaches. The advantages and disadvantages introduced in
Section 5.1.3 hold for this case study as well. So, we discuss the advantages and disad-
vantages in detail in Chapter 6.

In this chapter, we introduced a case study expression problem and a chat application.
We gave a short evaluation for each approach and each case. We identified the con-
spicuous details of the approaches in significant code examples. The case studies are
designed as small examples, that may show tendencies, if the functional range would
be extended by additional features. We discussed the properties of each approach.
The case study of the expression problem had shown a lot of advantages using feature-
oriented approaches, because there are just interactions between two features, but we
had additional discoveries in the case study of the chat, that should be considered if an
approach will be used in routine. In the next chapter, we discuss the advantages and
disadvantages of these three approaches and try to give a recommendation of when to
use which approach.

6. Discussion

In this chapter, we discuss the advantages and disadvantages of the approaches to solve
the optional feature problem to figure out whether the optional composition is a suitable
solution for the optional feature problem or not. We compare the approaches to each
other and try to make a recommendation for their usage.

6.1 Comparison

Software Product Lines (SPLs) are used to alleviate the development of software in
various variants where different features are combined. One of the main advantages
is, that features interact directly. To take into account, that the different variants
may focus several platforms ranging from embedded systems to personal computers the
resulting application should only contain the required software modules selected by the
features. So, SPLs result in high variability of an application, with a high flexibility
for the developer. That means, new features can be added easily, without copying the
whole source code to built up a new application. To achieve these goals, additional effort
is required for a clean Separation of Concerns (SoC) and to avoid code replication. On
the other hand, the concepts for the implementation of SPLs and to solve the optional
feature problem should be maintainable. The source code should be readable and
clearly structured, but code tangling and scattering are influencing these requirements.
Therefore, we compare the presented approaches in the following sections, focusing
on the SoC, code replication and variability, that can be measured. Furthermore, we
discuss the additional effort, required to the implementation and during maintenance,
in order that the developers needs are not neglected. This section is subjective, but
presents tendencies between the approaches. In our comparison, we focus on the hybrid
variant of the optional composition during the discussion, because we realized the case
study with the hybrid approach. Another reason for this is, that the preprocessor
approach and the explicit optional composition approach are similar to each other,
when using preprocessor statements just on the level of methods. Further, the implicit
variant of optional composition cannot dissolve interactions of two optional features

66 6. Discussion

with a mandatory feature, because the classes of the mandatory feature would never be
absent.

6.1.1 Separation of Concerns

The SoC is the procedure of dividing large software into modules, as introduced in
Chapter 2.

Software Derivatives

An advantage of the software derivative approach is, that the major goal of SPLs,
the SoC, is guaranteed, because each feature interaction is dissolved in a derivative
feature. as an example, the interaction between the GUI and the Contactlist feature
from the chat, shown in Section 3.2, is dissolved into three modules. One module for the
Graphical User Interface (GUI), one module for the list of contacts and one module for
the interaction between both. So, this is a strict SoC. But, this is also a disadvantage
with respect to the manual effort of dissolving these interactions (see Section 6.1.4).

For the software derivatives a software engineer has to dissolve all feature interactions
in the feature model explicitly and generate the derivatives. For each derivative a new
folder is attached and the correspondent classes must be created. This means a high
manual effort for the developer. We suspect, that for large projects, the approach of
software derivatives may become confusing, although, the concerns are really separated
from each other. This approach is feasible for projects with a limited amount of feature
interactions.

Preprocessor Approach

For the preprocessor approach in Section 5.1.2, which uses the preprocessor statements
on the level of statements, the SoC is not achieved (see class Test in Listing 5.5), because
the source code is not modularized. In this class Test, all features (Core, Number, Plus,
Neg, Eval and Print) are contained and include or exclude source code. The features
are marked by preprocessor statements and so just one source code file of each class
exists. For the preprocessor approach applied to the Feature-Oriented Programming
(FOP) sources, which was used in Section 5.2.2, the SoC is also not achieved, even
though the features are implemented with FOP, where the preprocessor statements are
just attached to classes and methods, but the code of feature interactions is contained in
the features and just marked by preprocessor statements. So, we say, that this approach
achieves a reduced SoC.

Developers cannot trace the features in the code, when using the preprocessor approach,
except they are using tools like CIDE[KAK08], which color the source code belonging
to a feature. This problem exists more with the preprocessor approach working on the
level of statements, than the preprocessor working on the level of methods. But in
both cases the software engineer has to define macros and must not loose track. So, we
suspect, that a larger SPL might be complicated.

6.1. Comparison 67

Optional Composition

We found out for the optional composition approaches as well, that the SoC is reduced,
because of switching the interaction code into one of the features.

Because of having a reduced SoC for the optional composition and the implicit part
hides the affiliation of source code to a feature with respect to the interaction code,
the software engineer can also lose track. That means, that the interaction code is
not marked in the implicit part, so it is unclear to which feature or feature interaction
this code belongs. This can lead to errors, which results in a higher additional effort.
Therefore, we discuss this in Section 6.1.4 in more detail.

6.1.2 Code Replication

We have shown in Section 5.1.1 and Section 5.2.1, that the feature interactions are
dissolved without code replication with the approach of software derivatives. For the
other approaches, code replication must be expected under different circumstances.

Software Preprocessor Optional
Derivatives Approach Composition

number of features 19 (12) 6 6
binary size 4.4kB 3.4kB 4.4kB
Lines of Code (LOC) 140 133 (62) 133
code replication 0% 0% 0%

Table 6.1: Characteristics of the case study expression problem

Software Preprocessor Optional
Derivatives Approach Composition

number of features 42 (29) 13 13
binary size 39.7kB 37.7kB 30.1kB
LOC 1134 1296 (230) 1026
code replication 0% 4% 0%

Table 6.2: Characteristics of the case study chat

Preprocessor Approach

In contrast to this, we demonstrated in Section 5.2.2, that the preprocessor approach
needs code replication to implement the feature interactions of higher order (above
first order), because of the restrictions of applying the preprocessor statements on the
level of methods. Let us remember the interaction of Logging, Encryption and GUI. In
Listing 5.15 (Section 5.2.2) we had the method newChatLine() implemented twice. One

68 6. Discussion

for the variant with Encryption (lines 13-18) and one for the variant without Encryption
(lines 19-24). For the reason of the crosscutting Logging feature in the chat, we had 7
feature interactions of second order, which resulted in the fact, that 4% of the source
code are replicated code lines (see Table 6.2). We do not have code replication for the
preprocessor approach implementation in Section 5.1.2, because we did not restrict the
usage that hard, we also allowed to surround statements, as supposed by Kästner in
[KA09] for disciplined annotations. So, we did not count LOC of code replication for
the expression problem case study (see Table 6.1).

Optional Composition

The optional composition approach does not produce redundant code (see Table 6.1
and Table 6.2), but as we have shown in Section 5.2.3, it is just possible to implement
interactions of first order. To solve this problem, a further extension of the compiler for
the explicit optional composition would be conceivable to afford multiple variants of one
method and the compiler decides, which to implement for the current feature selection.
But, this would result in code replication as well as for the restricted preprocessor
approach.

Replicated code is always a trap for the software engineer. Mostly, these LOC are
produced by copy and paste. So, probable errors are copied as well and this increases
the effort for the software engineer during debugging. In our chat case study we had a
code replication of 4%, because of 7 feature interactions of second order. We suspect
an increase of the code replication when the feature interactions of second order rise,
or in other projects with more second order feature interactions.

6.1.3 Variability

The variability of a SPL describes the ability to restore all variants intended by the
feature model. For the expression problem case study this goal is achieved with all
approaches. For the chat case study it is just achieved for the software derivatives and
the preprocessor approach, at the expense of code replication. So, the chat case study,
related to practice, provided further results.

Optional Composition

With the current implementation of the optional composition approach, regardless
which variant, it is not possible to implement all feature interactions. So, the size
of the binary files and the LOC of the optional composition approach is lower in the
chat, because of the lack of representation of feature interactions of second order (see
Table 6.2). If three or more optional features do interact, the intersection of all three
cannot be resolved. This is limited because of the restrictions of Object-Oriented Pro-
gramming (OOP), whereas no multiple implementation of an identical method can exist
in a class. To implement these interactions a further extension of the compiler is nec-
essary, so that more variants of a method can be implemented and computed. But,
to come back to our chat example, we had the feature interaction of second order just
with the Logging feature. For our point of view, it is not dramatically to loose the

6.1. Comparison 69

debugging output for the methods refined by the Encryption feature in times of Inte-
grated Development Environments (IDEs) with debugging environments, for this case.
By the way, we implemented the Logging feature to show an interaction of second order.
Mostly these interactions can be reduced to interactions of first order by changing the
implementation. So, we believe, that interactions of second order are even rare.

For software engineers the reduced variability of the optional composition approach
could mean more manual effort, when reducing feature interactions of second order to
first order, to guarantee the full variability. When this is not possible they have to
decide carefully how to implement these feature interactions of second order, if they
cannot be avoided. For larger projects this could imply larger variants, because source
code must be compiled into the variant, which is not necessary for the functionality of
the product, because this feature was deselected, but for implementation details must
be in.

6.1.4 Additional Effort

In this section, we discuss the impact of the manual effort of the approaches. We start
with the approach of software derivatives.

Software Derivatives

For the approach of software derivatives we count the highest number of features in
comparison to the other approaches in both case studies. In Table 6.1 we display the
number of features for the expression problem case study, where we counted 19 features,
where 12 are required for the derivatives. For the chat we measured 42 features, includ-
ing 29 derivatives (see Table 6.2). This documents the manual effort for this approach.
We have shown in Section 5.1.1 and Section 5.2.1, that the number of derivative features
increases with respect to the feature interactions, so that the feature model becomes
confusing. We also said, that the derivatives can be hidden in the feature model, but
nevertheless must be implemented and maintained. For our stage of experience, the
software derivative approach is the most expensive one according to the manual effort,
it took us three days to implement the chat with this approach. During implementation
of the chat, we forgot to list several derivative features in the feature model and so we
did not implement them, which resulted in hours of debugging. The chat worked fine,
when Encryption was switched off, but turning on Encryption led to an unexpected
behavior. Nevertheless, we believe, that this approach is the best one, when attaching
great importance to the SoC.

We already said in Section 6.1.1, that the software derivative approach means to the
software developer, that he must dissolve all feature interactions at the level of the
feature model and create the derivatives. For any derivative, a folder must be attached
and the correspondent classes have to be created. For larger project, we suspect a very
high manual effort for the dissolving of the feature interactions and for the reason of
the modularization into folders, the project might become confusing.

70 6. Discussion

Preprocessor Approach

For the preprocessor approach we have the preprocessor annotations, which results
in scattered and tangled code and more LOC in the chat case study than the other
approaches (see Table 6.1 and Table 6.2). The preprocessor approach and the optional
composition approach have the same number of LOC for the expression problem case
study, but in this case, it is just a coincidence and not representable, whereas the number
of preprocessor statements is almost the half of the source code (lines of preprocessor
statements are in brackets behind the number of LOC). The preprocessor approach
and the optional composition have the same number of features in both case studies,
because the implementation was built on the same underlying feature model. For the
research, we made with the preprocessor approach, we were bothered by the fact, that
we had to use a further tool to use the preprocessor statements, which was up to the
fact, that we used the FOP variant of Java to be comparable to the other approaches.
Furthermore, it was annoying to annotate all the code with the macros representing the
features.

The software engineer must define macros which correspond to the features. The de-
veloper uses these macros to annotate the source code belonging to the feature. This
might be annoying, like in our case. For the debugging all variants must be generated
to eliminate syntax errors, that might be created by dropping a feature. So, we suspect
large projects have a lot of scattered and tangled code, which leads to confusion.

Optional Composition

For the optional composition we had to extend the compiler, which can result in an-
notated code, when using the explicit optional composition with the optional keyword.
So, it can be seen as an advantage of the software derivative approach in contrast to
the two other approaches, that the FOP can be used without any extension, i.e. no
extended compiler or preprocessor must be used. An advantage of the optional compo-
sition approach in contrast to the preprocessor is, that it works implicitly. This means,
that no annotations are necessary, except in some special cases as shown in Section 5.1.3
and Section 5.2.3, where a class, which should be refined, was introduced by another
not optional feature than the two interacting ones. But, this advantage leads to a dis-
advantage. Because of switching off the error propagation in the compiler to realize the
implicit optional composition, the chance of producing errors is higher and the chance
of detecting errors is reduced. Just for the cases, where a refinement is ignored, the
original class has not been implemented. So, the program will show another behavior
than the expected one. Such errors are hard to detect in large projects. And it is
conceivable, that these errors just occur for certain variants of the SPL. The experience
using the optional composition approach was, that it was very easy to implement the
interactions, because the compiler decided, for the implicit part. For the explicit part,
we had to decide carefully, which part making explicitly optional. If the order of com-
position is not in the right order, refinements are left out, and so the chat did not work
as expected. So, the program variant compiles and is executable, but shows another
behavior then expected. Therefore, the debugging is time-consuming. Nevertheless,

6.1. Comparison 71

we recommend this approach, when it is for sure, that the SPL contains just feature
interactions of first order and the order of composition is manageable.

The software developer can implement the feature interactions within one of the features
without annotations, except special cases. The developer must not be fully aware of the
feature model, because the compiler decides whether to implement the interaction code
or not. The developer must look after the order of composition that no errors occur for
the reason of the wrong feature order. This can simply lead to time-consuming errors
during debugging. So, for larger projects we suggest a higher error rate according to the
order of composition of the features, because refinement classes are left out without a
warning, when the original class is absent. So the programmer does not get a feedback,
except from the behavior of the software.

6.1.5 Summary

Software Preprocessor Optional
Derivatives Approach Composition

SoC Yes (+) reduced SoC (0) reduced SoC (0)

Number of features extremely
high(−)

no additional fea-
tures (+)

no additional fea-
tures (+)

Code Replication No (+) No, for statement
level (+) / Yes,
when order >1 on
method level (−)

Yes, when order >1
if approach would
be extended(−)

Variability all variants (+) all variants (+) less variants, if
more than two
features interact
(−)

Additional Effort high effort (−) medium effort (0) little effort (+)

Maintainable high effort (−) medium effort (0) little effort(+)

+ good, 0 medium, − bad

Table 6.3: Comparison of the approaches

In this section, we summarize the comparison of the approaches. For this short overview
we take Table 6.3 into consideration. There, we listed the above discussed criteria
and rated them from bad (−) to good (+) based on the discussion given above. The
variability is fully achieved, for the software derivatives and the preprocessor approach,
therefore, we rate them as good. The optional composition left out the intersection
between all three, when three features interact, so the variability is limited, which is
a negative aspect for us, so we rate as bad. According to the redundancies, we did
not find code replication in the software derivative implementations and in the optional
composition as well, but extending the approach for realizing interactions of higher

72 6. Discussion

than first order, would result in code replication as we have shown for the preprocessor
approach in the chat case study. The preprocessor just requires code replication, when
limiting this approach to the level of methods. On the level of statements we did not
find code replication. The additional effort is very high for the software derivatives,
because of the derivative features. The preprocessor approach requires medium effort,
because of the additional preprocessor statements. For the explicit optional composition
the effort is comparably high to the preprocessor approach, but for the hybrid form of
the optional composition the effort is lower. The number of features are extremely
high for the software derivatives, which results in high effort for the maintenance of the
SPL. Both other approaches do without additional features. Therefore, the effort for
maintaining is lower, according to the additional effort.

In this section, we compared the approaches to each other. We discussed the power
and weakness of each approach, so we can give a recommendation, when to use which
approach in the next section.

6.2 Suggestion
Hence, none of the approaches is the odds-one favorite, we come to the conclusion that
a combination of the approaches could be an improvement. First of all, the approach
of optional composition can be extended according to its explicit variant, that more
than one implementation of a method would be possible and the compiler decides with
the help of the feature selection which method to include. This would result in the
same issue for the code replication like the preprocessor approach with the restrictions
of being used just for the level of methods. Another opportunity is the combination
of the optional composition approach with the software derivative approach. Taking
the optional composition for the feature interactions of first order and the software
derivative for interactions of higher order, whereas it is questionable if there really exist
interactions of higher order. In the expression problem we do not have interactions
higher than first order and in the chat we have just one feature that causes these
interactions of second order. In the chat we can argue if the Logging feature, which is
the one causing the higher order feature interactions, is really necessary. We think, in
times of powerful debugging tools such a debug log is not compulsory. We added it for
demonstration purposes for the higher order feature interactions. For us it was more
difficult than expected to provoke an interaction of second order. Another combination
with the optional composition approach might also be possible. The combination of
optional composition with the preprocessor approach, which is not restricted to the
level of methods. We recommend the last variant with the preprocessor, if higher order
interactions occur, because the combination with the software derivatives would result
in a higher effort, because of the dissolving of the interactions in derivative features

We suggest the software derivative approach, when a strict SoC is desired and the
manual effort is irrelevant. So, this approach is suitable for projects with few features
and consequently few interactions.

The preprocessor approach, we recommend, when the SoC may be neglected and the
number of features and the level of variability is important. Hence, we suggest the
preprocessor for medium sized projects.

6.2. Suggestion 73

We vote for the optional composition approach, when the manual effort and the num-
ber of features should be minimized and no interactions above first order occur. For
large projects with inevitable interactions of second order, we suggest the combination
of the optional composition approach with the preprocessor approach on the level of
statements. Finally, we come to the conclusion that the optional composition approach
is just a partial solution to the optional feature problem, because of the lacks discussed
above.

In our case studies, we have shown, that the optional composition is a suitable solution
to the optional feature problem, even though there are limitations according to the
interactions of higher order.

In this chapter, we discussed the advantages and disadvantages of the approaches of
software derivatives, preprocessor and optional composition and recommended when to
use which approach. In the next chapter, we conclude the thesis and review on future
work.

74 6. Discussion

7. Conclusion

In this thesis, we transfered the concept of optional weaving into the approaches of
explicit and implicit composition. During our case studies, we used these approaches
in combination as hybrid optional composition. We analyzed the optional composition
approach as solution to the optional feature problem. We have shown, with the help of
two case studies, that this approach is a partial solution to the optional feature problem
at this stage of development.

First of all, we introduced the Software Product Line (SPL) as technique to realize soft-
ware projects to generate software variants from a common code base. We presented the
implementation strategies, where one of them was the Feature-Oriented Programming
(FOP). This strategy is especially suitable for the implementation of SPLs, because of
summarizing source code, belonging to one feature, is stored in separate modules. So,
a set of features can be combined into a variant.

Furthermore, we presented the optional feature problem, where conceptual indepen-
dent features become dependent in cause of their implementation. As solution to this
problem, we introduced the software derivative approach, where these interactions are
dissolved by swapping it to derivative features, the preprocessor approach, where the
interactions are resolved by using preprocessor statements, to include or exclude the in-
teraction code, and the optional composition approach, which we distinguished between
explicit and implicit, where the interaction was swapped into one of the interacting fea-
tures. Followed by this, was our presentation of the extensions which we had to make
to a compiler, so we could do the case studies on all this introduced approaches.

Additionally, we accomplished two case studies to evaluate the optional composition
approach in contrast to the other approaches with respect to the optional feature prob-
lem. The first case study was a simple SPL of the expression problem, where we showed
the advantages and disadvantages of the approaches. To present a practical and more
comprehensive example, we introduced a chat SPL, where we showed further advantages
and disadvantages of the approaches to solve the optional feature problem.

76 7. Conclusion

In the general discussion, where we compared the software derivative approach, the
preprocessor approach and the approach of optional composition to each other based
on the two case studies, we came to the conclusion, that any of these approaches has its
malices. We gave the advice to choose an approach accordant to the requirements. We
recommend the software derivative approach, when the Separation of Concerns (SoC)
is desired and the manual effort is irrelevant. The preprocessor approach can be used,
when the SoC may be neglected and the number of features and the level of variability
is important. When the manual effort and the number of features should be minimized,
and no feature interactions above first order occur, then the optional composition can
be used. We suggested a combination of the approaches, as well, but therefore, further
case studies would be necessary. All in all the optional composition is just a partial
solution of the optional feature problem.

Here, we concluded the thesis and emphasized the results of this thesis. In the next
part we review on possible future work.

Future Work

In this part, we suggest some probable future work to this topic. The optional com-
position approach cannot handle feature interactions of second order. So, the compiler
extension for the optional composition can be more expanded, to realize these feature in-
teractions of higher order with the explicit part. The optional construct of the compiler
could be extended by boolean expressions, so that optional A, !B doSomething()

will be possible, whereas A and B represent the features and the exclamation mark
represents the negation. For our proposal to realize these interactions, code replication
cannot be avoided. Therefore, further case studies might be necessary to survey the
impact of the code replication.

Another point for the interactions of second order is, that we suspect, that these in-
teractions are even rare. This could be explored in further, maybe industrial, case
studies.

We suggested to combine the optional composition approach with the preprocessor or
the software derivative approach in Section 6.2. To figure out the benefit of these com-
binations in contrast to the singular approaches continuative case studies are necessary.

In this thesis, we constructed two SPLs for our case studies to analyze the approaches
to solve the optional feature problem. We believe, that an industrial case study must
be accomplished to see the benefit for practical cases in the real world.

To realize the implicit optional composition, we had to switch off the error propagation
of the compiler, when a class which shall be refined is not present. Therefore, when an
original class is absent which should be in compilation, no error or warning is thrown.
Because the compiler loads the complete SPL into the Abstract Syntax Tree (AST)
a comparison if the original class exists could be made. When the feature selection
contains a refinement, where the original class is not present in the whole SPL, an error
could be thrown. Furthermore, a way to detect a wrong feature order might be useful,
to eleminate the problem of the error-rate of the optional comosition approach.

77

At this stage of development, the compiler which we used and extended in this thesis is
not yet implemented in an Integrated Development Environment (IDE). So, a further
step could be the implementation of this compiler into an Eclipse plug-in for the FOP,
like FeatureIDE1. The development of a debugger is also another opportunity. For the
debugger, a look has to be taken which compositions should be debugged. Either just a
variant, so the debugger must know the feature selection, or the debugger could check
multiple variants at once.

1http://wwwiti.cs.uni-magdeburg.de/iti db/research/featureide/

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

78 7. Conclusion

Bibliography

[AK09] Sven Apel and Christian Kästner. An Overview of Feature-Oriented Soft-
ware Development. Journal of Object Technology, 8(5):49–84, 2009. (cited

on Page 1, 2, 6, and 10)

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. FEATURE-
HOUSE: Language-Independent, Automated Software Composition. In
Proceedings of the International Conference on Software Engineering,
pages 221–231, Washington, DC, USA, 2009. IEEE Computer Society.
(cited on Page 11 and 13)

[AKL+11] Sven Apel, Sergiy Kolesnikov, Jörg Liebig, Christian Kästner, Martin
Kuhlemann, and Thomas Leich. Access Control in Feature-Oriented Pro-
gramming. Science of Computer Programming (Special Issue on Feature-
Oriented Software Development), 2011. to appear; submitted 24 Mar
2010, accepted 29 Jul 2010. (cited on Page 31)

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner.
An Algebra for Features and Feature Composition. In Proceedings of the
International Conference on Algebraic Methodology and Software Tech-
nology, pages 36–50, Berlin, Heidelberg, 2008. Springer-Verlag. (cited on

Page 13)

[ALRS05] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. Fea-
tureC++: On the Symbiosis of Feature-Oriented and Aspect-Oriented
Programming. In Proceedings of the International Conference on Gener-
ative Programming and Component Engineering, volume 3676 of Lecture
Notes in Computer Science, pages 125–140. Springer Verlag, September
2005. (cited on Page 11 and 26)

[ALSU08] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers. Principles, techniques, and tools. (Compiler. Prinzipien, Tech-
niken und Werkzeuge.) 2nd ed. Pearson Studium, 2008. (cited on Page vii,

16, and 17)

[Bat05] Don Batory. Feature Models, Grammars, and Propositional Formulas. In
Proceedings of Software Product Line Conference, pages 7–20. Springer,
2005. (cited on Page 6 and 7)

80 Bibliography

[BCK05] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, Boston ; Munich [u.a.], 2005. (cited on Page 1

and 5)

[Bec10] Christian Becker. Entwicklung eines nativen Compilers für Feature-
orientierte Programmierung. Master’s thesis, University of Magdeburg,
June 2010. (cited on Page vii, 11, 31, 32, and 34)

[BSR03] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-
wise Refinement. In Proceedings of the International Conference on Soft-
ware Engineering, pages 187–197, Washington, DC, USA, 2003. IEEE
Computer Society. (cited on Page 1, 10, and 11)

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming.
Methods, Tools and Applications. ACM Press/Addison-Wesley, 2000.
(cited on Page 6)

[CKMRM03] Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-
Marganiec. Feature Interaction: A Critical Review and Considered Fore-
cast. Computer Networks, 41:115–141, January 2003. (cited on Page 2

and 15)

[Coo90] William R. Cook. Object-Oriented Programming Versus Abstract Data
Types. In Foundations of Object-Oriented Languages, pages 151–178.
Springer-Verlag, 1990. (cited on Page 41)

[Dij82] Edsger W. Dijkstra. Selected writings on computing: a personal perspec-
tive. Springer, New York, NY, USA, 1982. (cited on Page 8)

[Dij97] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1997. (cited on Page 8)

[Ekm06] Torbjörn Ekman. Extensible Compiler Construction. PhD thesis, Lund
University, Schweden, 2006. (cited on Page 31)

[Fla02] David Flanagan. Java in a Nutshell, Fourth Edition. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA, 2002. (cited on Page 8)

[HJ95] Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual. Pren-
tice Hall, 4th edition, 1995. (cited on Page 9)

[JF88] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. Journal
of Object-Oriented Programming, 1(2):22–35, June/July 1988. (cited on

Page 9)

[KA08] Christian Kästner and Sven Apel. Integrating Compositional and Anno-
tative Approaches for Product Line Engineering. In Proceedings of the
GPCE Workshop on Modularization, Composition and Generative Tech-
niques for Product Line Engineering (McGPLE), pages 35–40, Passau,
Germany, October 2008. University of Passau. (cited on Page 24 and 60)

Bibliography 81

[KA09] Christian Kästner and Sven Apel. Virtual Separation of Concerns – A
Second Chance for Preprocessors. Journal of Object Technology, 8(6):59–
78, September 2009. Refereed Column. (cited on Page 10 and 68)

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
Software Product Lines. In Proceedings of the International Conference
on Software Engineering, pages 311–320, New York, NY, USA, 2008.
ACM. (cited on Page 9 and 66)

[Käs07] Christian Kästner. Aspect-Oriented Refactoring of Berkeley DB. Master’s
thesis, University of Magdeburg, 2007. (cited on Page vii, 2, 16, 19, 24, 26,

and 27)

[Käs10] Christian Kästner. Virtual Separation of Concerns: Toward Preprocessors
2.0. PhD thesis, University of Magdeburg, May 2010. (cited on Page vii,

5, 7, and 9)

[KAuR+09] Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko Rosenmüller,
Don Batory, and Gunter Saake. On the Impact of the Optional Feature
Problem: Analysis and Case Studies. In Proceedings of the International
Software Product Line Conference, SPLC ’09, pages 181–190, Pittsburgh,
PA, USA, 2009. Carnegie Mellon University. (cited on Page vii, 19, and 22)

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak,
and A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical report, Carnegie-Mellon University Software
Engineering Institute, November 1990. (cited on Page 6)

[KFF98] Shriram Krishnamurthi, Matthias Felleisen, and Daniel P. Friedman. Syn-
thesizing Object-Oriented and Functional Design to Promote Reuse. In
Proceedings of the European Conference on Object-Oriented Program-
ming, pages 91–113. Springer, 1998. (cited on Page 41)

[KLM+97] Gregor Kiczales, John Lamping, Anurag. Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc. Loingtier, and John Irwin. Aspect-Oriented
Programming. In Proceedings of the European Conference on Object-
Oriented Programming, 1997. (cited on Page 8 and 14)

[KS94] Maren Krone and Gregor Snelting. On the Inference of Configuration
Structures from Source Code. In Proceedings of the International Con-
ference on Software Engineering, pages 49–57, Los Alamitos, CA, USA,
1994. IEEE Computer Society Press. (cited on Page 9)

[LARS05] Thomas Leich, Sven Apel, Marco Rosenmüller, and Gunter Saake. Han-
dling Optional Features in Software Product Lines. In Proceedings of In-
ternational Conference on Object Oriented Programming, Systems, Lan-
guages and Applications Workshop on Managing Variabilities consistently
in Design and Code, San Diego, USA, 2005. (cited on Page 2, 19, and 26)

82 Bibliography

[LBL06] Jia Liu, Don Batory, and Christian Lengauer. Feature-oriented Refac-
toring of Legacy Applications. In Proceedings of the International Con-
ference on Software Engineering, pages 112–121, New York, NY, USA,
2006. ACM. (cited on Page 16 and 22)

[LBN05] Jia Liu, Don Batory, and Srinivas Nedunuri. Modeling Interactions in Fea-
ture Oriented Software Designs. In Stephan Reiff-Marganiec and Mark
Ryan, editors, Proceedings of the international Conference of Feature In-
teractions in Telecommunications and Software Systems, pages 178–197.
IOS Press, 2005. (cited on Page 22)

[MO04] Mira Mezini and Klaus Ostermann. Variability Management with
Feature-oriented Programming and Aspects. In Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 127–136, New York, NY, USA, 2004. ACM. (cited on

Page 26)

[Par72] David L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Classics in software engineering, 15(12):1053–1058, December
1972. (cited on Page 8)

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer,
1 edition, 2005. (cited on Page 1 and 5)

[Pre97] Christian Prehofer. Feature-oriented Programming: A Fresh Look at
Objects. In Proceedings of the European Conference on Object-Oriented
Programming, pages 419–443. Springer, 1997. (cited on Page 1, 10, and 22)

[Rey94] John C. Reynolds. User-defined Types and Procedural Data Structures
as Complementary Approaches to Data Abstraction, pages 13–23. MIT
Press, Cambridge, MA, USA, 1994. (cited on Page 41)

[SB02] Yannis Smaragdakis and Don Batory. Mixin Layers: An Object-oriented
Implementation Technique for Refinements and Collaboration-based De-
signs. ACM Transactions on Software Engineering and Methodology,
11(2):215–255, 2002. (cited on Page 11)

[Sch09] Andreas Schulze. Systematische Analyse von Feature-Interaktionen in
Softwareproduktlinien. Diplomarbeit, University of Magdeburg, Gerany,
October 2009. (cited on Page vii, 41, and 53)

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component
Software - Beyond Object-Oriented Programming. Addison-Wesley, 2nd
ed. (15. november 2002) edition, 2002. ISBN-10: 0201745720 ISBN-13:
978-0201745726. (cited on Page 9)

Bibliography 83

[Spe92] Henry Spencer. ifdef Considered Harmful, or Portability Experience With
C News. In Proceedings of the Summer ’92 USENIX Conference, pages
185–197, 1992. (cited on Page 9)

[SS07] Alexander Schütz and Dieter Schuller. Compilerframeworks - JastAdd
Design und Implementierung moderner Programmiersprachen. Studien-
arbeit, Februar 2007. (cited on Page 31)

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N
Degrees of Separation: Multi-dimensional Separation of Concerns. In Pro-
ceedings of the International Conference on Software engineering, pages
107–119, New York, NY, USA, 1999. ACM. (cited on Page 8)

84 Bibliography

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig verfasst und keine an-
deren als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 17. Dezember 2010

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	List of Acronyms
	1 Introduction
	2 Background
	2.1 Software Product Lines
	2.2 Software Product Line Implementations
	2.2.1 Preprocessor Approach / Conditional Compiling
	2.2.2 Feature-Oriented Programming
	2.2.3 Aspect-Oriented Programming
	2.2.4 Feature Interaction

	2.3 Compiler

	3 Problem Statement
	3.1 Optional Feature Problem
	3.2 Software Derivatives
	3.3 Preprocessor
	3.4 From Optional Weaving to Optional Composition
	3.4.1 Optional Weaving
	3.4.2 Optional Composition
	3.4.2.1 Explicit Optional Composition
	3.4.2.2 Implicit Optional Composition

	4 Compiler Extension
	4.1 FOP Compiler
	4.2 Extension for Explicit Optional Composition
	4.2.1 Design
	4.2.2 Implementation

	4.3 Extension for Implicit Optional Composition
	4.3.1 Design
	4.3.2 Implementation

	5 Case Study
	5.1 Expression Problem
	5.1.1 Software Derivatives
	5.1.2 Preprocessor approach
	5.1.3 Optional Composition

	5.2 Chat SPL
	5.2.1 Software Derivatives
	5.2.2 Preprocessor Approach
	5.2.3 Optional Composition

	6 Discussion
	6.1 Comparison
	6.1.1 Separation of Concerns
	6.1.2 Code Replication
	6.1.3 Variability
	6.1.4 Additional Effort
	6.1.5 Summary

	6.2 Suggestion

	7 Conclusion
	Bibliography

