
Verification of Software Product Lines Using Contracts

Thomas Thüm
School of Computer Science

University of Magdeburg
Magdeburg, Germany

Abstract—Software product lines are widely used to achieve
high reuse of code artifacts for similar software products.
While there are many efficient techniques to implement product
lines, such as feature-oriented programming, the analysis and
verification of product lines got only little attention so far.
But as product lines are increasingly used in safety critical
scenarios, efficient verification techniques are indispensable.
We give an overview on the state-of-the-art in product-line
verification, in which we classify approaches according to
their strategy to scale specification and verification approaches
known from single-system engineering. We propose to use
contracts (i.e., preconditions and postconditions) to specify the
intended behavior of a product line implemented with feature-
oriented programming. Based on these contracts, we discuss
different approaches to verify that all products of a product
line fulfill its specification.

Keywords-Software product lines, feature-oriented program-
ming, design by contract, specification, verification

I. INTRODUCTION

A major challenge in software engineering is to reduce the
effort required to implement a certain functionality. In the
last century, software engineering focused on reuse within
one software system. For example, imperative programming
encapsulates functionality in procedures to enable software
reuse, whereas object-oriented programming provides more
high-level reuse techniques such as class inheritance [1].

Software reuse across multiple software systems has
gained much attention in the last decades [2]–[6]. The idea
is to develop similar software systems not from scratch, but
rather define the commonalities and variabilities between
them in a software product line. A software product line
(or short product line) is a set of software systems sharing
a common code base [3]–[5]. The software systems (a.k.a.
software products) are distinguished in terms of features.
A feature is a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system [2]. We focus
on feature-oriented programming for the implementation of
product lines, in which each feature is implemented in a
separate module [7], [8]. Given a particular selection of fea-
tures, a customized product can be generated automatically
by composing the corresponding modules [3], [6].

Another major challenge in software engineering is to
verify the correctness of software systems. Especially safety-
critical and mission-critical software systems need to be
verified in order to prove the absence of failures. Design

by contract is a methodology to formally specify object-
oriented systems in terms of method contracts [9]. A method
contract (or short contract) is assigned to each or at least
each safety-critical method consisting of a precondition
stating what the caller of a method needs to ensure and a
postcondition stating what the caller can rely on. Contracts
can be used to formally specify the intended behavior of a
software system, which in turn can be used to verify that
the software system fulfills its specification.

When product lines are used to implement safety-critical
software systems, we need to apply specification and verifi-
cation techniques from single-system engineering to product
lines. A simple strategy is to specify and verify each product
separately. Unfortunately, this strategy involves redundant
effort for specification as well as for verification, because
products of a product line have commonalities [10]. Fur-
thermore, the number of products is up-to exponential in
the number of implemented features, and thus the strategy
infeasible for large product lines [10].

Our goal is to develop efficient verification techniques
for product lines implemented with feature-oriented pro-
gramming. In order to verify that a product line is correct,
the intended behavior need to be specified efficiently. We
propose to use contracts to formally specify feature-oriented
programs [11]. We assign contracts to each feature from
which the specification of each product can be derived
automatically [11]. Based on contracts for each feature, we
discuss different approaches ranging from testing to static
analysis [12] and theorem proving [13], [14], which can
verify that the implementation of each feature fulfills its con-
tracts. Each approach has strengths and weaknesses regard-
ing soundness, completeness, and efficiency. We summarize
preliminary results on the scalability of these approaches.

II. BACKGROUND

We present basic concepts that are necessary to understand
our remaining discussion. We give a short overview on
software product lines and feature-oriented programming.

A. Software Product Lines

A software product line is a set of products defined on a
set of features F . A software product P is as a subset of all
features P ⊆ F . Theoretically, we can combine the features
in F in all combinations defined by the power set 2F .



BankAccount

Overdraft Interest

InterestEstimation

CreditWorthiness DailyLimit

Legend:

Optional

Figure 1. A feature model of a product line of bank accounts.

Practically, features may require other features or features
may exclude each other [2], [3], [15]. For example, in a
product line of database management systems, we may have
support for different operating systems such as Windows and
Unix, and a database product can either run on Windows or
Unix. Hence, a software product line L is defined as a subset
of all possible feature combinations: L ⊆ 2F .

The formalization of a product line as a set of sets of
features is often laborious. A common means to compactly
describe valid feature combinations is a feature model [2],
[3], [15]. A feature model is a hierarchy of features [2],
in which each feature requires its parent feature [15]. A
subfeature can be either mandatory, optional, or part of a
group of alternative features [2].

In Figure 1, we give an example describing the features
of a product line to manage bank accounts. The product
line consists of six features. Feature BankAccount is part of
all products and all other features are optional. Depending
on the feature selection, a bank account may or may not
support an overdraft limit (feature Overdraft), the calculation
of interests (Interest), the estimation of credit worthiness
(CreditWorthiness), or a maximum daily withdrawal (Dai-
lyLimit). Furthermore, feature InterestEstimation provides a
calculation of the estimated interest until the end of the year.
But, this feature requires feature Interest and is therefore
modeled as a subfeature of it. Overall, the feature model
defines a product line with 24 products.

B. Feature-Oriented Programming

So far, we discussed how to define valid combinations of
features. Once these valid combinations have been defined,
we need a product-line implementation technique that maps
features to implementation units, in order to automatically
generate software products for a given feature selection.
While there are several implementation techniques [6], we
focus on feature-oriented programming.

In feature-oriented programming, the code of each feature
is encapsulated in a distinct feature module [7], [8]. A
feature module is a set of classes and class refinements [8], in
which a class refinement is a set of methods and fields. When
composing class A with a class refinement A′, all methods
and fields of A′ are added to A and existing methods are
refined. Software products can be generated automatically
by composing different combinations of feature modules.

class Account { feature module BankAccount
int balance = 0;
void update(int x) {

balance += x;
}

}
class Application {

Account account = new Account();
void nextDay() {}
void nextYear() {}

}

refines class Account { feature module DailyLimit
final static int DAILY_LIMIT = -1000;
int withdrawal = 0;
void update(int x) {

original(x);
if (x < 0) withdrawal += x;

}
}
refines class Application {

void nextDay() {
original();
account.withdrawal = 0;

}
}

refines class Account { feature module Interest
final static int INTEREST_RATE = 2;
int interest = 0;
int calculateInterest() {

return balance * INTEREST_RATE / 100 / 365;
}

}
refines class Application {

void nextDay() {
original();
account.interest +=
account.calculateInterest();

}
void nextYear() {

original();
account.balance += account.interest;
account.interest = 0;

}
}

Figure 2. Three feature modules of the bank account product line.

In Figure 2, we illustrate three feature modules of the
bank account product line. Feature module BankAccount
provides a base implementation, which can store and update
the current balance of an account. As defined in the feature
model in Figure 1, we assume that this feature is part of
every product, but its classes are refined by other features.

Feature module DailyLimit adds a field withdrawal to
store the current withdrawal of the day. Method update()
is refined to alter the withdrawal whenever the account bal-
ance is decreased. Keyword original refers to the method
being subject of the refinement and is similar to super
in object-oriented programming. Method nextDay() is
assumed to be called every day at midnight and refined by
feature module DailyLimit to reset the withdrawal of the day.

2



class Account { product {BankAccount, DailyLimit}
final static int DAILY_LIMIT = -1000;
int balance = 0;
int withdrawal = 0;
void update(int x) {

balance += x;
if (x < 0) withdrawal += x;

}
}
class Application {

Account account = new Account();
void nextDay() { account.withdrawal = 0; }
void nextYear() {}

}

Figure 3. Composition of feature modules BankAccount and DailyLimit.

Similarly, feature module Interest adds a field interest
to store the cumulated interests since beginning of the year,
and adds a method to calculate the interests. The stored
interests are updated daily using the refinement for method
nextDay(), and credited to the account at the end of the
year using the refinement for method nextYear().

Four products can be created automatically by composing
these three feature modules in different combinations: {B},
{B, I}, {B,D}, and {B, I,D}. In Figure 3, we illustrate
the result of composing the feature modules BankAccount
and DailyLimit. Classes are merged with identically named
class refinements. The resulting classes contain all fields
and methods defined in the composed feature modules.
Already existing methods such as method update() are
replaced, whereas the keyword original is substituted by
the method body of the replaced method.

III. PRODUCT-LINE STRATEGIES

When software product lines are used in safety-critical
contexts, we need to verify that all products behave as
intended. Consequently, we need to specify the intended
behavior of all products. We found several approaches for
specification and verification of product lines in the litera-
ture. In recent work, we proposed a classification and survey
on product-line analysis [10]. Using our classification, we
identify strategies to scale specification and verification
approaches to product lines. We briefly summarize our
classification and discuss how different strategies deal with
variability in specification and verification.

A. Specification Strategies for Product Lines

A simple strategy to specify a software product line is
to define a specification that all products need to establish,
called global specification [10]. For example, in a product
line of pacemakers, all products have to admit to the same
specification stating that a heart beat is generated whenever
the heart stops beating [49]. Global specifications were
used for different verification techniques such as model
checking [17], [40], [42], [44] and static analyses [35], [36].

But in recent work, we found that global specifications are
often too restrictive, because variability in implementation
does usually require variability in specifications, too [11].

When global specifications are not applicable, we can
specify each product of a product line separately, called
product-based specification [10]. Clearly, specifying the
behavior for every product scales only for product lines with
few products. An optimization is to specify and analyze only
a subset of all products, which is applicable if only this
subset is used productively. We did not find any product-
based specification approach in the literature, but every
specification approach for a single software system can
be applied to products individually. Product-based speci-
fications may be useful if the product specifications are
largely disjunct, and thus there is a low potential to reuse
specifications over several products.

Another strategy is to specify each feature and to compose
these specification in a similar manner as source code, called
feature-based specification [10]. For example, in our bank
account product line, we could add a specification to feature
DailyLimit stating that the daily withdrawal never exceeds
the limit. Then, this specification applies to all products
containing feature DailyLimit. We identified that feature-
based specifications were used for model checking only [18],
[19], [31], [41], [43]. The main advantage of feature-based
specifications is that specifications can be reused across
several products. However, specifications applying to com-
binations of features cannot be defined.

A family-based specification is a specification annotated
with a propositional formulas stating for which feature
combinations the specification is assumed to hold [10]. For
example, in a database management system, we might want
to specify that statistics over transactions are gathered when-
ever both features are selected. Family-based specifications
generalize product-based and feature-based specifications,
because each product-based and feature-based specification
is a family-based specifications per definition. Family-based
specifications are used for model checking only [34].

B. Verification Strategies for Product Lines

A simple strategy to verify a software product line is to
generate and verify all products separately, called product-
based verification [10]. In principle, any standard verifi-
cation technique applicable to the generated products can
be used for product-based verification. But, product-based
verification is feasible only for product lines with few
products. We found no proposal in the literature explicitly
suggesting an exhaustive product-based verification without
any optimizations. But, we found some approaches that
actually propose product-based analyses and do not discuss
how to deal with many products; these approaches apply
type checking [16], model checking [17]–[19], theorem
proving [20], and runtime analyses [21] to product lines.

3



Verification Strategy Type Checking Model Checking Theorem Proving Other Techniques

Product-based [16] [17]–[19] [20] [21]
Family-based [22]–[29] [19], [25], [30]–[34] [35], [36]

Feature-product-based [37]–[39] [40]–[44] [43], [45], [46]
Feature-family-based [47] [48]

Table I
OVERVIEW ON VERIFICATION APPROACHES FOR SOFTWARE PRODUCT LINES.

A more efficient strategy is to verify all products simul-
taneously using a family-based verification [10]. The idea
is either to make the verification tool variability-aware [30]
or to generate a metaproduct simulating the behavior of all
products [25]. For example, in our bank account product
line, a metaproduct can be generated by composing all
feature modules and transforming compile-time variability
into runtime variability (i.e., creating a boolean variable
for each feature and using dynamic branching to simulate
the behavior of all feature combinations). A family-based
strategy has been applied to type checking [22]–[29], model
checking [19], [25], [30]–[34], and static analyses [35], [36].

Another strategy is to verify the implementation of each
feature in isolation without considering other features, called
feature-based verification [10]. The goal of feature-based
verification is to reduce the potentially exponential number
of verification tasks (i.e., for every product) to a linear
number of verification tasks (i.e., for every feature). But,
a feature-based verification can detect only issues within a
certain feature and does not care about issues across features.
However, a well-known problem are feature interactions:
several features work as expected in isolation, but lead to
unexpected behavior in combination [50]. Thus, a feature-
based strategy can usually not be used for verification as-is.
However, it can be combined with other strategies.

In the literature, we found that product-based, family-
based, and feature-based strategies are also combined to
achieve synergies [10]. The most commonly proposed com-
bination is feature-product-based verification, in which fea-
tures are verified as far as possible in isolation and all
remaining verification tasks are done for each product.
A feature-product-based strategy is applied to scale type
checking [37]–[39], model checking [40]–[44], and theo-
rem proving [43], [45], [46] to product lines. Similarly,
feature-family-based verification has been proposed using
type checking [47] and theorem proving [48].

In our recent survey, we give examples for each strategy
and discuss advantages and disadvantages in detail [10]. In
Table I, we give an overview on all classified approaches,
from which we can make some observations regarding new
and underrepresented research areas. First, feature-family-
based verification is a young research area for which only
two approaches exist so far. Second, while there is a large
number of approaches for family-based type checking and

family-based model checking, we found not a single ap-
proach applying a family-based strategy to theorem proving.
But, we argue that several verification techniques such as
type checking, model checking, and theorem proving should
be applied to product lines, because each technique has
strengths and weaknesses [10]. For example, type checking
is limited in the errors that can be detected [51] and model
checking might not terminate or run out of memory due to
the state explosion [52]. We fill this gap by proposing family-
based theorem proving using feature-based specifications.

IV. SPECIFICATION OF FEATURE MODULES

Our goal is to verify feature modules using contracts,
which naturally raises the question how to define contracts
for feature modules and how to specify the intended behavior
of all products. We give a short overview, how contracts can
be defined for object-oriented classes. Then, we present our
approach to define contracts for feature modules.

A. Contracts for Object-Oriented Classes

In 1949, Alan Turing formulated that the correctness
of large methods should be verified using assertions to
simplify the verification [53]. In 1969, Tony Hoare formal-
ized assertions in terms of preconditions and postconditions
using the well-known Hoare triple [54]. Two decades later,
Bertrand Meyer made assertions popular in object-oriented
programming as contracts and invariants [9]. Contracts are
assigned to methods consisting of a precondition and a
postcondition. The precondition is an assertion that callers
of the method need to fulfill and the method can rely on.
Vice versa, the postcondition must be fulfilled by the method
and can be assumed by the caller. Invariants are assertions
that must hold after each constructor call as well as before
and after the execution of public methods.

We use the Java Modeling Language (JML) to define
contracts, a behavioral specification language for Java with
support for contracts and invariants [55]. In Figure 4, we give
a JML specification of feature module BankAccount, which
is a standard Java program. In JML, a contract is defined
using keywords requires and ensures, denoting the
precondition and postcondition, respectively. In our example,
the precondition of method update() is always fulfilled
and the postcondition is stating that the account balance is
updated correctly. Additionally, an invariant is defined in
class Application stating that field account is not null.

4



class Account { feature module BankAccount
int balance = 0;
/*@
@ requires true;
@ ensures balance == \old(balance) + x;
@*/
void update(int x) {

balance += x;
}

}
class Application {

//@ invariant account != null;
Account account = new Account();

}

Figure 4. JML contracts and invariants in Java classes.

B. Contracts for Feature Modules

In recent work, we proposed and discussed five ap-
proaches to define contracts for feature modules [11]. All
approaches enable feature-based specifications from which
the specification of each product can be derived automati-
cally. Contracts are composed in a similar manner as feature
modules. Thus, specifications do not need to be defined for
each product, because we can reuse specifications across
several products. In the following, we exemplify one of these
approaches, namely explicit contract refinement.

In Figure 5, we present contracts for class Account
in DailyLimit and Interest. Contracts and invariants may
be defined as known from object-oriented programming,
except the specification of method contracts for refined
methods. For example, method calculateInterest()
is specified using a JML contract, which only holds when
feature Interest is selected. Feature DailyLimit introduces a
new invariant stating that the withdrawal is within the limit.
Similarly, this invariant only needs to be established in all
products containing feature DailyLimit.

The interesting case is the contract of method update().
In explicit contract refinement [11], a contract defined for
a method refinement replaces the contract of the refined
method. In our example, the contract defined in feature Dai-
lyLimit replaces the contract defined in feature BankAccount.
But, the replaced contract can be reused with the keyword
original in a similar manner as in the implementation:
original in a precondition refers to the replaced pre-
condition and original in a postcondition refers to the
replaced postcondition. The refined contract extends the
precondition to ensure that the daily withdrawal is within the
limit and the postcondition to specify that the withdrawal is
updated correctly whenever method update() is called.

V. VERIFICATION OF FEATURE MODULES

Specifying Java programs with JML is not only beneficial
for verification. Formal specification using JML can be used
for documentation generation, runtime assertion checking,
automatic test generation, extended static checking, and

refines class Account { feature module DailyLimit
final static int DAILY_LIMIT = -1000;
//@ invariant withdrawal >= DAILY_LIMIT;
int withdrawal = 0;
/*@
@ requires \original &&
@ (withdrawal + x >= DAILY_LIMIT)
@ ensures \original &&
@ (x>=0 ==> withdrawal==\old(withdrawal)) &&
@ (x<0 ==> withdrawal==\old(withdrawal)+x);
@*/
void update(int x) {

original(x);
if (x < 0) withdrawal += x;

}
}

refines class Account { feature module Interest
final static int INTEREST_RATE = 2;
int interest = 0;
/*@
@ requires true;
@ ensures (balance >= 0 ==> \result >= 0) &&
@ (balance <= 0 ==> \result <= 0);
@*/
int calculateInterest() {

return balance * INTEREST_RATE / 100 / 365;
}

}

Figure 5. Feature module specification using explicit contract refinement.

formal verification using theorem proving [56]. We and
others argue that a multitude of techniques is needed to
verify the correctness of programs [56], [57]. When formally
proving the correctness, the program should already be
tested forehand, because formal verification is too expensive
for extensive bug finding [56]. Furthermore, certain proper-
ties are hard to be proved statically and should be checked
at runtime, whereas not all properties should be checked
at runtime to minimize the runtime overhead [57]. Hence,
when verifying feature modules, a multitude of techniques
is needed to efficiently detect errors as well as to prove
the absence of errors. In the following, we summarize our
approaches for the verification of feature modules.

A. Product-Based Runtime Assertion Checking

A popular application of contracts are runtime asser-
tions [9], [56], [57]. The idea is to check contracts at runtime
using a special compiler (e.g., JMLC). The advantage of
runtime assertion checking is that contracts may be checked
when testing the program, but do not cause runtime overhead
in a release version compiled with a standard Java compiler.

We are currently implementing tool support for product-
based runtime assertion checking in the integrated develop-
ment environment FEATUREIDE [58] based on an extension
of the composer FEATUREHOUSE [59]. When composing
feature modules to generate a certain product, contracts
are composed resulting in a standard Java program with

5



class Account { product {BankAccount, DailyLimit}
final static int DAILY_LIMIT = -1000;
int balance = 0;
//@ invariant withdrawal >= DAILY_LIMIT;
int withdrawal = 0;
/*@
@ requires true &&
@ (withdrawal + x >= DAILY_LIMIT)
@ ensures balance == \old(balance) + x &&
@ (x>=0 ==> withdrawal==\old(withdrawal)) &&
@ (x<0 ==> withdrawal==\old(withdrawal)+x);
@*/
void update(int x) {

balance += x;
if (x < 0)

withdrawal += x;
}

}

Figure 6. Composition of specifications for BankAccount and DailyLimit.

JML specifications. We illustrate the result of composing
class Account from features BankAccount and DailyLimit
in Figure 6. Feature modules are composed as shown in
Figure 3 and the keyword original in contracts is re-
placed similarly. The approach is product-based, because
contract violations are detected at runtime for every product
individually. A possible optimization is to choose a subset
of all products that is likely to detect all errors [10].

B. Product-Based Extended Static Checking

The generated Java programs with JML specifications
can also be used as input for static analysis tools such
as extended static checkers. We pursued product-based ex-
tended static checking using ESC/JAVA2 for the detection of
feature interactions [12]. We were able to detect all feature
interactions in a small product line of list implementations,
but the detection was not straightforward. The reason is that
ESC/JAVA2 is unsound and incomplete (e.g., false positives
and false negatives may occur), because loops are only
unrolled a fixed number of times [60]. Hence, the tool
cannot be used to prove the absence of errors, but as runtime
assertion checking it is valuable for bug finding.

C. Feature-Product-Based Theorem Proving

Formal specifications in JML can be used to prove that a
program behaves as intended. A verification tool translates
a JML-annotated Java program into the input language of
a theorem prover. One such tool is Why/Krakatoa [61],
which supports multiple theorem provers such as COQ [62].
COQ is an interactive theorem prover meaning that user
interaction is necessary to prove theorems. More precisely,
the user needs to write textual commands (i.e., a proof script)
that apply certain proof steps until the proof is finished.

We proposed feature-product-based theorem proving us-
ing the above mentioned tool chain and proof composi-
tion [13]. The idea is to write proof scripts for each feature

and compose them together with specification and source
code. Then, the composed proof scripts are checked for
every product, but the user only needs to write proof scripts
once per feature. Hence, this is a feature-product-based
approach, in which only the feature-based part requires user
interaction and the product-based part can be checked fully
automatically using COQ. Using this approach, we were able
to reduce the effort to write proof scripts by 88 % [13].

D. Family-Based Theorem Proving

All approaches discussed above rely on the generation
of products, which can be problematically for large product
lines, because the number of products is up to exponential
in the number of features. When the goal is to find errors
(e.g., with testing), it is usually sufficient to analyze only
a subset of all products. But when the goal is to prove the
absence of errors (e.g., with theorem proving), all products
need to be generated to achieve completeness.

We proposed the first approach for family-based theorem
proving avoiding the generation of all products [14]. The
idea is to generate a metaproduct simulating all products and
a metaspecification equivalent to all product specifications.
We showed how to use the theorem prover KeY as-is for
the verification of product lines. We evaluated our approach
by means of a case study and measured that the automatic
verification of the metaproduct saves 85 % calculation time
compared to the individual verification of all products [14].

VI. CONCLUSION AND FUTURE WORK

Efficient strategies for specification and verifications are
indispensable for safety-critical software product lines. We
classified existing approaches according to product-based,
feature-based, and family-based strategies. For specification,
we identified global specifications as a further strategy.
For verification, also combined strategies such as feature-
product-based or feature-family-based verification have been
proposed in the literature.

We propose to use contracts to formally specify the in-
tended behavior of product lines implemented with feature-
oriented programming. Each feature module is specified
using contracts and product specifications can be generated
along with source code. Based on contract composition, we
discussed product-based runtime assertion checking and ex-
tended static checking for bug finding. Furthermore, we dis-
cussed feature-product-based theorem proving and family-
based theorem proving for proving the absence of errors.

In future work, we intend to evaluate further approaches
such as feature-family-based theorem proving and family-
based testing. Furthermore, we continue building tool sup-
port for multiple specification approaches applying contracts
to feature modules [58]. We also intend to formalize already
presented specification approaches [11]. Finally, we are
going to investigate how evolving product lines can be
verified efficiently based on our previous work [63], [64].

6



ACKNOWLEDGMENT

I thank my supervisor Gunter Saake and Norbert Sieg-
mund for comments on an earlier draft. I gratefully acknowl-
edge the co-authors of previous publications, especially
Christian Kästner, Ina Schaefer, Sven Apel, Don Batory,
Martin Kuhlemann, and Fabian Benduhn.

REFERENCES

[1] B. Meyer, Object-Oriented Software Construction, 1st ed.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study,” Software Engineering Institute, Tech. Rep.
CMU/SEI-90-TR-21, 1990.

[3] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. New York, NY,
USA: ACM/Addison-Wesley, 2000.

[4] P. Clements and L. Northrop, Software Product Lines: Prac-
tices and Patterns. Boston, MA, USA: Addison-Wesley,
2001.

[5] K. Pohl, G. Böckle, and F. J. van der Linden, Software
Product Line Engineering : Foundations, Principles and Tech-
niques. Berlin, Heidelberg, New York, London: Springer,
2005.

[6] S. Apel and C. Kästner, “An Overview of Feature-Oriented
Software Development,” J. Object Technology (JOT), vol. 8,
no. 5, pp. 49–84, 2009.

[7] C. Prehofer, “Feature-Oriented Programming: A Fresh Look
at Objects,” in Proc. Europ. Conf. Object-Oriented Program-
ming (ECOOP). Berlin, Heidelberg, New York, London:
Springer, 1997, pp. 419–443.

[8] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement,” IEEE Trans. Software Engineering (TSE),
vol. 30, no. 6, pp. 355–371, 2004.

[9] B. Meyer, “Applying Design by Contract,” IEEE Computer,
vol. 25, no. 10, pp. 40–51, 1992.

[10] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and
G. Saake, “Analysis Strategies for Software Product Lines,”
School of Computer Science, University of Magdeburg, Ger-
many, Tech. Rep. FIN-004-2012, 2012.

[11] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and G. Saake,
“Applying Design by Contract to Feature-Oriented Program-
ming,” in Proc. Int’l Conf. Fundamental Approaches to Soft-
ware Engineering (FASE). Berlin, Heidelberg, New York,
London: Springer, 2012, pp. 255–269.

[12] W. Scholz, T. Thüm, S. Apel, and C. Lengauer, “Automatic
Detection of Feature Interactions using the Java Modeling
Language: An Experience Report,” in Proc. Int’l Workshop
Feature-Oriented Software Development (FOSD). New York,
NY, USA: ACM, 2011, pp. 7:1–7:8.

[13] T. Thüm, I. Schaefer, M. Kuhlemann, and S. Apel, “Proof
Composition for Deductive Verification of Software Product
Lines,” in Proc. Int’l Workshop Variability-intensive Systems
Testing, Validation and Verification (VAST). Washington,
DC, USA: IEEE, 2011, pp. 270–277.

[14] T. Thüm, I. Schaefer, S. Apel, and M. Hentschel, “Family-
Based Deductive Verification of Software Product Lines,” in
Proc. Int’l Conf. Generative Programming and Component
Engineering (GPCE), 2012, to appear.

[15] D. Batory, “Feature Models, Grammars, and Propositional
Formulas,” in Proc. Int’l Software Product Line Conference
(SPLC). Berlin, Heidelberg, New York, London: Springer,
2005, pp. 7–20.

[16] S. Apel, C. Kästner, and C. Lengauer, “Feature Feather-
weight Java: A Calculus for Feature-Oriented Programming
and Stepwise Refinement,” in Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). New
York, NY, USA: ACM, 2008, pp. 101–112.

[17] T. Kishi and N. Noda, “Formal Verification and Software
Product Lines,” Comm. ACM, vol. 49, pp. 73–77, 2006.

[18] S. Apel, W. Scholz, C. Lengauer, and C. Kästner, “Detecting
Dependences and Interactions in Feature-Oriented Design,”
in Proc. Int’l Symposium Software Reliability Engineering
(ISSRE). Washington, DC, USA: IEEE, 2010, pp. 161–170.

[19] S. Apel, H. Speidel, P. Wendler, A. von Rhein, and D. Beyer,
“Detection of Feature Interactions using Feature-Aware Veri-
fication,” in Proc. Int’l Conf. Automated Software Engineering
(ASE). Washington, DC, USA: IEEE, 2011, pp. 372–375.

[20] D. Bruns, V. Klebanov, and I. Schaefer, “Verification of
Software Product Lines with Delta-Oriented Slicing,” in
Proc. Int’l Conf. Formal Verification of Object-Oriented Soft-
ware (FoVeOOS). Berlin, Heidelberg, New York, London:
Springer, 2011, pp. 61–75.

[21] V. V. Rubanov and E. A. Shatokhin, “Runtime Verification
of Linux Kernel Modules Based on Call Interception,” in
Proc. Int’l Conf. Software Testing, Verification and Validation
(ICST). Washington, DC, USA: IEEE, 2011, pp. 180–189.

[22] L. Aversano, M. D. Penta, and I. D. Baxter, “Handling
Preprocessor-Conditioned Declarations,” in Proc. Int’l Work-
shop Source Code Analysis and Manipulation (SCAM).
Washington, DC, USA: IEEE, 2002, pp. 83–92.

[23] K. Czarnecki and K. Pietroszek, “Verifying Feature-Based
Model Templates Against Well-Formedness OCL Con-
straints,” in Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). New York, NY, USA:
ACM, 2006, pp. 211–220.

[24] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe Com-
position of Product Lines,” in Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). New
York, NY, USA: ACM, 2007, pp. 95–104.

[25] H. Post and C. Sinz, “Configuration Lifting: Software Veri-
fication meets Software Configuration,” in Proc. Int’l Conf.
Automated Software Engineering (ASE). Washington, DC,
USA: IEEE, 2008, pp. 347–350.

[26] M. Kuhlemann, D. Batory, and C. Kästner, “Safe Composition
of Non-Monotonic Features,” in Proc. Int’l Conf. Generative
Programming and Component Engineering (GPCE). New
York, NY, USA: ACM, 2009, pp. 177–186.

[27] F. Heidenreich, “Towards Systematic Ensuring Well-
Formedness of Software Product Lines,” in Proc. Int’l Work-
shop Feature-Oriented Software Development (FOSD). New
York, NY, USA: ACM, 2009, pp. 69–74.

[28] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type
Safety for Feature-Oriented Product Lines,” Automated Soft-
ware Engineering, vol. 17, no. 3, pp. 251–300, 2010.

[29] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type Checking
Annotation-Based Product Lines,” Trans. Software Engineer-
ing and Methodology (TOSEM), vol. 21, no. 3, 2012, to
appear.

[30] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling and
Model Checking Software Product Lines,” in Proc. IFIP Int’l
Conf. Formal Methods for Open Object-based Distributed
Systems (FMOODS). Berlin, Heidelberg, New York, London:
Springer, 2008, pp. 113–131.

[31] K. Lauenroth, K. Pohl, and S. Toehning, “Model Checking of
Domain Artifacts in Product Line Engineering,” in Proc. Int’l

7



Conf. Automated Software Engineering (ASE). Washington,
DC, USA: IEEE, 2009, pp. 269–280.

[32] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F.
Raskin, “Model Checking Lots of Systems: Efficient Verifi-
cation of Temporal Properties in Software Product Lines,” in
Proc. Int’l Conf. Software Engineering (ICSE). New York,
NY, USA: ACM, 2010, pp. 335–344.

[33] I. Schaefer, D. Gurov, and S. Soleimanifard, “Compositional
Algorithmic Verification of Software Product Lines,” in Proc.
Int’l Symposium on Formal Methods for Components and
Objects (FMCO). Berlin, Heidelberg, New York, London:
Springer, 2010, pp. 184–203.

[34] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“Symbolic Model Checking of Software Product Lines,” in
Proc. Int’l Conf. Software Engineering (ICSE). New York,
NY, USA: ACM, 2011, pp. 321–330.

[35] C. Brabrand, M. Ribeiro, T. Tolêdo, and P. Borba, “Intraproce-
dural Dataflow Analysis for Software Product Lines,” in Proc.
Int’l Conf. Aspect-Oriented Software Development (AOSD).
New York, NY, USA: ACM, 2012, pp. 13–24.

[36] E. Bodden, “Position Paper: Static Flow-Sensitive & Context-
Sensitive Information-Flow Analysis for Software Product
Lines,” in Proc. Workshop Programming Languages and
Analysis for Security (PLAS), 2012, to appear.

[37] S. Apel and D. Hutchins, “A Calculus for Uniform Feature
Composition,” Trans. Programming Languages and Systems
(TOPLAS), vol. 32, pp. 19:1–19:33, 2010.

[38] L. Bettini, F. Damiani, and I. Schaefer, “Implementing Soft-
ware Product Lines Using Traits,” in Proc. ACM Symposium
on Applied Computing (SAC). New York, NY, USA: ACM,
2010, pp. 2096–2102.

[39] I. Schaefer, L. Bettini, and F. Damiani, “Compositional Type-
Checking for Delta-Oriented Programming,” in Proc. Int’l
Conf. Aspect-Oriented Software Development (AOSD). New
York, NY, USA: ACM, 2011, pp. 43–56.

[40] K. Fisler and S. Krishnamurthi, “Modular Verification of
Collaboration-based Software Designs,” in Proc. Europ. Soft-
ware Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). New York, NY, USA: ACM, 2001, pp. 152–
163.

[41] H. C. Li, S. Krishnamurthi, and K. Fisler, “Interfaces for
Modular Feature Verification,” in Proc. Int’l Conf. Automated
Software Engineering (ASE). Washington, DC, USA: IEEE,
2002, pp. 195–204.

[42] ——, “Modular Verification of Open Features Using Three-
Valued Model Checking,” Automated Software Engineering,
vol. 12, no. 3, pp. 349–382, 2005.

[43] M. Poppleton, “Towards Feature-Oriented Specification and
Development with Event-B,” in Proc. Int’l Working Conf.
Requirements Engineering: Foundation for Software Quality
(REFSQ). Berlin, Heidelberg, New York, London: Springer,
2007, pp. 367–381.

[44] J. Liu, S. Basu, and R. Lutz, “Compositional Model Checking
of Software Product Lines using Variation Point Obligations,”
Automated Software Engineering, vol. 18, no. 1, pp. 39–76,
2011.

[45] D. Batory and E. Börger, “Modularizing Theorems for Soft-
ware Product Lines: The Jbook Case Study,” J. Universal
Computer Science (J.UCS), vol. 14, no. 12, pp. 2059–2082,
2008.

[46] B. Delaware, W. Cook, and D. Batory, “Product Lines of
Theorems,” in Proc. Conf. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). New York,
NY, USA: ACM, 2011, pp. 595–608.

[47] B. Delaware, W. R. Cook, and D. Batory, “Fitting the Pieces
Together: A Machine-Checked Model of Safe Composition,”
in Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). New York, NY, USA:
ACM, 2009, pp. 243–252.

[48] R. Hähnle and I. Schaefer, “A Liskov Principle for Delta-
oriented Programming,” in Proc. Int’l Conf. Formal Verifi-
cation of Object-Oriented Software (FoVeOOS). Karlsruhe,
Germany: Technical Report 2011-26, Department of Infor-
matics, Karlsruhe Institute of Technology, 2011, pp. 190–207.

[49] J. Liu, J. Dehlinger, and R. Lutz, “Safety Analysis of Software
Product Lines using State-based Modeling,” J. Systems and
Software (JSS), vol. 80, no. 11, pp. 1879–1892, 2007.

[50] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec,
“Feature Interaction: A Critical Review and Considered Fore-
cast,” Computer Networks, vol. 41, no. 1, pp. 115–141, 2003.

[51] B. C. Pierce, Types and Programming Languages. Cam-
bridge, Massachusetts, USA: MIT Press, 2002.

[52] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Check-
ing. Cambridge, Massachussetts: The MIT Press, 1999.

[53] A. Turing, “Checking a Large Routine,” in Conference on
High Speed Automatic Calculating Machines, 1949, pp. 67–
69.

[54] C. A. R. Hoare, “An Axiomatic Basis for Computer Program-
ming,” Comm. ACM, vol. 12, no. 10, pp. 576–580, 1969.

[55] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary Design
of JML: A Behavioral Interface Specification Language for
Java,” SIGSOFT Softw. Eng. Notes, vol. 31, no. 3, pp. 1–38,
2006.

[56] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An Overview
of JML Tools and Applications,” Int’l J. Software Tools for
Technology Transfer (STTT), vol. 7, no. 3, pp. 212–232, 2005.

[57] M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter, “Specification and Verification:
The Spec# Experience,” Comm. ACM, vol. 54, pp. 81–91,
2011.

[58] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and
T. Leich, “FeatureIDE: An Extensible Framework for Feature-
Oriented Software Development,” Science of Computer Pro-
gramming (SCP), 2012, to appear; accepted 2012-06-07.

[59] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse:
Language-Independent, Automated Software Composition,”
in Proc. Int’l Conf. Software Engineering (ICSE). Wash-
ington, DC, USA: IEEE, 2009, pp. 221–231.

[60] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond
Assertions: Advanced Specification and Verification with
JML and ESC/Java2,” in Proc. Int’l Symposium on Formal
Methods for Components and Objects (FMCO). Berlin,
Heidelberg, New York, London: Springer, 2005, pp. 342–363.

[61] J.-C. Filliâtre and C. Marché, “The Why/Krakatoa/Caduceus
Platform for Deductive Program Verification,” in Computer
Aided Verification. Berlin, Heidelberg, New York, London:
Springer, 2007, pp. 173–177.

[62] Coq Development Team, The Coq Proof Assistant Reference
Manual, LogiCal Project, 2010, version 8.3.

[63] T. Thüm, D. Batory, and C. Kästner, “Reasoning about Edits
to Feature Models,” in Proc. Int’l Conf. Software Engineering
(ICSE). Washington, DC, USA: IEEE, 2009, pp. 254–264.

[64] T. Thüm, C. Kästner, S. Erdweg, and N. Siegmund, “Abstract
Features in Feature Modeling,” in Proc. Int’l Software Product
Line Conference (SPLC). Washington, DC, USA: IEEE,
2011, pp. 191–200.

8


