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Abstract
Today’s competitive marketplace requires the industry to un-
derstand unique and particular needs of their customers. Prod-
uct line practices enable companies to create individual prod-
ucts for every customer by providing an interdependent set
of features. Users configure personalized products by consec-
utively selecting desired features based on their individual
needs. However, as most features are interdependent, users
must understand the impact of their gradual selections in or-
der to make valid decisions. Thus, especially when dealing
with large feature models, specialized assistance is needed
to guide the users in configuring their product. Recently, rec-
ommender systems have proved to be an appropriate mean
to assist users in finding information and making decisions.
In this paper, we propose an advanced feature recommender
system that provides personalized recommendations to users.
In detail, we offer four main contributions: (i) We provide a
recommender system that suggests relevant features to ease
the decision-making process. (ii) Based on this system, we
provide visual support to users that guides them through
the decision-making process and allows them to focus on
valid and relevant parts of the configuration space. (iii) We
provide an interactive open-source configurator tool encom-
passing all those features. (iv) In order to demonstrate the
performance of our approach, we compare three different rec-
ommender algorithms in two real case studies derived from
business experience.

Categories and Subject Descriptors D.2.13 [Software En-
gineering]: Reusable Software.

Keywords Software Product Lines, Product-Line Configu-
ration, Recommenders, Personalized Recommendations
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1. Introduction
In today’s competitive market, mass production has given
way to mass personalization, which means to satisfy particu-
lar needs of each specific customer. In product-line literature,
mass personalization of products is known as product config-
uration. However, the actual process of configuration of large
product lines with complex feature dependencies is a time-
consuming, error-prone and tedious task. Thus, it is crucial
for companies to have an easy and comprehensive product
configuration process.

To achieve that goal we propose a product-line configu-
ration approach encompassing a recommender system and
visualization mechanisms that aid a user in the configuration
process. The visualization mechanisms narrow the configura-
tion space of possible features down to the permitted features
and highlight selected features needed to finish a configura-
tion. The remaining features are then scored with respect to
their relevance by our recommender system. Consequently,
a user is provided with a limited set of permitted, necessary
and relevant choices.

Although there are approaches in the literature that rec-
ommend configurations to users by adopting recommender
techniques [2, 3, 4, 5, 16, 30, 31, 32, 44], this is the first ap-
proach that uses an automated and personalized recommender
system that learns about the relevant features from past con-
figurations. Therefore, no intervention of human experts is
necessary in the creation of the recommendations. Moreover,
the aforementioned approaches do not guide users into a valid
configuration using visualization mechanisms. While there
are many specialized configurator tools that aim to provide
this support (e.g., FeatureIDE [46] and SPLOT [34]), they
only ensure that any partially configured product is in ac-
cordance with the product line constraints. This may lead to
delays due to users’ exploration of choices at each step of
the configuration process. Thus, handling the product config-
uration process in large product lines is still a critical issue
in many companies and the current literature still lacks a
complete technique to support this process.

Based on the literature [10, 13, 36, 37, 39], we iden-
tify the following configuration challenges that arise from
the industry needs when using configurators: (i) industry



product lines often contain too many options and complex
relationships; (ii) decision makers, e.g. requirement engineers
and business analyst, are usually unsure about users needs
when confronted with a set of choices; and (iii) it is diffi-
cult to define a valid configuration since often users specify
requirements that are inconsistent with the feature model’s
constraints, and also features of no importance to the user
need to be taken into account when it comes to fulfill the
constraints. Thus, we address these challenges by providing
the following contributions:

• We propose a collaborative feature recommender system
that is based on previous users’ configurations to generate
personalized recommendations for a current user.

• We provide visual support that guides users through the
decision-making process and allows them to focus on
valid and relevant parts of the configuration space.

• We design an open-source configurator tool support for
our approach1 by extending a state-of-the-art tool [46].

• We empirically evaluate the performance of three different
recommender algorithms on two real-world datasets of
configurations derived from business experience.

Furthermore, from our experimental results on two
datasets from our industry partners, we derive answers to the
following research questions (RQs):

RQ1. Can a recommender system support product-line con-
figuration in realistic configuration scenarios?

RQ2. In which phase of product configuration can a recom-
mender system support its users?

RQ3. What is the impact of the selected algorithms on the
quality of recommendations?

To address these questions, we conducted numerous ex-
periments with three different recommendation algorithms
on two datasets. To draw conclusions from the results, we
compare them with the performance of a random algorithm.
This algorithm recommends randomly chosen features and,
therefore, it indicates the minimal performance level ev-
ery algorithm should reach. It also simulates the perfor-
mance of an uninformed user without any support from a
recommender system. Our experiments show that two of the
three proposed recommendation algorithms clearly and con-
sistently outperform the random recommender in finding
relevant features.

The remainder of this paper is structured as follows.
Section 2 introduces the basic concepts of product lines.
Section 3 clarifies the position of this paper in the literature,
highlighting the gaps filled by our approach. Section 4
describes the proposed approach. Section 5 presents the
results of our experiments. Finally, Section 6 concludes the
paper and discusses future directions.

1 The tool and the full code can be found in the Web supplementary material
http://wwwiti.cs.uni-magdeburg.de/~jualves/PLUS/.

2. Background
In this section, concepts such as product-line engineering and
recommender systems are briefly introduced.

2.1 Product-Line Engineering
Product-line engineering is a paradigm related to software
engineering, used to define and derive a set of similar prod-
ucts from reusable assets [22]. The development life-cycle of
a product-line encompasses two main phases: domain engi-
neering and application engineering [40]. While the domain
engineering phase focuses on establishing a reuse platform,
the application engineering phase is concerned with the ef-
fective reuse of assets across multiple products.

Domain Engineering. The domain engineering phase is
responsible for the capture and documentation of reusable
assets through feature models. Feature models provide a for-
mal notation to represent and manage the interdependen-
cies among reusable common and variable assets, called fea-
tures [25]. The term feature model was proposed by Kang
et al. [21] in 1990 as a part of the Feature-Oriented Domain
Analysis (FODA) method. Since then, feature models have
been applied in a number of domains, including network pro-
tocols [6], smart houses [11], mobile phones [14], telecom
systems [17], the Linux kernel [28], etc.

Application Engineering. The application engineering
phase is responsible for capturing product’s requirements
and derivation of a concrete product through a product con-
figuration process. A concrete configuration defines a valid
configuration (cf. DEFINITION 3 - Sec. 4.1) that covers as much
as possible of the product’s requirements. Thus, product con-
figuration is a decision-making process involving selecting a
concrete and complete (cf. DEFINITION 1 - Sec. 4.1) combina-
tion of features from a feature model. Our focus in this paper
is to ease the application engineering phase by proposing
mechanisms to support the product configuration process.

2.2 Recommender Systems
Recommender systems learn users’ preferences and predict
future items of interest to them. Their goal is to alleviate the
problem of information overload that occurs also in product-
line configuration, where the number of possible features
and configurations is too high for a single user to handle.
Therefore, a system that narrows the possible choices down
to the relevant ones is indispensable. We need automated,
learning algorithms that find relevant items from a large set
of items in a personalized way. The most common classes of
such algorithms are content-based recommender systems and
collaborative filtering algorithms.

Content-Based Recommender Systems. Content-based
recommender systems analyse the content of items. Then,
given the history of a user, they search for items that are
similar to the ones the user purchased before. For more infor-
mation on those algorithms we refer to the extensive survey
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by Lops et al. [27]. This type of algorithm is applicable only
when the content of items can be analysed efficiently. In our
application scenario, features are the items to be analysed.
Since features often do not have a simple representation (e.g.
text descriptions) and are not structured, their analysis is not
efficiently possible. Therefore, the class of content-based
algorithms is not applicable to our scenario.

Collaborative Filtering Algorithms. In contrast to content-
based algorithms, collaborative filtering (CF) algorithms do
not analyse the content of items. Instead, they are based on
relevance feedback from users. The feedback has the form
of ratings that are stored in a user-item-rating matrix X (cf.
Sec. 4.1). In this work we focus on this class of algorithms.

CF algorithms can be divided into two categories. The first
of them is k-Nearest Neighbor Collaborative Filtering (kNN-
CF). A formalization of this algorithm and our adaptation
of it to the product-line configuration scenario are shown in
Section 4.3.1. For a survey on these methods we refer to [15].

The second class of CF algorithms is Matrix Factorization
(MF). MF algorithms have shown their great predictive power
in numerous studies [24, 43, 23]. Nowadays, MF is consid-
ered state-of-the-art in recommender systems. Therefore, we
use a representative of this class of algorithms, the BRISMF
method (Biased Regularized Incremental Simultaneous Ma-
trix Factorization) by Takacs et al. [43], and we adapt it to
our scenario of product-line configuration (cf. Sec. 4.3.3).

Since there is no single recommendation algorithm
that performs the best in all applications, in this work,
we implemented both kNN-CF and BRIMS to investi-
gate which of them performs better in the domain of
product line configuration.

3. Related Work
Since the introduction of feature models in 1990 by Kang
et al. [21], several interesting studies using recommender
systems have been proposed in the product-line configuration
literature [2, 3, 4, 5, 16, 30, 31, 32, 44]. These studies
deal with the information overload resulting from interactive
mechanisms to configure large and complex product lines.
While some of them [2, 3, 4, 5, 32, 44] aim to predict the
utility of each feature for the users, others [16, 30] aim to
predict the utility of an entire set of features, which forms a
valid product configuration. Moreover, considering a broader
configuration scenario, there is much work that provides
optimization and visualization support.

Feature Recommender System. On the feature recom-
mender system scenario, Mazo et al. [32] present a collection
of recommendation heuristics to prioritize choices and rec-
ommend a collection of candidate features to be configured.
However, the authors do not propose any mechanism to guide
the users choosing among the candidate features. Moreover,
further investigation is needed to understand how much these
recommender heuristics increase the success rate of the final

configuration and how to combine the collection of heuristics
in an interactive and incremental configuration process.

Bagheri & Ensan [4] present dynamic decision models
for guiding users through the product configuration process.
In their approach, users are constantly asked to choose
between two competing features. However, this approach
may introduce inconsistencies in the ranking. Moreover, if
both features are of equal (or no) interest to the users, no
support is provided to guide the selection process, leading
the algorithm to make poor decisions.

In a similar scenario, Tan et al. [44] and Bagheri et
al. [2] propose a feature ranking approach to support decision
makers. In their approach, decision makers should compare a
randomly selected pair of features and identify their relevance
in terms of satisfying a given quality requirement. However,
as one feature may contribute to many quality requirements,
the amount and complexity of options presented by the
recommender system can be overwhelming to users. Thus,
there is no evidence that the use of this approach is faster
than the usual configuration process.

Product Recommender System. On the product recom-
mender system scenario, Martinez et al. [30] apply tailored
data mining interpolation techniques to predict configura-
tion likability. The authors’ approach is based on users’
votes for a dataset of configurations. However, in the real
world situation, the large amount of features and relationships
presented by the configurator exceeds the user’s capability
to vote confidently. Additionally, implicit users’ votes are
very often subjective.

Galindo et al. [16] propose an approach, named Invar,
which provides to the users a decision model with a set
of questions and a defined set of possible answers. Based
on the users’ implicit feedback, a product is configured
using decision propagation strategies. However,some vague
descriptions and even misleading information may often
be introduced in the questionnaires. Moreover, there is no
quantitative evidence that the use of questionnaires would
enhance the desirability of the end product.

Configuration Optimization. In the optimization scenario,
there is much recent work in the literature (e.g., [3, 5, 19,
20, 26, 29, 35, 45]) that support the selection of features
addressing the use of quality requirements. However, consid-
ering the diversity of quality requirements, it is not easy for
stakeholders to define an objective function, which matches
their features of preference. Consequently, undesired features
might be selected as well.

Visualization Support. There are also approaches that use
visualizations to aid the users. Among them, Martinez et
al. [31] present a visualization paradigm, called FRoGs (Fea-
ture Relations Graphs). FRoGs shows the impact, in terms
of constraints, of the considered feature on all other features.
The purpose of their approach is to support decision mak-
ers to obtain a better understanding of feature constraints,



and serve as a recommendation system, during the product
configuration process. However, as FRoGs is not integrated
with the configuration process, the amount and complexity of
information presented may exceed the capability of a user to
identify an appropriate configuration. Although there are sev-
eral configurator tools (e.g., FeatureIDE [46], SPLOT [34],
FaMa [8], VariaMos [33], pure::variants [42], Feature Plug-
in [1]), very few have implemented further configuration
support to answer industry needs [10] (cf. Sec. 1). Therefore,
the current literature still lacks a more automatic technique
to support the configuration process.

To address the aforementioned issues, we propose a
feature-based recommender system to guide users through
the product configuration process by directing the order of
selecting features and predicting which of them are more
useful. In contrast to current literature, our approach benefits
from a simplified view of the configuration space by dynami-
cally predicting the importance of the features. Moreover, it
requires just explicit information and contributes with auto-
matic mechanisms that can be successfully integrated with
the previous works.

4. The Proposed Approach
Our approach creates an interactive perspective for users and
offers recommendations to maximize the chances to have an
adequate configuration in the end. The workflow in Figure 1
presents an overview of the configuration process, where all
steps are complementary to each other. The decision mak-
ers are engaged in all the steps, knowing which features are
considered and their importance for the final product. The in-
teraction ensures that the decision makers understand the con-
figuration space and its limitations and are also comfortable
with the decisions that are made during the whole process.

The configuration process is carried out by considering
five main activities: configure, propagate decisions, check
validity, calculate recommendations, and visualize. First, the
process is started by collecting requirements of a product
from users, customers, and other stakeholders. Second, based
on the product’ requirements, the decision maker select fea-
tures of interest from a focused and highlighted view (cf.
Sec 4.2) on the feature model. Each time a user (de)selects
a particular feature, decision propagation strategies are ap-
plied to automatically validate feature models, which results
in a non-conflicting configuration [38]. Next, algorithms are
used to check the partial configuration validity and to com-
pute predictions of features’ relevance (cf. Sec. 4.3). The
predictions are displayed for features on the focused view to
guide the current decision maker through a step-wise selec-
tion of features. The predictions are constantly updated as
new information is received based on (de)selected features.
Therefore, if decision makers are not familiar with the fea-
tures and cannot decide what is the best choice, suggestions
are presented to them. Finally, if the decision maker wishes to
finish the configuration process, the focused and highlighted

view combined with the recommender system can support
them to have a desired and valid configuration. Through the
use of our approach, configuration update and upgrade can
also be supported from a partial configuration.

In this section, we detail the proposed components shown
in Figure 2 that centers around the above characteristics.

4.1 Formal Definition
In this section, we describe the formulation and typology
of product configuration. We define the variables fi ∈
{−1, 0, 1}, such that fi = 1, if feature i is selected for
the final product, fi = 0 if feature i is deselected for
the final product, and fi = −1 if the state of feature i is
undefined. Variables needed in feature models are defined in
the following way:

• A feature model FM = (F,R) is a tuple that consists
of a feature space F = {−1, 0, 1}h, where h is the
number of features in the feature model, and a set of
constraintsR = {~r1, ~r2, ..., ~rm}, where m is the number
of constraints of the feature model.

• In our formalism, we consider a constraint ~ri as a clause
from the feature model’s propositional formula in con-
junctive normal form. We represent it as a vector in F (i.e.,
~ri ∈ F for i ∈ N and 1 ≤ i ≤ m) such that the compo-
nent j of a constraint ri specifies whether the feature j
should be selected (rij = 1), deselected (rij = 0), or is
not relevant (rij = −1). As example, consider a feature
space F with h = 4. For the clause (¬f1 ∨ f3 ∨ f4) the
corresponding vector would be ~r1 = (0,−1, 1, 1).

Given a feature model FM, C = {~c1,~c2, ...,~ck} is the
set of all possible configurations, such that ~ci ∈ F for i ∈ N
and 1 ≤ i ≤ k. Configurations can be classified as partial or
complete, as well as valid or invalid.

DEFINITION 1. (Complete Configuration) Given a feature
model FM, a configuration ~c ∈ C is complete iff each
component of ~c has a defined selection state (i.e., ∀i ∈
{1, .., h} : ci 6= −1). We denote the set of all complete
configurations with CC.

DEFINITION 2. (Partial Configuration) Given a feature mo-
del FM, a configuration ~c ∈ C is partial iff it is not com-
plete (i.e., iff ~c /∈ CC). We denote the set of all partial
configurations with PC, which equals to C \ CC.

DEFINITION 3. (Valid Configuration) Given a feature mo-
del FM, a (partial) configuration ~c ∈ C is valid iff it sat-
isfies all constraints inR when considering all undefined
features in ~c as deselected. More formally, ~c is valid iff
∀~r ∈ R,∃i ∈ {1, .., h} : ri 6= −1 ∧ complete(ci) = ri,
where the function complete is defined as:

complete(c) =

{
0, if c = −1
c, otherwise

.

We denote the set of all valid configurations with VC.
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Figure 1. An overview of the configuration process.

Figure 2. Proposed components and their interplay.

DEFINITION 4. (Invalid Configuration) Given a feature
model FM, a configuration ~c ∈ C is invalid iff it is
not valid (i.e., iff ~c /∈ VC). We denote the set of all invalid
configurations with IC, which is equal to C \ VC.

In order to predict a valid and useful configuration to
users, our recommender uses a configuration matrix X as
input. In this context, given a feature model FM and a set
of configurations {~c1, ...,~cn} ⊆ CC, a configuration matrix
X is defined as:

X =

c11 c12 · · · c1h
...

...
. . .

...
cn1

cn2
· · · cnh


Given the variables and constants described above, our

approach aims to predict the importance of features for each
user in a way that they can make decisions more easily.

4.2 Visualization and Selection Mechanisms
Since our goal is to guide users in selecting features, we
first focus on supporting the users’ interaction with the
feature model. To improve the configurator’s interactivity,
we propose two visualization mechanisms: (a) focused view,
and (b) highlighted view.

Focused View. This mechanism focuses the user’s view on
the relevant configuration space. The essential idea of this
mechanism is that a feature tree hierarchy represents the
features degrees of abstraction. Thus, the higher a feature
is located in the tree, the higher its level of abstraction is.
In contrast, leaf features (i.e. features without any children)
are the most detailed and technical features. Consequently,
a user should first decide between the most abstract features
before going into detail. To support this intuitive process,
we implement a level-wise view on the feature tree. We
assume that when the user selects a feature, they are probably
interested in its sub-features. Thus, the view automatically
expands and shows only the direct sub-features from selected
features. With the focus on direct sub-features, we reduce the
user’s decision space in each configuration step. Thus, the
user has a proper overview of the configuration process and
is able to focus on one particular choice at each time.

Highlighted View. This mechanism guides the user to a
valid configuration. It shows the user which decisions are
necessary to finish the configuration process by highlighting
the corresponding features. To find these features, we use
an algorithm based on the propositional formula of a feature
model in CNF. We chose this formalism because it can be
easily implemented and applied to any kind of variability
model [7]. Using the user’s current configuration ~c, the
algorithm determines the set of all unsatisfied clauses UR ⊆
R in the CNF. This set can be defined as UR = {~r ∈
R | ∀i ∈ {1, .., |F|} : ri = −1 ∨ complete(ci) 6= ri}.
Then, the algorithm is able to highlight every feature that
is contained in an unsatisfied clause. More formally, for
each ~r ∈ UR the algorithm determines all features i with



ri 6= −1. To provide optimized guidance for the user, the
algorithm considers each unsatisfied clause separately and
highlights its features. Naturally, (de)selecting one of those
features automatically satisfies the corresponding clause ~r.
After a clause is satisfied by the user’s (de)selection, the
focus will automatically change to the next unsatisfied clause.
Thus, with this mechanism, the user can efficiently finish the
configuration process and simultaneously prevent undesired
feature selections.

4.3 Recommender System
Even with visual mechanisms for reasoning on feature mod-
els, manually configuring a product can be a massive and
difficult process. To ease this process, we adapt three person-
alized recommendation algorithms to the scenario of product-
line configuration: (i) neighbourhood-based CF, (ii) average
similarity, and (iii) matrix factorization. These algorithms
use previous configurations for estimating and predicting rel-
evance of features in order to guide a user through the process
of feature selection.

4.3.1 Neighbourhood-Based CF Recommender
In this section we present how neighbourhood-based CF algo-
rithms (kNN-CF) can be adapted to make recommendations
of features in the product-line configuration domain.

Given the configuration matrix X (cf. Sec. 4.1) and a
new partial configuration −→pc ∈ PC that is currently being
processed by a user, a recommendation algorithm has the task
of finding relevant features for this partial configuration. To
achieve that, the kNN-CF algorithm calculates the relevance
scores for the non-selected features. Once this calculation is
completed, the most relevant features are recommended. The
computation of the relevance scores is performed as follows.

For the partial configuration −→pc a set of neighbours is
determined. A neighbour is a configuration −→c x ∈ X (a row
vector from X with x ∈ {1, ..., n}) that is similar to −→pc
according to a similarity measure. A configuration qualifies
as similar, if sim(−→pc,−→c x) > τ , where τ is a similarity
threshold that is given as an input parameter (cf. Sec 5.2.1).

Since our configuration matrix X is binary, in our experi-
ments we use similarity measures such as Jaccard Coefficient,
Mean Hamming Similarity and Dice Coefficient. For expla-
nation of those measures we refer to [12].

Once the neighbourhood N (−→pc, τ) ⊆ CC has been deter-
mined, the relevance score Rel for a feature f from the set of
all non-selected features is calculated as follows:

Rel(−→pc, f) = 1

|N (−→pc, τ)|
∑

−→c x∈N (−→pc,τ)

sim(−→pc,−→c x) · cxf

(1)
In other words, if many similar configurations from the

neighbourhood have the feature f , then the relevance score
for this feature is high. Note that cxf

∈ {0, 1}, therefore our
formula differs from typical CF algorithms working with non-
binary ratings. If cxf

= 0, i.e. the feature f was not selected

in the configuration cx, then its similarity does not influence
the relevance score.

In the last step, the relevance scores Rel(−→pc, f) are sorted
and the top-k of them are returned as recommendations.

4.3.2 Average Similarity Recommender
This algorithm uses the same principle as kNN-CF, but it
does not use the notion of a neighbourhood. Consequently,
the configurations of all users are considered for computing
the relevance score of a feature. Accordingly, Equation 1 is
changed to:

Rel(−→pc, f) = 1

n

∑
−→c x∈X

sim(−→pc,−→c x) · cxf
(2)

Note that the sum iterates over all configurations from
X , which contains n configurations. This means that the
relevance score is an average similarity of −→pc over the config-
urations that have the feature f selected.

We conduct experiments with this algorithm to investigate
if restricting the neighbourhood size has an influence on the
quality of recommendations in our application.

4.3.3 Matrix Factorization Recommender
In contrast to neighbourhood-based methods, matrix factor-
ization algorithms do not rely on similarity of configurations.
Instead, they transform the configuration matrix X into a la-
tent space (for readers not familiar with this concept we refer
to [9, 43]). The transformation is obtained by incremental
minimization of an error function.

In this work, we use the BRISMF algorithm by Takács et
al. [43] and adapt it to our product-line configuration problem.
Formally, this transformation is represented as follows:

Xn×h = Pn×k ·Qk×h (3)

where P is a latent matrix of configurations and Q a latent
matrix of features, n is the number of configurations in X (cf.
Sec. 4.1), h the number of features, and k is the number of la-
tent dimensions. k is an exogenous input parameter that needs
to be optimized (cf. Sec. 5.2.1). Using this transformation,
the relevance score for a feature f in a partial configuration
is calculated using the following equation:

Rel(−→pcf ) = −→p −→pc · −→q f (4)

where −→p −→pc ∈ P is a row vector from the latent matrix P
describing the configuration −→pc in the latent space. −→q f ∈ Q
is the corresponding latent vector of feature f , i.e. a column
vector from the matrix Q. Both −→p −→pc and −→q f have length k.

First, the matrices P and Q are initialized randomly. To
improve them, Stochastic Gradient Descent (SGD) is used
to iteratively update the matrices by minimizing an error
function. The error function used in the transformation is
a prediction error between the true value cxf

∈ X (i.e. a
value known from the data, e.g. one, if a feature was selected



by a user) and the predicted relevance score Rel(cxf
) on a

training set Tr (cf. Sec. 5.2.2 for definition of a training set):

Error =
∑

cxf
∈Tr

(ecxf
)2 (5)

ecxf
= cxf

−Rel(cxf
) (6)

For the training, only the selected features are used, i.e.
the entries, where cxf

= 1, because the meaning of a
zero is ambivalent. A zero in the configuration vector can
mean deselecting a feature on purpose, or not selecting it,
because the user did not know the feature, even though it was
relevant. Using the zero entries as indication of irrelevance
would be misleading.

To minimize the error function and to update the matrices
P and Q, SGD uses the following formulas (cf. [43]):

−→p cx := −→p cx + η(ecxf
· −→q f − λ · −→p cx) (7)

−→q f := −→q f + η(ecxf
· −→p cx − λ · −→q f ) (8)

where η is a learn rate and λ is a regularization parameter
that prevents overfitting. Both of them are input parameters to
be set in advance (cf. Sec. 5.2.1). For the derivation of these
gradient formulas we refer to [43] for readers, who are not
familiar with the concept of matrix factorization.

Once the training is completed (e.g. due to convergence
or maximal iteration number in SGD) the matrices P and Q
can be used to make relevance predictions, as presented in
Equation 4.

5. Evaluation
This section describes the evaluation protocol used to evaluate
three different recommendation algorithms introduced in
Section 4.3. In addition, for the purpose of comparison we
also experiment with a random recommender system and
report our results.

5.1 Target Feature Models and Datasets
In order to address the research questions (RQ1—3) intro-
duced in Section 1, we use two real-world datasets of config-
urations from our industry partner as a configuration matrix2

(DEFINITION 5 - Sec. 4.1). Table 1 summarizes the properties
from both datasets used in the evaluation. For each dataset, we
present four properties including the number of features (#f ),
percentage of cross-tree constraints (R), number of all pos-
sible configurations (#C), and number of historic configu-
rations (#−→c x). We give an upper bound on the number of
possible configurations for the models since it is not feasible
to determine the number of products for such a large model.

These models cover a range of sizes in terms of features
and historic configurations. While the ERP System dataset

2 The configuration dataset can be found at http://wwwiti.cs.
uni-magdeburg.de/~jualves/PLUS/.

provides a high-level representation of a product line in the
business management content, the E-Agribusiness dataset
represents variability in the e-commerce agribusiness domain.
To the best of our knowledge, both of the feature models are
the largest real-world datasets of configurations already cited
in the literature. They have a very high degree of variability
which would be hard for a user to go through without any
additional support. These characteristics from both target
models make them ideal to be employed in our experiments
and explore our research questions.

5.2 Experiment Design
To evaluate our algorithms, we performed an offline eval-
uation that encompasses three components: (i) parameter
optimization, (ii) splitting into training and test datasets, and
(iii) evaluation metrics.

5.2.1 Parameter Optimization
Parameter optimization is essential for comparing algorithms
that require parameter tuning. Consider a scenario, in which
two algorithms A and B should be compared with respect
to a quality measure qA and qB . If the parameters of those
algorithms were tuned manually by a human expert, a conclu-
sion from comparing qA and qB might be biased. Assuming,
without loss of generality, that qA > qB , then it is not known,
if the difference in the quality is due to the algorithm A being
better, or because the human expert tunedA better. Therefore,
an objective parameter optimization is necessary. Only then,
results with the approximately optimal parameter settings
qA∗ and qB∗ can be compared.

Recommender systems also require setting of parameters.
Neighbourhood-based CF, for instance, requires a similarity
measure and a threshold value τ , above which users are con-
sidered neighbours. Matrix factorization algorithms also have
parameters to be set, e.g. the number of latent dimensions k,
learn rate η and regularization λ.

In our optimization, we used a genetic algorithm. In the
parameter optimization phase, we used a random hold-out
sample of 30% of all configurations from our dataset, i.e.
this set was held out from further training and evaluation for
the sake of reliable conclusions. On this hold-out dataset the
aforementioned genetic algorithm was used to optimize the
F-Measure of different recommendation algorithms (cf. Sec.
5.2.3). Every experiment in this phase was validated using a
10-fold cross validation. The optimal parameter setting was
then taken over into our main validation and applied onto
the remaining 70% of configurations. The values of optimal
parameter are shown in Table 2. The results presented in
the following sections were achieved using those optimal
parameter settings.

5.2.2 Splitting into Training and Test Datasets
Once the optimal parameter settings were found, we per-
formed our main evaluation on the remaining 70% of configu-
rations. For the sake of a fair evaluation splitting of the dataset

http://wwwiti.cs.uni-magdeburg.de/~jualves/PLUS/
http://wwwiti.cs.uni-magdeburg.de/~jualves/PLUS/


Dataset Domain #f R #C #−→c x
ERP System Business Management 1653 ≈ 7% > 109 171
E-Agribusiness E-Commerce 2008 none > 109 5749

Table 1. Main properties of the datasets.

Dataset
Method Parameter ERP System E-Agribusiness

Avg. Sim. Sim.Measure Jaccard Coeff. Jaccard Coeff.

kNN-CF τ 0.000001 0,757576
Sim.Measure Jaccard Coeff. Jaccard Coeff.

BRISMF
k 40 80
η 0.0166 0.0948
λ 0.0062 0.1

Table 2. Optimal parameter values.

into disjoint training and test dataset is necessary. In this main
evaluation phase, we use the leave-one-out evaluation proto-
col to create realistic evaluation conditions. According to this
protocol one configuration is left out from the training set
and used for testing. The remaining ones are given to the al-
gorithm as training data, i.e. the configuration matrix X . This
simulates the behaviour of a real system, where a user logs
in and carries out a new configuration. The data of the past
configurations are available to the system and only the new
configuration should be predicted. To perform well, a recom-
mender system has to recommend the features that were used
in the left-out test configuration based on the training data,
i.e. all other configurations.

Formally, a test configuration is a partial configuration
−→pc ∈ PC that was left out from training set, i.e. it is
not contained in the configuration matrix −→pc /∈ X . The
recommender system returns an estimated configuration
p̂c = {0, 1}h. Then, the degree of overlapping between the
real configuration−→pc (known from the data, but held out from
the recommendation algorithm) and the predicted one p̂c is
calculated using an evaluation measure (cf. Sec. 5.2.3; note
that it is not a similarity measure from Sec. 4.3.1).

To further simulate the progress of a user in the configu-
ration process, we gradually give parts of the configuration
to the recommender system as training data, e.g. 10% of a
complete configuration. Then, a new prediction p̂c@10% is
made and its quality is estimated using the aforementioned
quality measure. The quality of a prediction is good, if the
predicted configuration overlaps with the remaining 90% of
the configuration that is not known to the system. A good
recommender system should learn from the given parts of the
configuration and improve the quality of recommendations of
the remaining features as it obtains more information about
the current configuration.

The entire process is repeated for all configurations and
all recommendations algorithms separately. The final quality

measure of a recommendation algorithm is the average quality
over all configurations.

5.2.3 Evaluation Metrics
In our evaluation we use precision, recall and F-measure at
w, where w is the number of permitted recommendations
(cf. [41] for more details). Given a set Rec of features
recommended by an algorithm and a set of truly relevant
features Rel known from a test configuration, precision is
calculated as follows: Precision = |Rec∩Rel|

w . Analogously,
recall is calculated using the formula: Recall = |Rec∩Rel|

|Rel| .
As precision and recall should not be considered sepa-

rately, for our plots we use a measure that combines them, i.e.
the F-Measure.

F -Measure =
2 · Precision ·Recall
Precision+Recall

(9)

In our experiments we use a typical value of w = 10.
Evaluation metrics that are typical to recommender sys-

tems, such as RMSE of MAE, are in this case not appli-
cable, since in our scenario we have binary data in the
matrix X (cf. Sec. 4.1).

5.2.4 Comparison Baseline
As a comparison baseline we use a random recommender
system. It returns a randomly ordered list of non-selected
features as recommendations. It is important to compare
with this algorithm, because it indicates a basic performance
level every algorithm should reach. If a method does not
outperform the random recommender, then it should not be
used in the given application scenario.

Furthermore, the performance of this algorithm is equiva-
lent to the performance of a hypothetical, fully uninformed
user without any support from a recommender system.

5.3 Analysis of Results and Discussion
In our evaluation we performed more than 149,000 experi-
ments (cf. Sec. 5.2.2) on a cluster running the (Neuro)Debian
operating system [18]. In Figure 3 and Table 3 we present
the results on the dataset from the ERP domain. The figure
represents the F-Measure achieved by four different recom-
mendation algorithms. F-Measure combines recall and preci-
sion, i.e. higher values are better. On the horizontal axis of
the figure, we present the completeness of a configuration, i.e.
the percentage features that are given to the algorithm as train-
ing data, where only the remaining part of the configuration
needs to be predicted.
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Figure 3. F-Measure achieved by four different recommen-
dation algorithms on the ERP dataset (higher values are
better). The horizontal axis shows, how much of the cur-
rent configuration has been completed. The performance is
calculated on the remaining part of a configuration.

We observe that the BRISMF algorithm outperforms all
other recommendation algorithms at all stages of the configu-
ration process. We also observe an increase of performance
as the configuration becomes more complete, i.e. as the rec-
ommendation algorithm receives more data for training.

The CF algorithm and average similarity algorithm per-
form nearly the same (their curves overlap). They dominate
the random recommender at nearly all stages of configuration
process, except for the initial part, when only little informa-
tion about the current configuration is available.

The corresponding numeric values of F-Measure and also
precision and recall are shown in Table 3. Also in the table,
we see that the BRISMF algorithm dominates the other
algorithms not only with respect to F-Measure, but also with
respect to precision and recall.

In Fig. 4 and Tab. 4 we present the analogous results on
the E-Agribusiness dataset. Also on this dataset, the BRISMF
algorithm performed the best, except for the initial part of a
configuration. In this part, the CF algorithm yielded a better
recall and F-Measure. At all other stages of the configuration
BRISMF clearly outperformed the remaining algorithms.

Different than on the ERP dataset, here the CF and average
similarity algorithms perform much differently. While CF is
the second best algorithm, the average similarity algorithm
performs worse than random. Consequently, this algorithm
should not be used in the E-Agribusiness scenario.

In comparison to the ERP dataset the absolute values of
the quality measure are lower on the E-Agribusiness dataset.
Since this dataset is more demanding, good predictions with
a random recommender are unlikely, and the performance
difference between the random recommender and the other
algorithms, especially BRISMF, is larger.

The difficulty of the dataset also explains the different ten-
dency of the curves. While the F-Measure curves on the ERP
dataset show an increasing tendency (except for the random
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Figure 4. F-Measure achieved by four different recommen-
dation algorithms on the E-Agribusiness dataset.

algorithm), here such a tendency cannot be observed. When
a configuration becomes more complete, then there are fewer
and fewer features that are relevant, i.e. their relative propor-
tion in the set of all features drops. This results from the fact
that features used by a user cannot be recommended any more.
Thus, the number of remaining relevant features decreases
as the configuration becomes more complete. Therefore, pre-
cision that influences the F-measure also decreases. On this
dataset this effect outweighs the learning effect and, therefore,
the curves are not monotonically increasing. Nevertheless,
the curve of the BRISMF algorithm increases initially and
reaches optimum around 50% of a configuration.

Considering the results of our experiments, we answer the
research questions as follows:

RQ1. Yes, we have shown that our recommender system
finds relevant features better than our comparison baseline
and by recommending them it can support product-line
configuration.

RQ2. Our results show that the BRISMF and CF algo-
rithms provide better recommendations than a random rec-
ommender already at the initial 10% of a configuration. The
optimal percentage differs and depends both, on the applica-
tion domain and on the recommendation algorithm.

RQ3. The choice of the algorithm has a big impact onto
the quality of recommendations. Due to the best perfor-
mance in our experiments we recommend the usage of the
BRISMF algorithm.

6. Conclusion and Future Work
In this paper, we targeted an open research question in the
product-line configuration domain: How to predict a suitable
set of features from a feature model based on explicit infor-
mation from users? We answer this question by providing an
advanced feature-based personalized recommender system.
Our system guides the product configuration process by de-
livering capabilities to effectively communicate with the deci-
sion makers and understand users’ needs and preferences. In-



Completeness of Configuration
Measure Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F-Measure

CF 0.0109 0.0152 0.0198 0.0176 0.0297 0.0330 0.0409 0.0483 0.0622
BRISMF 0.0465 0.0520 0.0593 0.0667 0.0759 0.0918 0.1065 0.1230 0.1396
Random 0.0108 0.0103 0.0103 0.0104 0.0110 0.0106 0.0086 0.0135 0.0086
Avg. Similarity 0.0108 0.0152 0.0198 0.0176 0.0297 0.0330 0.0409 0.0483 0.0621

Precision

CF 0.0525 0.0576 0.0644 0.0551 0.0737 0.0771 0.0814 0.0788 0.0856
BRISMF 0.4449 0.4331 0.4195 0.4119 0.3975 0.3729 0.3347 0.3034 0.2432
Random 0.1153 0.1008 0.0805 0.0805 0.0788 0.0602 0.0492 0.0500 0.0263
Avg. Similarity 0.0517 0.0576 0.0644 0.0551 0.0737 0.0771 0.0814 0.0788 0.0847

Recall

CF 0.0069 0.0099 0.0133 0.0123 0.0217 0.0251 0.0324 0.0436 0.0588
BRISMF 0.0247 0.0279 0.0323 0.0368 0.0426 0.0535 0.0652 0.0799 0.1026
Random 0.0060 0.0058 0.0064 0.0059 0.0064 0.0066 0.0052 0.0092 0.0078
Avg. Similarity 0.0069 0.0099 0.0133 0.0123 0.0217 0.0251 0.0324 0.0436 0.0587

Table 3. Performance of four recommendation algorithms w.r.t F-Measure, precision and recall on the ERP dataset. The
BRISMF algorithm performs the best w.r.t. all three measures.

Completeness of Configuration
Measure Method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F-Measure

CF 0.0094 0.0089 0.0086 0.0084 0.0079 0.0072 0.0065 0.0053 0.0047
BRISMF 0.0089 0.0122 0.0134 0.0139 0.0148 0.0145 0.0144 0.0126 0.0110
Random 0.0053 0.0056 0.0054 0.0048 0.0047 0.0042 0.0041 0.0035 0.0030
Avg. Similarity 0.0003 0.0005 0.0005 0.0005 0.0004 0.0003 0.0001 0.0001 0.0000

Precision

CF 0.0401 0.0337 0.0286 0.0250 0.0207 0.0157 0.0115 0.0078 0.0052
BRISMF 0.0584 0.0585 0.0529 0.0471 0.0413 0.0326 0.0259 0.0191 0.0127
Random 0.0234 0.0208 0.0177 0.0146 0.0125 0.0091 0.0075 0.0051 0.0035
Avg. Similarity 0.0018 0.0017 0.0014 0.0012 0.0009 0.0005 0.0002 0.0001 0.0000

Recall

CF 0.0062 0.0061 0.0060 0.0061 0.0061 0.0059 0.0057 0.0054 0.0055
BRISMF 0.0049 0.0071 0.0082 0.0091 0.0108 0.0111 0.0125 0.0121 0.0119
Random 0.0035 0.0039 0.0039 0.0035 0.0037 0.0033 0.0039 0.0036 0.0038
Avg. Similarity 0.0002 0.0004 0.0004 0.0004 0.0003 0.0003 0.0001 0.0001 0.0001

Table 4. Performance of four recommendation algorithms w.r.t F-Measure, precision and recall on the E-Agribusiness dataset.
Also here, the BRISMF algorithm performs the best except for the initial part of a configuration.

stead of making decisions over the whole configuration space,
decision makers of our personalized recommender only go
through a small number of features to configure a product.
It ensures a valid and complete product configuration while
simultaneously interacting with the decision maker, both to
learn their preferences and provide new recommendations.

Our experimental results show that the proposed approach
is very useful as: (i) it provides feature predictions that are
in accordance with the preferences of users and constraints
over the feature model, and (ii) it has a good performance
on current partial configurations with just 10% of selected
features. Furthermore, our approach can be automated. It
requires only one manual selection of a single feature to
create an initial partial configuration. Thus, we can further
facilitate the adoption of product-line practices and increase
their benefits, such as mass personalization.

Since there are no other publicly available datasets with
real configurations and obtaining them from companies is
problematic, we could not test our work on further datasets.
However, as future work, we plan to conduct a user study
of our approach and tool, in order to investigate the gain in
terms of acceptance and usability of the proposed interactive
configuration process. Moreover, we will extend this work
to take into account non-functional properties. Thus, we can
make recommendations even when there is no historical data.
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