
Tool Support for Contracts in FeatureIDE

Florian Proksch
University of Magdeburg

florian.proksch@st.ovgu.de

Stefan Krüger
University of Magdeburg

stefan3.krueger@st.ovgu.de

ABSTRACT
In matters of research in feature-oriented programming, the
need for efficient analysis and evaluation of existing projects
arises prominently. The open-source project FeatureIDE
seeks to satisfy the demand for tools of such kind. The
implementations concerned within this work therefore aim
to offer significant improvements in statistical analyses on
the usage of contract-based mechanisms as well as support
the work flow in feature projects making use of contracts.

Keywords
Design by contract, contract composition, JML, software
product lines, feature-oriented programming, FeatureIDE,
FeatureHouse

1. INTRODUCTION
Product lines specify the creation of specialized final goods

of any kind, by making use of a singular basis from which all
variations are derived. This process offers numerous oppor-
tunities from both economical and verification stand points
in matters of software engineering [1].
FeatureIDE is an open-source extension for the integrated
development environment Eclipse [11][6][9]. The main goal
is to provide an interface for numerous feature-oriented pro-
graming schemes as well as to enable WYSIWYG editing
of feature models and software product lines. As such, Fea-
tureIDE is an essential software in various research concern-
ing software product lines and testing capabilities of feature-
oriented programming in general. An integral part in the
concept of design by contract is the ability to specify cer-
tain conditions on input and the resulting outcome of oper-
ations. The particular working mechanisms of the operation
are therefore not of interest as its only purpose is to ensure
the previously specified parameters of the generated output.
These assurances are called contracts. The hereafter de-
scribed libraries and tools revolve around the realization of
the concept of contracting in software engineering. [5] The
Java Modeling Language (JML) is a behavioral interface

specification language, used to specify specific behavior of
Java classes [7][4].
FeatureHouse is an open-source tool employed by FeatureIDE
for the purpose of implementing feature-oriented project com-
position, including the generation of feature structure trees
(FST - i.e., a tree structure composed of software artifacts)
of source code [2]. JML is used by FeatureHouse for im-
plementing contracts, providing the ability to specify logical
pre- and post conditions for methods as well as – class in-
variants – guaranteeing integrity constrains throughout ev-
ery method call within a class. [8][12] Contracts can also be
refined – meaning the composition of multiple instances of
contracts [10][3]. FeatureIDE encompassed the functionality
of various libraries to generate general statistics about the
structure of feature-oriented projects and breaks down the
usage of specific keywords and elements.

2. STATISTICS VIEW
The previously existing Statistics View in FeatureIDE has

the ability to summarize a feature-oriented project’s imple-
mentation in the following fashion:

1. Statistics of the feature model

2. Statistics of product-line implementation

In order to be able to visualize a project’s structure in rela-
tion to the usage of contract-based elements these statistics
are to be extended. Proceeding the recent additions made by
Benduhn [3] and Weigelt [13], contracts can now also be re-
fined according to method-specific composition mechanisms,
instead of exclusively project-wide settings. These changes
lead to an increase in the complexity of feature abstrac-
tion and composed predicate logical expressions, introduc-
ing both new possibilities in project design and challenges
in project maintenance.
We therefore propose the addition of several new statistics
elements for keeping track of progressing degeneration as
well as maintaining manageable class and feature structures.
The implemented structure consists of the following values
describing contract complexity:

1. Class invariants

2. Method contracts by class

3. Method contracts by method

4. Method contracts by refinement keyword

5. Contracts in features



Figure 1: Contracts summarization in the statistics
view

For each element of the above enumeration, occurrences
are shown in relative and absolute numbers respectively.
They contain the aggregated values of its substructures in
increasing granularity. Data is presented in three separate
perspectives, being grouped by either methods, features or
classes, as can be seen in Figure 1.

The newly offered data in the statistics view is processed
by evaluating the FST created by FeatureHouse. Specifi-
cally method contracts and class invariants that are recog-
nized as JML specification are extracted and edited to fit
FeatureIDE’s internal data structures. Additionally gained
data - for instance the contract specification body - is there-
fore stored and available for usage in future additions to
FeatureIDE in a conveniently accessible fashion.

3. COLLABORATION OUTLINE
& COLLABORATION DIAGRAM

The collaboration outline is a specialized version of the
Eclipse outline providing specific information concerning a
role’s properties in the feature project [11].

The displayed elements are therefore to be extended by
the class invariants included in the role. Additionally, the
icons displaying each methods access specifiers are extended
to visualize method’s having a contract. As JML establishes
no naming convention for class invariants, the first 20 char-
acters trimmed by any exceeding white spaces and manda-
tory keywords of the invariant’s body are shown. Figure 2
shows the adjusted layout of the collaboration outline. The
displayed tree view structure is composed of three different
scopes: the currently opened class, the elements of the class
– such as class invariants, fields, and methods –, and the
features implementing each of the elements. The features
implementing a specific element are now also in an alpha-
betical order and each feature containing a contracted is
marked with a new icon.

The collaboration diagram delivers a graphical overview
of the implemented features and classes and how they inter-
act by means of roles. Similarly to the collaboration outline,
the layout has been extended to display class invariants and
method contracts. Figure 3 shows the new layout of the col-
laboration diagram. Class invariants are now displayed on
top of fields and methods and class invariants and methods

Figure 2: Contracts in collaboration outline

Figure 3: Contracts in collaboration diagram



with contracts both now have a novel icon. Additionally the
information of the tool tip has been adjusted to show class
invariants.

4. CONTRACT REFINEMENT WARNINGS

4.1 General Concept
The debugging environment of FeatureIDE has the abil-

ity to analyze feature projects, detect errors in the struc-
ture of feature projects and issue warnings beyond problems
with the programming languages themselves. In the mat-
ters of method-based contract refinement numerous errors
can arise. For instance depending on the specific selection
in a product-line, or even the assigned feature order.

In order to avoid – possibly distracting – interruptions
in work flow, the following problems in contract refinement
procedure are to be marked as Warnings within the Eclipse
environment instead of Errors.

1. Method-based contract refinement
FeatureIDE offers the ability to select a project-wide
setting according to which the refinement of contract
in classes and methods is executed. Any setting but
”Method-Based Contract Refinement”will therefore prompt
warning markers on each method that specifies method-
based keywords, that are in this case simply ignored.

2. Final methods
The keyword final method requires that there is no
further refining of the method within the refinement
process of the containing class. This property is highly
depended on the aforementioned feature order and can
prompt errors solely by a change in the selected prod-
uct. If such a problem occurs, all refining functions get
a warning marker.

3. Final contracts
Similarly to the above case, there can be no further
contract specification in any method refining another
method possessing the keyword final contract. On
occurrence, warning markers are placed consistently
with aforementioned case.

4. Original contracts
Method contracts implementing the original keyword
have to have a contract that was introduced before-
hand. If the feature model allows for the possibil-
ity of no introduction beforehand, warnings are issued
for the method falsely implementing the original key-
word.

5. Validity of overriding sequence
Furthermore the sequence in which contract refinement
strategies can be overridden is not universal and valid
only in the order seen in Figure 4. In case of a viola-
tion, again all involved contracts are marked. [13]

4.2 Implementation Details
Any occurrence of above mentioned errors is computed

by inquiries to FeatureIDE’s module for checking the satis-
fiability of predicate logical expressions (SatSolver). Equa-
tion 1 shows the expression tested for finding invalid uses

Figure 4: Permitted order of refinement keyword
overriding. [13]

of the original keyword, whereas FM describes the fea-
ture model and f single features indexed by their occur-
rence in the feature order list. The equation is tested for all
i ∈ {1, 2, . . . , n} with n being the number of features imple-
menting the method in question. The testing ensures that
if feature fi is selected in a configuration, at least one of
the features f1, . . . , fi−1 has to be selected as well, thereby
verifying that the method has to have been introduced be-
forehand.

¬(FM =⇒ (fi =⇒ (f1 ∨ f2 ∨ . . . fi−1))) (1)

With similar nomenclature as above, Equation 2 is tested
for each method containing either the final method or
final contract keyword, verifying that there is no feature
fi refining a method, that contains the respective keyword
in a feature f1 with i ∈ {1, 2, . . . , n} for n being all features
after f1 in the feature order list. The singular testing of two
respective features in Equation 2 instead of the logical union
of all features as in Equation 1 is done to be able to directly
mark the exact features violating the validity.

¬((FM ∧ fi) ∧ f1) (2)

Equation 3 is tested for all pairs of features
(fi, fj) ∈ Fki × Fkj with Fkn being the set of features con-
taining a refining keyword in ascending feature order and
ki < kj . In the cases that fj implements a keyword that is
not permitted to override the keyword used in fi, a warning
is issued for the concerning method in both features. The
order in which keywords are allowed to override each other
can be found in fig.4.

¬((FM ∧ fi) ∧ fj) (3)

5. CONCLUSIONS
The added functionality offers improved handling of method

contracts and class invariants, both during navigation in the
project as well as during debugging. Thanks to the contract
statistics further research concerning the analysis of feature



project structure can now utilize the aggregated data in the
FeatureIDE statistics view and it is no longer necessary to
determine contract-specific properties of the project by in-
specting the source code manually. The newly introduced
changes to collaboration outline and diagram allow faster
navigation and immediate overview over the contract struc-
ture of classes, methods, and including features. For prob-
lems with contract-refinement that are hard to detect man-
ually, FeatureIDE now prompts interactive warnings that
greatly increase efficiency in debugging of such.

6. ACKNOWLEDGMENTS
This paper was written as part of a team project in the

master’s course of computer science. The work was super-
vised by Prof. Gunter Saake and Thomas Thüm of the com-
puter science department of the university of Magdeburg.
Additionally we would like to thank Thomas Thüm for his
most valuable input, suggestions, and the review of both this
paper and the accompanying implementations.

7. REFERENCES
[1] S. Apel, D. Batory, C. Kästner, and G. Saake.

Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, Berlin, Heidelberg,
2013.

[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automated Software
Composition. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 221–231, Washington, DC,
USA, May 2009. IEEE.

[3] F. Benduhn. Contract-Aware Feature Composition.
Bachelor’s thesis, University of Magdeburg, Germany,
2012.

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst,
J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An Overview of JML Tools and Applications. Int’l J.
Software Tools for Technology Transfer (STTT),
7(3):212–232, June 2005.

[5] J. Hatcliff, G. T. Leavens, K. R. M. Leino, P. Müller,
and M. Parkinson. Behavioral Interface Specification
Languages. ACM Computing Surveys,
44(3):16:1–16:58, June 2012.

[6] C. Kästner, T. Thüm, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. FeatureIDE: A
Tool Framework for Feature-Oriented Software
Development. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 611–614, Washington, DC,
USA, May 2009. IEEE. Formal demonstration paper.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary
Design of JML: A Behavioral Interface Specification
Language for Java. SIGSOFT Software Engineering
Notes, 31(3):1–38, 2006.

[8] G. T. Leavens and Y. Cheon. Design by Contract with
JML, Sept. 2006.

[9] T. Leich, S. Apel, L. Marnitz, and G. Saake. Tool
Support for Feature-Oriented Software Development -
FeatureIDE: An Eclipse-Based Approach. In Proc.
Workshop Eclipse Technology Exchange, pages 55–59,
New York, NY, USA, 2005. ACM.

[10] T. Thüm, F. Benduhn, S. Apel, and G. Saake.

Feature-Oriented Contract Composition, 2014.
Unpublished Manuscript.

[11] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke,
G. Saake, and T. Leich. FeatureIDE: An Extensible
Framework for Feature-Oriented Software
Development. Science of Computer Programming
(SCP), 79(0):70–85, Jan. 2014.

[12] T. Thüm, I. Schaefer, M. Kuhlemann, S. Apel, and
G. Saake. Applying Design by Contract to
Feature-Oriented Programming. In Proc. Int’l Conf.
Fundamental Approaches to Software Engineering
(FASE), volume 7212 of LNCS, pages 255–269, Berlin,
Heidelberg, New York, London, Mar. 2012. Springer.

[13] A. Weigelt. Methoden-basierte Komposition von
Kontrakten in Feature-orientierter Programmierung.
Bachelor’s thesis, University of Magdeburg, Germany,
Aug. 2013. In German.


