A Survey on Scalability and Performance Concerns in
Extended Product Lines Configuration

Lina Ochoa', Juliana Alves Pereira?, Oscar Gonzalez-Rojas!,
Harold Castro', Gunter Saake?

!Universidad de los Andes, Bogota, Colombia
{Im.ochoa750, o-gonza1i, hcastro}@uniandes.edu.co
2University of Magdeburg, Magdeburg, Germany
{juliana.alves-pereira, gunter.saake}@ovgu.de

ABSTRACT

Product lines have been employed as a mass customisation
method that reduces production costs and time-to-market.
Multiple product variants are represented in a product line,
however the selection of a particular configuration depends
on stakeholders’ functional and non-functional requirements.
Methods like constraint programming and evolutionary algo-
rithms have been used to support the configuration process.
They consider a set of product requirements like resource
constraints, stakeholders’ preferences, and optimization ob-
jectives. Nevertheless, scalability and performance concerns
start to be an issue when facing large-scale product lines
and runtime environments. Thus, this paper presents a sur-
vey that analyses strengths and drawbacks of 21 approaches
that support product line configuration. This survey aims
to: 1) evidence which product requirements are currently
supported by studied methods;) how scalability and per-
formance is considered in existing approaches; and 4ii) point
out some challenges to be addressed in future research.

CCS Concepts

eGeneral and reference — Surveys and overviews;
eSoftware and its engineering — Software product
lines; Genetic programming; eTheory of computation
— Constraint and logic programming;

Keywords

Product line, configuration, survey, literature review, scala-
bility, performance, product requirements

1. INTRODUCTION

In order to achieve mass customisation, Product Line (PL)
has been introduced as a method for representing variability
and commonality of a product family. With this capability,
industries have achieved remarkable results such as prod-
uct costs save and reduction in time-to-market. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

VaMoS ’17, February 01-03, 2017, Eindhoven, Netherlands
© 2017 ACM. ISBN 978-1-4503-4811-9/17/02. .. $15.00
DOL: http://dx.doi.org/10.1145/3023956.3023959

the configuration of large PL that optimizes stakeholders’
requirements is still a challenge [1, 31]. PLs can represent
products functional and non-functional properties and their
relationships. Thus, the amount and complexity of options
presented to the users exceed their capability of manually
identifying an appropriate configuration. Hence, when the
variant space grows, the manual configuration process be-
comes an error-prone and time-consuming task. Therefore,
automatic and accurate algorithms are needed.

Given the organization demands to reach good configura-
tion performance for large-scale PLs, many automatic con-
figuration approaches have been proposed in the literature.
The vast variety of work in this domain motivated us to
carry out this survey investigating how and to what degree
existing literature addresses scalability and performance as-
pects. The aim of this paper is thus to identify, describe,
and classify current existing approaches supporting the PL
configuration process and to increase the understanding of
the fundamental research issues in this field. In this context,
we derive answers to the following three research questions:

RQ1. Which product requirements are considered by PL
configuration methods?

RQ2. How do existing PL configuration approaches address
scalability and performance?

RQ3. What strengths and drawbacks are related to the iden-
tified PL configuration approaches?

To address RQ1, we give an in-depth view on how dif-
ferent requirements are supported in the PL configuration
literature, such as resource constraints, stakeholders’ pref-
erences, and optimization objectives (cf. Sec. 2). Next, to
address RQ2, we group the related approaches, collecting
evidences about how scalability and performance concerns
are managed. We aim to characterize the PL magnitude
supported by each approach, as well as the time taken to
configure suitable products. Finally, identification of ap-
proaches strengths and drawbacks are addressed by RQS3.

To answer these questions, we classified 21 selected stud-
ies in three different groups according to the method used
to support the PL configuration process. Sec. 4 presents
the main configuration approaches related to constraint pro-
gramming and evolutionary methods. In addition, we pro-
vide an overview on unclassified methods. We present a clear
summary of the existing methods to understand the differ-
ent works and identify new research contributions. Next, in
Sec. 5, we answer the research questions based on the pre-
vious section. Finally, conclusions are presented in Sec. 6.

2. BACKGROUND

In this section, we introduce the main concepts addressed
throughout this paper.

Extended feature model. PLs can be formally speci-
fied using Frtended Feature Models (EFMs), also referred in
the literature as advanced or attributed feature models [4].
Feature models can be extended by adding Non-Functional
Properties (NFPs) as feature attributes. NFPs are catego-
rized in two main groups, quantitative and qualitative [3].
Quantitative NFPs are represented as numeric values, while
qualitative NFPs are usually represented using an ordinal
scale (e.g. low, medium, and high).

A common representation model for an EFM is the tree-
based structure shown in Fig. 1, where nodes denote fea-
tures, edges illustrate the relations between features, and
dashed boxes represent NFPs, such as cost [5]. There are
common features found in all products of the PL, known as
mandatory features, and variable features referred to as op-
tional and alternative features (c¢f. [4] for more details).
Additionally, EFMs often contain Cross-Tree Constraints
(CTC) which define relations among not directly connected
features. Furthermore, they can also include complex CTC
among features and NFPs. It is important to note that
EFMs are required to support the product requirements dur-
ing the automatic PL configuration process.

Mandatory

Optional

Alternative non-exclusive
Alternative exclusive
Feature

| NFP

Requires

Excludes

Figure 1: EFM representation.

Product configuration. PL configuration refers to the
process of making decisions to (de)select a set of optimal
variable features from an EFM. These decisions should com-
ply with the EFM constraints and fulfill the product require-
ments [1]. We identify three main types of product require-
ments: resource constraints, stakeholders’ preferences, and
optimization objectives.

Resource constraints are logical relations over NFP values
that admit the following operators: less than (<), less than
and equal to (<), equal to (=), greater than (>), and greater
than and equal to (>).

Stakeholders’ preferences allow the specification of NFPs
relative importance. Stakeholders’ preferences are impor-
tant specially when there are competing requirements and a
trade-off is needed [13].

Optimization objective defines a maximization or mini-
mization criteria over the aggregated values of the same
NFP associated to different configured features (c¢f. Equa-
tion 2). The automatic PL configuration process can be
modeled as Single-Objective Optimization (SOO) and Multi-
Objective Optimization (MOO). A SOO problem arises when
the stakeholders aim to optimize a single objective function
over NFPs (e.g. minimization of cost). A MOO problem
arises when the stakeholders aim to optimize multiple objec-
tive functions over NFPs (e.g. minimization of cost and max-
imization of security). Formally, it involves the optimization

of a vector F(z) whose elements are k objective functions
fi(x), ..., fu(z), such that k € N (¢f. Equation 1) [6].

F(z) = [fi(z) ... fu(a)]" (1)

Exact and approximation configuration approaches.
Although the configuration of a valid product arising from
EFMs may reduce the configuration space through prod-
uct requirement specifications, this is still a challenge due
to the diversity of application scenarios and requirements.
Thus, automatic and accurate algorithms are needed to con-
figure large-scale EFMs, where a manual configuration is an
error-prone and time-consuming task [4]. There are ezact
and approximation PL configuration approaches. Eract ap-
proaches guarantee the optimality of the generated PL con-
figuration. However, due to the large variability space and
the NP-hard computational complexity of finding an opti-
mal variant, exact approaches have inefficient exponential
time (cf. Sec. 4.1). Therefore, approzimation approaches
are needed to generate near optimal PL configurations in an
efficient polynomial time (cf. Sec. 4.2).

3. SURVEY METHODOLOGY

This survey follows the guidelines defined by Kitchen-
ham et al. [14]. First, we defined three research questions to
be addressed by this work (cf. Sec. 1). Then, for the search
process, we built the following search string: “(product line
OR product family OR system family) AND (attribute OR
non-functional OR quality OR preference OR requirement)
AND (configuration OR product selection OR feature selec-
tion) AND (performance OR scalability)”. The search string
highlights four concepts: PL, NFPs, configuration, and scal-
ability and performance. Candidate papers were obtained
from five scientific databases: ACM Digital Library, IEEE
Xplore, Science Direct, Scopus, and Springer Link.

Full papers and primary studies published in English, which
appeared in journals, conferences, workshops, or sympo-
siums after 2000!, were considered as candidate papers in
our survey revealing an initial list of 66 papers. Then, we
performed a screening process over retrieved studies and ex-
cluded 45 papers that were not identified to be relevant
based on the selection criteria. At the end of the screen-
ing process, we identified 19 relevant papers. We included
two additional papers out of the search process given its
relevance to the addressed problem, having a total of 21 pri-
mary studies selected in the scope of this survey for further
analyses. From this set, 8 articles were published in jour-
nals, 9 in conference proceedings, 1 in a workshop, and 1 in
a symposium. Each selected publication was then read in
full detail, and its data was tabulated in a second form.

4. CONFIGURATION APPROACHES

Table 1 shows how the current literature supports the
PL configuration process. The first column identifies the
reference from relevant studies in this field; second column
presents the employed method; third column identifies the
approach related tool when mentioned in the paper; fourth
column shows which product requirements are supported
by these studies; fifth and sixth columns describe if the cor-
responding study supports runtime configuration environ-
ments and multiple PLs, respectively; the seventh column

'In 2000 the Software Product Line Conference was officially estab-
lished, given the trending research on the field.

evidences the type of PL employed to perform the experi-
ments; and, the eighth and ninth columns point out the size
of the employed PL and its configuration time, respectively.
Next, we provide detailed information about each study.

4.1 CP-Based Configuration

Constraint Programming (CP) is a programming paradigm
that deals with Constraint Satisfaction Problems (CSPs).
The problem of selecting a suitable set of features that sat-
isfy the EFMs constraints and product requirements can
be translated into a CSP [4]. A CSP is defined as a tu-
ple (X, P,C), where X = {X1,...,X,} represents a set of
n features, Poxm = {P1,1],---,Pn,m]} represents a matrix
with a set of (n*m) NFPs values related to each feature in
X, and C = {C1,...,Cy} represents a set of k constraints.

To support the automatic PL configuration process with
CSP solvers, three main steps are performed: i) map func-
tional features in X and NFPs in P from an EFM into a set
of n+ (n*m) variables; 7) map EFM constraints and prod-
uct requirements into a set of k constraints C restricting the
variables X values; and 4) define a set of n binary values
(i.e. [0,1] to indicate whether the features {X1,..., Xy} are
selected or deselected) for the variables in which all con-
straints C' are satisfied. CP-based approaches have gained
popularity in the PL field, given its ability to easily translate
the PL configuration problem into a CSP.

White et al. [31] were the first authors proposing the use
of CP in the context of mobile devices configuration, while
considering resource constraints related to device capabili-
ties. They use Prolog’s inferencing engine and the Choco CP
solver to configure in runtime a new application variant from
existing software components. The complete approach, has
two main steps: ¢) prune the solution space by eliminating
software components (i.e. features) that cannot run on the
target device infrastructure; and i) optimize the cost func-
tion f(x) in Equation 2, such that 1 < ¢ < m and ¢ € N.
Valid solutions that satisfy the resource consumption con-
straints R; in Equation 3 are searched. R = {R1,...,Rn}
represents a set of m resource constraints related to each
property {Pu1),- -, Pj1,m)}, such that R C C.

f@) =miny_ Xi* Py (2)

=1

=1

Z (Z X * P[m‘]) < R; (3)

Gamez et al. [10] and Leite et al. [15] also employed the
Choco CP solver to deal with resource optimization on web
services and inter-cloud environments. Both approaches con-
sider runtime configuration of services from multiple EFMs.
On the one hand, Gamez et al. [10] relies on the score op-
timization of a Simple Additive Weighting (SAW) function
f(x) in Equation 4, which ranks each valid service configu-
ration according to its importance to the stakeholders. The
weight of the NFP j is represented as w;, where w; € [0, 1]
and 377" w; =1. Rixm = {R11,...,Rim} represents a
matrix with a set of (I*m) NFP values related to each valid
resulting configuration (i.e. Ry j) is the corresponding value
of the NFP j from the resulting valid configuration [), and
the functions max (R, 7) and min(R, j) return the maximum
and minimum values of the NFP j respectively, when con-

sidering all valid resulting PL configurations.

m L max(R, j) — Ry 5
fw) = maz ; 2 Ry —min(iy)

On the other hand, Leite et al. [15] relies on the MOO
of three different functions, mainly number of CPU cores,
RAM memory size, and financial cost per hour.

On a multi-stakeholders scenario, Ochoa et al. [20] also
employ the Choco CP solver. The solver is used to detect
and solve conflicts among multiple independent stakehold-
ers’ configurations performed over an EFM. As White et
al. [31], their approach considers SOO over a single NFP.
The authors extend a state-of-the-art tool FeatureIDE? with
their approach. Preliminary experiments show a good per-
formance for an EFM with up to 140 features, 13 CTCs, and
2 different stakeholders’ configurations. However, for some
configuration scenarios with three or more configurations,
no solution was found.

White et al. [31] also provide a tool support, called Scat-
ter® and present a set of performance experiments for five
EFMs. Their experiments showed that Scatter can solve
models with up to 50 features in about 100ms.

Gamez et al. [10] extended a state-of-the-art tool Hy-
dra? and Leite et al. [15] also provide a tool support called
Dohko®. Experimental results show that both approaches
enable inexperienced users to have access to advanced con-
figurations, without being concerned with all the character-
istics of each environment. While Gamez et al. [10] use an
academic PL as case study and show a computation time of
2,5s to solve models with 1.024 features, Leite et al. [15] use
two industrial PLs and show a computation time of up to
10min to solve models with 46 features.

As the previous authors, Mazo et al. [17] developed a tool
called VaRiaMos® that relies on MOO. In addition, VaRi-
aMos supports the filter of a set of configurations that satisfy
EFMs constraints and product requirements from a partial
(de)selection of features. An experiment evidenced that the
approach is scalable and has a high performance (i.e. 515ms
to find 100.440 valid configurations) by using a benchmark
of 50 PLs in a broad range of application domains, such as
insurance, entertainment, web applications, home automa-
tion, search engines, and databases.

Siegmund et al. [27] focus on the measurement of NFP
values and on the search for an optimal variant from given
product requirements. As Gamez et al. [10], in Siegmund et
al. [27] a SOO can also be defined over multiple NFPs. For
example, Equation 5 computes the best trade-off between
two NFPs R4 and R j, Ve: 1 <c <[, Vi:1<i<m,
and Vj : 1 < j < m, such as i # j. As introduced before,
[is the number of valid resulting configurations and m is
the number of NFPs. Their approach consists of four main
steps: 1) select desired features; ii) exclude features, as well
their dependencies, from further consideration if they have a
negative effect on a NFP that is of interest to stakeholders;
111) apply CP techniques to find an optimal variant from a
stakeholder-defined objective function based on feature-wise
and variant-wise measurements; and iv) optimize a derived

2vawiti.Cs.uni—magdeburg.de/iti,db/resea.rch/featureide/
waw.sf.net/projects/gems

4caosd416c.uma.es/spl/hydra

®dohko.io

6sites‘google.com/site/raulmazo/products-tools/vauriaumos

Table 1: Literature supporting the PL configuration process.

Ref. Method Tool Support Requirements Runtime Multiple Employed PL Size Performance
PLs PLs

31] CP Scatter RC, SOO Yes Yes AT 50 features 100ms

27] CP SPL Conqueror RC, SOO No No Al No information No information

171 CP VariaMos RC, MOO No Yes Al 100.440 valid 515ms

configurations

30] CP FaMa RC, SOO No No G 2.000 features 12s

20] CP FeatureIDE ext. RC, SOO No No A, G 140 features 296ms - 18min

15] CP Dohko RC, MOO Yes Yes I 46 features 10min

10] CP Hydra ext. RC, SP, SOO Yes Yes A 1.024 features 2,5s

3] GA - RC, SOO Yes No G 10.000 features 0,2 - 0,58

11] GA - RC, SOO Yes No G 200 features 101,53ms

32] GA - SO0 Yes No I 133 features 0,25s

13] MOEA PISA ext. MOO No No G, 1 10.000 features 4min

23] MOEA - MOO No No I 43 features 9,2min

12] MOEA - MOO No No Al 6.888 features 15min

28] MOEA - MOO No No AT 290 features 6,4 - Ts

16] MOEA - MOO No No Al 290 features 2,95 - 29,43min

21] MOEA - MOO No No AT 290 features 45min - 1.000h

25] MOEA - MOO No No Al 290 features 8min

1] AHP fmp ext. RC, SP, SOO No No G 100 features 20,1 - 86,05s

22] Relat. modeling ClaferMoo MOO No No Al 85 features 11 - 18min

2] S-AHP fmp ext. SP No No A 31 features No information

26] Knapsack - RC, SOO Yes No G 100 features 0,7s

‘We classify requirements into five types: Resource Constraints (RC), Stakeholders’ Preferences (SP), Single-Objective Optimiza-
tion (SOO), and Multi-Objective Optimization (MOO). Additionally, we classify the employed PLs in Academic (A), Industrial

(I), and Generated Randomly (G) models.

variant by means of refactoring to improve NFPs. On step
1), the authors approach takes into consideration feature
interactions through the usage of specific sampling heuristics
to meet different feature-coverage criteria.

l
f@) =maz} 1.000 + R (5)

3]

The general approach is implemented in a tool called SPL
Conqueror” and its applicability is demonstrated by nine in-
dustrial and academic PLs. Once the feature measurement
requires the generation of many variants, experiments show
a high computation time (e.g. in the case of large code base,
4 days to solve models with 25 features). However, no per-
formance information is given to the optimization process.

On the multi-stage configuration scenario, White et al. [30]
propose an approach called MUSCLES (MUlti-step Soft-
ware Configuration probLEm Solver). The authors extend a
state-of-the-art tool FaMa® with their approach. The goal of
this approach is to enable CP solvers to derive a series of in-
termediate optimal configurations from a starting PL config-
uration to a final configuration that meets the desired set of
product requirements. MUSCLES supports users to decide
which evolution path best fits the project’s goals. Moreover,
it supports the reasoning about how changes may or will
impact future configuration decisions. The current experi-
ments show that the approach can scale to EFMs with hun-
dreds of features and multiple configuration steps (e.g. mod-
els with 500 features over 10 steps can be solved in about
16s, and feature models with 2.000 features over 3 steps can
be solved in about 12s). However, MUSCLES assumes that
the models at each step are valid and error-free.

4.2 EA-Based Configuration
In Evolutionary Algorithms (EA) and Genetic Algorithms

7www.infosun.ﬁm.uni—passau.dc/spl/p1rojccts/splconqucror/

8famats.googlecode‘com/svn/branches/multistep/

(GA)?, an encoded solution is known as an individual. Each
individual is related to one or more chromosomes which are
composed by multiple genes with their corresponding values
or alleles. A group of individuals is known as a population.
In a set of iterations the population evolves by considering
different operators like mutation, crossover, and selection.
The best individuals are selected in each generation to im-
prove the characteristics of the off-springs based on a fitness
function (i.e. it defines the degree of satisfaction of a solu-
tion). A starting population is defined and conformed by [
solutions represented as chromosomes, where each chromo-
some is defined as a one-dimensional vector with n elements
(cf. Fig. 2) [6]. A configuration of an EFM is represented as
a chromosome, and features are represented as genes where
1 means that the feature is selected and 0 deselected.

X, X X5 e X
Configuration1 | 1 [0 [1[0]o[1]1]

Configuration2 | 1 [1 [1[0]o[1]0]

Configurationl|.1|0|0|1|0|0|1|

Figure 2: EA feature model encoding.

Previous concepts are applied to EA, defining six main
tasks: i) initialize population;) evaluate k fitness func-
tions; 744) transform fitness vector into a scalar; iv) perform
crossover; v) perform mutation; and vi) perform selection
and return to task i until the termination condition is satis-
fied (e.g. the number of expected generations is reached) [6].
EA-based approaches have gained popularity in the solution
of the PL configuration problem, given its ability to consider
stakeholders’ needs as optimization objectives, and its good
performance in large search spaces.

9GA is considered a type of EA that uses binary strings as encoding,
however the bound with other approaches is fuzzy.

4.2.1 Genetic Algorithms

Yeh and Wu [32] proposed a GA-based PL configura-
tion approach motivated by the poor efficiency presented
by other solutions [10, 15, 31] when trying to find configura-
tions in runtime contexts. In their approach, they defined a
SOO cost function f(z), and the PL model as a minimum-
cost flow problem, where the product configuration network
is represented as a flow network. The objective is to find
the cheapest path for sending an amount of flow (c¢f. Equa-
tion 6). The flow network is defined as a directed graph
G = (X, A), where X is the set of nodes (i.e. features) and
A the set of arcs in the network; c;,; is the cost of flow be-
tween node ¢ and node j, and X is the selection state of
node j (1 if it is selected, 0 otherwise).

f(z) = min Z cij X, (6)

(i,5)€A

Similarly, Bagheri et al. [3] proposed a reliability-aware
configuration that aims to satisfy reliability bounds (lower
and upper) when searching a configuration in the PL. Equa-
tion 7 is known as the lower reliability bound B§*, and it is
the result of sequentially composing all the selected features
in a configuration S.. Two approaches were proposed to
configure a PL with this optimization objective:) find all
configurations that satisfy functional requirements while ig-
noring reliability constraints. Then, the configurations that
respect the reliability bounds are kept; and i) use GA to
respond to the SOO and functional constraints.

Bg'* = HBXf, (M)
i=1

Yeh and Wu [32], Guo et al. [11], and Bagheri et al. [3]
approaches allow the specification of a SOO in order to con-
figure PL optimal solutions. However, in [32] configuration
filter cannot be expressed and CTC are not even managed.
Nevertheless, these approaches were profiled as scalable solu-
tions. The approach of Yeh and Wu [32] was tested against
a PL with 479 billion products. The search was executed
in around 260ms, which outperformed the results obtained
with other searching methods such as Uniform-cost Search
(UCS) and Breadth-first Search (BFS) (i.e. executed be-
tween 4,22s and more than 20min).

In the case of Bagheri et al. [3], their approach was tested
with randomly generated EFMs between 1.000 and 10.000
features, and between 5% and 20% of CTC. The linear ap-
proach is good for configuring small models (i.e. less than
3.000 features), while the GA-based approach is useful for
larger models. Lastly, in Guo et al. [11] 100 EFMs were
generated with different feature sizes (i.e. 10, 50, 100, and
200). For EFMs with 200 features, their approach, took an
average of 101,53ms to compute the solution.

4.2.2 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEA) are used
for solving MOO problem in stochastic environments [6].
Different PL configuration approaches based on MOEA were
presented with the need to improve performance and scala-
bility of PL configuration.

Sayyad et al. [25] compared seven MOEAs, i.e. IBEA [33],
NSGA-II [7], ssNSGA-II [8], SPEA2[34], FastPGA [9], MO-
Cell [19], and MOCHC [18]. Five optimization objectives
were considered, including the minimization of violated con-

straints and the maximization of selected features. Two
academic EFMs were employed, Web Portal and E-Shop,
and extended with three NFPs (i.e. costs, defects, and used
before). IBEA outperformed the remaining algorithms in
terms of quality; it favors product requirements (i.e. opti-
mization objectives) over other qualities, such as absolute
dominance and solutions spread. However, when perform-
ing 50.000 evaluations over the E-Shop EFM with 290 fea-
tures, no correct solution was provided. Two million evalua-
tions were needed in order to obtain 3% of correct solutions
in around 8min. Similarly, Olaechea et al. [21] employed
IBEA and five EFMs including the two models referenced
by Sayyad. As results, for the E-Shop case, configurations
were obtained after 250.000 evaluations and less than 1.000h,
an extensive time for applications that demand low latency.

Lian and Zhang [16] proposed a new MOEA derived from
IBEA, the Indicator optimization and rules Violation con-
trolling Evolutionary Algorithm (IVEA). IVEA is designed
as a polynomial time algorithm. A two-dimensional fitness
function was proposed to preserve the advantage on consid-
ering product requirements presented by IBEA. The first di-
mension is known as infeasibility and it measures constraint
violations of a given configuration. The second dimension is
related to product requirements specified as a MOO.

In a similar way, Tan et al. [28] presented the feedback-
directed IBEA. They use a SAT solver to remove prunable
features (i.e. common and dead features) before the EA is
applied. When a chromosome is created and there are con-
straint violations, the positions of the features involved in
the violation are known as error positions, and mutation has
a larger probability of being executed in these genes. Thus,
crossover operation considers values in non-error positions
in order to preserve good genes in the off-springs.

For these two last approaches, experiments were done
against the same models and optimization objectives as the
ones presented by Sayyad et al. [25], plus some additional
scenarios. IVEA [16] outperformed other MOEAs, including
IBEA. For a testing scenario with 50.000 evaluations, the al-
gorithm took almost 3min to generate 357 correct solutions
for the E-Shop model. On the other hand, Tan et al. [28]
showed that IBEA also outperformed other MOEAs, but it
was even better when combined with the feedback-directed
operations and the PL pruning. For the E-Shop model 100%
of the configurations were correct and obtained in around 6s.

Henard et al. [12] presented SATIBEA. Their approach
aims to select near optimal features, while proposing a tech-
nique to handle PL constraints. Diversity promotion is en-
couraged and two smart search operators are introduced.
Diversity promotion is measured with a dissimilarity metric.
The dissimilarity between two consecutive configurations P;
and P; is defined in Equation 8. The two proposed smart
operators correspond to smart mutation and smart replace-
ment. The first operator removes features involved in a con-
straint violation from an invalid configuration, and with the
help of a SAT solver the partial configuration is completed.
The smart replacement operator randomly picks a configu-
ration and replaces it with a new solution. For the Linux
model (6.888 features) SATIBEA found converging results
after 15min of execution. The five considered optimization
objectives are the same presented by Sayyad et al. [25].

S; US| —1S:nNS;
(s, 5) = | ‘QUK'M A (8)
i J

Furthermore, Hierons et al. [13] introduced Shrink Prior-
itize (SIP), which enhances the MOO search by providing a
new representation (core and parents features with a manda-
tory or alternative relationship are removed from the model)
and organizing the objectives optimization with the (1 + n)
approach. First, the number of non-violated constraints are
considered, and then other objectives. This approach was
compared to other encodings, including the ones presented
by Sayyad et al. [25] and Henard et al. [12]. All results for an
EFM with 10.000 features were obtained in less than 4min.
In all cases SIP outperformed the other encodings. Multiple
MOEASs were compared and there was not a clear winner.

Finally, Parejo et al. [23] used NSGA-II to derive config-
urations based on a MOO search in order to execute test
suites to detect faults in a PL. Different objectives com-
binations are considered, including the selection of features
that have a higher Coefficient of Connectivity (CoC), a met-
ric that shows the amount of constraints in which a feature
is involved; and the maximization of dissimilarity among
configurations (i.e. differences among products in order to
have a higher coverage). The results are returned in around
9,2min for an EFM with 48 features.

As main gaps of the EA-based approaches, we found that
product requirements expressiveness is limited to optimiza-
tion functions. Results vary depending on the selected pa-
rameters, including the number of evaluations. MOEAs tun-
ning should be considered in future work. Moreover, the im-
pact of CT'C and the number of product requirements should
also be measured, in order to characterize the scalability and
performance of the approaches.

4.3 Other Configuration Methods

Other methods have been used to solve the PL configu-
ration problem. This is the case of the knapsack-based ap-
proach presented by Shi et al. [26], which was a modification
of the Filtered Cartesian Flattening (FCF) algorithm [29].
In this approach, the MMKP algorithm is replaced with a
simple knapsack, and a greed search based in a CSP solver
is used. Then, k items are selected based in their values and
costs. Finally, an optimized selection is performed. The ap-
proach was tested with EFMs of different sizes. When the
models have less than 100 features the approach provides an
optimization level (i.e. approximation answer/optimal an-
swer) greater than 80% in about 4s, where £k = 800 in a
model with 50 features. However, in this approach stake-
holders cannot define their own “values” and “costs”, and
CTCs are not considered.

Olaechea et al. [22] presented ClaferMoo, a language and
tool for managing and configuring optimal products over
EFMs. ClaferMoo considers MOO over integer values. More-
over, partial configurations could be defined to filter the
search space. This tool uses Molloy, an extension of Alloy
which is a relational modeling language. The experiments
showed that for models with around a dozen of features,
ClaferMoo has a good performance (results are obtained in
less than 4min). Nonetheless, for models with more than 85
features, the solution takes more than 11min to be obtained,
and in the presence of multiple CTCs (e.g. model with 100
features and 89 CTCs) there is a time out and no optimal
solution is obtained.

Finally, Bagheri et al. [2] presented the Stratified An-
alytic Hierarchy Process (S-AHP) method, and Asadi et
al. [1] presented a PL configuration framework based in

AHP, Fuzzy Cognitive Maps (FCM), and Hierarchical Task
Network (HTN). Both approaches are AHP approximations
that perform a pairwise comparison among NFPs in order
to define priorities and select features according to stake-
holders’ preferences. In the case of Asadi et al. [1], positive
and negative impacts of features over NFPs, as well as inter-
dependency relationships over NFPs are considered. Local
weights Z of NFPs are captured with AHP, while NFPs
inter-dependencies T are captured with FCM. The overall
weight of the NFPs is computed as W = Z 4+ T. An utility
function that considers relevant NFPs is defined, then prod-
ucts are generated based on the selection of features that
maximizes the given function. Asadi et al. concluded that
their approach returns results in around 16s for models with
less than 200 features and with a distribution of 20% CTCs.
However, when the considered NFPs increase, the execution
time also increases.

S. DISCUSSION

Based on our insights from the last section, we evalu-
ate how the studies from the literature address the research
questions presented in Sec. 1.

RQ1: Which product requirements are consid-
ered by PL configuration methods?

The use of product requirements differ depending on the
chosen PL configuration method. While all studied ap-
proaches based on CP and EA introduce support to opti-
mization objectives, most of CP-based approaches provide
support to SOO (only two of them [15, 17] allow also the
specification of MOO). On the context of EA-based ap-
proaches, while GAs are employed in SOO scenarios, MOEAs
are used in MOO. Additionally, resource constraints are
fully supported by CP-based approaches. Nevertheless, in
EA-based approaches just Bagheri et al. [3] and Guo et
al. [11] offer such support. In particular, just Asadi et al. [1]
and Gamez et al. [10] approaches handle the three recog-
nized product requirements: resource constraints, stakehold-
ers’ preferences, and optimization objectives. However, none
of those approaches present support to MOO.

When satisfying the product requirements, the PL con-
straints should be satisfied. In this context, Asadi et al. [1]
and Olaechea et al. [22] approaches also present support to
filters specification. Their approach aims to search for a
valid configuration that satisfies a set of previously (de)selected
features and maximizes an utility function that involves weights
and preferences over multiple NFPs. Additionally, although
most works present support to CTC, complex CTC intro-
duced by Benavides et al. [5] are just partially managed in
MOEAs by Sayyad et al. [25]. However, in their approach,
complex CTCs are static and application engineers cannot
add new expressions or modify the existing ones.

RQ2: How do existing PL configuration ap-
proaches address scalability and performance?

EA-based solutions show a better scalability and perfor-
mance when configuring PLs. EAs can manage large EFMs,
deriving solutions in reasonable time (few minutes or sec-
onds). For SOO scenarios, EFMs with 1.000 to 10.000 fea-
tures can be solved in less than 600ms [3, 32]. For MOO
scenarios, results are obtained in 8min [25], 3min [16], and
6s (28] when considering the E-Shop EFM (290 features).

These experiments consider five optimization objectives [25].
Lastly, 15min were taken by Henard et al. [12] approach to
find solutions with the same five objectives in the Linuz
EFM (6.888 features), and less than 4min to find solutions
with the Hierons et al. [13] approach in a randomly gener-
ated EFM (10.000 features).

On the CP-based context, due to the exponential time
taken by exact algorithms, lower performance is evident
in the experiment results. While Hydra [10] presents the
best results (1.024 features in about 2,5s) for SOO scenar-
ios, VariaMos [17] presents the best results (100.440 valid
configurations in about 515ms) for MOO scenarios. Finally,
for other configuration methods, the knapsack approach pre-
sented by Shi et al. [26] shows the best results. It can manage
EFMs with 850 features in around 4s. However, for all these
techniques, depending on the number of considered NFPs,
time could increase. To accurately measure the performance
of those approaches, a set of experiments varying the num-
ber of NFPs associated to each feature need to be considered
in future work.

In this context, execution time varies depending on the
employed method and its considered parameters, as well as
the number and type of considered product requirements.
However, most of the current approaches do not present
experimental results related to changes of product require-
ments (e.g. different optimization objectives) and parame-
ters (e.g. type of NFPs), which can affect the scalability and
performance of each solution.

RQ3: What strengths and drawbacks are related
to the identified PL configuration approaches?

All methods have been proved to be capable of solving
the PL configuration problem over EFMs. Nevertheless,
each method presents different strengths and drawbacks that
should be considered by researchers in future work.

CP-based studied approaches allow the specification of re-
source constraints and SOO requirements. Few solutions
also allow the specification of MOO requirements [15, 17],
and just one study [10] supports stakeholders’ preferences.
Furthermore, multiple CP-based approaches support run-
time configuration [10, 15, 30], and the interaction with mul-
tiple PLs [10, 15, 17, 30]. However, for large-scale EFMs and
in the presence of multiple constraints, scalability and per-
formance can be affected [15, 20]. The employment of search
heuristics can improve the performance of these solutions.

In contrast to CP-based approaches, EA-based approaches
show good performance and scalability, deriving solutions
for large PLs in few minutes or seconds. In the case of GA-
based approaches, SOO requirements are supported and two
studies also support resource constraints [3, 11]. Conversely,
MOEA approaches support only MOO requirements. How-
ever, for all EA approaches, there is no PL constraints sat-
isfaction guarantee, then the minimization of constraints
violations should be treated as an additional optimization
objective. To improve the quality of the obtained configu-
rations as well as stakeholders’ satisfaction, approaches that
support the three product requirements pointed out in this
paper (cf. Sec. 2) are required. In addition, tuning MOEAs
parameters could enhance the quality and performance of
solutions. Finally, multiple PLs and runtime configuration
are not supported by most of the studies.

Other approaches have considered stakeholders’ prefer-
ences as product requirements, particularly the AHP-based

approaches [1, 2]. The knapsack approach [26] considers re-
source constraints and SOO, while the relational modeling
study [22] considers MOO. Nonetheless, current experiments
for these approaches only manage EFMs with less than 100
features. Further tests should be performed to prove the
scalability and performance of these solutions.

For all methods, stakeholders can have very different re-
quirements when configuring a PL. This diversity leads to
heterogeneous solutions. In these cases, no support is pre-
sented to guide the user on choosing a suitable solution.
Approaches like the one presented by Pereira et al. [24] have
shown preliminary thoughts in this direction with the use
of customized recommender systems. However, the authors
approach is still not integrated with EFMs. Moreover, com-
plex CTC [5] should also be addressed in future research.

Finally, most approaches [3, 10, 12, 16, 17, 20, 25, 30,
31, 32] conduct few experiments on academic or randomly
generated PL instances and may not reflect realistic EFMs
seen in industry. Additionally, the evaluation material (in-
cluding algorithms and results) are not publicly available for
the purpose of experiments reproducibility. The use of real
industrial PLs and the availability of the evaluation material
is indispensable to prove reliability of the obtained results.

6. CONCLUSION

This paper presents a survey on scalability and perfor-
mance concerns related to configuration of EFMs. We ana-
lyzed 21 papers. Two methods employed during product
configuration were studied, CP and EA as well as other
methods found in the literature. We identified that EA
favors scalability and performance given its capability of
managing EFMs with up to 10.000 features and five opti-
mization objectives. However, there is no guarantee of PL
constraints satisfaction and stakeholders preferences are not
considered. CP-based approaches support multiple product
requirements and guarantee constraint satisfaction. Nonethe-
less, scalability and performance are affected when facing
large-scale EFMs and a high amount of constraints. Finally,
other methods like AHP, relational modeling, and knapsack
are introduced to support further product requirements. For
all cases, additional research is required for managing multi-
ple PLs and runtime configuration. Further tests including
industrial EFMs are needed to obtain more reliable results.

As future work, we plan to compare the different ap-
proaches by considering a same case study. Moreover, we
aim to combine the presented methods to support different
product requirements in order to increase stakeholders’ sat-
isfaction when deriving suitable configurations. These hy-
brid solutions should respond to scalability and performance
requirements, which are related to large-scale PLs that de-
mand runtime solutions. Finally, a visual guidance during
the specification of requirements and selection of a configu-
ration from a set of solutions should also be supported.

7. ACKNOWLEDGEMENTS

This work was partially supported by the Brazilian Na-
tional Council for Scientific and Technological Development
(CNPq) grant 202368/2014-9.

8. REFERENCES

[1] M. Asadi, S. Soltani, D. Gasevic, M. Hatala, and
E. Bagheri. Toward automated feature model

[13]

[14]

[15]

configuration with optimizing non-functional
requirements. Information and Software Technology,
56(9):1144-1165, 2014.

E. Bagheri, M. Asadi, D. Gasevic, and S. Soltani.
Stratified analytic hierarchy process: prioritization
and selection of software features. In SPLC, pages
300-315, Berlin, Heidelberg, 2010. Springer.

E. Bagheri and F. Ensan. Reliability estimation for
component-based software product lines. Canadian
Journal of Electrical and Computer Engineering,
37(2):94-112, 2014.

D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 35(6):615-636,
2010.

D. Benavides, P. Trinidad, and A. Ruiz-Cortés.
Automated reasoning on feature models. In CAiSE,
pages 491-503, Berlin, Heidelberg, 2005. Springer.

C. A. C. Coello, G. B. Lamont, and D. A. V.
Veldhuizen. Evolutionary algorithms for solving
multi-objective problems. Springer, Secaucus, 2006.
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA-II. Transactions on Evolutionary Computation,
6(2):182-197, 2002.

J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba. On
the effect of the steady-state selection scheme in
multi-objective genetic algorithms. In EMO, pages
183-197, Berlin, Heidelberg, 2009. Springer.

H. Eskandari, C. D. Geiger, and G. B. Lamont.
FastPGA: A dynamic population sizing approach for
solving expensive multiobjective optimization
problems. In S. Obayashi, K. Deb, C. Poloni,

T. Hiroyasu, and T. Murata, editors, EMO, pages
141-155, Berlin, Heidelberg, 2007. Springer.

N. Gamez, J. El Haddad, and L. Fuentes.
SPL-TQSSS: a software product line approach for
stateful service selection. In ICWS, pages 73-80,
Piscataway, 2015. IEEE.

J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A
genetic algorithm for optimized feature selection with
resource constraints in software product lines. Journal
of Systems and Software, 84(12):2208-2221, 2011.

C. Henard, M. Papadakis, M. Harman, and

Y. Le Traon. Combining multi-objective search and
constraint solving for configuring large software
product lines. In ICSE, pages 517-528, Piscataway,
2015. IEEE.

R. M. Hierons, M. Li, X. Liu, S. Segura, and

W. Zheng. SIP: Optimal product selection from
feature models using many-objective evolutionary
optimization. Transactions on Software Engineering
and Methodology, 25(2):17:1-17:39, 2016.

B. Kitchenham, O. P. Brereton, D. Budgen,

M. Turner, J. Bailey, and S. Linkman. Systematic
literature reviews in software engineering — a
systematic literature review. Information and Software
Technology, 51(1):7-15, 2009.

A. F. Leite, V. Alves, G. N. Rodrigues, C. Tadonki,
C. Eisenbeis, and A. C. M. A. de Melo. Automating
resource selection and configuration in inter-clouds
through a software product line method. In CLOUD,
pages 726—733, Washington, 2015. IEEE.

X. Lian and L. Zhang. Optimized feature selection
towards functional and non-functional requirements in
software product lines. In SANER, pages 191-200,
Piscataway, 2015. IEEE.

R. Mazo, C. Salinesi, D. Diaz, O. Djebbi, and

A. Lora-Michiels. Constraints: the heart of domain
and application engineering in the product lines
engineering strategy. International Journal of
Information System Modeling and Design, 3(2):33-68,

(18]

(19]

20]

(21]

(22]

23]

(24]

[25]

(26]

27]

(28]

29]

(30]

32]

(33]

(34]

2012.

A. J. Nebro, E. Alba, G. Molina, F. Chicano, F. Luna,
and J. J. Durillo. Optimal antenna placement using a
new multi-objective CHC algorithm. In GECCO,
pages 876-883, New York, 2007. ACM.

A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro,
and E. Alba. MOCell: A cellular genetic algorithm for
multiobjective optimization. International Journal of
Intelligent Systems, 24(7):726-746, 2009.

L. Ochoa, O. Gonzélez-Rojas, and T. Thiim. Using
decision rules for solving conflicts in extended feature
models. In SLE, pages 149-160, New York, 2015.
ACM.

R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki.
Comparison of exact and approximate multi-objective
optimization for software product lines. In SPLC,
pages 92-101, New York, 2014. ACM.

R. Olaechea, S. Stewart, K. Czarnecki, and

D. Rayside. Modelling and multi-objective
optimization of quality attributes in variability-rich
software. In NFPinDSML, pages 2:1-2:6, New York,
2012. ACM.

J. A. Parejo, A. B. Sénchez, S. Segura,

A. Ruiz-Cortés, R. E. Lopez-Herrejon, and A. Egyed.
Multi-objective test case prioritization in highly
configurable systems: A case study. Journal of
Systems and Software, 122:287-310, 2016.

J. A. Pereira, P. Matuszyk, S. Krieter,

M. Spiliopoulou, and G. Saake. A feature-based
personalized recommender system for product-line
configuration. In GPCE, pages 120-131, New York,
2016. ACM.

A. S. Sayyad, T. Menzies, and H. Ammar. On the
value of user preferences in search-based software
engineering: a case study in software product lines. In
ICSE, pages 492-501, Piscataway, 2013. IEEE.

R. Shi, J. Guo, and Y. Wang. A preliminary
experimental study on optimal feature selection for
product derivation using knapsack approximation. In
PIC, pages 665-669, Piscataway, 2010. IEEE.

N. Siegmund, M. Rosenmiiller, M. Kuhlemann,

C. Kistner, S. Apel, and G. Saake. SPL Conqueror:
toward optimization of non-functional properties in
software product lines. Software Quality Journal,
20(3-4):487-517, 2012.

T. H. Tan, Y. Xue, M. Chen, J. Sun, Y. Liu, and J. S.
Dong. Optimizing selection of competing features via
feedback-directed evolutionary algorithms. In ISSTA,
pages 246256, New York, 2015. ACM.

J. White, B. Dougherty, and D. C. Schmidt. Selecting
highly optimal architectural feature sets with Filtered
Cartesian Flattening. Journal of Systems and
Software, 82(8):1268-1284, 2009.

J. White, J. A. Galindo, T. Saxena, B. Dougherty,

D. Benavides, and D. C. Schmidt. Evolving feature
model configurations in software product lines.
Journal of Systems and Software, 87:119-136, 2014.
J. White, D. C. Schmidt, E. Wuchner, and

A. Nechypurenko. Automatically composing reusable
software components for mobile devices. Journal of the
Brazilian Computer Society, 14(1):25-44, 2008.

J.-Y. Yeh and T.-H. Wu. Solutions for product
configuration management: an empirical study.
Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, 19(1):39-47, 2005.

E. Zitzler and S. Kiinzli. Indicator-based selection in
multiobjective search. In PPSN, pages 832-842,
Berlin, Heidelberg, 2004. Springer.

E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
improving the strength Pareto evolutionary algorithm
for multiobjective optimization. In 2th EUROGEN,
pages 95-100, Barcelona, 2001. CIMNE.

