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Abstract

Biomedical research and healthcare systems face many obstacles due to the complexity
and rapidly growing amount of omics and clinical data, e.g. efficient storage, querying
and analyzing. As the volume of data grows, conventional database systems and
methods are becoming ineffective in managing and interpreting the vast graphs of
interconnected data. These problems can be effectively solved by graph databases
because of their natural capacity to effectively store and retrieve highly connected
data. One example of such graph is the Clinical Knowledge Graph how this graph
can be utilised. On the other hand, there are challenges associated with Clinical
Knowledge Graph’s implementation are that it contains millions of nodes and edges
making it more difficult to understand what information is stored in the knowledge
graph and how those information are connected. Furthermore, these large graphs’
structural and functional characteristics are sometimes not well understood, which
hinders their practical deployment in clinical and research settings. In order to
improve our comprehension of the Clinical Knowledge Graph’s structure and the
crucial relationships between its nodes and edges, this study provides a thorough
examination of the information stored in the graph and its connections. Additionally,
a web application created specifically to improve the accessibility of the Clinical
Knowledge Graph is proposed in this thesis. Users can query the graph easily via
to this application, which also provides interactive features that help them extract
useful information from the dataset more quickly. By making the graph more helpful
for researchers and medical practitioners, who do not have expertise in Neo4j, Python
and other scripting and programming languages.
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1. Introduction

1.1 Motivation

Researchers are increasingly engaging in the fields of genomics [Bustamante et al.,
2011], transcriptomics [Lowe et al., 2017], and proteomics [Kellner, 2000] in their
search for new biomarkers and innovative treatments for diseases. Through this
method, they examine the connections between differentially expressed genes 2.1.1,
transcripts 2.1.2, and proteins 2.1.3 and specific health conditions, as well as the
effects of therapeutic interventions such as drug treatments. By linking these
biological molecules to diseases and their responses to various treatments, scientists
have the potential to make substantial advancements in medical diagnostics and
treatment strategies. The integrated omics (discussed in Section 2.1) approach is
transforming our comprehension of complex biological systems and their impact on
disease progression and treatment efficacy.

High throughput techniques are methods and technologies that allow enormous
amounts of data to be processed quickly and effectively in a short amount of time.
These methods have greatly increased the speed, scale, and precision of data capture,
analysis, and interpretation, revolutionising a number of scientific domains including
omics. Now that this massive amount of data is available, we must address how
to store and analyze it. Additionally, the data should be organised so that it can
meet a number of performance requirements i.e. fast readability and reliable storage.
Scalability is becoming a more crucial factor to take into account as omics datasets
get bigger and more complicated. Challenges may arise from traditional relational
databases’ incapacity to scale horizontally in response to growing processing demands
and data volumes. Differences in metadata, standards and data formats are the
root cause of the challenges in integrating omics data from several platforms and
sources. Metadata and different data format standards could be different naming
conventions, different schema and data formats i.e Json and XML [Robinson et al.,
2015]. Achieving seamless data integration requires data accessibility standards, and
dependable pipelines for data in
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Graph databases (discussed in Section 2.2.2) stand out as an efficient approach for
handling data characterized by complex relationships and graph structures. They
are particularly suited for deploying knowledge graphs, which are complex networks
of connected data points utilized to integrate and analyze large sets of related
information. The Clinical Knowledge Graph 2.2.7 serves as an example of how graph
databases are applied. It consolidates diverse biomedical data ranging from genomics
and drug data to clinical outcomes into a unified, navigable format. This allows
researchers and healthcare providers to tap into a rich reservoir of interconnected
information, enhancing both research capabilities and clinical decision making.

Though they have many benefits, clinical knowledge graph is very large and can be
difficult to understand and navigate due to their extensive connections and content.
It can be challenging to see how different pieces are connected or to anticipate the
outcomes of these relationships due to the scale and complexity of these graphs, which
can also hide insights and prevent the extraction of important information. Due to
this, in order to efficiently investigate and make use of the enormous volumes of data
included inside huge knowledge graphs, specific analytical tools and procedures are
required.

To navigate and fully exploit the potential of Clinical Knowledge Graph, specialized
methods are essential. Visual analytics tools and interactive querying interfaces can
help researchers and clinicians explore actionable insights from our graph data.

However, accessing these massive knowledge graphs often presents a practical chal-
lenge due to the demanding hardware requirements and the specialized expertise
needed to set up and maintain such systems. These barriers can limit the usability
of knowledge graphs to a smaller group of technically skilled users. To democratize
access and make these powerful tools more universally usable, it is crucial to develop
more user friendly software that minimizes these demands.

Solution such as web application, which is available without any prior installations
and downloads can lower these barriers. This can be an easy and intelligent solution
without requiring users to invest in expensive infrastructure. Additionally, the
development of intuitive interfaces that make use of the underlying complexity of
graph databases would make it easier for non-specialists to navigate and extract
information from clinical knowledge graph. These advancements would widen the
accessibility of knowledge graphs, allowing a broader range of users to contribute to
and benefit from the rich insights they offer.

1.2 Research Scope
In this study, I have contributed to the following research questions about analysis
of underlying structure of the clinical knowledge graph and made it more accessible:

Q1. How can we visualize different graph properties in terms of Nodes, Edges and
their structure?

Exploratory data analysis of the Clinical Knowledge Graph is extensively done to
explore and understand how the data is structured and the extremities across all
nodes and edges 5.1. Different types of visualisations and aggregations further helped
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us understand the data. A detailed EDA and data profiling of the Clinical Knowledge
Graph. The analysis include:

• Evaluate spread of data abundance across all nodes and edges to better under-
stand structure, quality and distribution.

• Different plots to visualize the contribution of each node and it’s magnitude.
Furthermore, exploring the topology, patterns and connections of the graph.

Q2. What can we learn from different abstraction levels of the Clinical Knowledge
Graph?

As the knowledge graph is huge and consists of a lot of nodes and edges, we highlight
the most important and interesting nodes, which helps us trace the knowledge based
on the graph. In depth work is done to highlight the presence, abundance, connections
and meaning of the particular nodes. We further focus on the following points:

• Abstraction level 2 (5.2) encompasses the analysis of node degrees based on
nodes and their relationships, with the assumption of graph to be undirected.

• Abstraction level 3 (5.3) encompasses the analysis of node degrees based on node
- relationship - node, with the assumption of graph to be directed.

Q3. What are user-friendly methods for querying data from a Knowledge Graph
via a front-end interface?

Develop a detailed pipeline and a user interface for analysts, students and researchers
for querying data from the Clinical Knowledge Graph. There is no requirement of
downloading and installing any graph database management system, which makes it
easier for non-technical audiences. Since it could be time consuming and complicated,
setting up the entire graph database is not required as it comes connected with the
web interface, The User Interface contains:

• A pipeline which allows the user to select node types (e.g. Disease or Proteins)
and edge types (e.g. any relationship type) 4.3. Selecting edge type is completely
optional as the user might only be interested in a certain node. Finally, users
retrieve the required set of information.

• A search panel to enter queries and retrieve relevant data in a easy to use
environment. For this, our user needs to have some understanding of Cypher
query language (2.2.5), which can be from basic to advanced queries.





2. Background

2.1 Omics
Our primary motivation is to obtain a thorough grasp of the fundamental mechanisms
that underlie the causes and therapy of various diseases at the start of our investigation.
Gaining this fundamental understanding is essential to creating therapeutic strategies
that work. In this project, omics analysis proves to be a highly important tool,
providing a variety of methods to unravelling the complex molecular landscapes
linked to various diseases. Through the integration of data derived from diverse
omics disciplines such as proteomics, metabolomics, transcriptomics, and genomes,
researchers might reveal promising patterns, biomarkers, and therapeutic targets that
could advance our comprehension and treatment of a range of medical disorders. We
can decipher the complex interactions between genetic, molecular, and environmental
elements that contribute to the pathogenesis of disease by using the lens of omics
analysis. The motivation for Omics studies comes from the pursuit of a comprehensive
understanding of biological systems at various molecular levels. These large scale,
high-throughput studies provide valuable insights into the intricate complexities of
living organisms and thereby, we avail its usage for solving problem space which
contains high involvement of Disease, Proteins and Genes etc [Schneider and Orchard,
2011].

2.1.1 Genes
Genes are strands of DNA that serve as the blueprints for protein synthesis and are
fundamental to hereditary transmission. The gene’s instructions are subsequently
carried by this mRNA molecule to the ribosome, where they serve as a guide for the
creation of proteins. Transfer RNA (tRNA) facilitates translation, converting the
nucleotide sequence of the mRNA into a sequence of amino acids. tRNA guarantees
proper amino acid assembly by serving as a transporter and matching partner
for mRNA codons. The mRNA sequence then directs the synthesis of peptide
bonds, which join these amino acids to form a polypeptide chain. In order for the
developing protein to function biologically, it must finally fold into its functional three-
dimensional structure [Pruitt et al., 2007]. They carry genetic information passed
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from parents to their offspring and significantly influence an individual’s traits, such
as physical features, behaviors, and disease predisposition. Genes regulate a myriad
of biological activities, encompassing growth, development, and metabolic processes.
As vital components for the operation and persistence of all life forms, genes are a
central subject of study in genetics, molecular biology, and biotechnology [Hutchins,
2014].

Following are a few types of Genes discussed:

• Structural Genes: Those that encode specific proteins or RNA molecules that
are directly involved in an organism’s structure [Maniatis et al., 1978].

• Regulatory Genes: Control the expression of other genes, influencing when and
to what extent they are transcribed [Krützfeldt and Stoffel, 2006].

• Housekeeping Genes: Essential for basic cellular functions e.g. basic maintenance
and cell survival, and are constitutively expressed in all cells [Eisenberg and
Levanon, 2013].

2.1.2 Transcripts
Transcripts are kinds of RNA that are produced by gene transcription and serve as
blueprints for protein synthesis. They serve as a link in gene expression, transmitting
genetic instructions from DNA to mRNA.Their involvement is critical in controlling
how genes are expressed and biological systems function. These transcripts are
essential for converting genetic instructions into active proteins and are subjected to
a variety of modifications and processing prior to protein synthesis. Understanding
transcripts, as an essential field of study in molecular biology and genetics, gives light
on the complex mechanisms of gene regulation and the pathway to protein synthesis.
They are converted into mRNA molecules through transcription and subsequently
into distinct amino acid sequences to create proteins. Alongside that, it carries the
genetic information from DNA to the ribosomes, serving as a template for protein
synthesis during translation. [Burnard, 1991]

2.1.3 Proteins
Proteins essentially are molecules as amino acid as their building blocks and are one
of the basic constituents of every biological being, starting from microorganisms to
fully grown animals and humans. In terms of functions, Proteins are responsible
for holding a cell together, working as catalyst for multiple chemical reactions and
protect cells from diseases. In cells, most of the work done is by proteins and they are
also required to hold the structure together. Proteins can be visualised as a sequence
of Amino acids, or rather, a large concatenation of them i.e. anything between 50 to
2000. With a different combination of amino acid, that could be 20 different types,
and also several folding mechanisms like Spontaneous Folding and Co-translational
Folding, a protein is formed [Grantcharova et al., 2001]. The function of each protein
can be directly derived from its construction [Hepler and Gilman, 1992; Tanaka and
Scheraga, 1976]. The connection between genes, transcripts, and proteins represent
a tightly regulated and intricate process fundamental to the functioning of living
organisms. Some examples of proteins and their functions:
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• Phenylalanine hydroxylase: Help in the creation on new molecules via retaining
knowledge from genetic DNA

• Growth hormone: Works as a Messenger. Produces signals and maintain
communication between several cells and organs.

• Actin: Responsible for locomotion of a body and provides supports to the cells.

Figure 2.1 represents how genetic information is transferred within a cell. It’s
starts from DNA, then to RNA and lastly, Proteins. The arrows show the flow of
information and conversion. The overall process is shown step by step in a generic
sense.

2.1.4 Types of Omics
Omics is a collective term encompassing various high-throughput, large-scale, and
comprehensive biological studies that aim to characterize and analyze the complete
set of biological molecules within a biological system. The term Omics is used as
a suffix in life science data vocabulary and is now being largely accepted in world
of Bioinformaticians and molecular biologists. Omics disciplines include genomics,
transcriptomics, proteomics, and metabolomics, each focusing on a specific class of
molecules. These studies have become integral to advancing our understanding of
the intricate molecular mechanisms governing life processes [Fiehn, 2002].

Omics research is rooted in the desire to obtain a dominant understanding of biological
systems and unravel the complexities that govern them. These studies contribute to
advancements in personalized medicine, disease diagnosis and treatment, agricultural
biotechnology, and our fundamental knowledge of life processes. Omics approaches
are facilitated high-throughput technologies, such as next-generation sequencing,
mass spectrometry, and microarray technologies. These technologies generate massive
datasets, necessitating sophisticated computational and bioinformatic analyses to
extract meaningful information [Alberts, 2017].

The key motivations for omics research include:

• Holistic View of Biological Systems: Omics approaches, such as genomics,
proteomics, and metabolomics, allow researchers to examine biological systems
as integrated wholes. This holistic perspective is crucial for uncovering the
interconnectedness of molecular components and understanding the emergent
properties of living organisms [Gupta and Misra, 2016].

• Identification of Biomarkers: Omics studies contribute to the discovery of
biomarkers, which are specific molecules or signatures indicative of physiological
states, diseases, or responses to treatments. Biomarkers play a vital role in
disease diagnosis, prognosis, and personalized medicine [Olivier et al., 2019].

• Precision Medicine: Precision medicine is a medical approach that leverages
information regarding an individual’s genetic makeup or protein characteristics
to prevent, diagnose, or treat diseases. Within oncology, precision medicine
utilizes detailed data concerning a patient’s tumor to aid in diagnosis, treatment
planning, assessment of treatment efficacy, and prognosis determination[Ashley,
2016].
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• Advancing Biological and Medical Research: Omics technologies contribute to
the advancement of basic biological research by generating vast datasets that can
be analyzed to answer fundamental questions about cellular processes, signaling
pathways, and regulatory mechanisms [Chenab et al., 2019].

• Biotechnological Applications: Omics data are crucial in various biotechnolog-
ical applications, such as the development of genetically modified organisms,
optimization of industrial processes, and the engineering of microorganisms for
specific purposes [Horikoshi, 1999].

In the vast and investigative domain of biological sciences, the understanding of
molecular biology fundamentals; genes, transcripts, proteins and metabolites forms
the cornerstone of plenty disciplines, including genetics, biochemistry, and molecular
pathology. The genetic material contained in a gene is subjected to transcription
during the synthesis of proteins, producing messenger RNA (mRNA).

2.1.5 Multi-Omics

Following could fall under an umbrella of Omics studies [Anderson and Seilhamer,
1997; Wang et al., 2009]:

• Genomics: Genomics, as a discipline in molecular biology, concentrates on the in-
depth examination of an organism’s entire set of genes, referred to as the genome.
This field encompasses the scrutiny of gene structure, function, organization, and
interactions to achieve a comprehensive understanding of the genetic information
governing the development, functioning, and evolutionary processes of living
organisms [Bustamante et al., 2011].

• Transcriptomics: It is a field of biological study that involves the comprehensive
analysis of the complete set of RNA transcripts produced by the genome of a
cell at a specific point in time or under particular conditions. This field aims
to understand the patterns and dynamics of gene expression, encompassing
processes such as transcription, mRNA processing, and RNA stability [Lowe
et al., 2017].

• Proteomics: Proteomics, undertakes a thorough examination of the entire ensem-
ble of proteins generated by a cell, tissue, or organism. This field encompasses the
scrutiny of protein characteristics, including structure, function and expression
patterns [Kellner, 2000].

• Metabolomics: It involves studying the entirety of small molecules, metabolites,
circulating through cells which are the biochemical functionality of cell’s life
ongoing processes [Roessner and Bowne, 2009].

2.1.6 Meta-Omics

The term ”meta-omics” refers to the study of complete proteome of a community
within a biological system at the same time e.g the microbial community in the human
gut. It combines information from multiple omics fields e.g. genomes, transcriptomics
and proteomics.By taking into account the interactions and linkages between different
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molecular components, meta-omics aims to present a more comprehensive and linked
understanding of biological processes. It entails system-level studies that go beyond
the scope of individual omics viewpoints. Meta-omics encapsulates the simultaneous
holistic examination of various biological datasets (omics), within the same biological
samples. This approach garners a thorough insight into the functional roles and
taxonomic structures of microbial areas, along with their environmental interactions.
Such research is valuable in the study of microbiomes, offering a window into the
intricate and varied microbial ecosystems and their potential connections to human
health and diseases [Mallick et al., 2021].

Figure 2.1: Diagram explaining the central dogma of molecular biology. (Reverse
transcription is very error prone and only seen in some virus species.) [Bernaola et al.,
2023]

2.1.6.1 Metaproteomics

Metaproteomics is dedicated to investigating the entirety of proteins within a complex
combination of biological samples, such as those found in tissues, saliva, and bone
marrow etc. Its primary objective is to discover the functional roles and interactions of
expressed proteins within intricate communities, shedding light on the metabolic and
ecological processes to better understand a specific ecosystem. Differentiating from
conventional proteomics, it emphasizes on the comprehensive protein composition
of a sample rather than concentrating on a single organism or a predefined set of
proteins. The information derived from metaproteomics data contribute significantly
to fields like microbiology, and biotechnology [Karczewski and Snyder, 2018].

2.1.6.2 Application of Metaproteomics

Metaproteomics involves a series of technical steps to analyze soil microbial com-
munities by examining the proteins they express. The process begins with sample
collection and protein extraction, where the most crucial part is ensuring the ex-
tracted proteins are representative of the sample, given the complexity of microbial
communities and the presence of interfering substances like phenolic compounds
and humic acids. The extraction strategy depends on the targeted protein fraction
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(prokaryotic/eukaryotic, extracellular/cell-associated) and the subsequent methods
of protein analysis planned. Other applications of Metaprotemoics can be; Disease
Marker Discovery, Process Monitoring, Environmental Studies and Routine Clinical
Diagnostics etc. One of the prominent goals is to associate identified proteins with
their corresponding gene sequences, linking biological functions to genetic data. This
requires optimized technologies for characterizing the protein complement of the
genome, which are still being developed and refined compared to nucleic acid-based
methods [Heyer et al., 2019; Maron et al., 2007].

2.2 Graphs
Effective data representation and analysis are more important than ever in the big
data and multi-omics research era. A substantial solution is provided by graphs, which
give a clear and understandable structure for capturing the complicated relationships
and interactions found in various biological systems. With the increasing amount
and complexity of multi-omics datasets, graphs provide a flexible framework for
integrating various omics data kinds.Graphs allow researchers to find hidden patterns,
identify important molecular networks, and obtain a greater understanding of the
underlying mechanisms driving biological processes by based on biological entities
as nodes and their connections as edges. Graphs are an effective tool for exploring
complexity and realising the potential of interdisciplinary data integration in the
dynamic field of multi-omics research.Graphs are combination of nodes and edges,
nodes contain data and value of a certain use-case, while the edges define how two
or more are connected to each other. Overall, a huge network of nodes and edges are
combined to form a detailed structure, which can then be used for specific analysis.

Graphs posses a pivotal role in problem formulation, serving as models for addressing
an array of practical challenges, they prove particularly valuable in portraying and
resolving problems tied to communication networks [Jiang, 2022], data structur-
ing [Tarjan, 1983], computational devices [Zhang et al., 2013], and computational
flow [Buning and Steger, 1985]. For instance, within the domain of computer networks,
the link structure of a website can be articulated through a directed graph, where
web pages constitute the vertices and directed edges symbolize links between pages.
Moreover, graph-theoretic approaches have demonstrated efficacy in linguistics, where
the discrete nature of natural language aligns well with graph structures. Alongside
that, using graph databases, we have the access to the extensive graph learning
algorithms. The use of graphs in problem-solving is advantageous because they
provide enormous efficiency in terms of computation and also helps with a visual and
intuitive representation of relationships and connections between entities. This makes
it easier to analyze and solve complex problems, such as finding the shortest route
in a network, optimizing resource allocation, or modeling and simulating real-world
systems.

2.2.1 Types of Graphs

There are several types of graphs used in functional and implementation aspect of a
project scope. Following list contains the summary of graphs types and their usage:
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• Regular graphs: In graph theory, two vertices are said to have an identical degree
if they are connected to the same number of other vertices in the graph. These
graphs exhibit a uniformity in their structure, with every vertex maintaining
an identical degree, signifying an equal in and out going edges to for each
node [Wormald et al., 1999].

• Integral graphs: Integral graphs are a class of graphs where all the eigenvalues
of their adjacency matrix are integers. The adjacency matrix of a graph is a
square matrix that represents the connections between vertices [Balińska et al.,
2002].

• Directed graphs:directed graphs—also referred to as digraphs—are graphs in
which each edge is connected to a particular direction. In a digraph, directed
edges indicate a one-way link between vertices [Commoner et al., 1971].

• Undirected graphs: An undirected graph is one in which each edge lacks a
defined direction. Rather, they depict symmetric connections between vertex
pairs [Kamada et al., 1989].

• Weighted graphs: A weighted graph is a type of graph in which each edge
is assigned a numerical value, known as a ”weight.” Unlike an unweighted
graph, where edges merely represent connections between vertices, the edges
in a weighted graph carry additional information indicating the strength, cost,
distance, or some other quantitative measure associated with the relationship
between the connected vertices [Althöfer et al., 1993].

2.2.2 Graph Databases

We are seeing an exponential rise in data volume and quality due to technological im-
provements. This explosion calls for better ways to handle and store large amounts of
data, which is driving the foundational advancement of database systems. Traditional
relational database management systems (RDBMS) have given way to a wide range
of database technologies that are tailored to the requirements of modern applications
in the evolution of databases. The databases have to change after being mostly
dominated by RDBMS, which are recognised for their structured data arranged
in tables with set schemas. RDBMS is typically linked with strong transactional
capabilities. This gap prompted the advent of NoSQL databases, which offer flexible
data models and the capability for horizontal scalability, thus supporting various data
types and large volumes. Key-value stores, document stores, wide-column stores, and
graph databases have become prominent within the NoSQL category, each serving
specific data handling requirements.

The emergence of NoSQL significantly challenged the conventional roles of rela-
tional databases, diversifying the database landscape. Concurrently, object-oriented
database management systems (OODBMS) were developed to provide native support
for complex data structures and object-oriented programming frameworks, effectively
closing the gap between application code and database storage. This period also saw
the rise of NewSQL systems, which blend NoSQL’s scalability and flexibility with
the robust transactional capabilities traditionally associated with RDBMS [Kamada
et al., 1989].
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The the following image we visualise Evolution of database models.

Figure 2.2: Evolution of database models. Rectangles denote database models,
arrows indicate influences, and circles denote theoretical developments. A time-line
in years is shown on the left (based on a diagram by A. O. Mendelzon). [Angles
and Gutierrez, 2008]

Graph databases are specialized systems designed to manage and process graph-like
data, following the fundamental principles of database systems such as persistent data
storage, logical data independence, data integrity, and consistency. These databases
are specifically tailored to handle large, evolving, and rich graph datasets, which
may contain trillions of vertices and edges. Examples of such datasets include social
networks or web graphs [Besta et al., 2023].

Database is a compilation of ordered or unordered data, which is very structured.
It contains all elements of data, its tables, relationships and connections and meta-
data. All of the management, controlling and monitoring is catered by Database
Management System [McCarthy and Dayal, 1989]. Database queries are syntax
based vocabulary, which follow a direct pattern, to extract or recall data from any
database [Jarke and Koch, 1984]. Specifically engineered to tackle the distinctive
challenges arising from the vastness and complexity of these datasets, graph databases
also meet the requirements for low latency and high throughput associated with
graph queries. These queries encompass both local actions, involving the access or
modification of a small segment of the graph, and global actions, encompassing the
access or modification of a substantial portion of the graph. The design of graph
databases encompasses several key dimensions, including the general structure of
the graph database structure, data models and organization, data distribution, and
query execution.
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Online transaction processing is designed to manage and process large amounts
of transactional data quickly. It is made to effectively manage frequent, brief
transactions, such INSERT, UPDATE, and DELETE operations, which are commonly
connected to regular business operations [Harizopoulos et al., 2018]. Online analytical
processing is designed to make advanced searches and analysis of large quantities
of data easier. Since OLAP systems are built to handle multidimensional analysis,
users can drill down, slice, and dice data to obtain insights and make well-informed
choices [Chaudhuri and Dayal, 1997]. In addition to their core functionalities, graph
databases are also compared and categorized based on their support for different
types of queries and workloads, such as OLTP (Online Transaction Processing) and
OLAP (Online Analytical Processing).

The landscape of graph databases includes various systems, each with its own design
choices, data models, and representations, offering a wide range of capabilities for
managing and querying graph data [Jouili and Vansteenberghe, 2013]. To tackle the
inherent complexity of graph databases, we have two most important graph models
i.e. Labeled Property Graph and Resource Description Framework [Weikum and
Schek, 1992].

2.2.2.1 Labeled Property Graph (LPG)

LPG, a commonly employed graph data model in databases like Neo4j, encompasses
nodes and edges, each equipped with unique identifiers and the capability to be
labeled and endowed with properties in the form of (key, value) pairs. Renowned for
its robust performance, especially within graph database management systems, LPG
is crafted for versatile graph data processing. It accelerates Create, Read, Update,
and Delete (CURD) operations on data. The widespread adoption of LPG can be
attributed to the success of graph databases management systems like Neo4j [Anikin
et al., 2019].

2.2.2.2 Resource Description Framework (RDF)

RDF is a graph data model used in the Semantic Web for representing and linking
data in a global Web of Data. RDF graphs are composed of ”atomic” nodes and edges,
represented as triples, where the object might be a literal or another node identifier,
the predicate is an edge label, and the subject is a node identifier. RDF provides
a formal language for expressing data and is based on the idea of linking pieces of
data from different domains to create a global Web of Data. RDF is designed to be
semantically linked and integrated [Pan, 2009].

2.2.2.3 LPG vs RDF

When comparing RDF and LPG across various aspects, distinct differences emerge.
RDF operates on a data model of triples, fostering a semantic, linked data repre-
sentation facilitated by standardized serialization formats like RDF/XML, Turtle,
or JSON-LD. It offers RDF Schema (RDFS) for formal schema definition and rea-
soning, supporting easy integration with external data sources and vocabularies
through URIs and enabling ontology-based reasoning for inferring new knowledge.
Additionally, RDF provides native support for federated querying across distributed
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data sources and boasts wide adoption and strong community support with stan-
dardized specifications from W3C. In contrast, LPG focus on graph structure and
properties with a schema-flexible approach. While LPGs may lack standardized
serialization formats and native reasoning capabilities, they offer powerful graph
pattern matching capabilities in proprietary or custom query languages tailored to
specific graph databases. LPGs are particularly popular in domains such as social
networks, recommendation systems, and graph analytics, emphasizing direct relation-
ships between entities and their properties. However, their adoption and community
support may vary depending on the chosen LPG database and ecosystem, posing
potential challenges in standardization and integration compared to RDF [Di Pierro
et al., 2023]. Combining the semantic triples of RDF with the graph structure of
LPG is a means of merging the two models. With the help of this hybrid process, a
flexible graph representation that captures both semantic content and direct links
can be created. It preserves the flexibility and graph-focused nature of LPGs while
facilitating compatibility with RDF information.[Purohit et al., 2021]

2.2.3 Relational Database vs Graph Database

There are significant differences between Relational and Graph Databases, it depends
on the purpose of research or implementation. Conventionally, relational databases
are the most commonly used data storage option. However, with growing technologies
and data talking options, we have graph databases which make our lives easier when
it comes to Life Science data. Relational databases are still a suitable choice for
many scenarios, especially when data is more tabular in nature, and ACID properties
(Atomicity, Consistency, Isolation, Durability) are critical. The decision often involves
considering the nature of the data, the types of queries, and the performance
requirements of the application. Following is detailed description on how and what
each database looks like in terms of key properties and functionalities [Vicknair et al.,
2010].

Following is a table which enables us to understand better about the similarities and
differences between Relational Databases and Graph Databases.
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Table 2.1: Comparison between Relational and Graph Databases [Lazarska and
Siedlecka-Lamch, 2019]

Property Relational Database Graph Database

Data Model Organized into tables with rows
and columns.

Utilizes graph structures with
nodes, edges.

Schema Requires a predefined schema. Typically schema-less or
schema-flexible.

Relationships Relies on foreign keys. All kind of operations are sup-
ported Relationships.

Use Cases Well-suited for applications
with well-defined and stable
schemas.

Ideal for scenarios emphasizing
relationships (e.g., social net-
works).

Query
Language

Uses SQL (Structured Query
Language).

Utilizes graph query languages
(e.g., Cypher, Gremlin).

Performance Suitable for complex queries. Parallel processing and index
free structure.

Scalability Traditionally scaled vertically. Designed for horizontal scalabil-
ity.

An instance where relational database would be less helpful than graph database, we
discuss about a social media platform like Facebook or LinkedIn [Walke et al., 2023].
On a platform like this:

• Complex relationship: Friends, followers, coworkers, and family members are
just a few of the links that connect users to one another. These relationships are
not always evident and may be connected to certain traits (such as the strength of
a friendship, a person’s employment, or a family connection). Dynamic Schema:
Over time, relationship structures can alter and become more dynamic. A user
can, for instance, create new partnerships, unfollow users, and add new friends.

• Dynamic Schema: Over time, relationship structures can alter and become more
dynamic. A user can, for instance, create new partnerships, unfollow users, and
add new friends.

• Real-Time Suggestions and Insights: Users anticipate receiving real-time sug-
gestions and insights that are tailored to their behaviours, interests, and network
connections. This necessitates navigating the network graph and efficiently
querying intricate relationships.
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2.2.4 Types of Graph Databases

2.2.4.1 Representation based on Storage

Table 2.2 tries to explain graph databases based on Storage.

Table 2.2: Graph Databases based on Storage Type

Storage Type Property Example

Native graph storage These storage systems function
according to the unit of nodes and
edges and are specifically made for the
administration and storage of graphs
on disc. They are well-suited for
complex relationship studies since they
are excellent at supporting deep-link
(multiple-hop) graph analytics.

Neo4J, Tiger-
Graph

Relational Storage Utilizing a relational model for storage,
this method entails preserving separate
tables for vertices and edges. During
runtime, it employs relational join
operations to concatenate these two
tables

GraphX

Key-Value Store This database model combines
key-value pairs with a graph structure.
Nodes are assigned unique keys, and
relationships (edges) are stored using
keys that link to connected nodes. This
approach offers simplicity, scalability,
and efficiency for scenarios where quick
access to individual nodes and their
relationships is crucial.

ArangoDB,
Amazon Dy-
namoDB.
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2.2.4.2 Representation based on Data Model

The table 2.3 to explain graph databases based on Data Model.

Table 2.3: Graph Databases based on Data Model

Data Model Property Example

Property Graph When a property graph is used, data is
organized as nodes, relationships, and
properties (data stored in nodes or
relationships).

Neo4j, AWS
Neptune

Hypergraph Hypergraph is a graph theory
information version wherein a
connection also known as a hyperedge,
can connect any quantity of given
nodes. It permits any wide variety of
nodes at both stop of a relationship. It
proves beneficial when a dataset
involves extensive many-to-many
relationships.

HyperGraphDB

LPG vs RDF model It is designed to manage and store data
in the form of RDF triples. An RDF
triple consists of three components: a
subject, a predicate, and an object.

AWS Neptune,
AllegroGraph.

2.2.5 Neo4j Database
Neo4j is a graph DBMS that is known for its native graph storage and processing
capabilities. It implies that graph data is stored directly, hence streamlining storage
and retrieval without the need for table mapping. Processing capabilities allow
efficient implementation of graph algorithms directly on data. This results in speedier
searches, scalable performance, easier query authoring, and deeper insights from
complicated network topologies. It is designed to efficiently handle and traverse
complex relationships within data. Unlike traditional relational databases, Neo4j is
specifically designed for graph-oriented applications, which makes it more adaptable
for scenarios where relationships between entities and the types of relationships are
of high significance [Miller, 2013].

• Graph: The Graph visualization type in the Neo4j bloom (a tool exclusively
designed for visualizing and exploring graph data in Neo4j) presents data in
a visual graph format, showcasing nodes as circles and relationships as lines
connecting them. This view provides an intuitive representation of the inter-
connected nature of the data, allowing users to explore relationships, identify
patterns, and gain insights into the structure of their graph database.

• Table: The Table visualization type organizes data in a tabular format, presenting
nodes and relationships in rows and columns. This structured view provides a
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comprehensive overview of the data, offering details about each node’s properties
and relationships. It is particularly useful for a systematic examination of specific
data attributes and their values.

• Code: The Code visualization type allows users to interact with the Neo4j
database using Cypher, the query language of Neo4j. This view enables users
to write, execute, and analyze Cypher queries directly. It is a powerful tool
for users familiar with Cypher or those who prefer a text-based interface for
querying and manipulating the data in a more programmatic manner.

Figure 2.3: Graph Representation of 3 Connected Nodes, ”Person” is the ”author of”
Book 1 and Book 2

There are several versions that we need to keep in mind for implementation for our
setup. In our system we have used the following configurations:

2.2.6 Knowledge Graphs
Knowledge Graphs are a versatile and effective tool for expressing data and the
complex interrelationships that exist within it. They are essentially data graphs
designed to collect and disseminate knowledge about the real world, with nodes
representing entities (objects, events, situations, or concepts) and edges representing
the interactions between them. Knowledge graphs in computer science domain are
advanced data structures that combine elements of semantic networks and graph
theory to represent information in a structured and interconnected manner. They
are essentially a network of real life objects, including items, actions, or ideas, as well
as the connections between them. It allows you to organise and connect information,
making it easier to analyse complicated relationships and extract insights from vast
datasets [Nickel et al., 2015].

2.2.6.1 Types of Knowledge Graphs

• Generic Knowledge Graphs: These are broad-scope graphs that contain general
information about the world. They are not limited to a specific domain and aim
to cover as wide a range of facts as possible. For example, Google’s Knowledge
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Graph, which powers search and other services by connecting information about
entities from various sources across the web [Lin et al., 2021].

• Domain-Specific Knowledge Graphs: These graphs focus on a specific domain
or area of knowledge, such as medicine, finance, or music. They are tailored to
provide in-depth information and relationships relevant to the particular field. For
example, medical knowledge graph might include entities like symptoms, diseases,
medications, and side effects, with relationships showing what symptoms are
associated with what diseases, what diseases can be treated by what medications,
etc [Abu-Salih, 2021].

• Enterprise Knowledge Graphs: Used by businesses to integrate and make
sense of internal data. They link and contextualize various types of company
data, from internal databases, documents, emails, and more. For example, A
company might use an enterprise knowledge graph to connect data about its
products, suppliers, customers, and internal processes to identify new business
opportunities or improve operational efficiency [Galkin et al., 2017].

• Social Knowledge Graphs:These graphs focus on people and their relationships,
interactions, and behaviors. They are often used in social networks and customer
relationship management. For example, LinkedIn’s graph connects professionals
based on their work history, skills, and professional relationships [Yang et al.,
2015].

• Linguistic Knowledge Graphs: These graphs are used to analyze and understand
natural language text. They connect words, phrases, sentences, and sometimes
more abstract linguistic concepts. For example, A linguistic graph might connect
a word to its synonyms, its various meanings in different contexts, and its
translations in different languages [Zhang et al., 2020].

2.2.7 Clinical Knowledge Graphs
Clinical Knowledge Graphs safely falls into the category of Domain Specific Knowl-
edge Graphs. A Clinical Knowledge Graph is a specialized form of a knowledge
graph that’s particularly tailored for the healthcare and medical domain. It’s a
structured, graphical representation of medical knowledge that connects various
clinical entities such as diseases, symptoms, medications, treatments, and patient
data. The primary aim of a Clinical Knowledge Graph is to enhance medical research,
improve healthcare delivery, and enable better clinical decision making [Huang et al.,
2017]. They can also be explained as sophisticated data structures in the healthcare
sector, designed to organize and interpret vast amounts of medical information by
establishing a network of interconnected nodes and edges representing various medical
entities and their relationships. These entities can include diseases, symptoms, drugs,
patient demographics, and more, linked through relationships that articulate medical
associations like symptomatology, causality, and treatment efficacy.

2.2.7.1 Pillars of Clinical Knowledge Graphs

• Entities and Relationships: The nodes (entities) in a Clinical Knowledge Graph
can represent a wide array of clinical concepts including diseases, symptoms,
diagnostic tests, patient demographics, treatments, drug interactions, and side



20 2. Background

effects. The edges denote the relationships between these entities, such as which
symptoms are associated with which diseases, what medications are used to treat
which conditions, or what the contraindications of a particular drug are.

• Semantic Understanding: Clinical Knowledge Graphs are designed to understand
medical terminology and context. They make use of ontologies, which are formal
explanations of a collection of concepts inside a domain and the connections
within those concepts. For instance, ontologies in the medical field like SNOMED
CT or ICD-10 provide standardized vocabularies for diseases, symptoms, and
procedures, which can be used to enrich the graph with reliable data.

• Evidence-based:They often incorporate data from scientific research, clinical
trials, and other authoritative sources. This ensures that the information in the
graph reflects real world problems and solutions.

2.2.7.2 Applications of Clinical Knowledge Graphs

In essence, a Clinical Knowledge Graph is a powerful tool in terms of applications of
the intersection of data science and healthcare, providing a structured and intelligent
way to navigate the complex web of clinical information. This technology holds
great promise for improving healthcare outcomes, advancing medical research, and
personalizing patient care [Nicholson and Greene, 2020].

• Drug Discovery and Repurposing: By analyzing relationships between drugs,
diseases, and biological pathways, they can aid in identifying new uses for existing
drugs or in the development of new drugs.

• Predictive Analytics: Used in predicting disease outbreaks, patient outcomes,
or the likelihood of disease progression.

• Personalized Treatment Recommendations: They can help in suggesting cus-
tomized treatment plans based on a patient’s unique medical history and current
condition.

• Research and Development: Facilitate the aggregation and analysis of vast
amounts of medical research data, helping in the advancement of medical science.

• Enhancing Electronic Health Records: By integrating with Enhancing Electronic
Health Records, they can provide healthcare professionals with more contextual
and relevant information.

The creation and ongoing maintenance of these graphs is fraught with difficulties,
such as ensuring data quality, managing the sheer volume of information, maintaining
privacy and security in accordance with regulations such as HIPAA [Moore and
Frye, 2020], and continuously updating the graph to reflect the most recent medical
discoveries and insights. Despite these obstacles, the future of clinical knowledge
graphs looks bright, with potential advancements such as the incorporation of genomic
data for personalised medicine, the use of AI for deeper insights and predictions,
and the development of real time analytics for immediate clinical decision support.
Clinical knowledge graphs have the potential to radically revolutionise the healthcare
environment as they advance, improving the accuracy of diagnosis, the effectiveness
of therapies, and the overall quality of patient care.
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2.2.8 Graph Analysis
Graph analysis is a technique for studying and representing complicated networks as
a collection of nodes and edges, such as biological, social, or technological systems.
It entails analysing the relationships and patterns within these networks in order to
find underlying structures, identify relevant nodes or clusters, and extract meaningful
information. Networks are generally represented as graphs in graph analysis, with
nodes (also known as vertices) and edges (sometimes known as links or connections).
Edges reflect the connections or interactions between nodes, which represent the
things inside the network, such as proteins in a protein-protein interaction network or
persons in a social network. To investigate the properties and characteristics of these
graphs, several computational tools and algorithms are used [Royer et al., 2008].

One of the key aspects of graph analysis is the identification of network motifs,
which are recurring patterns or substructures within the network. These motifs can
provide valuable information about the organization and function of the network. For
example, in biological networks, motifs such as cliques (fully connected subgraphs)
and bicliques (complete bipartite subgraphs) are often of particular interest due
to their biological significance. The computation and analysis of alternative graph
representations, such as power graphs, is also included in graph analysis. Power
graphs are a unique network model based on two abstractions: power nodes and
power edges. Power nodes are collections of nodes, and power edges connect two
power nodes, indicating that all nodes in the first power node are connected to
all nodes in the second power node. This method simplifies the investigation and
visualisation of complicated networks by allowing for the concise depiction of network
patterns.

Furthermore, graph analysis involves the development of algorithms and methodolo-
gies for tasks such as node clustering, module detection, network motif composition,
network visualization, and network models. These techniques enable researchers to
uncover hidden structures, identify biologically relevant modules, and gain insights
into the connectivity and organization of the network. In addition to its applications
in biological networks, graph analysis has broader implications across various domains,
including social network analysis, transportation network analysis, and communi-
cation network analysis. It provides a powerful framework for understanding the
relationships and interactions within these complex systems, leading to advancements
in fields such as network science, computational biology, and data analytics.

2.2.8.1 RandomWalks

Random walks serve as versatile tools with wide ranging applications across multiple
disciplines, including mathematics, physics, computer science, and algorithm devel-
opment. In the area of mathematics and physics, random walks model have various
phenomena such as card shuffling and the erratic movement known as Brownian
motion. Additionally, in statistical mechanics, they represent how particles move
within a physical system. In computer science, random walks aid in exploring the
depths of large datasets and in generating random elements within complex structures.
Examples include navigating the points within a convex body or finding perfect
matching in a graph. Furthermore, random walks play a crucial role in network anal-
ysis, statistical modeling, and in approximating solutions to looping problems. Their
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algorithmic applications are particularly notable, providing a robust framework for
creating random elements from combinatorial structures. Random walks also enable
efficient sampling techniques, which are integral to various algorithmic strategies.
The broad utility and adaptability of random walks underscore their significance in
both theoretical and practical applications within mathematical and computational
fields [Barnes and Feige, 1993; Lovász, 1993].

2.2.8.2 Embedding

Node embedding is a technique used in graph representation learning, particularly in
the field of network analysis and machine learning. It involves representing nodes (or
entities) in a graph as dense, fixed-size vectors in a continuous vector space. Each
node is mapped to a vector such that similar nodes in the graph are mapped to
nearby points in the vector space. It is beneficial because it allows machine learning
algorithms to operate on graphs by treating nodes as points in a continuous space,
enabling the use of various mathematical operations and machine learning techniques
that are not directly applicable to discrete structures like graphs [Abu-El-Haija
et al., 2018].

The process of generating node embeddings typically involves iterative optimization
methods that aim to preserve important structural properties of the graph, such as
node proximity or network connectivity, in the embedding space. Following are the
the types of embedding:

• First-order proximity: This type of node embedding calculates the pairwise
node similarity based on the direct connections between nodes in the graph.

• Second-order proximity: In this type, the pairwise node similarity is calculated
based on the relationships between nodes that are not directly connected, such
as the k-step neighbors relations.

• Community embedding: This approach considers a community-aware proximity
for node embedding, where a node’s embedding is similar to its community’s
embedding. It aims to capture the similarities between nodes belonging to the
same community.

• Substructure embedding: This type of node embedding focuses on embedding
the graph structure between two possibly distant nodes to support semantic
proximity search. It also includes learning the embedding for subgraphs (e.g.,
graphlets) to define the graph kernels for graph classification.

• Higher-order proximity: Some methods explore higher-order proximity to cap-
ture more complex relationships between nodes in the graph.

2.2.8.3 Node2Vec

Node2vec is an algorithmic framework designed for learning continuous feature
representations for nodes in networks. It aims to automate prediction tasks by
learning the features themselves, with a focus on capturing the diversity of connectivity
patterns observed in networks. The algorithm employs a flexible notion of a node’s
network neighborhood and a biased random walk procedure to efficiently explore
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diverse neighborhoods, allowing it to learn representations that calculates nodes
with regards to what role they perform. Node2vec is a semi-supervised algorithm
for scalable feature learning in networks, optimizing a custom graph-based objective
function using stochastic gradient descent (SGD). It can learn representations where
nodes have similar roles and similar embeddings, and it can learn representations
that embed nodes from the same network community closer together. The algorithm
has shown superior performance in multi-label classification and link prediction tasks
over various real-world networks, demonstrating its effectiveness, scalability, and
robustness to perturbations [Grover and Leskovec, 2016].

2.2.8.4 MetaPath2Vec

Scalable representation learning model Metapath2vec was created to meet the special
difficulties heterogeneous networks pose. These difficulties result from the variety of
nodes and linkages that exist, which restricts the applicability of traditional network
embedding methods. The approach uses a heterogeneous skip-gram model (A neural
network architecture used to learn word embeddings in natural language processing.
In Metapath2vec, it is adapted to learn node embeddings in heterogeneous networks
by predicting neighboring nodes along metapaths, capturing structural and semantic
similarities between nodes) to produce node embeddings and formalizes meta-path-
based (Metapath is a preset sequence of node and edge types that establishes a
certain pattern in a diverse network. It directs the development of random walks,
allowing nodes to go around the network on organized pathways) random walks to
build a node’s heterogeneous neighborhood. It also makes it possible to represent
structural and semantic relationships in diverse graphs simultaneously. It has been
demonstrated that Metapath2vec performs better than cutting-edge embedding
models in a number of heterogeneous graph network mining tasks, including similarity
search, clustering, and node categorization. As a useful tool for representing and
analyzing big heterogeneous graphs, it captures both the structural and semantic
relationships between various graphs nodes [Dong et al., 2017].

Metapath2vec++ goes a step further by enabling the simultaneous modeling of both
structural and semantic correlations in heterogeneous networks. This additional
capability allows metapath2vec++ to capture and represent the underlying struc-
tural and semantic relationships between multiple types of nodes in heterogeneous
networks more effectively than metapath2vec. Overall, metapath2vec++ offers a
more comprehensive approach to learning representations in heterogeneous networks
by considering both structural and semantic correlations.

A visual comparison could be inferred from the following image and clear differences
can be seen in terms of how they behave.
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Figure 2.4: Types of Embedding and it’s comparison represented by ”2D PCA
projections of the 128D embeddings of 16 top CS conferences and corresponding
high-profile authors” [Dong et al., 2017]

2.3 Web Application
A Web Application, is software that can be accessed in a web browser to access data,
processing information and displaying content. There is no need of any installation
of the software that needs to be run, rather is has a unique web address to access.
The user is allowed to use different protocols to send and receive data between a
browser and web server. The data the user intend to recollect is present on stationary
servers, which are separately owned and maintained. Mostly, there is a real time
back and forth data travel and it’s amazingly fast. Every web application is built
with a specific purpose and a thorough set of requirements, following is a list to
illustrate the building blocks of a website [Garrett et al., 2005].

The rationale for utilising a web application for knowledge graphs stems from the need
for quick access to massive quantities of information without requiring complex setup
or extensive analysis. This enables democratised access to important information
and significant insights from vast and complex data collections. The application can
also generate random elements in huge and sophisticated sets, such as the set of
lattice points in a convex body or the set of perfect matchings in a graph, which
can then be asymptotically enumerated. Furthermore, the programme can give tools
for investigating and understanding the relationships between random walks and
eigenvalues, electrical networks, and other processes, opening up possibilities for
random walks’ applications in a variety of domains.

• HTML: Hypertext Markup Language (HTML) is a tag based language used for
placing text on a website. This can contain text boxes, paragraphs, drop downs
and buttons. Its fair to say that it is the skeleton of a website.
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• CSS: Cascading Style Sheets (CSS) is language for styling a website. Everything
from font styles to background colors is basically generated by this language. It
helps the developers to broaden their visual aspect of webpage. Moreover, an
enhanced responsive website is the ultimate target of CSS.

• JavaScript: JavaScript is a dynamic programming language primarily used in web
development. Executed within web browsers, it enhances the interactivity of web
pages by allowing the manipulation of HTML content. JavaScript is instrumental
in creating dynamic features, facilitating actions like form validations and real-
time updates without requiring a page refresh.

• Python: Python is a versatile programming language, is widely used in web
development for creating dynamic and functional websites. Utilizing dedicated
libraries, Python’s readability and extensive package support to streamline the
development process. Python is efficient at handling server side logic, database
management, and the creation of web APIs, hence, making it easy to build
scalable websites.

• Java: Java is fast, secure and object oriented Programming language, which is
essentially used for server side development. There are different Java frameworks,
which are built on top of it to attain specific development needs (i.e, Springboot
and Mircronaut). Java posses dynamic runtime features like reflection and code
modification, which helps in better compilation and efficient programming.

2.3.1 Frontend

In the world of web development, the ’front-end’ specifically refers to the portion
of a website or application with which users directly interact. This includes all the
elements you see and engage with through a browser, encompassing the site’s overall
structure, aesthetics, and dynamic features. Developers create the front-end using
coding languages such as HTML for structural design, CSS for aesthetic styling, and
JavaScript for interactive functionality [Lara et al., 2013].

2.3.2 Backend

The back end refers to the server-side of web development, which includes the
technologies and processes that occur on the server and are not directly visible to
the user. It encompasses the logic, databases, and server-side scripting that enable
the functionality of a website or web application. The back end is responsible for
managing and processing data, user authentication, and server-side operations.

There are different types of back-end technologies, including traditional server-
side scripting languages such as PHP, ASP.NET, and Ruby on Rails, as well as
newer technologies like Nodejs, which is a JavaScript-based server environment.
Additionally, there are various types of databases used in the back end, including
relational databases like MySQL and PostgreSQL, as well as NoSQL databases such
as MongoDB and Cassandra. These technologies and processes work together to
power the functionality and data management of web applications [Connolly, 2019].
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2.3.3 API
An API (Application Programming Interface) comprises a collection of protocols,
methods, and tools essential for creating software and applications. It delineates the
manner in which various software components should interact and offers a mechanism
for diverse software elements to communicate. APIs facilitate the integration among
disparate systems and devices [Zhou et al., 2014].

2.3.4 REST
A REST API (Representational State Transfer API) is a kind of API that follows to
the REST architectural principles, which are important to creating network-based
applications. To retrieve and manipulate data, these APIs communicate via HTTP.
Because servers do not keep any session data for the client, each client request must
be self-contained with all relevant information[Zhou et al., 2014]. The need of APIs
in knowledge graphs is the sending and receiving of information like node data, edge
data and further corresponding extracted values.

The image 2.5 shows how the data flows from frontend to backend while an API assists
the process. The arrows between the components and teams indicate the direction
of responsibility and interaction. The backend team develops the infrastructure
that the API will serve, the API team creates the access point for the frontend to
communicate with the backend, and the product team develops the user-facing part
of the application that the consumers will use.

Figure 2.5: Abstract of a Frontend connects to a Backend using API, with responsible
stakeholders [Bondel et al., 2021]

2.3.5 Types of Web Applications
• Static Web Applications: Static web applications are made up of unchanging

content created using HTML, CSS, and occasionally JavaScript, which is used
for basic interactivity and styling rather than dynamic updates or server-side
data handling. These apps are noted for their quick loading times and enhanced
security due to the absence of server-side processing or database interactions.
However, static web apps are limited by their inability to dynamically respond
to user inputs or update content without developer intervention.[Warren et al.,
1999].
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• Dynamic Web Applications: Dynamic web applications deliver content that
changes in response to user inputs or other factors. They use server-side pro-
gramming for real-time content generation, offering personalized experiences and
interactive features. These applications are designed to scale effectively, handling
variable user activity and data loads through advanced backend technologies that
manage databases, server logic, and data caching. This scalability is crucial for
supporting high traffic levels without excessive infrastructure expansion[Olston
et al., 2005].

• Single-page Applications: Single-page Applications (SPAs) are web apps that
load once and dynamically update content on the same page based on user
actions. They primarily use JavaScript to manage data fetching and content
rendering without requiring full page reloads, offering a smooth, application-like
user experience. Frameworks like React, Angular, and Vue.js are commonly used
to develop SPAs[Scott Jr, 2015].

• Progressive Web Applications: PWAs are designed to combine the features of
native apps and traditional web applications, offering a seamless, cross-platform
user experience. These applications work on any device and enhance functionality
through features like offline accessibility and push notifications. PWAs aim to
simplify development across multiple platforms while providing a consistent user
experience akin to native applications, all accessible through a web browser
[Majchrzak et al., 2018].

Each type serves different business needs and user experiences. For example, dynamic
web applications are ideal for accessing and interacting with clinical knowledge graphs,
providing real-time, tailored data to users in medical or healthcare settings.

2.3.6 Angular
Angular development involves using Angular, a comprehensive platform and frame-
work that supports the construction of single-page applications using HTML and
TypeScript. This framework equips developers with a robust set of integrated libraries
for various functionalities including routing, forms management, and client-server
interactions. Angular enhances HTML by adding additional attributes and uses an
expressive and readable syntax to bind data, which simplifies the development of
complex web applications[Fain and Moiseev, 2017].

Angular is utilized for its potent capabilities in creating interactive and dynamic
web applications. It extends HTML’s capabilities, facilitating the construction of
sophisticated applications in an organized manner. The framework’s dependency
injection and modularity aid in structuring code effectively, making it easier to
maintain, particularly for large-scale projects. Moreover, Angular optimizes perfor-
mance and application efficiency through ahead-of-time compilation and tree shaking,
reducing application size and improving load times. Tree-shaking is an optimisation
technique and it’s very useful when combined with JavaScript frameworks and tools
like Angular. It illustrates the procedure for eliminating unnecessary code from a
final package prior to production deployment. The objective of tree-shaking is to
minimise the size of an application by removing unnecessary code, hence improving
the application’s overall performance and load times[Huang, 2019].



28 2. Background

Using Angular to develop a knowledge graph website is highly effective due to its
comprehensive features suited for complex and interactive applications. Angular’s
component-based architecture facilitates the construction of different user interfaces
necessary for displaying and managing knowledge graphs. The framework’s two-way
data binding is essential for real-time UI updates when the underlying data changes,
such as when nodes are added or modified. Angular’s services and dependency
injection offer a structured way to handle backend data interactions and state
management, crucial for operations like fetching and updating graph data from a
server. Angular’s routing capabilities enable seamless navigation between different
views or components within the application, enhancing the user experience in multi-
page setups. Performance optimization techniques like lazy loading in Angular ensure
that the application remains responsive and efficient as it scales, making it an ideal
choice for building sophisticated knowledge graph interfaces that require robust
functionality and interactive elements.
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In Chapter 3, I navigate through a comprehensive collection of pertinent literature
within the domains of Knowledge Graphs, Querying Graph Data from front-end
interfaces, and the vast array of Clinical Knowledge Graph analysis. Drawing upon
this diverse sources, I try to extract valuable insights into the underlying principles,
methodologies, and computational techniques that underpin the deep analysis of
knowledge graphs and clinical datasets. Furthermore, I delve into the evolving
landscape of querying graph data, shedding light on innovative approaches and
tools designed to facilitate seamless interaction with complex network and graph
structures.

3.1 The heterogeneous pharmacological medical bio-
chemical network PharMeBINet

In the field of bioinformatics, heterogeneous biomedical pharmacological databases
are pivitol in advancing medical discoveries, education, and diagnostic processes.
PharMeBINet is a website that has the ability to visualize graph databases and helps
researchers dive deep in a particular use case (i.e. Disease discovery). PharMeBINet is
constructed by combining diverse entities and relationships from 29 public resources,
including databases such as DrugBank (database of drugs) [Wishart et al., 2018],
ClinVar (data of germline and somatic variants of any size, type or genomic location)
[Landrum et al., 2016], and Comparative Toxicogenomics Database (includes chem-
icals, genes, phenotypes, diseases) [Davis et al., 2021], and integrating them into
Neo4j. The merging process involves mapping entities from different data sources,
using various strategies such as external identification systems or name mapping. The
resulting database provides a rich source of information on drug-drug interactions,
gene variations, and more. Moreover, the database holds significant potential for
various research applications, including drug repurposing and the analysis of ADRs,
genes, proteins, and diseases [Königs et al., 2022].

PharMeBINet addresses the necessity for a comprehensive database containing
heterogeneous information on drugs, ADRs, genes, proteins, gene variants, and
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diseases. The integration process involves careful consideration of various data
sources, mapping methods, and data validation to ensure the accuracy and reliability
of the created knowledge graph. Furthermore, the PharMeBINet database undergoes
technical validation to ensure that only human information is present for genes,
proteins, pathways, and variants, and that the integrated data is filtered to include
only relevant and reliable information with literature references or experimental
evidence.

The main data sources integrated into the PharMeBINet database. These sources pro-
vide diverse information on drugs, gene variations, proteins, pathways, and diseases,
which are integrated into the Neo4j database structure. The integration process
involves careful consideration of data formats, mapping methods, and validation to
ensure the accuracy and reliability of the database. Interestingly, PharMeBINet,
here we can find a general overview of the website.

3.2 Prototyping an InteractiveVisualization ofDietary
Supplement Knowledge Graph

People are largely unaware about the effectiveness and safety of dietary supplements.
There are different opinions regarding the safety and advantages of dietary supple-
ments because they are not subject to the same regulatory approval requirements
as general medications. People looking for health information online have increased
significantly since the it is available. However, there can be variation in the quality
and dependability of this information, which makes it challenging consumers to iden-
tify reliable sources. The information on dietary supplements that is now available is
dispersed and usually not integrated. A coherent system that compiles data from
multiple reliable sources into a single, simple interface is required[He et al., 2019].

ALOHA (dietAry suppLement knOwledge grapH visuAlization) is a tool that is
developed to browse integrated DIetary Supplement Knowledge base (iDISK) with
the help of interactive graph based visualization [He et al., 2018; Zhang et al., 2018].
The goal of the study is to improve ALOHA’s usability and reliability in giving
information about dietary supplements by developing and improving it through a
user-centered design process. Iterative design and testing are used in the process
to get user feedback and keep the system getting better. ALOHA seeks to make
complex connections between dietary supplements and different health factors easier
to understand and traverse through the use of graph-based visualisation tools. This
study’s ultimate goal is to improve public health by giving consumers a tool to utilise
when making decisions about dietary supplements, therefore lowering the hazards
that come with using dietary supplements without proper knowledge.

The implementation has the following features features like, Node Expansion, where
by expanding nodes, users can examine the graph and observe relationships and
direct connections. This enables consumers to view a supplement’s interactions with
medications, related medical problems, and other dietary supplements by clicking
on the ingredient. Moreover, The tool retrieves and displays data using high-level
semantic queries that take advantage of the knowledge included in the iDISK ontology.
The underlying Neo4j graph database makes this easier by enabling queries to extract
related data.

https://pharmebi.net/#/
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ALOHA was developed using an iterative design process that combined user-centered
design with numerous rounds of focus group usability testing. Iteratively improving
the interface and functionalities was done using the feedback from these sessions.
To measure user satisfaction and identify areas for improvement, the usability of
ALOHA was assessed using the system usability scale throughout the development
process.
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Section 4.1 depicts the general overview and how the graph analysis is connected
with the web application. This chapter will then explain my approaches to tackle the
my research questions and how I came about particular solutions. The Section 4.2
indicates how the data was analysed and further transformed to be utilised our needs.
Furthermore, a workflow is introduced for analyzing the graph, this workflow contains
different abstraction levels each comprising different granularity of the underlying
data. We talk about the implementation of the frontend, backend and the how they
are structured. The Section 4.3 focuses on the hardware and software configurations
required for the setup. Finally the Section 4.4 updates us with th requierment of the
system.

4.1 Workflow

This is the first section where we understand how everything is connected to each
other, the components and what purpose they have. Finally, we deeply discuss the
Frontend, Backend and Implementation.
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Figure 4.1: This is an image of Architecture of the Workflow and implementation
components, where we see the communication patterns within and outside of frontend
and backend. It also illustrated how Neo4j database is connected to multiple
functionalities.

The figure 4.1 depicts software architecture with both frontend 4.1.1 and backend
4.1.2 components, as well as the implementation details of a system that uses Java
server and Neo4j database.

4.1.1 Frontend

The frontend 4.1.1 is the user interface of the system, it sends and retrieves data
from the Java server, and displays the results. This channel is accessible to everyone
and basically the face of the the architecture. It is responsible to depict all the
visualisations and query results.

4.1.2 Backend

The Java server is a key component which is responsible for all the data exchange. It
enables date to be queried from the database and sends its back in a formatted way
to the frontend to communicate. The graph database holds and handles all our data,
which is of course in graph data format. The initial response of the graph is based in
Json format, however, in the frontend, it then converted in a human readable form.

Another Python based process for backend is writing back the calculated node degree
to Neo4j database. The first part is connecting to the database with neo4j driver,
which is one of the most common ways to connect to any neo4j database instance.
We then extract the data as tensors and calculate in degrees, out degrees and the
accumulation of both, called degrees. After the calculation, the python script writes
the calculated node degrees to the neo4j database instance.



4.2. Data Abstraction and Processing 35

4.1.3 Graph Analysis

Implementation phase has quite a few list of ownership as it consist of all the
calculations, visualisations and graph learning capabilities. Following is a list of all
the different activities taking place in this particular phase.

• Abstraction levels 4.2 are set for different conceptual visualisations and aggrega-
tions.

• Degree Calculations are made in this section via directly talking to the database
and further more, written back to the graph database.

• We analyze the subgraph and run tests and specific nodes based analysis.

4.1.4 Communication Flow

Setting up the graph database was a critical component. The process began with
downloading the necessary data dump onto a local machine. Following this, a Neo4j
database was established to serve as the foundational platform for our graph database
structure. After setting up Neo4j, the next step involved loading the previously
downloaded data dump into the database on the server. This action set the stage
for the integration and updating of the Clinical Knowledge Graph. To enhance
and update the CKG, files from DrugBank, PhosphoSitePlus, and other sources
were parsed. This method ensured that our graph database was not only set up
with the initial data but was also updated with the latest and relevant information
from various authoritative sources. This setup process was crucial for ensuring the
database’s accuracy and comprehensiveness, forming the backbone of our research
infrastructure.

In figure 4.1, the double-sided arrow between the Java Server and Neo4j Database
is a two-way communication for data retrieval, for updating the nodes, Python is
used. The single red arrow pointing from the frontend to the Java Server refers the
frontend that sends requests to the backend server. The single blue arrow pointing
from the Java Server to the frontend indicates a response from the backend server to
the frontend after processing data. The blacks arrows indicate that the calculations,
shaping of data and analysis are directly connected to the database itself. The Degree
calculations and the visualisation are done by exporting csv files specific to the use
case. This is a complete data flow information, which intuitively informs how and
when each set of data is being sent and received.

4.2 Data Abstraction and Processing

The image 4.2 shows the follow of increasing intensity of granularity throughout the
analysis, starting from raw data and ending in a tensor format for graph learning.
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Figure 4.2: Levels of Abstraction of data based on Aggregation for Analysis. Each
level defines a level deeper and granular data, it is done for better understanding
and usage of the data. The levels of abstraction increases from left to right.

4.2.1 Graph Data

In this chapter, I plan to present a graph schema that includes various node types
and edge types, aiming to enrich the comprehension of the graph’s structure and
the distribution of its data. Given the extensive assortment of node and edge types
present, this work will selectively concentrate on those that are deemed most critical
for our investigation. For a thorough examination of all node and edge types within
the Clinical Knowledge Graph, please refer to the detailed analysis provided in the
Appendix or Supplementary section of this document.

The first stage of the processing starts from the basic structure of graph data, which
is Clinical Knowledge Graph [Santos et al., 2022]. The knowledge graph contains
nodes and edges. It contains close to 20 million nodes and 220 million relationships,
which includes literature, experimental data and public databases. There is an
opportunity to add more data with relevant nodes to enhance further graph features
and definition. However, we have majorly worked with the following 5 nodes and
their related edges which are the more interesting part of this research.

Table 4.1 represents the nodes of interest and their relationships. Each node may
have their individual set of relationships, which may or may not be a part of other
nodes.



4.2. Data Abstraction and Processing 37

Node Relationship Types

Disease

HAS PARENT
STUDIES DISEASE
DETECTED IN PATHOLOGY SAMPLE
IS BIOMARKER OF DISEASE
MENTIONED IN PUBLICATION

Drug

ACTS ON
COMPILED TARGETS
MENTIONED IN PUBLICATION
INTERACTS WITH
CURATED TARGETS
TARGETS CLINICALLY RELEVANT VARIANT

Transcript
TRANSCRIBED INTO
TRANSLATED INTO
LOCATED IN

Protein

BELONGS TO PROTEIN
IS QCMARKER IN TISSUE
IS BIOMARKER OF DISEASE
TRANSLATED INTO
CURATED AFFECTS INTERACTION WITH
DETECTED IN PATHOLOGY SAMPLE
HAS STRUCTURE
IS SUBUNIT OF
VARIANT FOUND IN PROTEIN
HAS MODIFIED SITE
HAS SEQUENCE
ASSOCIATED WITH
CURATED INTERACTS WITH
COMPILED INTERACTS WITH
IS SUBSTRATE OF
ACTS ON
COMPILED TARGETS
HAS QUANTIFIED PROTEIN
ANNOTATED IN PATHWAY
FOUND IN PROTEIN
MENTIONED IN PUBLICATION

Gene

TRANSCRIBED INTO
TRANSLATED INTO
VARIANT FOUND IN GENE
CURATED TARGETS

Table 4.1: Focused Nodes and with respective Relationship Types
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4.2.2 Abstraction Level 1

In Abstraction Level 1, the data is shaped for the first time and it the most basic
analsyis of the Clinical Knowledge Graph. The main topic is on the following aspects
of data:

• Distribution and exploratory data analysis of Nodes.

• Distribution and exploratory data analysis Edge.

• Data Distribution

4.2.2.1 Node Type Count

An essential component of our effort was to carefully examine the the graph’s nodes
structure. Understanding the overall distribution and prominence of individual nodes
was the goal of this investigation, which provided insights into the graphs’s hierarchy
and connection.The first step of our investigation involved a numerical evaluation in
which the total number of nodes per node type in the graph was ascertained. This
fundamental measure prepared the groundwork for a more thorough investigation of
the complexity of the graph.

Subsequently, we directed our focus towards the extremities of the node distribution.
By examining the the first ten nodes with highest and the lowest node degrees
in terms of connectivity, we were able to emphasize the most and least central
nodes within the network. This contrast offered a panoramic understanding of the
graph’s structure and this is done by investigating the number of nodes and their
occurrences, highlighting influential nodes as well as peripheral ones. For a more
intuitive visualization of our findings, we employed bar graphs to represent the node
distribution. This approach facilitated the identification of patterns and outliers,
making the data more accessible for further interpretation and analysis. The bars
offered a clear depiction of each node’s weight within the overall structure, with their
lengths proportionally reflecting the count of connections.

Complementing the bar graphs, pie charts were utilized to present the node data.
These pie graphs offered a segmental view of the nodes’ distribution, allowing for an
immediate visual comparison of the proportional representation of each node within
the network. This is done by storing the each node type in newly created table and
the visualisation takes place.

The outcomes of these approaches combine to provide a comprehensive understanding
of the node dynamics inside the network, which is a strong foundation for network
research in both theory and practice.

4.2.2.2 Edge Type Count

We then carried out a detailed examination of the edges that constructs the graph
paths in our graph-based model. Determining the functional dynamics and interaction
patterns that underpin the network’s architecture required an understanding of the
nuances of these linkages. We started by enumerating the edges, which encompass
the whole range of connections that are woven across the network. This analysis



4.2. Data Abstraction and Processing 39

represent a measure of the graph’s connectivity and sets the foundation for a more
profound edge analysis.

By classifying the edges into high and low interaction frequency categories, the
analysis was further deeply looked into. We were able to highlight the most and
least used pathways in the network by determining the top 10 and lowest 10 number
of our edge set. Understanding the spread of connectivity and identifying possible
bottlenecks or underutilised routes were made possible because to this differentiation.

Visual representation was integral to our analysis. Bar graphs were constructed
to display the frequency of interactions across individual edges, presenting a clear
depiction of connectivity distribution. Each bar’s magnitude offered a direct correla-
tion to the frequency of edge utilization, granting measurable connection densities.
Simultaneously, pie charts rendered another perspective, showcasing the relative
frequencies of edge usage as portions of the entire network. This pictorial depiction
elucidated the edge distribution in a manner that was immediately perceptible and
comparably analyzable.

4.2.2.3 Data Distribution

We have used Cumulative Distribution Function, refer to chapter 2 in order to analyse
the spread of the data all over. It includes both node and edge spread. To encapsulate
the interactions and distribution of the nodes and edges mathematically, we explored
the use of a Cumulative distribution function. This mathematical representation was
essential in illustrating the compounded relationships and interactions among the
nodes, providing a data perspective to the otherwise visual and numerical data.

4.2.3 Abstraction Level 2
Abstraction Level 2 explains nodes being connected to one another and how the
shape of data discovers if there is a Node-Node distribution in overall graph. There
are two analysis being majorly catered. Node-Node Pair Analysis, Node Degree
Analysis.

In the Node-Node pair analysis, we have merged each node pair combination in
Clinical Knowledge Graph, which helps us understand to evaluate which node types
are connected in the graph. We quantified these connections by their frequency, thus
distinguishing between the various levels of pair engagements ranging from weak,
occasional interactions to strong, recurrent connections. To effectively communicate
the dynamics of node-node interactions, we leveraged a variety of visualization
techniques, bar graphs and clustered heat map (seaborn library).

With the assumption that this phase of the analysis the graph is kept undirected
and we don’t assume any start or end node specifically. We then calculate the node
degrees based with the help of the library ”PyT Torch Geometric” and visualise it
with histograms. The data is stored as feature matrix as tensor and edge index,
then from edge index, we calculate node degrees. The binning of histogram was a
challenge since the spread of the values was uneven and some of the nodes and edges
have really high values with some with surprisingly low occurrences.

We were able to extract all the trends and the graphs representing them, however,
only the five most interesting nodes are featured in this literature.
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4.2.4 Abstraction Level 3
Inherent in our analysis was the assumption for this abstraction level that the graph is
directed, which provided a richer context for interpreting the data. This directionality
allowed us to infer the asymmetric relationships between nodes, offering clarity on
the roles of individual nodes as either sources or targets of investigated edges in the
graph. This perspective was particularly insightful for recognizing influential nodes
and understanding the direction of processes within the graph.

Our research methodically investigated the in-degree distribution of nodes, reflecting
the number of inbound connections to a node. This analysis highlights nodes that
are significant receivers of information or influence, serving as critical junctions
or aggregation points within the network. Nodes with high in-degrees emerged as
potential key players, often indicative of authoritative or highly-regarded entities in
the network.

Conversely, the out-degree analysis focused on the count of outbound connections
from a node, illuminating those nodes that disseminate information or exert influence
upon others. Nodes with elevated out-degrees, identical to in-degrees, were indicative
of active broadcasters or hubs in the network, suggesting their role as originators or
distributors in the communicative dynamics of the graph.

In the graphical representation and quantitative synthesis of our network, we have
intricately shaped the Node-Edge-Node relationships to reflect complex associations
such as ”Disease - Has Parent -Disease”. This not only shows the complex relationships
within the graph but also clarifies the lineage and potential inheritance patterns that
are pivotal in understanding the structure and connection of respective nodes. To
understand the directional subtleties of the network, we have calculated the nodes’ in-
and out-degrees by several graph investigations. Our research offers a dual perspective
by differentiating between these two measures. It reveals the dynamic balance of
influence and dependency by identifying nodes as either important recipients or
sources within the graph.

To visually capture the distribution of node degrees, we employed bar charts, utilizing
binning techniques to effectively categorize the range of in-degrees and out-degrees
observed. The bin sizes were meticulously chosen to ensure clarity in the visualization
of degree frequencies, allowing for easy and intuitive understanding of distribution
patterns and anomalies within the degree data.We have used log scaling where the
distribution was skewed for either very small or very high values in bar charts and
cumulative distribution function plots.

4.3 User Interface Development
The goal of the user interface is to provide the users an interactive playbook, where
users can easily query the graph database. The approach used is developing the
frontend based on angular, while the backend is developed using java. The frontend
4.1.1 options to interact with the database, while the backend 4.1.2 maintains and
shapes the data to be possible to be read and written. Frontend and backend
structures are explained in this section and we argue their existence, need and
process.
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4.3.1 Frontend
Frontend in our system is basically the Angular based Web Application which is an
essential part of the implementation. It allows technical and non-technical users to
actively participate in the system. It is a generic application and since it is a proof
of concept, we have use minimal styling i.e. CSS and SCSS.

Firstly, we have incorporated a querying mechanism, which directly contacts to
our graph database (clinical knowledge graph) and brings back the data. It’s very
convenient to not have being connected to any database, or server, rather connected
to the database through a web application. Results of the query are then displayed
in web page.

Another use case of the frontend is dedicated to the non-technical users, where the
users have the option of choosing nodes and edge types and then the results matching
the query are displayed. This specific feature are required when the user has no
scripting experience.

The third functionality of the web application is to input a list of proteins based
on their accession codes. This will help to query the data based on the specific
protein requirements. Many researchers investigate the proteome (section 2.1.3) or
metaproteomes of different samples. Therefore, we provide a functionality to directly
query proteins based on accession codes., hence, it’s an intuitive idea to enable the
exploitation of area.

One thing which is not covered is the handling on enormous data, since this is a
proof of principle, we have restricted the query to be used with a limit statement.
The reason for this is that our website can not handle enormous amount of data, it’s
a best practice to use limit and not get stuck with rendering. Additionally, some
nodes are not covered in the proof of principle of the web application.

4.3.2 Backend
The backend of the web application is developed with Java and we used Eclipse IDE
for the development and compilation. We have used Java Neo4j Driver to connect to
the graph database. The goal of the backend is supply frontend with necessary data
handling and storage. The backend is robust enough to handle the enormous data
coming from the neo4j graph database, and provides a performant connection to the
frontend. Real-time communication (for limited number of nodes) and an efficient
and intuitive user experience are all made possible by this connection.

Through this backend infrastructure, our platform is well-equipped to meet the
demands of graph data analysis, facilitating a seamless flow of information between
the Angular based frontend, the Java backend, and the Neo4j database. We want
to increase the accessibility for users without Cypher knowledge and without the
necessity to setup the complete clinical knowledge graph independently.

4.4 Hardware and Software Requirements
The section below contains a comprehensive list of tables detailing the installation
requirements for various systems and software used in the thesis. Each table is
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organized to provide clear, structured information on the necessary specifications,
and software prerequisites needed for successful re-usage. The tables are designed
to assist users in ensuring that their systems meet all the necessary criteria before
proceeding with the installation, thus minimizing compatibility issues and optimizing
performance.

Table 4.2 contains a list of requirements for Graph Database (Neo4j) for storing
clinical knowledge graph setup.

Table 4.2: Environment Versions and Usage of Neo4j Tools in the Thesis

Tool Version Usage

Neo4j Desktop 1.5.8 For querying the database

Neo4j Version Database 4.3.0 This is the version of the used
database

Neo4j Graph Data Science Library 1.6.1 Library used for graph learning
features

Table 4.3 contains a list of requirements for frontend development (Angular) environ-
ment setup.

Table 4.3: Environment Versions and Usage of Angular for Development in the thesis

Tool Version Usage

angular/cli 16.2.0 for command-line interface for
Angular

angular-devkit/build-angular 16.2.0 for development kit for building
Angular applications

compodoc/compodoc 1.1.22 for documentation tool for
Angular applications

ngx-formly/schematics 6.2.2 for tool for building dynamic
forms in Angular

Table 4.4 contains a list of requirements for graph analysis setup.
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Table 4.4: Environment Versions and Usage of Python for Development in the thesis

Tool Version Usage

Jupyter Notebook 6.4.8 for interactive computing

Python 2.7.18 for general programming

Pandas 1.4.2 for data manipulation

Numpy 1.21.5 for numerical operations

Seaborn 0.11.2 for statistical data visualization

matplotlib 3.5.1 for plotting graphs

torch geometric 2.5.2 for handling torch type data

torch 2.2.1 for handling torch type data

Table 4.5 contains a list of requirements for Java environment setup.
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Table 4.5: Environment Versions and Usage of Java for Development in the thesis

Tool Version Usage

com.sparkjava:spark-core 2.9.3 for micro framework for web
apps

httpcomponents:httpclient 4.5.13 for support for HTTP client-side
communications

httpcomponents:httpmime 4.3.1 for handling of MIME types

com.google.api-client:google-api-
client

1.30.2 for access Google APIs

psidev.psi.tools:xxindex 0.16 for indexing XML files

com.compomics:mascotdatfile 3.6.1 for parser for Mascot MS data
files

com.datastax.oss:java-driver-
core

4.16.0 for cassandra database driver

org.neo4j.driver:neo4j-java-
driver

4.1.1 for driver for Neo4j graph
database

org.neo4j:neo4j-graphdb-api 3.0.1 for API for Neo4j graph
database operations

com.google.code.gson:gson 2.8.5 for JSON processing library

commons-io:commons-io 2.8.0 for utilities for IO functionality

javax.xml.bind:jaxb-api 2.3.1 for Java architecture for XML
binding

com.sun.xml.bind:jaxb-impl 2.3.1 for Implementation of JAXB
API

org.apache.maven.plugins 3.2.1 for Maven plugin framework
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This chapter provides a thorough analysis of the findings at three different levels of
abstraction specifically for Clinical Knowledge Graph. In Section 5.1, the results for
abstraction level 1 are examined. Bar plots and cumulative distribution function plot
are used as visual aids to help explain the results. Similarly, Sections 5.2 and 5.3
elaborate on the conclusions related respective Abstraction levels findings. In addition,
Section 5.4 describes the frontend outcomes and looks closely at them. Finally, a
thorough discussion is undertaken to address the research questions proposed in
Chapter 1.

5.1 Findings of Abstraction Level 1

In Abstraction Level 1, exploratory data analysis is extensively done, we first take into
account all node and edge count for an overall view. We divided 10 most abundant
and 10 least abundant node types of the Clinical Knowledge Graph. It is clear that
”Known Variant” (10630108 nodes) and ”Publication” (1791712 nodes) were very
dominant in terms of occurrence, however, ”User” (2 nodes) and ”Project” (7 nodes)
had a quite low abundance. Known Variant node consist of different variants available
in the clinical knowledge graph, hence it is in such high abundance. Publication
is mentioning how many different publications are present in our vocabulary and
moreover attached to each node. User is the a profile for addressing each node,
whereas Project refers to the inclusion of those nodes into a specific working or
research project.

We have only considered discussions based on our nodes of interests, with supple-
mentary resources offering additional details. The goal of this abstraction level is to
investigate the data distribution of the nodes type and edge type.
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Figure 5.1: Count of 10 most abundant nodes in the Clinical Knowledge Graph.
Where ”Known Variant” being dominates the table by 10630108 nodes, while the
least abundant in this table is ”Gene”, which accounts to 42571 nodes of the total.

Figure 5.2: Count of 10 least abundant nodes in the Clinical Knowledge Graph.
Where ”User” being the most deficient in the table by just 2 nodes, while the most
abundant in this table is ”Complex”, which accounts to 2700 nodes of the total.

Since the data seems very dispersed, we have created a cumulative distribution
function to analyze the behavior of the node spread. We can assume that the
overall distribution of all nodes are having a lot of variation. For the purpose of
having a high-level overview, in fig. (5.3) a cumulative distribution plot is visualized.
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According to the figure (5.3), the distribution of values is highly skewed, with most
data points lying towards the higher end of the scale. The long flat stretch followed
by a quick rise indicates that middle-range values are sparse or absent, concentrating
most data points at higher values.

Figure 5.3: Cumulative Distribution Function plot based on all Nodes. The flat
regions at the lower end of the x-axis indicate that there are large ranges of values
where the cumulative probability does not increase, suggesting that there are no or
very few observations in these ranges. The median (50th percentile) would be found
at the point where the CDF is 0.5. This graph appears to reach 0.5 at a relatively
high value on the x-axis, which would be consistent with a right-skewed distribution.

After the node type count analysis, we investigated the edge type counts for the
complete clinical knowledge graph. There exists 43 different type of Edges and the
following analysis is a comprehensive study of edge spread. Similar to node type
count analysis, the edge type counts are also separated between 10 most and 10 least
occurrences. In table 5.4 we can see that the highest value count is for ”Mentioned in
Publication” (472511840) and ”Variant Found in Protein” (53614568), on the other
hand, in the figure 5.5 the lowest edge count for ”Studies Disease” and ”Studies
Tissue”.

Edge types connect two nodes and play a significant role to address how and why those
nodes are connected together, For example the edge type ”Mentioned in Publication”
shows that a particular node is present in a specific publication. Only when we see
which two nodes are connected via this edge type, we can identify the linkage and also
cause of high or low occurrences. It is very intuitive that ”Mentioned in Publication”
is the most abundant edge type since most of the nodes would correspond to at
least one, if more publication. Similarly ”Variant Found in Protein” is the next most
occurring edge type, it related to the fact that different proteins (nodes) can be a
variants of one and other and hence, connected to each other.
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Figure 5.4: The image explains the variation of 10 most occurring edges, having
”Mentioned in Publication” as the highest count (472511840), while ”Detected in
Pathology Sample” (3394496) being the 10th value in the chunk.

Figure 5.5: The image explains the variation of 10 lowest occurring edges, having
”Participates In”, ”Is Responsible”, ”Studies Tissue” and ”Studies Disease” having
count equal to 14

The image 5.6 shows a CDF plot for all Relationships. The graph indicates a highly
skewed distribution where a large number of entities have relatively few relationships.
This is evident from the long flat sections of the graph at lower relationship counts.
The point where the CDF reaches 1 indicates the maximum number of any relationship
type there exist (i.e., ”Mentioned In Publication”). This provides a sense of the upper
limits of connectivity within the graph.
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Figure 5.6: Cumulative Distribution Function plot based on all Edges, the x-axis
represents the relationship counts, scaled logarithmically. This scale is used to
manage a wide range of values, allowing for a clearer visualization of data when
relationship counts vary over several orders of magnitude. The slow initial growth
of the CDF at lower relationship counts implies that many entities in the CKG are
sparsely connected.

The section 5.1 we learned that the highest node count belongs to ”Known Variant”,
the lowest node count belonged to ”User”. Edge types with the highest count
is ”Mentioned In Publication” and the lowest count is a share between 4 nodes,
i.e., ”Participates In”, ”Is Responsible”, ”Studies Tissue” and ”Studies Disease”.
Furthermore, we tried to reason as to why it makes sense to have the specific node
and edge types in their particular count category. The node count CDF shows that
most nodes have a relatively low count, but some nodes have extremely high counts,
indicating a typical long-tail distribution. Similarly, the edge type count CDF reveals
that while a majority of edge types have fewer abundance, a small number of edge
types have a disproportionately high number of occurrences, suggesting the presence
of influential edge types.

5.2 Findings of Abstraction Level 2
In abstraction level 2, we assume that the clinical knowledge graph is undirected,
this means that we assume for simplification that is no specific incoming or outgoing
edges from each nodes, rather it is directionless. Node Type pairs are constructed to
analyze which of the nodes’ combination are most dominant. This specific use case
helps to determine the link between two nodes and their dependencies on each other.

First, we visualized Node Type pair edge type in a log scaled clustered heat-map
(Fig. 5.7). This shows that over all we have very few Node Type pairs that have
very high occurrences, i.e., Disease and Publication. This is because, Disease and
publication can have one edge type which is either high occurring or several edge
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types leading them to transpire together. We can also see that most of the values
are 0, this is because most of the nodes don’t have an edge type connecting them.
This leads to fact that those connections are not dependent or related. An logical
reasoning for this can be that a Disease can not posses an Amino Acid Sequence,
hence, they are not connected.

The image 5.7 is a clustered heat-map, which shows the what two combinations of
nodes reside together the most and least often.

Figure 5.7: Clustered Heat-map based on Euclidean distance for all Node Type pair
where we see that most of the connected nodes have 0 values, this is because most of
the nodes are not connected to each other. Moreover, we have high connection for
Drug, Disease and Modified Protein to Publication.

Figures (5.8 and 5.9) provide a detailed look into the extremes of our dataset: the most
and least connected Node Type pairs, respectively. Subsequently, to comprehensively
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assess the interaction dynamics within our system, we also examine the cumulative
distribution of Node type pairs, as shown in Figure 5.10.

The figure (5.8) shows that the top most abundant node type pairs are ”Publication-
Tissue” (205739716) and ”Disease-Publication” (111058056), while figure (5.9)) illus-
trates that the node type pairs having lowest abundance are ”Project-Tissue” and
”Disease-Project” (14) each. From the analysis we understand that without the edge
type, we have a connection between these specific nodes and we can expect the nodes
like Tissue and Disease can be important the to graph.

Figure 5.8: The image represents the highest occurring nodes type pairs, i.e.,
”Publication-Tissue” (205739716) and ”Disease-Publication” (111058056).



52 5. Evaluation

Figure 5.9: The image represents the lowest occurring nodes type pairs, i.e.,”Project-
Tissue” and ”Disease-Project” (14) each.

Figure 5.10: Cumulative Distribution Function Plot for all Node types pair, it shows
how the CDF is distributed amongst the node type pairs.The graph covers a wide
range of values on the x-axis, indicating significant variation in the dataset. The flat,
almost horizontal section at the lower part of the x-axis suggests that a substantial
proportion of the dataset has very low counts. This means that many entities or
observations have minimal occurrences. The steep ascent later in the graph indicates
that there is a rapid increase in cumulative frequency as the counts grow. The sharp
vertical rise near the end of the x-axis indicates that the maximum count or highest
value of the dataset is reached abruptly.
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The reason for excluding nodes types is because the variation and spread of those
nodes are very limited and hence no knowledge can be inferred from them. In the
figure 5.11, let’s take the node ”Subject” as an example. It is very clear that very
few nodes have high connections and majority of the nodes are having very few
connections. This is a typical example of a highly skewed graph and this particular
node adds little or no value to the research.

Figure 5.11: Node Degree Distribution for the Node ”Subject”, it show clearly that
it contains low or no information that could contribute to our research. This the
reason why we are focusing only interesting node types.

The second focus for this section is calculating and inspecting the frequency of
node degrees for each node type. Nodes of interested are selected to have a better
perspective of the nodes, since we have plenty of nodes but as discussed in figure
(5.7), not all of the nodes contain interesting information. Furthermore, the analysis
discussed in figure (5.12) is based on nodes of interest due to the low information in
other nodes. Following is a list of interesting nodes:

• Gene

• Drug

• Transcript

• Protein

• Disease

Each histogram displays on the x-axis the node degree on a logarithmic scale, indicat-
ing the number of connections each node has within the graph. The logartihmically
scaled y-axis, represents the frequency of nodes for each degree value, showing how
many nodes of the considered node type have a certain number of connections.
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The histograms for drugs, proteins, and diseases appear to show a right-skewed
distribution, suggesting that a larger number of nodes have fewer connections, and
a small number of nodes have a very high degree of connections. The transcript
histogram has a different pattern, with several peaks indicating that there might be
groups of transcripts that have a similar number of connections. The metabolite
distribution seems to be less skewed than the others, suggesting a more uniform
distribution of connections among metabolite nodes. There are a few outliers, e.g.,
in figure (5.12) there is one disease with a high degree. This is potentially because
edge type ”Mentions in Publications” has a lot of connections to Disease so it might
be some really unspecific disease and could be treated as an outlier.

Figure 5.12: Node Degree Distribution for the interesting nodes i.e., Gene, Drug,
Transcript, Protein, Disease and special mention Metabolite. All of the graphs show
high distribution of node degrees, with Disease having an outlier in the first bar,
while Transcript shows an odd distribution of node degree

Overall, in section 5.2, we understood via clustered heat-map that the occurrences of
node types pairs like ”Publication Tissue” and ”Publication Disease” occur together
quite frequently. Whereas, we highlighted what are the node types we included for a
deeper look in terms of node degrees and why we eliminated some of the node types.
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5.3 Findings of Abstraction Level 3

This abstraction level considers the graph to be directed, which means that we have
to differentiate between incoming and outgoing edges with respect to each node of
interest. Intuitively, we can infer that there would be a lot of combinations between
each node and it’s edges. This section focuses on all combinations where Protein is
either start node or end node. The following graphs from (5.13 to 5.16) contains all
the depiction of node degree layout.

Figure 5.13: Protein In and Out Degree Distribution (1), here we see the node out
degree in red and node in green. This figure shows ”Protein” - ”Associated With” -
”Drug, Cellular Component and Biological Process” and ”Protein” - ”Annotated In” -
”Pathway”.
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Figure 5.14: Protein In and Out Degree Distribution (2), here we see the node out
degree in red and node in green. This figure shows ”Protein” - ”Associated With”
- ”Molecular Function and Tissue” abd ”Protein” - ”Curated Interacts With and
Compiled Interacts with” - ”Protein”.
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Figure 5.15: Protein In and Out Degree Distribution (3), here we see the node out
degree in red and node in green. This figure shows ”Protein” connection to respective
node types via certain edge types.
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Figure 5.16: Protein In and Out Degree Distribution (5), here we see the node out
degree in red and node in green. This figure shows ”Protein” connection to respective
node types via certain edge types.

In degrees are the edge types which are coming into a node type, while Out degrees
are the edge types which is heading out of a particular node type. The total in degree
or out degree is essentially the count of incoming and outgoing edge types respectively.
In the figures 5.13, 5.14, 5.15 and 5.16, we can infer that Out Degree for ”Protein
Associated with Disease”, ”Protein Associated with Cellular Component”and ”Protein
Associated with Tissue” have a fairly high magnitudes and the data is populated
almost evenly with the growing number of out degrees. On the other hand, if we
see the In Degree, (”Protein”, ”Associated With”, ”Disease”), (”Protein”, ”Associated
With”, ”Tissue” and (”Protein”, ”Complied Interaction With”, ”Protein”) have similar
distribution to each other. Which essentially means that a lot of incoming edges are
connected to the node Disease, Tissue and Protein.
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5.4 Web Application

Web Application is designed for better accessibility of the the clinical knowledge
graph. Through this web application, users can easily connect to and query the
clinical knowledge graph. In this section, we will go through the frontend web
application and its functionalities.

Query Graph Page is the first page where the users can type in a query and retrieve
the results. From where a user can navigate to either Query Graph page 5.17 or
Protein Mapping page 5.18.

In figure 5.17, a query panel is shown, where a user can type in a Cypher query and
retrieve the data from clinical knowledge graph, without the setup or installation of
any dedicated environment. This should lower the access barriers especially for users
that have less expertise with python.

Figure 5.17: Clinical Knowledge Graph - Query Panel of Web Application, the user
have the space to type in a Cypher query and retrieve the results. This is the primary
functionality of the Web Application.

The user can select node types and edge types and retrieve results. Figure 5.18 shows
the drop down node type and edge type select utility. This functionality is designed
for users who are not familiar with query languages, specifically, Cypher. The users
have options to select either all, or any combination between start node type, edge
type and end node type and the web application will return the respective results.
For now, we have limited node types, however, incorporation of all nodes are possible
and is scoped in future work. This should lower the access barriers especially for
users that have less with Neo4j.
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Figure 5.18: Clinical Knowledge Graph - Drop down functionality, in this view users
can use the drop down option to select nodes types and edge types. They result in
tabular manner are then displayed for selected query. We can also see the Cypher
query generated when a respective node type and edge type is selected.

Often researchers have lists of accession numbers of proteins that they are interested
in (e.g., differentially expressed proteins). We provide a functionality to fill this gap.
Figure 5.19 presents the capacity of the web application to input the desired list of
Accession codes and select one or more codes from the list. The application then
incorporates the selected codes into the query and dedicated results are displayed.
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Figure 5.19: Clinical Knowledge Graph - Accession List Plugin, is the figure, we see an
option of inserting a custom accession file, which can be used to filter specific proteins.
This is aimed for researchers with dedicated uses cases like drug re-purposing.

The web application has a room for further extension, it is discussed in the Chapter
(6). The use cases like finding biomarkers, finding associations between individual
omics layers like genomics, transcriptomics and proteomics, identifying a disease based
on differentially expressed proteins, finding drugs for treatment (drug reprurposing),
can we optimistically solved via the web application.

5.5 Discussion of ResearchQuestions
In Section 5.5 we answer the Research Questions which were proposed in Section 1.2.

Research Question 1: How can we visualize different graph properties in terms in
of Nodes, Edges and their structure?

Answer: The visualisation of Nodes and Edges are done in abstraction level 1
(5.1), where the most occurring nodes and least occurring nodes are highlighted.
Furthermore, The Cumulative Distribution Function (CDF) graphs for node and edge
type counts provide insights into the distribution of connections within a dataset. The
node count CDF reveals that while the majority of nodes have relatively low counts,
a long-tail distribution is indicated by some nodes having exceptionally high counts.
Comparably, the edges count CDF shows that some edges have disproportionately,
indicating the presence of important nodes within the data, whereas the bulk of
edges have less abundance.

Research Question 2: What can we learn from different abstraction levels of the
Clinical Knowledge Graph?
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Answer: In section (5.2 and 5.3), I have answered the learning from different
abstraction levels. It is clear that the most frequent occurring node types pairs
are (”Disease and Publication”, ”Cellular Component and Publication” and ”Tissue
and Publication”). This is due to the node ”Publication” having high relation with
these nodes. Moreover, the nodes of interests are identified to be ”Protein”, ”Drug”,
”Disease”, ”Gene” and ”Transcript” and their node degree suggest a very excessive
connections to these nodes. Finally, we scoped the abstraction level 3, where the
graph is assumed to be directed, we see that the node Protein has an intense in-degree
and out-degree connection, specially, (”Protein”, ”Associates With”, ”Tissue”) and
(”Protein”, ”Associates With”, ”Disease”).

Research Question 3: What are user-friendly methods for querying data from a
Knowledge Graph via a front-end interface?

Answer: In Section (5.4), the methods of querying data from Knowledge Graph via
a front-end interface is discussed. The Web Application has 3 main functionalities, a
query panel to type in Cypher query and retrieve results, which takes no installations
and downloads for any knowledge graphs. The second feature which eases the user
to use drop down instead of writing queries manually, it helps non-technical users to
query the clinical knowledge graph. An option of inserting a list of accession codes
for use case specific researchers, is included. This is mainly for researchers finding
Drugs for Treatments etc.
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This work highlights on how a knowledge graph can be seamlessly be part of an
analysis and querying system. The web application provides a fundamental proof
of principle for the users who are involved with exploring knowledge graphs. The
web application allows the users write queries, select node and edges types and also
allowing custom accession codes for deeper understanding of the clinical knowledge
graph.

The aim of the study was to explore and understand how the clinical knowledge graph
is structured, how can we extract meaning with different abstraction levels of the
data and finally how to make the clinical knowledge graph more accessible. It enables
users to write custom queries and select node and edges types for querying with out
knowing a scripting language like Cypher, with the additional functionality of using
custom accession codes to tailor results with specific proteins. This adaptability
improves the accessibility of clinical knowledge graph.

The analysis currently facilitates three levels of data abstraction, each providing
a deeper insight than the last. The first level offers distribution of nodes (i.e.
highest and lowest node and relationship counts), the second level treats the graph as
undirected focusing on node degrees and node type combinations, while the third level
assumes a directed graph approach to compute node type in-degrees and out-degrees.
Additionally, basic visualization techniques like tables, commutative distributive
function and bar graphs have been employed to manage and interpret the extensive
data. The use of logarithmic scaling and various binning methods has been crucial in
representing the distribution of node and edge type distributions effectively. Through
these visualizations, we identified that Gene, Transcript, Protein, Disease, Drug
nodes are particularly significant within the graph.

6.1 Scope of Future Work
I advise exploring into the following research areas to enhance the EDA of knowledge
graphs based on data from metaomics:
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• Conducting User Survey for Web Application: A user study for evaluating
the user-friendliness of the web application, which could improve the quality,
usability and allow more users to engage .

• Additions to current Frontend: The addition of graph visualizations and the
ability to return graph output along with tabular data. At present, the frontend
has the limitation of retrieving only few hundred rows, in the future, pagination
could be applied for massive result outputs.

• Integration of different Knowledge Graphs: Currently, we have only the Clinical
Knowledge Graph 2.2.7 integrated, however, we have all the necessary tools to
incorporate other knowledge graphs which also exist like Biomedical Knowledge
Graphs [Nicholson and Greene, 2020] and Medical Knowledge Graphs [Shi
et al., 2017] which can bring in more information in terms of different node types
and relationships from different knowledge graphs.

• Text to Query Language using Large Language Models: Superseding from
writing queries and selecting respective nodes to query, we can have a Text to
Query model ingested e.g. LangChain [Topsakal and Akinci, 2023] and Neodash
[Schäfer et al., 2022]. The user can write to the database without delving into
the technical aspect of querying the knowledge graph.

• Using dedicated Embedding Techniques: It is very progressive to apply dedi-
cated graph learning and embedding techniques. Extending from exploratory
data analysis, abstractions and visualisations, it can provide clear insights in
terms of graph learning tasks like link prediction (e.g., drug re-purposing), node
classification and regression (e.g., finding missing properties of nodes. Exploring
graph embedding strategies like Node2Vec 2.2.8.3 (for homogeneous graphs),
Verse [Tsitsulin et al., 2018], and Metapath2Vec 2.2.8.4 (for heterogeneous
graphs) to advance our understanding and applications of the clinical knowledge
graph. These improvements and extensions can help significantly broaden the
application’s utility and effectiveness in clinical knowledge exploration. ULTRA
is a method for generating transferable, uniform, and learnable graph representa-
tions. It makes use of the fundamental interactions and invariances present in the
relationship graph. In order to derive relative relational representations, it uses
conditional message forwarding. Using pre-trained ULTRA for heterogeneous
graphs reason could be educational.

• Plugins for Visualisations: The enhancement of the application’s capabilities by
integrating advanced graph visualization libraries such as iGraph [Ognyanova,
2019], and Gephi [Jacomy et al., 2014] can increase the frontend’s features.
These features will further enrich the user experience and provide with detailed
node bases visualizations.
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