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Abstract

Many modern software systems can be customized to fulfill specific customer needs.
Customization improves quality, extensibility, and usability. However, customization
also comes with challenges for software analyses, because of the configuration space
explosion. To analyze all configurations in isolation is expensive and often impractical.
A main goal of current research on configurable systems is to provide new techniques
to analyze all configurations. For some static analyses, such as type safety, this is al-
ready feasible by considering variability internally. When testing configurable software
usually sampling strategies are used to test a subset of all configurations. These ap-
proaches might miss faults that are only contained in specific configurations and require
redundant calculations. In this work, we use an approach where several configurations
can be executed at once, while redundant calculations can be avoided, and thus effort
for testing can be reduced. Based on previous work on variability-aware execution, we
discuss how a Java Virtual Machine can be lifted to handle variability internally to
execute all combinations of configuration options simultaneously. Specifically, we lifted
the interpreter of Java Pathfinder. We show the variability-aware interpreter reduces
time for testing of all configurations by orders of magnitude compared to testing of all
program variants. We applied the interpreter to 10 configurable programs and gain a
speed-up of up to 2,843 compared to brute-force execution. Variability-aware execution
can lead to a new way of testing and analyzing configurable systems.
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1. Introduction

Many modern software systems are designed to be highly customizable to increase
flexibility, quality, and security, and to match specific customer needs [Clements and
Northrop, 2001; Pohl et al., 2005; Apel et al., 2013a]. There are several techniques to
introduce customization into a program, such as configuration files, command-line op-
tions, preprocessors, plug-ins, aspect-oriented programming [Kiczales et al., 1997], and
feature-oriented programming [Prehofer, 1997]. Each configuration option can define
a specific property of the program. A configuration option can be any kind of value,
such as numerical and boolean values. In this work, we refer to binary options (a.k.a.
features) only.

Configurable systems are designed to match specific customer needs, but customization
also comes with challenges for software analysis. A system with n optional features
contains up to 2 n different program variants. Thus, even for a small amount of features,
analyzing all program variants in isolation can get impractical. For a program with 320
optional and independent features there are already as many variants as atoms in the
universe. However, configurable systems can contain thousands of options.

To analyze all program variants in isolation is inefficient. To analyze configurable
systems anyway, there are several approaches that select specific program variants,
known as sampling strategies [Nie and Leung, 2011; Apel et al., 2013a; Thüm et al.,
2014a]. Sampling strategies attempt to detect as many faults as possible by analyzing a
small subset of configurations only. A common strategy is to analyze the set of program
variants that are actually used in practice. Another common strategy is to analyze a
product that contains all features (a.k.a. allyes or full configuration [Dietrich et al.,
2012; Liebig et al., 2013]). Because some features might be exclusive (e.g., features
for different operation systems), the more general approach of feature coverage selects
products such that all features are selected at least once [Apel et al., 2013a]. Because the
selection of features might also deactivate some code fragments, the sampling strategy
feature-code coverage (a.k.a. configuration coverage) selects products, such that any
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code fragment is contained in least one product [Sincero et al., 2010; Tartler et al.,
2012]. These sampling strategies are efficient for detecting of defects that are caused by
the implementation of a specific feature, or a specific code fragment. They drastically
reduce the set of products that need to be analyzed.

In configurable systems many failures are caused by feature interactions [Calder et al.,
2003; Nhlabatsi et al., 2008]. Combinatorial interaction testing is a sampling strategy
which aims to detect failures caused by interactions of program parameters [Cohen
et al., 1997, 2007]. To cover and test all combinations of τ features is called τ -way
interaction testing (i.e., to cover all combinations of 2 parameters, τ = 2). To only
cover τ -way interactions reduces the number of configurations to test, and even scales
for a high amount of features. Furthermore, 6-way interaction testing is argued to cover
most defects [Kuhn et al., 2004]. Combinatorial interaction testing uses covering arrays
that contain all required parameter combinations. Because the generation of covering
arrays gets more expensive for higher τ , combinatorial interaction testing usually only
scales for up to τ = 6, what is already high, expensive, and uncommon in practice [Petke
et al., 2013]. However, some defects might be caused by interactions of more than 6
features [Liebig et al., 2010; Apel et al., 2013c]. Thus, combinatorial interaction testing
might miss faults caused by interactions of higher feature interactions. Especially, to
ensure properties, such as safety and security, it is necessary to detect also defects
caused by interactions of more than 6 features.

For some applications it is not necessary to detect all defects. For example a configurable
system with a fixed set of products only needs do detect defects in this set, such as HP’s
printer firmware with a limited amount of printers. Anyhow, even if the set of systems
which needs to be analyzed is limited, tests need to be applied to all these products.
As all these variants share parts of the program, the tests execute parts of the program
redundantly. Thus, the effort for testing even a small subset of all program variants is
unnecessarily high.

Sampling strategies analyze products in isolation. When a failure occurs on a specific
program variant, it is a difficult task to aggregate the result to a specific subset of
products. Assume that, the selection of feature A and feature B result in a failure. To
aggregate such statements out of the result of sampling is difficult, even for interaction
testing [Thüm et al., 2014a]. We summarize pitfalls of sampling strategies as follows:

• Analysis of subset of products, and thus detection of subset of defects only.

• Redundant calculation on several variants.

• No aggregated results for defects.

The goal of current research for configurable systems and software product lines
is to provide new analyses strategies that can analyze a configurable software
system with the same results as for brute-force testing of all possible program
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Figure 1.1: Brute-force analysis compared to variability-aware analysis.

variants [von Rhein et al., 2013]. Such analyses are known as variability-aware or
family-based analyses [Liebig et al., 2013; Thüm et al., 2014a]. Variability-aware anal-
ysis takes variability into account during analysis and can detect all failures caused
by feature interactions independent of the degree of the interaction (i.e., interactions
among all features can be detected). Variability-aware analysis is efficient because re-
dundant calculations can be avoided, thus even systems such as Linux with more than
10,000 configuration options can be analyzed [Tartler et al., 2011; Liebig et al., 2013].

In Figure 1.1, we illustrate brute-force analysis compared to variability-aware analysis.
When analyzing all program variants, they need to be configured and eventually gen-
erated first ((1) in Figure 1.1). In the second step, all these program variants need to
be analyzed, one after another (2). In contrast, variability-aware analysis can operate
directly on the configurable system or an abstraction thereof [Thüm et al., 2014a] (3).
Variability-aware analyses provide the aggregated results as if all variants (4). Fur-
thermore, the result of variability-aware analysis should specify the subset of program
variants for each defect, to identify the corresponding feature interactions.

Previous work for variability-aware execution showed that sharing of program execu-
tions can reduce the effort for testing [Kim et al., 2012; Kästner et al., 2012b; Apel
et al., 2013d]. With shared execution parts of the code can be executed among several
configurations, and thus effort for testing can be reduced [Kim et al., 2012]. With the
JavaPathfinder (JPF) extension JPF-BDD, executions can be shared efficiently while
the effort compared to the core implementation can be reduced by orders of magnitude,
because many execution paths can be joined [Kästner et al., 2012b; Apel et al., 2013d].
Both approaches for variability-aware execution try to reduce the analysis effort by
sharing executions among program variants. However, these approaches are only able
to handle different values for configuration options. When other values differ (e.g., a
value of a field or local variable differs for different feature selections), these approaches
need to split execution paths and execute the same code several times.

A variability-aware interpreter is able to execute instructions on different values at the
same time [Kästner et al., 2012b; Nguyen et al., 2014]. Kästner et al. [2012b] developed
a prototypical interpreter for a WHILE language. Based on this, Nguyen et al. [2014]
developed an interpreter for the plug-in application WorldPress. A variability-aware in-
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terpreter maximizes sharing among program variants and thereby reduces the effort for
testing by orders of magnitude compared to brute-force testing [Kästner et al., 2012b;
Nguyen et al., 2014]. Furthermore, variability-aware execution eases the detection of
feature interactions, because program variables can be directly mapped to specific con-
figuration spaces.

Previous work on variability-aware interpretation showed promising results. However,
both implementations come with major restrictions. The interpreter for the WHILE
language is a proof of concept and only works for a toy language [Kästner et al., 2012b].
The PHP interpreter is more powerful, but because of the complex language design of
PHP, the variability-aware interpreter is incomplete and can only execute the World-
Press application [Nguyen et al., 2014].

Contribution

Current implementations of variability-aware interpreters have major limitations. The
goal of this thesis is to present a more general implementation of a variability-aware
interpreter. In particular, we want to support a complete programming language. Java
Bytecode is a language with a clear specification and a manageable amount of in-
structions. We show how a Java Virtual Machine (JVM) can be transformed to handle
variability internally. Specifically, we developed our variability-aware interpreter VarexJ
based on the interpreter of JPF [Havelund and Pressburger, 2000; Visser et al., 2003].

As variability-aware analyses should provide aggregated results [Thüm et al., 2014a], we
implemented and present our solutions for aggregated console outputs and exceptions.
We discuss several optimizations that can be applied to variability-aware interpreters.
Furthermore, we gained new insights on sharing and redundancies in executions. In
particular, we proposed several new types of sharing that can improve variability-ware
analyses and can lead to a new area of research.

We applied VarexJ to 10 configurable systems, to show the scalability of the approach
for higher degrees of interactions than occurring in plug-in systems and to show that
the interpreter can execute arbitrary programs. With these systems, we show that the
time for testing can be reduced by orders of magnitude. We compare our interpreter to
product-based testing with the core implementation of JPF with a speed-up of up to
2843. We also compare our implementation with the JVM from Oracle, because JPF
has a lot of overhead compared to a common JVM. Finally, we show how a variability-
aware interpreter can efficiently analyze interactions in configurable software.

Structure of the Thesis

This thesis is structured as follows. We introduce the reader into basic concepts of con-
figuration options and programming with conditional values in Chapter 2. In Chapter 3,
we discuss the state-of-the-art of variability-aware testing and show how to variability-
aware execution can be applied to Java Bytecode. We present our implementation of
the variability-aware interpreter in Chapter 4. In Chapter 5, we evaluate our interpreter
and discuss the results. We present related work in Chapter 6. We conclude and discuss
future work in Chapter 7.



2. Background: Programming with
Conditional Values

Variability-aware execution requires an efficient representation of variability. In this
chapter, we discuss basic techniques for such a representation. In Section 2.1, we
introduce the choice calculus, an abstract language for the representation of variability.
In Section 2.2, we explain variational programming, a concrete language to calculate
with variability based on the concepts of choice calculus.

2.1 The Choice Calculus

Many modern software systems use some sort of variation. To efficiently deal with
variability in software and for a distinct representation of variability, Erwig and Walk-
ingshaw [2011] introduced the choice calculus. The choice calculus is a language to
represent software variation. The choice calculus is a representation of variation that
is independent of the implementation of the variation and programming language, and
thus eases the research transfer between research fields [Erwig and Walkingshaw, 2011].
The choice calculus represents a mapping of a tags (i.e., alternative features such as F
or G) to their corresponding implementations (e.g., if F then f(x) else if G then g(x)).

1 cube x = x ∗ x ∗ x
2 cube x = x ^ 3

Listing 2.1: Example for alternative implementations of cubic functions.

To explain the basic principles of the choice calculus, we use a simple cubic function. The
example in Listing 2.1 shows two alternative implementations of cube for calculation
of the cube of a given value x. The implementations have two alternative solutions.
However, both implementations share commonalities, which can be used for an efficient
representation with the choice calculus. In Listing 2.2, we illustrate a representation of
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the cubic functions using the choice calculus. With the keyword dim, the dimensions
and their elements are specified. In the example, dim Impl<Times, Exp> specifies
that the dimension Impl has two alternative tags: Times and Exp. A tag defines
an alternative solution for one dimension. The keyword in, defines the corresponding
scope of the expression. In the cubic example, in refers to the function cube. Each
tag of a dimension can be mapped to a corresponding implementation. Furthermore,
all tags of a dimension are alternative, thus only one tag can be active at the same time.

1 dim Impl<Times, Exp> in
2 cube x = Impl<x ∗ x ∗ x, x ^ 3>

Listing 2.2: Representation of alternative cubic functions using the choice calculus.

If a second dimension is introduced to the example of Listing 2.1, the whole code
needs to be cloned multiple times, such that all combinations of all dimensions have a
corresponding representation. For example, assume that a second dimension specifies
whether the function returns absolute values. With the second dimension, there are
four alternative implementations. With the choice calculus, this can be expressed as
shown in Listing 2.3.

1 dim Abs<Absolute, Relative> in
2 dim Impl<Times, Exp> in
3 cube x = Abs<abs(Impl<x ∗ x ∗ x, x ^ 3>), Impl<x ∗ x ∗ x, x ^ 3>>

Listing 2.3: Representation of four alternative cubic functions with two dimensions.

2.2 Variational Data
In this section, we explain how the ideas of the choice calculus can be realized to
directly calculate with variability in software. First, we introduce into the concept of
conditional values. Then, we discuss the two data structures tag tree and formula tree
as representation of conditional values.

Conditional Values

A configurable system provides several features. A configuration represents a specific
selection of these features. The set of all possible combinations of features is called
configuration space. Because some combinations of features might be invalid, there
can be constraints among features (e.g., if feature A is selected, than feature B has to
be selected, too). Such constraints can be defined with a feature model [Kang et al.,
1990]. A configuration is valid if it fulfills all constrains. A context is a specific set of
configurations (e.g., all configurations where feature A is selected). A conditional value
is a mapping of concrete values to the corresponding contexts. There are several data
structures which implement conditional values, such as tag trees, formula trees, and
formula maps [Walkingshaw et al., 2014]. In this section, we describe how tag trees and
formula trees can be used to represent conditional values. Furthermore, we discuss how
to compute with these data structures (e.g., to multiply two conditional values).
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Tag Tree

A tag tree represents conditional values as a mapping from tags to values, where each
tag represents a separate node of the tree [Erwig and Walkingshaw, 2011]. In Figure 2.1,
we illustrate the representation of a tag tree with two features. Each node represents
only one feature. A branch represents the selection of the feature, which can be either
yes or no (i.e., selected or deselected). The leafs of the tree represent the concrete
values.

Figure 2.1: Abstract representation of a tag tree with two features.

To understand how tag trees can be used to represent conditional values, we show an
implementation in Listing 2.4. The shown implementations for tag trees and formula
trees are based on a library of TypeChef [Liebig et al., 2013; Kästner et al., 2012a,
2011]. The interface Conditional represents conditional values of type T. The class
Choice represents the nodes of the tree. A Choice contains a tag and conditional
values which depend on the tag. The class One represents concrete values (i.e., the leafs
of the tree). The context of a concrete value is the conjunction of the corresponding
choice tags. In the example of Figure 2.1, the context for the value 2 is A∧¬B. Tag
trees can be used to represent conditional values. However, a tag tree is inefficient if a
conditional value depends on several feature selections, because each feature selection
needs a separate choice, the depth of the tree grows with every feature. Thus, the
tag tree is likely to contain several redundant values, what is memory inefficient, and
requires redundant calculations [Walkingshaw et al., 2014].

Formula Tree

In contrast to a tag tree, a formula tree allows propositional formulas instead of atomic
tags [Walkingshaw et al., 2014]. Instead of expressing a context with nested choices,
formula trees allow to define them directly with formulas in choices (e.g., A∨B). Formula
trees are a more flexible representation of conditional values than tag trees. However,
to reason about valid configurations requires to solve a satisfiability problem (e.g., with
SAT solvers or BDDs) [Walkingshaw et al., 2014]. In Figure 2.2, we illustrate an abstract
representation of a formula tree.
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1 interface Conditional<T> {}
2 class One<T> implements Conditional<T> {
3 T value;
4 One(T value) { ... }
5 }
6 class Choice<T> implements Conditional<T> {
7 Tag t;
8 Conditional<T> yes, no;
9 Choice(Tag t, Conditional<T> yes, Conditional<T> no) { ... }

10 }

Listing 2.4: Implementation of a tag tree for to represent conditional values.

Figure 2.2: Abstract representation of a formula tree with three features.

2.3 Variational Programming

With tag trees and choice trees, we described two data structures that encode con-
ditional data. To calculate with such conditional values, functions that can evaluate
conditional values are necessary [Erwig and Walkingshaw, 2013]. To illustrate such an
evaluation, we use following notion:

One(y) • f(x)⇒ One(f(y))

Choice(A, a, b) • f(x)⇒ Choice(A, a • f(x), b • f(x))

A function f can be directly applied to the value encapsulated in a One, or recursively
to the elements of a Choice. • indicates that the function on the right side is applied
to the conditional value on the left side. The arrow represents the evaluation of the
function. For example, if the values of a conditional value should be incremented by 2
(for brevity, we only show y instead of One(y)):

Choice(A, 1, 2) • (x+ 2)⇒ Choice(A, 3, 4)
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The map function (known from functional programming) modifies conditional values by
applying a given function to all elements of the choice [Erwig and Walkingshaw, 2013].
In Listing 2.5, we show an example implementation of a map function for conditional
values. The input of the method map is a function f, which evaluates the value of type
T to a value of type U. In the examples, we use Java 8 syntax, to take advantage of
anonymous functions. The interface Function is introduced in Java 8 as assignment
target for a lambda expression or a method reference. With the method apply the
function f can be applied to a given parameter. The map implementation of the class
Choice passes the function f to both conditional values. In the map implementation
of One, the function f is applied to the concrete value.

1 interface Conditional<T> {
2 Conditional<U> map(Function<T, U> f);
3 }
4 class One<T> implements Conditional<T> {
5 T value;
6 <U> Conditional<U> map(Function<T, U> f) {
7 return new One<>( f.apply(value) );
8 }
9 }

10 class Choice<T> implements Conditional<T> {
11 FeatureExpr ctx;
12 Conditional<T> yes, no;
13 <U> Conditional<U> map(Function<T, U> f) {
14 return new Choice<>(ctx, yes.map(f), no.map(f) );
15 }
16 }

Listing 2.5: Implementation of the map function for formula trees to modify conditional
values.

The function f evaluates a value of type T to an arbitrary object of type U. Thus, the
elements of the evaluated choice can have another type than the elements of the original
choice. For example, a transformation from Integer to Boolean is also possible:

Choice(A, 1, 2) • (x%2 == 0)⇒ Choice(A, false, true)

In Listing 2.6, we illustrate how map can be used to modify conditional values. In the
lines starting with the $-sign we show the current values of c. In the first part, the
increment function is applied to all elements of the conditional value c (Lines 1 to 4).
In the second part the type of conditional values is changed after the modulo-function
is applied (Lines 7 to 9). Furthermore, the example shows that the structure of the
formula tree does not change after map is applied.

The map function is a simple way to calculate with conditional values. However,
to apply a function only for a specific context, the function f needs to evaluate
to Conditional<U>. If such a function is applied with map, then the evaluated
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1 Conditional c = new Choice(A, 1, 0);
2 c = c.map((x) −> {
3 return x + 2;
4 });
5 $ c: Choice(A, 3, 2)
6
7 c = c.map((x) −> {
8 return x % 2 == 0;
9 });

10 $ c: Choice(A, false, true)

Listing 2.6: Example for evaluation of conditional values with the map function.

conditional value is of type Conditional<Conditional<U». The reduction to
Conditional<Conditional<U» is called flattening. The corresponding function
which applies a functions f only for a specific context is called flat map. To indicate
that a function is only applied for a specific context, we add the context to the circle

as
ctx• . We illustrate context-specific evaluations of conditional values as follows:

One(y)
A• f(x)⇒ Choice(A, f(y), y)

Choice(B, a, b)
A• f(x)⇒ Choice(B, a

A• f(x), b
A• f(x))

When a function f(x) is applied to a One for a context A, then a new Choice is created
that represents the evaluated value for A and the old value for ¬A. When the function
f(x) is applied to a Choice then the function is applied to its values recursively. Because
the result might contain invalid feature combinations (e.g., A ∧ ¬A), such values can
be removed afterward by solving the insatiability of the corresponding expressions. We
illustrate calculations with flat map with concrete values in the following examples:

One(0)
A• (x+ 1)⇒ Choice(A, 1, 0)

Choice(A, 1, 0)
A• (x+ 1)⇒ Choice(A, 2, 0)

Choice(B, 1, 0)
A• (x+ 1)⇒ Choice(B,Choice(A, 2, 1), Choice(A, 1, 0))

The function flat map can apply a function which returns a conditional value. In
Listing 2.7, we illustrate an implementation of flat map (fmap) for formula trees. The
only difference of fmap to map is that the function f returns a conditional value directly,
thus the implementation of One does not need to encapsulate the result in a new One.

To understand how the implementation of fmap can apply a context-specific function,
we use the example in Listing 2.8. In the example, we apply a function that returns a
choice representing the incremented value if A is selected, and the old value otherwise



2.3. Variational Programming 11

1 interface Conditional<T> {
2 <U> Conditional<U> fmap(Function<T, Conditional<U> > f); }
3 class One<T> implements Conditional<T> {
4 T value;
5 <U> Conditional<U> fmap(Function<T, Conditional<U> > f){
6 return f.apply(value) ; }
7 }
8 class Choice<T> implements Conditional<T> {
9 CTX ctx;

10 Conditional<T> yes, no;
11 <U> Conditional<U> fmap(Function<T, Conditional<U> > f){
12 return new Choice<>(ctx, yes.fmap(f), no.fmap(f) ); }
13 }

Listing 2.7: Implementation of flat map for formula trees for context specific modifica-
tions of conditional values.

1 Conditional c = new One(0);
2 c = c.fmap((x) −> {
3 return new Choice(A, new One(x + 1), new One(x));
4 });
5 $ c: Choice(A, 1, 0)
6
7 c = c.fmap((x) −> {
8 return new Choice(A, new One(x + 1), new One(x));
9 });

10 $ c: Choice(A, Choice(A, 2, 1), Choice(A, 1, 0))
11 $ c −> Choice(A, 2, 0)

Listing 2.8: Example for conditional evaluation of conditional values with flat map.

(Lines 3 and 8). First, we apply the function to a concrete value c (i.e., a One).
The result is a choice with the incremented value for the context A and the old value
otherwise. If we apply the same increment function a second time to c, the result is a
nested choice, because the function is applied to all elements of c. The result contains
elements for invalid expressions (e.g., for A∧¬A). To remove such invalid expressions,
SAT solvers or BDDs can be used by solving the satisfiability problem. Furthermore,
constraints of feature models can be used to remove values for invalid configurations.
After all invalid entries are removed; the result is a Choice where the original element
is incremented twice if A is selected. To remove invalid entries and to reduce the number
of duplicates always comes with additional effort [Walkingshaw et al., 2014].

When calculating with conditional values it is often necessary to apply multiple condi-
tional values to each other. For example, when two conditional values are added, the
result is the cross product of all valid combinations:

Choice(A, 0, 1) • (x+ Choice(B, 2, 3))⇒ Choice(A,Choice(B, 2, 3), Choice(B, 3, 4))
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1 Conditional c1 = new Choice(A, new One(0), new One(1));
2 Conditional c2 = new Choice(B, new One(2), new One(3));
3 Conditional sum = c1.fmap((x) −> {
4 return c2.map((y) −> {
5 return x + y;
6 });
7 });
8 $ sum: Choice(A, Choice(B, 2, 3), Choice(B, 3, 4))

Listing 2.9: Example to calculate the sum of two conditional values with a cross-product
using fmap and map.

In Listing 2.9, we illustrate how the sum of two conditional values c1 and c2 can be
calculated using a cross product. To access all values of c1 we use the function fmap.
To apply all values of c1 to c2, we can use the function map. Finally, the values of
c1 are added to the values of c2. If the sum should only be calculated for a specific
context, fmap needs to be used instead of map.



3. Variability-Aware Execution of
Java Applications

In this chapter, we discuss the general concepts of variability-aware execution of Java
applications as basis for our development of a variability-aware interpreter for Java
Bytecode. In Section 3.1, we present the challenges for testing of configurable sys-
tems. In Section 3.2, we explain family-based analysis, a general strategy for efficient
analysis of configurable systems. As solution for the challenges of testing configurable
systems, we discuss variability-aware execution, and the approach of a variability-aware
interpreter in Section 3.3. As basis for a variability-aware interpreter for Java Byte-
code, we explain the general architecture and concepts of a JVM in Section 3.4. In
Section 3.5, we combine execution of Java Bytecode with a JVM and the strategy of
variability-aware execution, to discuss our approach of a variability-aware interpreter
for Java Bytecode. This chapter can be used as general guideline to lift a Java Byte-
code interpreter for variability-aware execution. We discuss the overall procedure how
a variability-aware interpreter for Java works, but we hide any implementation details.
We describe our implementation later in Chapter 4 that contains specific solutions for
challenges of variability aware-execution.

3.1 Problem Statement

Testing configurable systems comes with several difficulties. To test all configurations
individual is not efficient, because the number of program variants to test increases
exponential to the number of features. Constraints between features can reduce the
configuration space, but the number of variants is often still too large to test all in-
dividually. Several sampling strategies [Nie and Leung, 2011; Apel et al., 2013a] were
proposed to reduce the number of variants to a subset with a high probability to detect
faults, such as τ -wise sampling [Cohen et al., 1997]. However, to test only a subset of
all products might miss defects, which could be detected if the program variant which
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contains the defect would be tested. Furthermore, testing several program variants
requires redundant calculations, because the variants share code. Finally, testing indi-
vidual systems can only give results that correspond to one specific configuration. To
aggregate the results for all configurations to detect the specific interaction of features
that cause the defect is hard.

Software testing in general has similar difficulties: It can only test a subset of possi-
ble inputs, the system behaves different for different inputs, and testing several inputs
requires redundant calculations. In contrast to testing of systems with arbitrary and
virtually endless inputs, testing configurable systems has the advantage that the num-
ber of features and their states (i.e., selected or deselected) is limited. Consequently,
also the number of configurations is limited. However, the number of configurations still
gets huge, because a system usually has many features. Thus, testing all configurations
individually is still not efficient or possible. In this work, we use the properties config-
urable systems to have a fixed number of options (i.e., features) with only two states
and a fixed number of combinations thereof (i.e., configurations) to provide efficient
testing for configurable systems.

In Listing 3.1, we show an example method to illustrate the challenges of testing. The
method getDigits should return an array that contains the first n digits, but the
method also contains two defects. A goal of testing is to find input values that cause
these defects. The first defect is caused by negative input values, because the array
digits can only be initialized with a positive size. The second defect is caused by
values larger than 10, because the method charAt gets out of bounds.

1 static char[] getDigits(int n) {
2 char[] digits = new char[n];
3 for (int i = 0; i < n; i++) {
4 digits[i] = "0123456789".charAt(i);
5 }
6 return digits;
7 }

Listing 3.1: Example for challenges of testing in general.

We visualize these challenges of testing the method getDigits in Figure 3.1. The
figure shows how a system is tested for multiple inputs. The areas inside the valid in-
puts are unknown. They represent inputs which cause no defect {x >= 0 & x <= 10},
inputs for negative char array initialization {x < 0} (Defect A), and inputs for the out
of bounds exception {x > 10} (Defect B). The goal of testing is to detect a value in each
area which causes a defect. Good tests should reveal as many defects as possible with
minimal effort [Ammann and Offutt, 2008]. Hence, the system is usually only tested for
a small subset of values. Because the system is executed several times, many executions
have to be done redundantly, such as the array initialization. Each input value results
in a specific output. The values 5 and 10 cause no defects, but require redundant cal-
culations. The input value -1 causes the defect A. However, that the defect is caused
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by smaller values is still unknown. Furthermore, the defect B stays undetected. To
find defect B, the system has to be tested for more input values (e.g., for 11), which
increases the effort and time to test. Testing can efficiently show the validity of a system
for a specific test, but to find tests and input values to detect defects is challenging.

Figure 3.1: Illustration of challenges for testing in general.

Testing configurable systems shares the same challenges as testing in general. In addi-
tion to general testing, testing of configurable systems also needs to detect interactions
and selections of features that cause a defect. Product-based analysis analyzes a con-
figurable system for multiple configurations in isolation [Thüm et al., 2014a]. Product-
based analysis is still common because it can reuse existing tools from single system
engineering and does not require specialized tools. As not all program variants can
be tested, sampling strategies [Apel et al., 2013a; Nie and Leung, 2011] try to find
configurations which are likely to cause a defect.

To illustrate the challenges of testing configurable systems we reuse the example method
getDigits in Listing 3.2. To focus on configuration options, we replace the parameter
n by a fixed array size of 10. Furthermore, we added the two features LETTERS and
REVERSE. If the feature LETTERS is true, the method returns letters instead of digits.
The feature REVERSE reverses the array. Again the example contains two defects. The
first defect is triggered when LETTERS is true. The method charAt throws an out of
bounds exception, because the string containing the letters only contains 9 signs. The
second defect is caused by the implementation of the reversing. Instead of copying the
array digits in Line 10, the array old is only a reference. Thus, the implementation
reads overwritten chars and returns {9,8,7,6,5,5,6,7,8,9} instead.

In Figure 3.2, we visualize product-based testing and its challenges with reference to the
example of Listing 3.2. In the set of all feature selections only a subset represents valid
configurations (e.g., LETTERS and REVERSE might not be allowed). This subset is
defined with constraints among features, or represents practically used configurations.
Still the tests for these configurations require redundant effort (e.g., the initialization
of the array digits). The program variants for Configuration 1 and 2 do not cause
defects, but require redundant effort. The test applied to Configuration 3 (e.g., for
LETTERS ∧ ¬REV ERSE) detects the defect A (the missing letter J in Line 5), but
only by the outcome it is not clear for which features or interaction thereof. Further-
more, the defect B stays undetected (the wrong copy of digits).
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1 static boolean LETTERS = getFeature("LETTERS");
2 static boolean REVERSE = getFeature("REVERSE");
3 static char[] getDigits2() {
4 char[] digits = new char[10];
5 String values = LETTERS ? "ABCDEFGHI" : "0123456789";
6 for (int i = 0; i < digits.length; i++) {
7 digits[i] = values.charAt(i);
8 }
9 if (REVERSE) {

10 char[] old = digits;
11 for (int i = 0; i < digits.length; i++) {
12 digits[i] = old[digits.length − i − 1];
13 }
14 }
15 return digits;
16 }

Listing 3.2: Example for challenges of testing of configurable systems with defects.

Figure 3.2: Illustration of challenges for testing of configurable systems.

3.2 Family-Based Analyses

To introduce into our solution for the challenges with product-based testing, we first
explain a general strategy for efficient analyses of configurable systems. Besides product-
based analyses there are several more strategies namely, feature-based analysis, family-
based analysis and combinations of strategies (e.g., family-product-based) [Thüm et al.,
2014a]. Feature-based analysis considers the implementation of each feature in isola-
tion to detect defects in the implementation of single features. This strategy is efficient
because it concentrates on small parts of the system and thereby reduces redundant
effort. However, this analysis cannot predict defects caused by interactions of features,
and consequently might miss defects. The family-based (a.k.a. variability-aware) strat-
egy analyzes the whole system or a model thereof at once. Family-based analysis tools
consider the variability of the program during analysis. Thus, family-based analysis
can analyze all program variants at once, thereby reduce the analysis effort by sharing
calculations and can return aggregated results.
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Family-based analysis gives solutions for the described problems with product-based
analysis. On the other hand, product-based analysis can reuse any analysis tool from
single system engineering without a need for adjustments. Furthermore, analyzing one
single configuration is much faster than a family-based analysis. In contrast to product-
based analyses, family-based analyses often require specialized tools which can handle
variability internally or require a specific encoding or model of the system [Thüm et al.,
2014a]. It is challenging to provide sound analysis tools with equivalent analyses as
analysis of all systems with tools from single system engineering.

There are several strategies to provide tools for family-based analyses. The simplest
strategy is to reuse existing tool which are already able to handle variability [Thüm
et al., 2014a], such as model checker [Kästner et al., 2012b] or theorem prover [Thüm
et al., 2012]. To apply these tools often a specialized encoding of the system is required,
namely metaproduct or product simulator [Thüm et al., 2014a]. Because these tools
can only handle variability to some point, and are not optimized for sharing, there is
potential left for more efficient analyses. Another strategy is to build a completely
new tool which is specialized for variability. Such tools are efficient, but require high
effort for development. Furthermore, they are often only able to detect a subset of
defects compared to the tools of single-system engineering, especially because of the
additional effort for handling of variability. In our work, we use another strategy. We
lift an existing tool to handle variability to reuse its functionality. Specifically, we lift
an existing JVM to handle conditional values for variability-aware executions to test
configurable Java Bytecode programs. To lift existing analysis tools can also be useful
for analyses beyond executions, especially because the analyses techniques do not need
to be reimplemented.

3.3 Variability-Aware Execution

In this section, we discuss how configurable systems can be tested efficiently with
variability-aware execution. Variability-aware execution can solve the discussed dis-
advantages of product-based testing; it executes all valid program variants, it reduces
redundant effort, and thus reduces time for testing, and it provides aggregated results.

The general idea of variability-aware execution is to share executions among configu-
rations. With sharing, the time for execution is reduced compared to product-based
testing. Variability-aware execution can be so efficient that testing of all configurations
which would take years can be done in minutes [Nguyen et al., 2014]. To improve
variability-aware testing, sharing needs to be maximized, to reduce redundant calcula-
tions. Sharing of executions is already supported by tools, such as shared execution [Kim
et al., 2012] and JPF-BDD [Kästner et al., 2012b]. However, both implementations leave
potential for sharing and many executions are still executed redundantly.

In Figure 3.3, we illustrate variability-aware testing with reference to the previous ex-
ample in Listing 3.2. Again the set of all feature combinations can be reduced by
constraints. Instead of concrete configurations, the system gets the features and their
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constraints as input (i.e., the tool assumes both selections of the features, such as
LETTERS and REVERSE). These constraints are used to reason about valid feature com-
binations, and thus about valid executions (i.e., the tool reasons about configurations
spaces instead of concrete configurations). During variability-aware execution, parts of
the program can be shared among several configurations to reduce the effort for testing
(e.g., the array digits is only initialized once). The outcome of variability-aware anal-
ysis is a mapping of a specific result to a subset of valid configurations {SET 1, SET 2,
SET 3}. For example, all result for the configurations where LETTERS is selected
(SET 2) is an out of bounds exception caused by the method charAt (Defect A). Fur-
thermore, it can detect defects for specific feature combinations, which might be missed
with product-based strategies.

Figure 3.3: Illustration of variability-aware testing solving the challenges of testing
configurable software.

To share also executions for arbitrary values that differ among configurations, a
variability-aware interpreter uses conditional values. Furthermore, it is possible to join
and share executions efficiently. For example, a configurable program loads a feature
selection (e.g., for LETTERS) which can be either true or false. Instead of using only one
selection of the feature, a variability-aware interpreter assumes both selections at the
same time using conditional values. All family-based analysis tools handle features to
have both values. However, the selection of the feature changes the program flow, and
thus also affects other values than features (e.g., the String values). Previous tools
for variability-aware execution are not able to handle these values efficiently and need
to execute the program for these values several times. To handle these values efficiently,
a variability-aware interpreter can handle any value as conditional value, depending on
the selection of the features.

Current variability-aware interpreters for a WHILE language and PHP show promising
results [Kästner et al., 2012b; Nguyen et al., 2014], but both implementations come
with major restrictions. The interpreter for WHILE is only a proof of concept and is
written for a toy language [Kästner et al., 2012b]. The PHP interpreter Varex is more
powerful and is shown to scale for up to 250 configurations. Due to the complicated
design of PHP, the interpreter is written to execute one specific application, namely
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WorldPress. Varex is a lifted version of an existing interpreter, but only functionality
that is actually needed to execute WorldPress is variability-aware. Thus, Varex would
require further effort to be applied to other applications than WorldPress and a lifting
to support all language features of PHP is too expensive.

Previous work showed that the concept of a variability-aware interpreter scales, but
currently only with major restrictions. From previous implementations we learned that
lifting of existing interpreters is possible. To be an accepted and powerful tool for test-
ing, the interpreter needs to be able to execute arbitrary applications. Thus, we decided
to lift a JVM which interprets Java Bytecode because it has a good specification and a
limited amount of instructions. We also learned that it is useful to use a configurable
application as help to detect places at the code of the interpreter which need to be
lifted. Nevertheless, to use only one application leaves gaps in the interpreter which are
not variability-aware. Thus, the interpreter should be applied to several applications to
detect functionality that is not lifted.

3.4 Java Virtual Machine

For variability-aware execution, we require an interpreter as basis. Besides Java there
are several languages that can be interpreted, such as JavaScript, PHP, and Ruby. To be
an accepted and usable tool, the interpreter should be for a widely used language, and
the language design should be less complicated than for PHP. We decided to interpret
Java Bytecode as basis because of its common specification, its limited amount of
instructions and because it is one of the most popular languages.

In this section, we explain the JVM as interpreter for Java Bytecode and point out
elements that have to be lifted for variability-aware execution. We focus on details of
the JVM that are required for the understanding of a variability-aware Interpreter for
Java Bytecode. First, we explain the general architecture of a JVM in Section 3.4.1.
Then, we explain how a JVM executes Java Bytecode in Section 3.4.2.

3.4.1 Architecture

Java Bytecode is the compiled form of several programming languages, such as Java,
Scala, AspectJ, and with specialized compilers also languages which are usually not com-
piled to Java Bytecode, such as Python [Juneau et al., 2010]. In contrast to compilation
to a system specific machine code, Java Bytecode is platform independent. Neverthe-
less, to execute this platform-independent bytecode, a platform-dependent machine is
required. A JVM is a machine that can execute Java Bytecode independent of the
compiled programming language (i.e., a JVM is not specialized to execute programs
written in Java). In Figure 3.4, we illustrate the platform and language independent
design of JVMs. A specialized compiler transforms a language (e.g., Java or Python)
to Java Bytecode. Because the structures of all class files are similar, different JVMs
can read and interpret these files, and thus can execute the compiled programs (except
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Figure 3.4: Platform and language-independent design of Java Virtual Machines.

of specialized JVMs with a reduced instruction set or an older version than the com-
piler). To execute the JVM and to communicate with the platform, there are specialized
implementations for each operating system (e.g., Windows, Linux, or mobile devices).

All JVMs have a common specification and a common structure. To point out elements
of a JVM that have to be lifted for variability-aware execution, we explain the main
elements of a JVM. Each JVM consists of a class loader subsystem, runtime data
areas, an execution engine, and a native method interface. The class loader subsystem
loads the compiled Java Bytecode files into the JVM. The runtime data areas are
different types of memory of the JVM, such as a method area to store values of the
current methods, a heap that contains objects, Java stacks that store the current method
invocations (i.e., the current trace), registers for the program counter (pc) to know the
current point of method executions, and native method stacks which are used for native
method calls (i.e., functionality to interact with the system usually implemented in C).
Furthermore, a JVM has an execution engine that executes the program. Finally, a
JVM has a native method interface to interact with system-specific functionality. In
Figure 3.5, we summarize and illustrate the main elements of a JVM.

To lift a JVM, several of the parts have to be lifted to handle conditional values. As
the class loader is not part of the execution, it does not need to be lifted, and thus
can be reused as-is. Because the runtime data areas handle memory of the JVM,
the main lifting has to be done there. The method area needs to handle conditional
values during executions. The heap might need to point to conditional objects and
the pc resisters need to save several points of a method’s execution. If still only one
method is executed at the same time (i.e., each thread has only one current method),
the Java stacks can be reused as-is, else it needs to be lifted, too. To support native
method calls, new techniques need to be found, because native implementation usually
cannot be lifted (changing native implementations is generally not possible). Finally,
the execution engine needs to provide optimized scheduling of method executions to
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Figure 3.5: Overall architecture and elements of the Java Virtual Machine.

maximize sharing. We cannot provide a general solution for a variability-aware JVM,
since the specification of a JVM only defines the general architecture and not how it
is implemented. However, most of our realization will share the same challenges. We
discuss concrete solutions of these challenges later in Chapter 4.

3.4.2 Execution of Java Bytecode

For variability-aware execution it is necessary to understand how Java Bytecode is exe-
cuted by a JVM. Therefore, we explain the main elements, the method frame, execution
of bytecode instructions, and scheduling in detail.

Method Frame

Each method call creates a new frame which is used to store data and partial results
of the method’s executions [Lindholm et al., 2014]. Each frame consists of an array
(i.e., elements are accessed with indexes) for local variables and an operand stack. The
size of local variables and of the operand stack is determined at compile time [Lindholm
et al., 2014]. To manipulate the frame, there are several basic instructions: pop, push,
load, and store. Known from common stack instructions, pop returns the top value and
push adds new value to the operand stack. The instructions load and store connect
the operand stack with the local variables. The instruction load gets the value at a
given index position of the local variables and pushes it to the operand stack. The
opposite instruction store, pops a value from the operand stack and saves it at a given
index position at the local variables. Furthermore, there are operand stack management
instructions which manipulate the values on the operand stack, such as dup and swap.
For example, the instruction swap switches the position of the two top values on the
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operand stack. During execution only one method frame is active. After the method
returns, the previous method frame is active again (i.e., method frames are organized
as a stack of frames).

Bytecode Instruction

A Java Bytecode instruction is the representation of a single operation similar to an
assembler instruction. To interact with the JVM, a bytecode instruction has several
abilities, such as modification of the current frame, fields, and invocation of a new frame
or returning from the current frame. A Java Bytecode instruction can manipulate the
current frame only indirectly using the shown instructions. To explain how a bytecode
instruction works, we use the instruction IADD which is used to add two integer values.
First, the instruction pops the two top values of the operand stack. Then, it calculates
the sum of both values. Finally, the result is pushed back to the operand stack.

Scheduling

To execute instructions in the right order, the order is saved in the method at the
compiled class file. To save the current point of the methods execution each frame
has an own program counter. After a method is executed, the program counter is
usually increased. However, some instructions modify the program counter to execute
another instruction than the following (e.g., for-loops or if-statements). If a method
is invoked, a new frame is created, the method parameters are pushed initially to
the frame, and the program counter of the new frame points to the first instruction.
Furthermore, if a method returns, the top frame is popped, the return value is pushed
to the previous frame, and the program counter of the previous frame is increased.

Execution of Java Bytecode

To illustrate the interpretation of Java Bytecode, we use the example in Listing 3.3. The
example shows a configurable program that depends on the value of the field feature.
If feature is true, the parameter i is multiplied by 4, else i is divided by 2. Then,
i is incremented by one. Finally, the method returns the sum of result and i. The
multiplication and the division are executed individually; however, the incrementation
and the sum are calculated redundantly for both program variants.

As we are interested how Java Bytecode is executed, we show the compiled program
in Listing 3.4. The left side represents the Java Bytecode instructions. L0 to L5
are reference points for program counter modifications (e.g., with GOTO or IFEQ).
All shown values are determined during compile time. On the right side, we give a
short explanation of each instruction. For example, result = i * 4 is compiled
to ILOAD 1, ICONST 4, IMUL, ISTORE 2 (Lines 5 to 10). First, the value of
i is loaded from the local variables and pushed to the operand stack. After this, the
constant value 4 is pushed to the operand stack. These two values are then popped
from the operand stack, multiplied, and the result is pushed back to the operand stack.
Finally, the result is popped from the stack and stored at the local variables at index
2 which represents the value of result. To not execute the else-branch, the next
instruction goto (Line 12) modifies the program counter to point to L4 (Line 20).
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1 boolean feature = loadConfiguration("feature");
2
3 int method(int i) {
4 int result;
5 if (feature) {
6 result = i ∗ 4;
7 } else {
8 result = i / 2;
9 }

10 i++;
11 return i + result;
12 }

Listing 3.3: Configurable source code example with two program variants, depending
on the value of the field feature.

1 if (feature):
2 L0 ALOAD 0: this load the reference LV#0 of the method object
3 GETFIELD feature load value of field "feature"
4 IFEQ L1 goto L1 if top−value is false
5 result = i ∗ 4:
6 L2 ILOAD 1: i load LV#1 to operand stack
7 ICONST 4 push 4 to operand stack
8 IMUL pop 2 top values,
9 push multiplication to operand stack

10 ISTORE 2: result store top value at LV#2
11 else:
12 L3 GOTO L4 goto L4
13 result = i / 2:
14 L1 ILOAD 1: i load LV#1 to operand stack
15 ICONST 2 push 2 to operand stack
16 IDIV pop 2 top values,
17 push division to operand stack
18 ISTORE 3: result store top value at LV#2
19 i++:
20 L4 IINC 1,1: i load LV#1, increment value,
21 store value to LV#1
22 return i + result:
23 L5 ILOAD 1: i push LV#1 to operand stack
24 ILOAD 2: result push LV#2 to operand stack
25 IADD pop 2 top values,
26 push sum to operand stack
27 IRETURN pop current method frame,
28 push last top value to operand stack

Listing 3.4: Compiled Java Bytecode for the configurable example in Listing 3.3. The
left side shows the compiled bytecode instructions. On the right side we show a short
explanation of the corresponding instructions.
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3.5 Variability-Aware Execution of Java Bytecode

To realize variability-aware execution for Java Bytecode, we first discuss the ideas of
shared data and shared execution [Nguyen et al., 2014], and how they can be applied
to a JVM. Then, we discuss how Java Bytecode is executed variability-aware using the
example of Listing 3.3 and Listing 3.4.

Shared Data

During a program’s execution values differ among configurations. To represent these
values specific for the corresponding configurations we use conditional values. Because
values are equivalent for several configurations, the conditional values can be simplified
to share data (e.g., Choice(Feature, 1, 1) can be simplified to 1).

To implement shared data in a JVM, the frame needs to be able to handle conditional
instead of concrete values. Thus, the frame needs to store conditional values and the
instructions, such as push and pop, need to be adjusted. Furthermore, fields that can
store only one value need to store a conditional value. Finally, a reference can point to
different objects for different configurations. Thus, references and all functionality that
accesses these references have to be lifted, too.

Shared Execution

To reduce the effort for calculations, equivalent executions among configurations are
shared [Austin and Flanagan, 2012; Kim et al., 2012; Kästner et al., 2012b; Nguyen
et al., 2014]. For a variability-aware interpreter each instruction is executed within
a specific configurations space. Instructions that are executed with the context True
are shared among all configurations. When an instruction is executed with a specific
context, such as A∧¬B, the instruction is shared among all configurations where the
context holds. The goal of variability-aware execution is to minimize the number of
executed instructions by sharing instructions among as many configurations as possible.

The selection of features can change the program flow. Thus, the scheduler needs to
decide which instruction has to be executed next. Therefore, the program counter needs
to point to the instruction that would be executed specific for the configurations spaces.
Because the program counter can point do several instructions of a method, also the
program counter needs to store a conditional value. To determine which of these in-
structions should be executed next, it is usually sufficient to execute the instruction
that is most behind in the method’s execution. There are special cases, such as re-
turn statements, that have to be handled differently. We give a detailed discussion of
scheduling later in Section 4.2.4.

To explain the details of variability-aware execution of Java Bytecode, we reuse the
example of Listing 3.3 and Listing 3.4. In Table 3.1, we illustrate the corresponding
executions for both values of the field feature, true and false. Furthermore, we
show the trace of variability-aware execution that executes the program for both val-
ues simultaneously. To introduce both selections of the field feature, the method
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loadConfiguration directly stores the value Choice(F, true, false). The
example represents the execution for the parameter i = 6. The method has three local
variables, #0 is the object reference (i.e., this), #1 is i, and #2 is result. Further-
more, the method has a stack of a maximal size of 2. Both, the local variables and the
size of the stack are determined during compilation [Lindholm et al., 2014]. All traces
are initialized similarly during method invocation. The first local variable is always a
reference value to the object of the method [Lindholm et al., 2014] (this does not hold
for static calls). The following local variables are the method parameters. Thus, the
local variable with index 1 (i) is initialized with 6. In the following instructions we do
not show the values for index 0 because the reference to the object does not change.
All changes by instructions are highlighted bold. The gray background indicates the
method’s execution skips some instructions in case of a goto or if.

The left half represents traces for default product-based executions, where the field fea-
ture can only have one concrete value. We see that many (8 of 17) instructions are done
redundantly. Thus, the overhead for execution is already high for this simple exam-
ple. On the right side, we show the corresponding trace for variability-aware execution.
The value of the field feature is a choice which can be true and false depending
on the selection of F. Instead of one concrete value the variability-aware interpreter
uses conditional values for local variables and values in the operand stack. We see
that all instructions have to be executed only once. Thus, the overhead for redundant
calculation can be reduced. However, the effort for calculating with conditional val-
ues is increased compared to default executions. In contrast to other variability-aware
approaches, the variability-aware interpreter can join the executions after the if-else
branches. Additional, the shared instructions IINC 1,1, ILOAD 1, and ILOAD 2 do
not require additional effort for calculations with conditional values. The effort is even
equivalent to a default execution. Only for IADD the effort is higher because we need
to calculate a cross product of both values i and result. Finally, the top value is the
value which is returned. Instead of returning one value, the variability-aware interpreter
returns both values as a choice.

We discussed the main principles of execution of Java Bytecode. Furthermore, we
discussed the general procedure of a variability-aware interpreter. We do not present
implementation details here, because a JVM is an abstract machine and all implemen-
tations differ. In Chapter 4, we discuss our concrete implementations of a variability-
aware interpreter in detail. Because the overall structures of all JVMs are similar, they
share the same difficulties and challenges for lifting and efficient variability-aware ex-
ecution. Thus, our solutions can be adopted to develop other variability-aware JVMs
and variability-aware interpreters in general.
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product-based variability-aware

feature = true feature = false feature = Λ(F, true, false)

Instruction Local Stack Local Stack Local Stack

initial state this this this
i = 6 i = 6 i = 6

0 0 0

ALOAD 0 6 this 6 this 6 this
0 0 0

GETFIELD 6 true 6 false 6 Λ(F, true, false)
0 0 0

IFEQ L1 6 6 6
0 0 0

ILOAD 1 6 6 6 Λ(F, 6, ⊥)
0 0

ICONST 4 6 6 6 Λ(F, 6, ⊥)
0 4 0 Λ(F, 4, ⊥)

IMUL 6 20 6 Λ(F, 20, ⊥)
0 0

ISTORE 2 6 6
20 Λ(F, 20, 0)

GOTO L4 6 6
20 Λ(F, 20, 0)

ILOAD 1 6 6 6 Λ(F, ⊥, 6)
0 Λ(F, 20, 0)

ICONST 2 6 6 6 Λ(F, ⊥, 6)
0 2 Λ(F, 20, 0) Λ(F, ⊥, 2)

IDIV 6 3 6 Λ(F, ⊥, 3)
0 Λ(F, 20, 0)

ISTORE 2 6 6
3 Λ(F, 20, 3)

IINC 1, 1 7 7 7
20 3 Λ(F, 20, 3)

ILOAD 1 7 7 7 7 7 7
20 3 Λ(F, 20, 3)

ILOAD 2 7 7 7 7 7 7
20 20 3 3 Λ(F, 20, 3) Λ(F, 20, 3)

IADD 27 27 7 10 7 Λ(F, 27, 10)
20 3 Λ(F, 20, 3)

Table 3.1: Traces and method frame states for the executions of bytecode instructions
of the configurable example in Listing 3.3 and Listing 3.4. We use Λ as abbreviation
for a Choice. ⊥ indicates an unknown or unnecessary value. The left side represents
the product-based executions for feature = true and for feature = false. The right side
shows the trace and values for variability-aware execution using conditional values.
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3.6 Summary

In this chapter, we introduced into the challenges with testing of configurable software.
We discussed the pitfalls of product-based analysis, such as redundant calculations and
the scalability problem. With family-based analysis, we introduced into a strategy
to solve these challenges, to provide efficient analysis for configurable software. We
discussed the general principles of variability-aware execution and the concepts of a
variability-aware interpreter. We introduced into the general principles and architecture
of a JVM which we want to use for variability-aware execution. Finally, we discussed
the principles of variability-aware execution of Java Bytecode.
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4. Implementation:
Variability-Aware Execution with
VarexJ

In this chapter, we discuss our realization of a variability-aware JVM. At first, we
discuss our decision for a JVM that suits our requirements in Section 4.1, namely JPF.
Furthermore, we discuss the general architecture of JPF to point out places that have to
be lifted for variability-aware execution. Based on JPF and the concepts of the previous
chapter, we present basic implementation details of our variability-aware interpreter
VarexJ in Section 4.2. We discuss specialized extensions of VarexJ in Section 4.3. In
Section 4.4, we discuss further optimizations and improvements of variability-aware
execution.

4.1 Java Pathfinder

In this section, we discuss why we choose to lift JPF for variability-aware execution.
The goal of this work is to provide a variability-aware interpreter for Java. Therefore, it
would be possible to write a new interpreter specialized on variability-aware execution.
However, to do this is an expensive and error-prone task. Furthermore, we want to
show how existing interpreters can be lifted, that the approach is feasible, and that the
task is realizable in a limited amount of time.

There are several open-source JVM implementations. First, we first discuss our require-
ments on a JVM for a prototypical but efficient implementation of a variability-aware
interpreter. Second, we discuss our decision for the JVM JPF. Third, we explain the
overall structure and architecture of JPF, for understanding of the interpreter and to
point out elements that have to be lifted.



30 4. Implementation: Variability-Aware Execution with VarexJ

4.1.1 Requirements and Discussion

To select the most appropriate JVM, we state several requirements. The first require-
ment is simplicity, because the time for this project is limited. A JVM is a complex
and complicated program. To modify such a program requires a basic understanding of
it. If the JVM is too complicate, has too many optimization mechanisms, or is not well
structured, a variability-aware lifting is not possible within our project. For a suiting
JVM, it should be easy to identify basic parts of the JVM’s implementations, such as
execution of bytecode instructions, the scheduling mechanism, and the representation
of method stacks.

All JVMs suit different purposes with different implementations. As we want to change
how Java Bytecode instructions are interpreted, it is necessary that the JVM has an
interpreter. Java Bytecode does not necessarily need to be interpreted, some JVMs,
such as Maxine [Wimmer et al., 2013] and Jikes [Alpern et al., 2005], compile the Java
Bytecode directly into machine code. Execution of compiled machine code might be
more efficient than interpreting Java Bytecode, however, to introduce variability into
compiled machine code is also more complicated and error prone than to adjust the
executions of an interpreted instruction. In particular, for an interpreter we can lift
internally used values of the executed program, what seems to be infeasible for machine
code.

The library FeatureExprLib1 of the TypeChef [Liebig et al., 2013; Kästner et al., 2012a,
2011] project eases the use and reasoning about feature expressions. To reuse this
existing infrastructure written in Scala, the interpreter should be implemented in Java
or other languages compiled to Java Bytecode. For reasoning on feature expressions, the
project allows to use both, SAT solvers and BDDs. Furthermore, the library supports
loading feature models saved as dimacs file. FeatureExprLib has already been used in
previous variability aware-interpreters [Nguyen et al., 2014; Kästner et al., 2012b].

Lifting an interpreter requires major changes on main parts of the interpreter. To
change a, for the most parts unknown, software system is error prone. To ensure
that the interpreter works after changes have been performed an extensive test suite
is required. Because even minimal changes can cause unpredictable faults, a test suit
increases the confidence of the programmer when changing the interpreter. The test
suite can only test unconditional inputs and values, however, these test cases also have
to work. As also executions with conditional values require specialized tests, existing
test have to be adjusted or new test have to be implemented.

We summarize our requirements on a JVM that we want to extend as follows:

• Simplicity to finish the project in limited time,

• Interpreter for Java Bytecode,

• Written in Java to reuse existing libraries,

• Extensive test suite to detect faults early.

1https://github.com/ckaestne/TypeChef/tree/master/FeatureExprLib

https://github.com/ckaestne/TypeChef/tree/master/FeatureExprLib
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We discussed several requirements on a JVM for an efficient lifting. These requirements
reduce the number of possible JVMs which we extend for a variability-aware execution.
The reduction of possible JVMs comes with several pitfalls; however, they are not nec-
essarily negative or important, because our goal is only a prototypical implementation.
Because of the requirements of simplicity, interpretation of Java Bytecode, and written
in Java, the JVM might be slow compared to other JVMs and limited (e.g., not all pro-
grams can be executed). The requirements increase the cost-benefit ratio, to achieve
the goals of this work within a limited amount of time.

Selecting a Suitable Virtual Machine

There are several open-source JVMs collected in an article on wikipedia.2 We tried
out two JVMs, namely Maxine [Wimmer et al., 2013] and Jikes [Alpern et al., 2005],
which are written in Java and still used for research purposes. However, we found
out that both JVMs compile Java Bytecode instead of interpreting it. Thus, they did
not suit our requirements. We did not found other suiting JVMs for our requirements
in this article, especially, because of the restriction to Java and interpreting of Java
Bytecode. The article might contain some more interpreters which would suite our
purposes; however they are not supported and developed anymore. Thus, we decided
to use the interpreter of JPF, which is not listed in the article. JPF is a software model
checker that uses Java Bytecode instructions as transitions between states [Visser et al.,
2003]. Previous work on variability-aware execution [Kim et al., 2012; Kästner et al.,
2012b] also used JPF. However, they used the model checking abilities of JPF to split
states and to execute separate paths. When the model checking abilities are disabled,
JPF behaves like an interpreter for Java Bytecode. In this work, we also extend JPF
for variability-aware execution, but with a different approach. Furthermore, we already
have experience with JPF in the context of variability-aware execution from our previous
work [Meinicke, 2013; Thüm et al., 2014c].

4.1.2 Architecture of Java Pathfinder

We briefly discuss the overall architecture of JPF and its dependencies to the host JVM
and the application to test, to point out places which have to be lifted for variability-
aware execution. JPF is a Java program itself which requires a host JVM to run. Thus,
JPF interprets the Java Bytecode program which should be tested, the host JVM exe-
cutes JPF, and the operating system runs the host JVM. In Figure 4.1, we illustrate the
dependencies of the different layers. The host JVM is a platform-specific installation,
which provides a native library. The native library contains implementations, usually
written in C, to interact with the operating system (e.g., to access the file system).
Furthermore, the host JVM provides a shared library (rt.jar) containing standard im-
plementations, such as String or List. This library can be used by any Java application,
such as JPF and the application which should be executed. JPF is executed by a host
JVM and interprets the compiled Java Bytecode of the application to test. To simply

2http://en.wikipedia.org/wiki/List of Java virtual machines

http://en.wikipedia.org/wiki/List_of_Java_virtual_machines
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Figure 4.1: Interaction of Java Pathfinder with the host Java Virtual Machine, the
operation system, the application to execute, and the used libraries.

run the application the complete layer of JPF is unnecessary. As we want to adjust the
way how the application is interpreted and how values are represented, we require the
additional layer of JPF.

JPF is specialized for model checking, and thus contains functionality which is not
necessary for our purposes (e.g., backtracking or different graph-search strategies). To
explain the architecture of JPF, we only show the parts that are necessary for inter-
pretation of Java Bytecode. In Figure 4.2, we illustrate the top-level structure of JPF
containing basic elements for interpretation of Java Bytecode which have to be lifted.
First, JPF parses the compiled Java Bytecode of the application which should be ex-
ecuted ((1) in Figure 4.2). These class files are transformed into internal representa-
tions ClassInfo, MethodInfo, and Field, containing information about methods,
fields, and types. The main element for interpretation is ThreadInfo. It contains the
method frames organized as heap (2), and runs the main loop executing Java Bytecode
instructions (3). The StackFrame represents the current methods execution. It saves
the current state of execution (ProgramCounter) and the current data for local vari-
ables and operands in an array (frame). In the main loop the bytecode instructions
are executed (4). Bytecode instructions can interact with the current method frame (5),
can push or pop a frame to the method heap (6), and can interact with objects repre-
sented by ElementInfo to set or get the value of fields (7). Furthermore, JPF has
a mechanism to redirect native method calls to the host JVM. We discuss details on
native method calls later, because they require a specialized handling.

For variability-aware execution of Java Bytecode instructions several parts of JPF’s
interpretation and data representation have to be lifted. The StackFrame requires an
efficient encoding of conditional values, because it is a central element which represents
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Figure 4.2: Top-level structure of Java Pathfinder, containing basic elements which
need to be lifted.

the data of the method executions. To execute instructions conditional and to handle
conditional values of the frame, all instructions have to be lifted. There are currently
183 instructions supported by JPF. As several instructions are very similar because they
only differ in the type of the supported value (e.g., IADD for addition of int values and
DADD for double). Furthermore, the values of fields need to be conditional, too. Because
some instructions are only executed in specific contexts, the main loop needs to handle
conditional execution paths, while the sharing of executed instructions is optimized.
Several parts of JPF need to be lifted. However, most parts can stay unchanged,
because they either are only required for model checking (e.g., search algorithms), or
they do not need to handle variability, such as parsing of bytecode.

In this section, we discussed our requirements on a JVM. We showed that JPF suits
best for our purposes and requirements. We discussed the top-level structure of JPF
and pointed out the major elements which have to be lifted.

4.2 Fundamental Extensions for

Variability-Aware Execution

In the previous section, we explained the overall architecture of JPF. In this chapter, we
discuss our realization of a variability-aware interpreter called VarexJ, based on JPF.
First, we present our approach of lifting and refactoring. In this thesis, we use the term
refactoring in the way that we extend the virtual machine to handle conditional values,
while we preserve its overall behavior. Then we discuss our variability-aware extensions
of the main parts of the JVM explained in Chapter 3, the method frame, execution of
bytecode instructions, and scheduling. VarexJ is publicly available online at GitHub.3

The repository contains all sources required to execute the variability-aware interpreter.
Furthermore, we give a guide explaining how to install and execute VarexJ including
all provided program parameters and configuration options.

3https://github.com/meinicke/VarexJ

https://github.com/meinicke/VarexJ
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4.2.1 Incremental Lifting of Java Applications

Lifting of a JVM is a complex and challenging project. In this subsection, we discuss
our general strategy for lifting of JPF. We share our practices and experiences that
we gained during this project. Our recommendations can be generally applied for
lifting of application, because lifting can also be applied to other programs than JVMs.
Furthermore, our experiences may useful for software development in general, especially
when large refactorings are required.

Refactoring

The overall goal of lifting a program is that all necessary methods and data structures
can handle conditional values. To achieve this goal is only incrementally feasible. We
experienced the following refactorings that are required for lifting:

• Changing types (e.g., from int to Conditional<Integer>) to store condi-
tional values in:

– Parameters

– Fields

– Local variables

– Return values

• Adding of a context as additional parameter, to perform context sensitive changes.

• Not variability-aware methods need to be lifted with map functions.

To describe the challenges of lifting, we use the simple increment function in Listing 4.1.
The method increment gets a delta as input and applies it to a field that saves
intermediate values. After the delta is applied, the new value is returned.

1 int current = 0;
2
3 int increment( int delta) {
4 current = current + delta ;
5 return current;
6 }

Listing 4.1: Example to illustrate the effort of refactorings for lifting of a simple method
(e.g., when delta should be a conditional value).

The example is simple, it does not contain any objects or method called and has only
minimal lines of code. Nevertheless, the example shows the challenges for lifting, be-
cause it already requires five refactorings (highlighted with gray and adding of the
parameter for the context) to be completely variability-aware. All the types need to be
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changed from int to Conditional<Integer>, which already requires three refac-
torings. Furthermore, the part which increments the field (current + delta) needs
to be refactored with fmap. Finally, to only increment the value of current for spe-
cific feature selections, an additional parameter for the context needs to be added. In
Listing 4.2, we show the result after all five refactorings are applied.

1 Conditional<Integer> current = new One<> (0);
2
3 Conditional<Integer> increment( FeatureExpr ctx,
4 Conditional<Integer> delta) {
5 current = current.fmap ((c) −> {
6 return delta.fmap ((d) −> {
7 return new Choice<>(ctx, new One<>(c + d), new One<>(c));
8 });
9 }).simplify();

10 return field;
11 }

Listing 4.2: Refactored example of Listing 4.1 supporting conditional values.

To refactor a method completely, requires high effort and is error-prone, because the
refactoring of one method usually requires further refactorings of other methods. For
example, if the field current is used by other methods than increment, these meth-
ods would need to be refactored, too. To test the virtual machine during development,
we require a type save and compilable state. Thus, we introduce the method getValue
which transforms a conditional value to a concrete value (e.g., One(1) is transformed
to 1). In Listing 4.3, we show the implementation of getValue for conditional values.
The implementation only returns the concrete value if the conditional is of type One. If
the conditional value is a Choice, an exception is thrown, because if a Choice should
be transformed to a concrete value only one entry could be returned and information
would get lost.

In Listing 4.4, we illustrate the benefits of a transformation from conditional to concrete
values. A typical change during lifting is that a parameter of a method can be condi-
tional. When changing the type of parameter delta, a complete refactoring would be
necessary to result in a type save and compilable state. To reduce this effort temporar-
ily, delta is transformed to a concrete value. The call of getValue is only valid if
the method increment is called with a value of type One. As long as the method
is not called with a Choice, the effort for further refactorings can be saved. When
the method is called with a Choice, this is signaled with a runtime exception, which
prints the current stack trace and the value of the choice to the console. At this point,
the method increment requires further refactorings. To use getValue is especially
useful when a refactoring requires that several methods need to be changed (e.g., when
a field is changed to conditional), thus a complete refactoring of all places is too ex-
pensive. We experienced that the refactoring of single fields or methods can lead to
hundreds of places which need to be adjusted and that refactoring without the method
getValue gets infeasible.
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1 interface Conditional<T> {
2 T getValue();
3 }
4 class One<T> implements Conditional<T> {
5 T value;
6 T getValue() {
7 return value;
8 }
9 }

10 class Choice<T> implements Conditional<T> {
11 T getValue() {
12 throw new RuntimeException("getValue on Choice called:"
13 + toString());
14 }
15 }

Listing 4.3: Transformation from conditional to concrete values for incremental lifting
using runtime exceptions.

1 int current = 0;
2
3 int increment( Conditional<Integer> delta) {
4 current = current + delta.getValue() ;
5 return current;
6 }

Listing 4.4: Example for incremental lifting of the example in Listing 4.1 to temporary
avoid a complete refactoring.

Refactoring: New Parameter

We showed that lifting requires several refactorings. Modern development environ-
ments, such as Eclipse4 and IntelliJIDEA,5 reduce the effort with automated refactor-
ings. Refactorings allow changing method signatures, such as changing return types,
changing parameter types or adding of new parameters. One of the most important
refactorings for a variability-aware lifting is to add a new parameter for the context.
When adding a new parameter to a method, the parameter needs to be added to all
calls of this method. For the context we discovered three possible values which can be
used as initial value shown in Listing 4.5: a null value (method1), the context True
(i.e., a tautology) (method2), or the name of the contexts (we always use ”ctx” as
name for the context parameter) (method3). When using True as initial value, this
value is type-save, but it is not necessarily the right value. To detect faults caused by
simply using True requires high effort, because it is not always obvious how a fault is
caused. The second variant of using the null value temporary creates a type save state,
however, at the point when the context is required, the program throws a null-pointer

4https://www.eclipse.org
5http://www.jetbrains.com/idea

https://www.eclipse.org
http://www.jetbrains.com/idea
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exception (in the best case) or it ignores the context which leads to false computations.
The safest solution is to use the context defined as parameter of the calling method.
Because the calling method might not have a parameter, too, also this method needs
to be refactored. The third solution requires high effort because the refactorings have
to be applied until a context is found. However, it is correct and does not introduce
defects because the parameter is just added and passed on to further methods which
require it. We recommend using the third way, even if it requires more initial effort
than the other variants. There is always a tradeoff between initial effort and effort for
debugging of failures caused by the variants.

1 method1() { increment(null, 1); }
2 method2() { increment(True, 1); }
3 method3(FeatureExpr ctx) { increment(ctx, 1); }
4 int increment( FeatureExpr ctx , Integer delta) { ... }

Listing 4.5: Alternative refactorings to introduce a new parameter for the context.

Revision Control System

During development, we tried to introduce as small changes as possible (i.e., only min-
imal parts are lifted at once). Though, sometimes a refactoring of a method signature
or a change of a field type requires hundreds of changes. After all required changes
are applied to reach a type-save state, it is necessary to check that the system still
works as desired. To check this, an extensive test suite is required, and needs to be
applied. Whenever a test fails, the corresponding fault needs to be found and debugged
what might require high effort. This effort can be reduced when only minimal changes
are applied, and thus the comparison with the previous version, which can lead to the
possible fault, is simpler. Anyhow, sometimes the defect cannot be found. In this case,
it is necessary to revert the changes on the system to a previous version. To reduce
the amount of lost changes and effort, it is useful to commit even minimal changes to
a revision control system.

Continuous Integration

The goal of this work is an efficient testing and execution of configurable Java applica-
tions. During development, we checked the progress of the JVM on smaller programs, as
shown in our examples, to check certain properties, such as return of conditional values,
conditional fields, or conditional lists. Furthermore, we also executed larger configurable
programs with up to 10k lines of code [Kim et al., 2012; Apel et al., 2013d]. To keep
track of the performance of the executions, we used the continuous integration system
Jenkins.6 With continuous integration, builds and tests can be applied automatically
on a server. Furthermore, the system can keep track of test cases, their success, and
execution times. With such statistics eventually negative trends in performance can be
detected early.

6http://jenkins-ci.org/

http://jenkins-ci.org/
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We summarize our experiences and recommendations for lifting of applications as:

• Variability should not be introduced at every place at once.

• Run-time exceptions reduce initial effort and can be necessary for a compilable
state, but should be used with caution.

• New method parameters should not be initialized with a null or default values. A
complete refactoring should for this parameter should be instead.

• Even minimal changes should be tested.

• A revision control system should be used to reset the system to a valid state.

• Commit small changes to a revision control system to minimize lost effort.

• Continuous integration helps to keep track of test performances over time.

We discussed how to incrementally lift large applications, such as a JVM. We discussed
our general procedure with minimal changes to the source code, runtime exceptions,
exhaustive testing, revision control, and continuous integration. In the next sections,
we use this procedure and discuss implementation details for parts of the JVM discussed
in Chapter 3, the method frame, execution of bytecode instructions, and scheduling.

4.2.2 Method Frame

A frame is used to store data and partial results of a method’s execution [Lindholm
et al., 2014]. Each frame consists of an array for local variables and an operand stack.
In JPF, both, the local variables and the operand stack are implemented as one array.
The first slots of the array are reserved for local variables, depending on the amount of
necessary local variables. Local variables can be accessed directly with an index. The
other part of the array represents the operand stack. The top position of the stack
is saved in an additional value. To know whether a value is a reference or not, JPF
uses a bitset. There are several basic instructions for manipulation of the stack frame,
such as pop, push, load, and store, as well as further instructions which manipulate
the operand stack, such as dup, and swap. In Listing 4.6, we show the default stack
frame implementation of JPF. It contains the three fields slots, top, and isRef to
store local variables and operands, as well as the methods for modifications push, pop,
store, and load.

The method frame is a central part of the execution of a method. Thus, the method
frame has to be implemented memory and time efficient. A variability-aware stack
frame is a main challenge of lifting a JVM, because it is necessary to find the op-
timal balance between sharing and cross products with fmap. For a variability-
aware frame, an initial approach is to keep the structure of the frame and to use
Conditional<StackFrame> objects instead, as shown in Listing 4.7. This ap-
proach might be simple, and the program only needs to be adjusted at the parts that
are calling the stack frame. However, there is only minimal sharing among stack frames
of the same method, and every time an instruction is performed on the stack frame,
the stack frame might need to be cloned (see Line 5).
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1 class StackFrame {
2 protected int[] slots;
3 protected int top;
4 protected BitSet isRef;
5 StackFrame(int nLocals, int nOperands) {
6 slots = new int[nLocals + nOperands];
7 top = nLocals − 1;
8 isRef = new BitSet(nLocals + nOperands);
9 }

10 void push(int newValue) { slots[++top] = newValue; }
11 void pop() { return slots[top−−]; }
12 void store(int index) { slots[index] = pop(); }
13 void load(int index) { push(slots[index]); }
14 }

Listing 4.6: Simplified method frame implementation of Java Pathfinder.

1 $ StackFrame sf = new StackFrame(2, 10);
2 $ sf.push(10);
3 Conditional<StackFrame> sf = new One<>(new StackFrame(2, 10));
4 sf.fmap((frame) −> {
5 StackFrame clone = frame.clone();
6 frame.push(10);
7 return new (ctx, new One(frame), new One(frame))
8 }

Listing 4.7: Inefficient implementation for a variability-aware method frame.

To create a more efficient variability-aware stack frame, we started with
changing the type of slots from int[] to Conditional<Integer>[]
(Conditional<int[]> is also possible, but has less sharing). All elements at the
same index position in slots can be shared, such that it is a memory saving represen-
tation of the stack. When the stack is conditional, also the top positions of the stack
can be different, thus also top has to be a conditional value, as well as the reference
map isRef. For basic instructions, push, pop, load and store, the representation is
sufficient and efficient. However, when applying an operand stack manipulation in-
struction, such as swap (shown in Listing 4.8), the instruction requires a cross product
over all three elements: slots, top, and isRef. This extensive cross product can get
expensive, and thus changing slots to Conditional<Integer>[] is not sufficient
for our purposes.

For an efficient representation that supports sharing and does not require extensive
cross products, we decided to implement a new stack frame. To get rid of con-
ditional top and reference values, we decided to use conditional operand stacks as
Conditional<Stack>. The representation does not support sharing among dif-
ferent operand stacks. For support of sharing, we decided to define the local vari-
ables as Conditional<Entry[]>, because the index of local variables is not con-
ditional. We provide flexible and changeable implementation with a factory using the
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1 public void swap () {
2 int t = top−1;
3 int v = slots[top];
4 boolean isTopRef = isRef.get(top);
5 slots[top] = slots[t];
6 isRef.set( top, isRef.get(t));
7 slots[t] = v;
8 isRef.set( t, isTopRef);
9 }

Listing 4.8: Java Pathfinder implementation of the operand stack management instruc-
tion swap.

IStackHandler interface (currently with only one variant). In Listing 4.9, we show
an excerpt of the class StackHandler which replaces the slots of StackFrame. Be-
cause top and isRef are no longer conditional, functions, such as swap, do not require
expensive cross products with fmap over these elements. The implementation might be
similar to the first approach of Conditional<StackFrame>, but it increases shar-
ing for local variables, reduces effort for cloning, and thus reduces memory consump-
tion and increases efficiency. We changed the signatures of all instructions (e.g., from
push(int) to push(FeatureExpr ctx, Conditional<integer>)), because
operand stack management instructions should be applied only in a specific context.
The change to the StackHandler implementation caused a high speed-up compared
to directly lifting the original implementation of StackFrame.

4.2.3 Bytecode Instructions

With the class StackHandler, we have an efficient representation for the method
frame. For the interpretation of Java Bytecode instructions, JPF has a class for
each instruction, which provides a method execute that can modify the method
frame, the program flow, and fields. The instructions are called from the main loop
of ThreadInfo. Because the main loop does not need to know what instruction is
executed, all instructions provide a common signature shown in Listing 4.10. The in-
struction is called with the method execute. To access the current method frame,
to create or to return from methods, and to access fields, the method execute gets
a reference to ThreadInfo as parameter. The instruction can then modify the frame
or the fields directly. Finally, the method execute returns the next instruction. This
returned instruction is then used as new program counter of the current method.

For complete support of variability-aware execution, all instructions have to be lifted.
First, the instructions need an additional parameter for the context to execute the in-
struction only for a specific context. Second, all calls of the StackFrame have to be
changed to support conditional values. Third, the return type needs to be changed to
Conditional<Instruction>, because the instruction might return different point-
ers to the next instructions (e.g., within an if-instruction). The required refactorings
for lifting of instructions are shown in Listing 4.11 and highlighted with gray.
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1 public class StackHandler implements IStackHandler {
2 private Conditional<Entry>[] locals;
3 public Conditional<Stack> stack;
4 public StackHandler(int nLocals, int nOperands) {
5 locals = new Conditional[nLocals];
6 stack = new One<>(new Stack(nOperands));
7 }
8 public void push(FeatureExpr ctx, Conditional<Integer>) {
9 stack.fmap(...) } // apply stack functions

10 }
11 public class Stack {
12 public int top = −1;
13 public Entry[] slots;
14 public Stack(int nOperands) {
15 slots = new Entry[nOperands];
16 }
17 public void swap() {
18 Entry A = slots[top − 1];
19 Entry B = slots[top];
20 slots[top − 1] = B;
21 slots[top] = A;
22 }
23 }
24 public class Entry {
25 boolean isRef;
26 int value;
27 }

Listing 4.9: Efficient variability-aware stack frame implementation used by VarexJ.

1 public Instruction execute(ThreadInfo ti) {
2 StackFrame frame = ti.getTopFrame();
3 ... do something e.g.:
4 int value = frame.pop();
5 ...
6 return getNext(ti);
7 }

Listing 4.10: Signature of Java Bytecode instructions in Java Pathfinder.

1 public Conditional<Instruction> execute( FeatureExpr ctx ,ThreadInfo ti){
2 StackFrame frame = ti.getTopFrame();
3 ... do something e.g.:
4 Conditional<Integer> value = frame.pop( ctx );
5 ...
6 return getNext( ctx , ti);
7 }

Listing 4.11: Signature of variability-aware Java Bytecode instructions in VarexJ.
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1 class IADD extends JVMInstruction {
2 public Instruction execute (ThreadInfo ti) {
3 StackFrame frame = ti.getTopFrame();
4 int v1 = frame.pop();
5 int v2 = frame.pop();
6 int sum = v1 + v2;
7 frame.push(sum);
8 return getNext(ti);
9 }

10 }

Listing 4.12: Example bytecode instruction IADD in Java Pathfinder.

1 public class IADD extends JVMInstruction {
2 public Conditional<Instruction> execute(
3 FeatureExpr ctx, ThreadInfo ti) {
4 StackFrame frame = ti.getTopFrame();
5 Conditional<Integer> v1 = frame.pop(ctx);
6 Conditional<Integer> v2 = frame.pop(ctx);
7 Conditional<Integer> sum = v1.fmap((x1) −> {
8 return v2.map((x2) −> { return x1 + x2; });
9 }).simplify();

10 frame.push(ctx, sum);
11 return getNext(ctx, ti);
12 }
13 }

Listing 4.13: Variability-aware implementation of IADD in VarexJ.

To discuss details of lifting bytecode instructions, we use the class for the instruction
IADD shown in Listing 4.12. First, the instruction gets the frame of the current method,
which is equivalent to the top frame. Then, the two values which should be added, v1
and v2, are popped from the frame. After this, the sum of both values is calculated
and pushed back to the frame. Finally, the next bytecode instruction that should be
executed is returned.

In Listing 4.13, we show the result of the variability-aware lifting of IADD. Again the
two values which should be added are popped from the frame, however, only for the
specified context. These values are then added using a cross product resulting in the
conditional value sum. The sum is then pushed to frame for the specified context. At
the end, the method returns the next instruction that is specific for the context.

We illustrated the general procedure for lifting of bytecode instructions. This lifting has
to be applied to all 183 instructions of JPF for a complete variability-aware instruction
set. Because of the high number of instructions, we did not lift all instructions initially.
We started with integer values only and used runtime exceptions for those instructions
that are not lifted. After the lifting for integers is shown to work, we applied the
refactorings to all other instructions step by step. Finally, we were able to lift all
bytecode instructions to provide a completely variability-aware instruction set.
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4.2.4 Scheduling

The task of a variability-aware scheduler is to determine which instruction has to be
executed next to maximize sharing, and thus to reduce the effort for program execution.
We already discussed a basic strategy for scheduling in Section 3.5. In this section, we
discuss further details on variability-aware scheduling and of scheduling in VarexJ.

With a conditional frame and conditional execution of instructions, the basics for
variability-aware execution are given. In a class file, the order of bytecode instructions
for each method is defined. There are five cases how to determine which instruction
is executed next: (1) the instruction which follows directly in the list of instruction,
(2) an instruction points to the next instruction which does not follow directly (e.g., an
if-else branch or goto), (3) a new method is called, (4) the current method returns
and the calling method is continued, (5) the executed instruction causes an exception
(e.g., division by null), or is an exception itself. The default scheduling mechanism is
oblivious of these types of instructions and simply executes the instruction which is
returned by the previous instruction (see Listing 4.14). However, for variability-aware
scheduling, these types of instructions need to be handled differently.

1 public void schedule() {
2 Instruction pc = initialPC();
3 while (pc != null) {
4 pc = pc.execute();
5 }
6 }

Listing 4.14: Simplified default scheduling mechanism of Java Pathfinder.

Not all method executions have several paths for different contexts and the original
scheduling mechanism is often sufficient. Sometimes the executions paths are split (e.g.,
caused by an if-statement on a conditional value). Thus, the current program counter
is a conditional value that can point to several instructions at the same method. To
support joining (i.e., different execution paths are executed together again) and to max-
imize sharing it is necessary to determine which of these instructions should be executed
next, because only one instruction can be executed at once. As instructions are saved
as ordered list in the methods descriptions (i.e., in MethodInfo), also the instructions
of the program counter have an order. For scheduling it is often sufficient to execute the
instruction that is most behind (i.e., the first in the ordered list of instructions). After a
conditional block (e.g., if-else where both blocks are executed in different contexts), the
executions should be joined again. Because the next instructions after the conditional
executions are equivalent, the instructions can be joined, and the instruction is shared
again. The strategies to maximizes sharing are known as late splitting for the late sepa-
ration of execution paths, and early joining for the merging of execution paths [Kästner
et al., 2012b] as early as possible. In Listing 4.15, we show a simplified implementation
of the variability-aware scheduling mechanism in VarexJ. The shown implementation
only searches for the instruction which is most behind by comparing the positions of
the instruction in the method saved the methods field position.
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1 public void schedule() {
2 Conditional<Instruction> pc = initialPC();
3 while (!pc.equals(new One(null))) {
4 Map<Instruction, FeatureExpr> map = pc.toMap();
5 int minPos = Interger.MAX_VALUE;
6 Instruction current = null;
7 for (Entry<Instruction, FeatureExpr> entry : map.entrySet()) {
8 Instruction instruction = entry.getKey();
9 if (instruction.position < minPos) {

10 minPos = key.position;
11 current = instruction;
12 }
13 }
14 FeatureExpr ctx = map.getValue(current);
15 Conditional<Instruction> next = current.execute(ctx);
16 pc = new Choice(ctx, next, pc).simplify();
17 }
18 }

Listing 4.15: Simplified variability-aware scheduling mechanism of VarexJ.

1 int method(int i) {
2 int k = 3;
3 if (FEATURE) {
4 k = i + k;
5 } else {
6 k = k / i;
7 }
8 k++;
9 return k;

10 }

Listing 4.16: Example configurable method for variability-aware scheduling.

In Listing 4.16, we show a method with two execution paths which depend on the con-
ditional value of the filed FEATURE. For variability-aware execution, Line 4 has to be
execution in the context FEATURE, and Line 6 in the context ¬FEATURE. Fur-
thermore, all other instructions have to be executed for FEATURE ∨ ¬FEATURE,
or simply TRUE. We illustrate the execution-traces of the example in Figure 4.3.
For simplicity, we only show method statements instead of the corresponding bytecode
instructions. We have already illustrated how the execution of bytecode instructions
interacts with the method frame in Table 3.1. In the example, all corresponding in-
structions are executed with the same context, which is not necessarily the case. The
traces show that all statements outside of the if-else block are shared between all con-
figurations. Furthermore, it illustrates the order of executions. After the block for
FEATURE is executed, the else block is executed directly. After the if-else block has
finished, the next instructions are shared again.
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Figure 4.3: Traces of the execution of the example in Listing 4.16 with two config-
urations. The traces left and middle show the product-based execution with Java
Pathfinder. The right trace illustrates variability-aware execution with VarexJ.

Method Return

To simply execute the instruction with the lowest index is usually sufficient. However,
there are some instructions which have to be handles differently: return, method invo-
cations and throw instructions. In Listing 4.17, we show a Java source code example
which contains multiple return statements. The Listing 4.18, shows the corresponding
Java Bytecode. The instruction IRETURN pops the top value of the current frame and
pushes it to the frame of the invoking method [Lindholm et al., 2014]. Furthermore,
the current method frame is discharged, and the frame of the invoking method is the
top frame afterward. Because there is only one top frame, the first return instruction
cannot be executed before all execution paths of the method are finished. To support
multiple returns, return instructions are only executed when there is no other instruc-
tion left. Because all return instructions of one method have to be of the same type
(e.g., int), these instructions (i.e., IRETURN) can be merged and executed together at
the end of the method’s execution.

Exceptions

Similar to a return, a throw instruction (i.e., a thrown exception) pops stack frames. A
throw instruction pops the top frame until a catch clause handles the corresponding ex-
ceptions [Lindholm et al., 2014]. Because of this exception handling, throw instructions
cannot be merged like return instructions, and thus we execute these instructions at the
point they appear, and return to the method afterward. After the frames are popped,
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1 int method() {
2 int k = 1;
3 if (FEATURE)
4 return k;
5 k++;
6 return k;
7 }

Listing 4.17: Source code example with multiple return statements.

1 L0 ICONST_1
2 ISTORE 1
3 L1 ALOAD 0
4 GETFIELD f
5 IFEQ L2
6 L3 ILOAD 1: k
7 IRETURN
8 L2 IINC 1: k 1
9 L4 ILOAD 1: k

10 IRETURN

Listing 4.18: Compiled example with multiple return instructions.

the program counter of the method with the catch clause is set to the first instruction
of the catch clause for the context of the thrown exception. Because exceptions can be
thrown within a specific context and not all executions of other contexts are finished,
we push the popped method frames back and execute the remaining instructions.

Method Invocation

When a new method is invoked a new frame for this method is created, which is then
the top frame. To determine which instructions are in a valid context, and to reduce the
size of choices, we add the context in which the method is called to the frame. With this
method-specific context, the current program counter is often simply a One (i.e., there
is only one instruction), because not all methods need to be executed in several paths.
Thus, the effort for scheduling and determining the next instruction is reduced.

We also use the method-specific context in the method frames to reduce the complexity
of the choices. With the context specific for the method, we do not need to save
conditional values that are not valid in this context. Thus, we can reduce the size of
conditional values, and the effort for calculations. For example, if a method is called in
the context A, it is possible to simplify values, such as Choice(A, 1, 2) to One(1). This
optimization has high effect on the performance of the variability-aware execution.

During variability-aware execution, a reference can point to several objects with pos-
sibly different types. In the example in Listing 4.19, we show a method which cre-
ates a list containing an initial value init. The type of list is either ArrayList
or LinkedList, depending on the value of FEATURE. To execute the method add
variability-aware, it has to be executed several times, once for each object reference.
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1 public List create(int init) {
2 List list = FEATURE ? new ArrayList() : new LinkedList();
3 list.add(init);
4 return list;
5 }

Listing 4.19: Example for method invocation on different objects.

4.3 Specialized Extensions for

Variability-Aware Execution

We discussed implementation details on basics for variability-aware execution with ref-
erence to Chapter 3. In this chapter, we discuss further specialized details on variability-
aware execution. First, we show how the configuration space can be defined to only
execute valid program variants. Second, we explain how JPF handles native methods
and how VarexJ supports variability-aware execution of these native methods. Third,
we present how VarexJ gives aggregated results for an effective analysis of the program’s
output and of exceptions during runtime.

4.3.1 Specification of the Configuration Space

Variability-aware execution aims to execute all program variants at once. Therefore,
our virtual machine needs to know two things about the program and its variability:

• Which values are used as feature variables?

• Which combinations of features are valid?

To define a value in Java source code as conditional, a new mechanism is required.
We decided to mark the boolean values to be handled as conditionals, because we
are interested in optional features. Because features would be defined once globally
and only have two states we support conditional values for static boolean fields. For
definition of fields that should be handled as feature variables, we use the annotation
mechanism of Java. In Listing 4.20, we show an example for a feature variable which
should be initialized as conditional using the annotation @Conditional. A static
field is initialized when the corresponding class is loaded [Lindholm et al., 2014]. During
initialization, first the initial value is pushed to the operand stack. Then, the top value
is used to set the internal representation of the field. As we want to initialize the field
with both values (i.e., true and false), we replace the initial value by a choice.
In the example, we pop the original value true and push the choice for both values
(i.e., Choice(feature, true, false)). For reasoning about features, we create
a feature internally that has the same name as the field. Whenever the field FEATURE
is used it can have both values, true and false depending on the current context of the
execution. Thus, our interpreter has knowledge about the variability defined by these
feature variables.
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1 @Conditional
2 public static final boolean FEATURE = true;

Listing 4.20: Annotated field to introduce conditional values into the interpreter.

When executing configurable programs, some combinations of features are invalid which
can be specified with constraints. When executing a configurable program variability-
aware, only valid configurations should be considered. In Listing 4.21, we show a typical
example how the configuration space can be reduced to only execute valid configura-
tions. With the method valid the selection of features is checked, and only valid
selections are executed. This variant of reducing the configuration space is effective;
however, the context defined in the method valid is always part of the scheduling.
Thus, the overhead to decide the satisfiability of the context is high depending of the size
of the expression defined in the method valid. Because the expression is always part
of any choice, also the output contains this expression, which makes it more difficult to
aggregate outputs and faults to specific configurations.

1 @Conditional static final boolean A = true;
2 @Conditional static final boolean B = true;
3 static valid() { return A || B; }
4 public static void main(String[] args) {
5 if (!valid()) { return; }
6 new Main();
7 }

Listing 4.21: Example for specifying constraints with a method that checks the validity
of the current feature selection, to execute only valid configurations.

To specify the valid configuration space, we use the functionality of the library for
feature expressions from TypeChef [Kästner et al., 2012a, 2011; Liebig et al., 2013] to
set a corresponding feature model. The library allows using dimacs files which represent
a feature model in conjunctive normal form. We implemented an automatic export
mechanism for dimacs files in FeatureIDE [Thüm et al., 2014b], because the configurable
programs we use do not provide such files, and to write it manually is difficult and
error prone. FeatureIDE is a framework for feature-oriented software development.
One major part of it is a graphical feature model editor to define features and their
dependencies. With this editor and an automated export mechanism the creation of
dimacs files is simplified.

With the use of dimacs files, the method valid is no longer necessary. Because the
expression for the configuration space is no longer part of the execution, the expressions
in choices are simpler and the choices are smaller, thus the effort for reasoning is reduced.
Furthermore, the output only contains the specific context it is executed in, which eases
the aggregation of the configuration space for certain defects and outputs.
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Figure 4.4: Illustration of the support of native method calls in Java Pathfinder.

4.3.2 Peer Methods

Java provides native methods to call platform-dependent methods (e.g., for the file
system), usually implemented in C. To be platform independent, each JVM provides
own compiled native implementations (e.g., for Windows). Because JPF is executed
with another JVM, which already links the native methods to the native implementa-
tion, JPF allows reusing these implementations. In Figure 4.4, we illustrate the princi-
ple of native method calls in JPF. The library rt.jar of the standard JVM contains all
classes for the Java runtime environment, such as java.lang.String or java.io.File. The
majority of these classes are Java implementations which can be executed with JPF
((1) in Figure 4.4). However, some implementations are native calls (e.g., for system
resources) (2). JPF provides two ways for execution of native methods. Either the
complete class is replaces by a model class (3), or the native method call is redirected
and executed by the JVM instead of JPF (4). For performance reasons or to hide traces,
JPF also has model classes and peer methods (i.e., implementations that replace native
calls) which do not require to call the native implementations (e.g., for java.lang.Math).
Furthermore, peer methods can directly interact with the environment of JPF.

Sometimes it is necessary to call native methods only within a specific context or with
conditional values. Because the corresponding peer method is identified by the method’s
name and not the method’s signature (i.e., the package and original signature is encoded
in the name of the peer method), we were able to change the signatures for our purposes
of variability-aware execution. We added the context as additional parameter to all peer
methods, whether they use it or not. To change all peer methods to support conditional
values is complicated, time consuming, and error prone. Thus, we decided to allow peer
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methods to still support unconditional values. In the case such a method is called with a
conditional value, we again throw a runtime exception which indicates that the method
has to be lifted. As the peer method might return a conditional value, we also allow
conditional return statements. To change the method signature for a peer method,
simply the values have to be changed to conditional, because we check the signature
before the method is invoked and adjust the parameters automatically if possible.

In Listing 4.22, we show exemplary the peer method java.lang.Math.max. This
peer method is not interpreted by JPF, but directly executed by the host JVM. Thus,
the methods, such as max can be called directly. The method max does not require
to call native implementations; however, this would be possible, as the peer methods
are executed by the host JVM. In Listing 4.23, we show the lifted implementation of
max. The method max accepts conditional parameters and returns conditional results.
To apply the method to all combinations of ca and cb, we use a cross-product over
both parameters. Furthermore, the method has an additional parameter for the context
which might be necessary.

1 @MJI public int max__II__I (MJIEnv env, int clsObjRef, int a, int b) {
2 return Math.max(a, b);
3 }

Listing 4.22: Original implementation of the peer method for java.lang.Math.max
in Java Pathfinder.

1 @MJI public Conditional<Integer> max__II__I(MJIEnv env, int clsObjRef,
2 Conditional<Integer> ca, final Conditional<Integer> cb,
3 FeatureExpr ctx) {
4 return ca.fmap((a) −> {
5 return cb.map((b) −> {
6 return Math.max(a, b);
7 });
8 }).simplify();
9 }

Listing 4.23: Lifted peer method for java.lang.Math.max in VarexJ with condi-
tional parameters, conditional return type, and a context.

4.3.3 Aggregated Results

Product-based analyses can only produce results that are specific for one configuration.
Thus, each configuration has its own outputs. To make general statements about defects
and its causes is hardly possible with those product-based results. Especially, to find
feature interactions causing defects requires high effort and often only gives in vague
results. A benefit of variability-aware execution is that it operates on configuration
spaces instead of concrete configurations. Thus, an output or state of the system can
always be mapped to specific configuration spaces. In this section, we discuss how
VarexJ displays configuration spaces for errors and console outputs.
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Aggregation of Errors

A main goal of software testing is to discover defects. With a variability-aware inter-
preter we have the opportunity to observe all values and their context. Thus, we can
effectively test all configurations by providing aggregated results. In Listing 4.24, we
show the output of VarexJ for an arithmetic exception caused by division by zero. The
method div is called with parameters 1 for i and 5 for x. Both features a and b
subtract 1 of the parameter 1 before x is divided by i. Thus, a division by zero error
is caused when either a or b is true. The output shown in the listing (Lines 21 to
24) is generated by VarexJ. The error report shows the current stack trace at the point
the error appeared and the cause of the error (”division by zero”). Furthermore,
the report displays the corresponding configuration space, highlighted with gray. The
propositional formula is shown in conjunctive normal form (i.e., ”&” has a higher order
than ”|”). The formula is equivalent to !a ↔ b, what exactly covers the configuration
space that cause the defect. We see that the third feature c, which does not change
the context of the error, is not contained in the error report.

1 @Conditional static boolean a = true;
2 @Conditional static boolean b = true;
3 @Conditional static boolean c = true;
4
5 @Test
6 public void testDivByNull() {
7 try {
8 div(1, 5);
9 } catch (Exception e) {

10 e.printStackTrace();
11 }
12 }
13
14 int div(int i, int x) {
15 if (a) { i--; }
16 if (b) { i--; }
17 if (c) { x += 2; }
18 return x / i;
19 }
20 ======================================================
21 if !a & b | a & !b:
22 java.lang.ArithmeticException: division by zero
23 at cmu.VATest.div(cmu/VATest.java:14)
24 at cmu.VATest.testDivByNull(cmu/VATest.java:6)
25 ...

Listing 4.24: Aggregation of errors with VarexJ. The example causes an error if either
a or b is true. The output shows the current stack trace, the cause of the error, and
the corresponding context.
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Aggregated Console Outputs

To test and to detect errors is not the only reason of variability-aware execution. With
variability-aware execution it is also possible to check how the values of variables depend
on the selections of features and how the features interact. With brute-force execution,
a console output contains many duplicate values. With variability-aware execution it
is possible to merge these duplicate results to a specific configuration space, and thus
provide aggregated outputs for arbitrary variables.

In Listing 4.25, we show a method that modifies a given value i depending on the
features a, b and c. Finally, the modified value is printed to the console. A brute-force
approach would execute all combinations of a, b and c, and thus would display one
result for each configuration. With variability-aware execution, we execute the program
with conditional values and print this conditional value to the console. With JPF’s
mechanism of peer methods we were able to modify how System.out.println is
executed, to print a context specific content. As shown in the output of the listing, a
and b interact with each other. In the listing we show how VarexJ can efficiently merge
duplicate results. If a and b are selected the output is 102.0, if a is selected and b is not
selected the output is 101.0, and if a is unselected the output is always 1.0 independent
from the selection of b and c. Because the third feature c does not interact with a and
b, the selection of c does not change any output. In contrast a brute-force approach
would contain many duplicate results (e.g., for a & b & c and for a & b & !c).

1 @Conditional static boolean a = true;
2 @Conditional static boolean b = true;
3 @Conditional static boolean c = true;
4 void method () {
5 double i = 1;
6 if (a) {
7 i += 100;
8 if (b) {
9 i++;

10 } else if (c) {
11 i += 0;
12 }
13 }
14 System.out.println(i);
15 }
16 ==========================================================
17 VarexJ Console Output:
18 <102.0> : a & b
19 <101.0> : a & !b
20 <1.0> : !a

Listing 4.25: Aggregation of console outputs with VarexJ. The console output shows
a conditional value, because the feature selections change the value of d. The output
shows a mapping of output value to the specific configuration space (highlighted with
gray).
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A main goal of variability-aware execution and family-based analysis in general is to
provide aggregated results. Aggregation eases the detection of feature interactions and
increases the value of outputs compared to product-based analysis, and thus simplifies
the effort for debugging. We showed how VarexJ provides such aggregated results for
errors and console outputs. There are more kinds of outputs which could be lifted
to provide aggregated results, such as logging or a conditionally written file content
(e.g., with a specialized encoding of the file or with multiple files). However, we leave
these tasks for future work.

4.4 Improvements of Variability-Aware Execution

In the previous sections, we presented the current state of VarexJ. In this section, we
discuss some open points that we discovered during development which can improve
VarexJ and variability-aware execution in general. First, we present limitations of
our implementation which reduce the ability of VarexJ to execute arbitrary programs.
Second, we discuss possible optimizations that improve the efficiency of variability-aware
execution and that give a new insights on sharing.

4.4.1 Current Limitations

A variability-aware virtual machine attempts to execute all configurations, as if they
were executed in isolation (i.e., the execution of one configuration is not affected by
another configuration). There are cases for which this is not easily possible, because
configuration affect each other, especially for execution with side effects, such as writing
of files or with interaction with web services. However, also testing of individual systems
has these challenges. For example, if a test reads and writes to a specific file. When
the test is executed again with another configuration, the file still contains the changes
of the other test. With individual execution, it would be possible to reset the file
to the original state after each execution. With variability-aware execution this is
not easily possible (e.g., the results of one configuration might be replaced by another
configuration). New solutions are required to handle such side effects, such as models of
the file, separate files for different contexts, or a specialized variability-aware encoding
for the file content. Such specialized mechanisms are only necessary if the change of
one context effects the execution of another.

Further limitations come with native methods. Because native methods are executed
outside of the environment of JPF, the values used for the native execution cannot be
conditional. For methods, such Math.sin, this is no problem and can be solved with
several calls, because the native sinus implementation has no side effects. However,
if the method has side effects (e.g., it saves an internal state), multiple executions
are no longer possible. To solve the challenges with native calls with side effects, new
techniques need to be developed, such as models, workarounds, or a new implementation
of the native method.
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To apply variability-aware execution to software systems without restrictions, especially
caused by side effects, future work has to develop new concepts to overcome the cur-
rent limitations. Furthermore, variability-aware execution has to be applied to large
practically used programs to detect further limitations or scalability problems. Because
model checking [Clarke et al., 1999] shares the same challenges, solutions from this
research area could be reused.

4.4.2 Optimizations

During the development of VarexJ, we did several optimizations to improve the perfor-
mance of variability-aware execution, such as a specialized method frame or specification
of the global context with a feature model. In this section, we propose some further
improvements of sharing and some optimizations to reduce execution times which were
out of scope of this work.

Sharing Among Objects

With variability-aware execution, a reference value can point to several objects, as
previously discussed and illustrated in Listing 4.19. When a method for this reference
is called, the method has to be applied to all references individually. However, when
the method implementations for the references are equivalent (e.g., when the objects
have the same type), the method could be shared among these objects. In Listing 4.26,
we illustrate an example with a reference list, which points to two objects of type
ArrayList. The method add needs to be applied to both list. Because both lists
are of same type the implementations of add for both lists are equivalent. Thus,
instructions of add could be shared among both lists. This kind of sharing can improve
the performance of variability-aware execution, especially when a reference points to
many objects, or the called method is expensive. Furthermore, this sharing can be
applied for objects of different type that call the same super type method, which is not
overwritten.

1 void method() {
2 List list;
3 if (A) {
4 list = new ArrayList(10);
5 } else {
6 list = new ArrayList(100);
7 }
8 list.add(1);
9 }

Listing 4.26: Example for possible optimization of variability-aware executions with
sharing among objects.
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Sharing Among Branches

The same method or instructions might be called from different exclusive branches
(e.g., for if-else branches, or switch statements). In this case, it can be useful to join
these executions to improve sharing. However, to support this kind of joining, further
graph analysis is necessary to know which branches can be joined. In Listing 4.27,
we illustrate an example method which calls the same method (joinMethod) from
different exclusive branches. To share the method can be very efficient; because the
method needs to be executed only once and the context of the execution is A∨¬A,
what is equivalent to True. This sharing not only reduces the redundant effort, it also
reduces the effort for reasoning, because the simpler context True is used.

1 void method(int i) {
2 if (A) {
3 joinMethod(i)
4 } else {
5 i++;
6 joinMethod(i)
7 }
8 }

Listing 4.27: Example for possible optimization of variability-aware executions with
sharing among branches.

The improvement with sharing among branches should be higher than the overhead of
graph analysis to detect the methods which can be shared. We believe that it can be
useful to support this kind of sharing, but the question is how often such exclusive and
duplicate method calls actually appear in practice. To answer this question, static code
analysis can be used, which checks for pattern in which the same method is called for
different branches. However, the results are inaccurate, because such analyses do not
know how the methods are executed, and which methods are called multiple times for
different contexts. A second way is to log multiple method calls during variability-aware
execution. The result is still inaccurate, because the methods are currently not joined
and other method calls, which could be joined, might be missed. To get more accurate
results the traces of each configuration could be compared to find redundant method
calls. To create these traces can be done with variability-aware execution, because they
are equivalent to individual execution. Finally, to evaluate the joining mechanism is to
implement it and to compare the results for variability-aware execution with joining to
the execution without joining. The results should show a difference in the number of
executed instructions and required time. In particular, the difference for instructions
shows how many instructions can be shared additionally, which indicates the how often
method can be shared. The evaluation should also check whether the improved sharing
has effect on outputs. For example, if the called method prints to the console, the
output only needs to be printed once.
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Sharing Among Methods

Calls of the same method can not only happen within the same method, but also within
different traces. For example, two objects of different type call the same super type
implementation. Especially for metaproduct (a.k.a. product simulators) same methods
are called within different traces. A metaproduct is the result of variability encod-
ing, which transforms compile-time variability to runtime variability. The structure
and purposes of metaproducts are discussed in detail elsewhere [Post and Sinz, 2008;
Apel et al., 2011b; Thüm et al., 2012; Meinicke, 2013]. Several of the programs we
used for evaluation are metaproducts for feature-oriented programming, thus we dis-
cuss the pitfalls of variability-aware execution of them here. In Listing 4.28, we show
an example which calls the same method for different traces. The structure of the
example is similar to the branching in metaproducts. The method joinMethod is
either called directly from the method splitMethod or indirectly with the method
specialMethod_FeatureA if the feature A is selected. In metaproducts, such split-
ting can happen multiple times. To share the executions of the method joinMethod
can reduce the effort as for sharing among branches. Again graph analyses are required,
to determine whether a method can be shared. As sharing among methods is out of
scope of this thesis, we leave the implementation and evaluation to future work.

1 void joinMethod () { ... }
2 void specialMethod_FeatureA() {
3 ...
4 joinMethod ();
5 }
6 void splitMethod() {
7 if (A) {
8 specialMethod_FeatureA();
9 } else {

10 joinMethod ();
11 }
12 }

Listing 4.28: Example for possible optimization of variability-aware execution with
sharing among methods.

A variability-aware interpreter is the approach with the highest potential for sharing,
compared to other approaches for variability-aware execution. A goal of variability-
aware execution is to share computations, and thus to reduce effort and execution times.
With sharing among objects, sharing among branches, and sharing among methods, we
already presented three approaches that improve the current approaches for sharing.
With our new insights on sharing we open a new research field, and terms such as redun-
dancy and sharing get relative. Because sharing can range from one single instruction
to sharing of complete methods, it is no longer clear whether an execution is done re-
dundantly. Future work on sharing can lead to new concepts to analyze configurable
programs, to reduce redundant calculations (e.g., for code clones), and to define coding
conventions that are easier to analyze.
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Parallel Execution

To improve the efficiency of variability-aware execution, several parts can be paral-
lelized. Because several executions are done in mutually exclusive contexts, executions
do not interact with each other. The map methods apply a function to all elements
individually. To support parallel map method, the function can be applied to all ele-
ments in an own thread, or several larger parts (e.g., splitting a choice tree into two
parts for two threads). With parallelized map functions there is the trade of how large
the overhead for creation of tread is compared to a linear execution.

With variability-aware execution also separate method calls can be parallelized (e.g., for
different exclusive branched or for method calls on different objects). With parallel
execution of whole method, the overhead of thread creation can be neglect, because the
effort for interpreting the method is much higher. Thus, parallel execution for separate
methods could show a significant speed-up. However, both paralleling strategies require
large effort for implementation, because many parts of the JVM might not be able to
be parallelized in the current state. Furthermore, parallelization comes with increased
memory consumption, which might get a problem, because variability aware-execution
already required a lot of memory, compared to execution of one configuration.

Another strategy is to split the configuration space into several parts and execute them
in parallel in separate virtual machines. This strategy reduces the effort for every run
because only a subset of the whole configuration space is executed. Furthermore, the
strategy does not require any changes on the current system. However, the strategy
runs several virtual machines in parallel, thus the required memory drastically increases.

Modern CPUs consist of several cores, thus the current single thread variability-aware
execution only uses a small part of the actual hardware resources. Thus, we believe
that all parallelization mechanisms improve the efficiency. Because execution of dif-
ferent configuration spaces in several threads does not require changes of the current
implementation, this strategy can be applied easily. As the sharing potential is reduced,
this strategy might not result in high improvements. The other strategies do not reduce
sharing, and thus have a higher potential for more efficient execution, but require high
effort for realization.

Specialized Peer Methods

To increase the efficiency, JPF already provides peer methods which are execute from
the underlying JVM directly. To optimize variability-aware-executions a good strategy
is to specialize some methods (e.g., for String or StringBuilder). This strategy was
used in Varex with positive results using a specialized data type for string concatena-
tions [Nguyen et al., 2014]. For example, instead of building all combinations for strings
with a StringBuilder when new values are appended, the StringBuilder could save the
append operations and build required strings when they are needed. An evaluation
should check which data types often interact and could profit from such optimization.
To specialize peer methods has different effects for different programs, but might be
required for scalability [Nguyen et al., 2014].
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4.5 Summary

In this chapter, we presented details on our implementation of a variability-aware JVM
based on JPF. We discussed our decision for JPF as best suiting JVM for our pur-
poses. Then we explained our general procedure for lifting of JPF. We discussed details
and design decisions of parts of our implementation, namely method frame, bytecode
instructions, scheduling, specification of the configuration space, and peer methods.
Furthermore, we presented our solutions to aggregate results and errors with VarexJ.
Finally, we stated possible improvements of variability-aware execution which were out
of scope of this work. In particular, we discovered several new approaches to improve
sharing, which give to new insights on sharing and redundancies in analyses of config-
urable programs.



5. Evaluation

In this section, we evaluate the scalability and the efficiency of variability-aware exe-
cution with VarexJ. Furthermore, we present some new ways to analyze interactions
in configurable systems that are possible with variability-aware execution. With our
evaluation we want to answer these two questions:

• (RQ1) Efficiency: Is variability-aware execution more efficient than product-
based approach? How much time does it take to execute configurable programs,
and how efficient can executions be shared among configurations?

• (RQ2) Sharing and Interactions: How large are interactions among features and
how many different values does one variable take?

To answer these research questions, we first introduce into the configurable systems we
use for our evaluation in Section 5.1. In Section 5.2, we discuss our framework we use for
our measurements. We evaluate the efficiency and effectiveness of our implementation
VarexJ in Section 5.3 by comparing the time for executions and number of instructions
for variability-aware execution to product-based execution. In Section 5.4, we evaluate
the interactions appearing in our target systems to present the potential of a variability-
aware interpreter to analyze feature interactions. In Section 5.5, we discuss the results
of our evaluations and discuss threats to validity.

5.1 Target Systems

For the evaluation of VarexJ, we use 10 configurable systems. Nine of these systems
were previously used for the evaluation of other variability-aware approaches based on
JPF [Apel et al., 2013d; Kim et al., 2012]. Thus, the systems are implemented with
Java and are known to be directly executable with JPF (i.e., all native methods are
available). We used these systems for the development of VarexJ to incrementally lift
JPF, to handle conditional values. Furthermore, we are able to compare the efficiency
of our implementation with the previous variability-aware approaches.
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The system BankAccount is a simple bank management system. Thüm et al. [2014c]
used the system for family-based model checking including runtime assertion checking
with JPF-BDD [Apel et al., 2013d] and family-based theorem proving with KEY [Beck-
ert et al., 2007]. The system is developed for design of contract [Meyer, 1992]; however,
we ignore the contracts for our evaluation and do not compile runtime assertions for
our executions. We used the system in the initial phases of the development of VarexJ,
because of its simplicity.

We use several programs from the evaluation of JPF-BDD [Apel et al., 2013d]. We use
the product lines AJStats, and ZipMe available at the FeatureHouse repository [Apel
et al., 2013b].1 Furthermore, we use the systems E-Mail [Hall, 2005], Elevator [Plath
and Ryan, 2001], and Mine Pump [Kramer et al., 1983]. In the evaluation with
JPF-BDD, Apel et al. [2013d] compared the effectiveness to detect defects with τ -wise
sampling strategies to the variability-aware approach.

All product lines from the evaluation of JPF-BDD and the product line BankAccount
are implemented with feature-oriented programming. Feature-oriented programming
is an extension of object-oriented programming, where each feature is implemented in
separate modules [Prehofer, 1997]. With a configuration, these modules are generated
to a program variant which only contains the modules of the selected features. Because
feature-oriented programming implemented variability at compile time, a metaproduct
is used to simulate runtime variability [Apel et al., 2011b]. We directly reuse the
metaproducts from the previous evaluations generated with FeatureHouse [Apel et al.,
2013b]. Furthermore, we directly use the metaproducts for product-based executions.

As discussed in Section 4.4.2, metaproducts have properties which are not optimal for
variability-aware execution. Thus, we evaluate further systems which implement run-
time variability. From the evaluation of shared execution [Kim et al., 2012], we reuse
the product-line for graph analysis GPL [Lopez-Herrejon and Batory, 2001]. GPL is a
widely used configurable system for several kinds of analyses. The system implements
several algorithms for graph analysis, such as for cycle detection or shortest path calcula-
tions. Furthermore, we use the programs XStream [Walnes, 2014] and JTopas [JTopas,
2014], for which Kim et al. [2012] introduced runtime variability for the evaluation of
shared execution.

We also evaluate a software system which is not developed as product line, because
it might show different results. The system QuEval is a framework for quantitative
comparison and evaluation of high-dimensional index structures [Schäler et al., 2013].
For comparison, QuEval provides several implementations (e.g., for index structures)
which can be activated and deactivated with runtime parameters.

In Table 5.1, we summarize the programs we use for our evaluation. We calculated the
lines of code and number of bytecode instructions with EclEmma [Hoffmann, 2009],
an Eclipse plug-in for code coverage measurements. The lines of code do not contain

1http://fosd.net/fh

http://fosd.net/fh
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System LOC Instructions Features Products Input

AJstats 8854 35235 20 32768 Variant 2

BankAccount 965 4217 10 144 -

E-Mail 644 2075 9 40 -

Elevator 730 4816 6 20 Spec 1, Var -1

GPL 715 2971 22 146 Random 4

JTopas 715 14528 5 32 Many Comments 2

Mine Pump 296 1687 7 64 -

QuEval 3109 18294 30 1135 -

XStream 9224 38234 7 128 0 Com, 30 Var

ZipMe 2762 12901 8 10 Variant 2

Table 5.1: Overview on configurable systems we use for evaluation of VarexJ. Lines
of code (LOC) do not contain empty lines or comments. For the projects JTopas and
XStream we did not count the lines for the tests, because there is more code for tests
than for actual source code.

empty lines or comments, thus the numbers differ from previous evaluations for JPF-
BDD [Kästner et al., 2012b] and shared execution [Kim et al., 2012]. For our purposes,
the number of instructions is a more accurate value for the size of the program and
is more interesting. The systems only range up to 30 features, but even small num-
bers of features can cause a high number of program variant, as for AJStats which has
32,768 distinct configurations. The system GPL has seven, and QuEval has six abstract
features, which are used to model variability, but do not affect the system at implemen-
tations level [Thüm et al., 2011]. In the systems we use, the abstract features do not
increase the number of configurations. However, they are used to reason about valid
configurations and thus increase the effort for variability-aware execution with VarexJ.

To compare our measurements with previous results for variability-aware execu-
tions [Kim et al., 2012; Apel et al., 2013d], we show the input values used for the
program executions. For the programs BankAccount there are no further parameters
to modify the program. Because the system QuEval is never used before for variability-
aware executions, we have a fixed main method. The systems E-Mail, Elevator, and
Mine Pump use model checking to simulate random executions (i.e., random actions are
performed). Because, we do not use these model checking abilities we use a fixed order
of actions for these three systems. Thus, our results for these systems are only indirectly
comparable with the results of the evaluation of JPF-BDD [Apel et al., 2013d].

The target systems we use are all small and only contain a minimal amount of config-
uration options. The main reason that we use these systems is that all other systems
we tried require additional peer methods for execution with JPF and require further
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effort for lifting of VarexJ. The systems we use required none or only some effort for
peer methods (i.e., for lifting of existing and introduction of new peer methods).

5.2 Evaluation Framework

To answer our research questions, we designed an evaluation framework that:

• creates configurations for the product-based executions,

• executes the programs with a standard JVM, JPF, and VarexJ,

• measures comparable times,

• counts executed instructions,

• measures memory consumption, and

• evaluates sharing and interactions of the variability-aware executions.

Configuration of the Target System

To define a configuration, each system contains a class which defines all configuration
options and the validity of the selection. In Listing 5.1, we illustrate am example
class for the configuration. It contains two annotated global options, option1 and
option2. Furthermore it contains a method valid that returns weather the selection
is valid. In the example, at least one of both options has to be selected. To create the
expression for the validity, we use the export mechanism of FeatureIDE [Thüm et al.,
2014b] that can saves a feature model in cnf format with Java modifiers.

1 public class Configuration {
2 @Conditional
3 public static boolean option1 = true;
4 @Conditional
5 public static boolean option2 = true;
6 public static boolean valid() {
7 return option1 || option2;
8 }
9 }

Listing 5.1: Example file representing configurations for a target system.

To execute one specific configuration, we parse the arguments of the main method of
the system to select the configuration options. After the configuration is specified, we
execute the application. In Listing 5.2, we illustrate an example class for the selection
of configurations. First the arguments are parsed, then the selection is checked, and if
the selection is valid the application is executed.
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1 public class Main {
2 public static void main(String[] args) {
3 if (args.length > 0) {// do not select features for VarexJ
4 Configuraiton.option1 = Boolean.valueOf(args[0]);
5 Configuraiton.option2 = Boolean.valueOf(args[1]);
6 }
7 if (!Configuration.valid()) {
8 throw new RuntimeException();
9 }

10 new Main();
11 }
12 public Main() {
13 // run application
14 }
15 }

Listing 5.2: Example file for selection of a configuration and execution of the application.

We use reflection to create all configurations with our framework. At first, we parse
the configuration class to find annotated fields. To create all configurations, we use a
brute force algorithm that tries all possible combinations of selections. With the valid
method the invalid configurations are ignored. Because the systems QuEval and AJstats
have over 1,000 configurations we only execute a random subset of configurations, and
extrapolate the estimated time for all configurations based on the average execution
time. To create a random configuration we try out random selection in a brute-force
fashion. The brute-force algorithms are sufficient for our systems, because of their small
amount of features. Finally, the selection of features is used as program parameters for
the product-based executions. For variability-aware executions a selection of features
is unnecessary.

Execution

For product-based and variability-aware executions, we call the programs via command
line. We create a new virtual machine for the execution with the host JVM. To execute
the system with JPF or VarexJ, we also create a JVM that starts JPF respectively
VarexJ. For the product-based executions this procedure is applied to all configurations.
To evaluate our designs for choices (i.e., map choice and tree choice), we execute VarexJ
for both implementations. We always execute the program with a dimacs file (except of
AJstats which only contains optional or mandatory features), because using a dimacs
file to specify a feature model is better by orders of magnitude. To reason about
valid configuration we support both, SAT solvers and BDDs. However, because the
implementation with SAT solvers does not scale we always use BDDs in our evaluation.

Measure Comparable Times

To compare the effort for execution we could measure the time from the first configu-
ration until the last configuration is executed. This time would represent the real time
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it takes for the evaluation of one approach, but this time would also contain the time
to find configurations. Furthermore, it contains the high overhead of creating the vir-
tual machines. For some applications it might be required to create a separate virtual
machine to reset the systems [Bell and Kaiser, 2014], but because the effort is too high
compared to the actual execution of the program we exclude these times. The statistics
calculated by JPF contain a separate time for the execution that does not contain the
effort of creating the virtual machine. However, the measured time contains a lot of
overhead for class loading and initializing of the application. This initial effort has neg-
ative effect to the time for product-based executions with JPF compared to VarexJ. As
we want to measure fair comparable times for all three virtual machines, we measure
the actual time for the execution of the program. Therefore, we add the time measure-
ment to each application and print the spend time to the console which can be read by
our framework. In Listing 5.3, we illustrate the measurement for comparable execution
times that only measure the time spend for execution of the application.

1 public class Main {
2 public static void main(String[] args) {
3 // select configuration options
4 long start = System.nanoTime();
5 new Main();
6 long end = System.nanoTime();
7 System.out.println("Time:" + (end - start));
8 }
9 public Main() {

10 // run application
11 }
12 }

Listing 5.3: Example file for measuring of execution times. The time is printed to the
console which can be read by our framework.

The execution times differ for each execution of the same program. All executions are
done 10 times to avoid this computation bias. As final result, we use the average time
of these 10 executions. To measure the actual performance for the host JVM would
require further effort. The time for execution with the host JVM can be better than
what we measure when we create a new virtual machine for each run, because of just-
in-time compilation, optimization in the virtual machine, and garbage collection. As
JPF does not contain optimizations such as just-in-time compilation and the overhead
of JPF itself as virtual machine is high, the time we measure for JVM are sufficient for
our purposes.

Further Measurements

To evaluate sharing of instructions among configurations, we count the number of exe-
cuted instructions for product-based execution with JPF and VarexJ. The statistics of
JPF already contain a counter for instructions. This counter also contains the instruc-
tions for initialization. Because the initialization phase does not contain any variability,



5.2. Evaluation Framework 65

we reset the counter at the point the application is actually started. With this counting,
the amount of executed instructions matches also the time we measured. For execution
with the JVM we do not count the executed instructions, but they should match the
number executed by JPF.

Variability-aware execution increases the memory consumption for execution compared
to execution of only one variant. Again JPF contains a measurement for the maximum
required memory which we can reuse for the execution with JPF and VarexJ. We do
not measure the required memory for the JVM, but it should be much smaller than the
memory required for JPF.

In Listing 5.4, we show an example output of the statistics calculated by JPF. It con-
tains several statistics, such as required time and loaded code. Our framework parses
the statistics printed to the console by JPF and reads the number of instructions and
the maximal required memory. As discussed, the time calculated by JPF is not repre-
sentative for our purposes.

1 ====================================================== statistics
2 elapsed time: 00:00:02
3 states: new=1,visited=0,backtracked=0,end=1
4 search: maxDepth=0,constraints=0
5 choice generators: thread=1 (signal=0,lock=1,sharedRef=0,threadApi=0,
6 reschedule=0), data=0
7 heap: new=426,released=43,maxLive=0,gcCycles=1
8 instructions: 3075
9 max memory: 173MB

10 loaded code: classes=65,methods=1295

Listing 5.4: Example statistics calculated by Java Pathfinder. The statistics we reuse
are highlighted with gray.

To answer RQ2, we want to measure how instructions are shared and how interactions
appear. We count the number of features for the context in each instruction to evaluate
how instructions are shared. This means when the number is zero, the context is simply
True, and thus the instruction is highly shared. When the context contains one feature
the instruction is shared among all configurations where exactly one feature is selected
or deselected, and the other feature selections can be arbitrary or are implied. However,
the context might contain features which are implied by other feature selection in the
context. Thus, the number we calculate can be higher as the actual number of required
feature selections.

We analyze the choices that are created to evaluate how values are shared among
configurations. Again we count the number of features required to define a conditional
value (i.e., we count each feature only once). Furthermore, we calculate the size of the
conditional value. That means we count each leaf for a tree choice and each entry for a
map choice. The higher these values are the higher is also the effort for variability-aware
execution. They also indicate higher order interactions which are likely to be missed
with product-based strategies, such as τ -wise interaction testing.
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5.3 Efficiency of Variability-Aware Execution
The main goal of variability-aware execution is to provide efficient testing of configurable
systems. To evaluate efficiency, we compare the time for variability-aware execution to
product-based execution with JPF, and directly with the host JVM. For evaluation we
use the JVM from Oracle version 7 update 55. We performed all experiments on a
Windows 7 laptop with an Intel i7-620M CPU with 2.67GHz, 4 cores, and 6GB RAM.

With our evaluation we compare product-based testing of all products with variability-
aware testing. We evaluate the time for τ -wise sampling for τ ∈ {1, 2, 3}. Therefore,
we did not create explicit configurations, but calculated estimated values based on the
average time for execution of one product. To create the number of required products to
fulfill τ -wise coverage, we used the algorithm ICPL that can calculate configurations for
1, 2, and 3-wise coverage based on feature models [Johansen et al., 2012]. Furthermore,
the algorithm guarantees 100% coverage. The number of configurations by ICPL might
not be the absolute minimum for a τ -wise coverage. However, the difference is minimal,
especially because of the small feature models we use. To avoid computation bias, we
executed each experiment 10 times and use the average execution times as final result.
Furthermore, we executed VarexJ for both implementations of conditional values, map
choice and tree choice.

In Figure 5.1, we show the results of our evaluation. The diagram shows execution times
of product-based executions and variability-aware executions relative to the execution
of all products with JPF (i.e., brute-force executions with JPF is always 100%, and 5%
means that the execution is 20 times faster than JPF). The relative times are shown
on a logarithmic scale, as our measurements differ by orders of magnitude. The time
for τ -wise execution is an estimated value based on the average execution time of one
product. For τ -wise, we do not require exact measurements, because the number and the
set of configurations differs among sampling algorithms. The times time for execution
of all products for QuEval and AJstats is extrapolated based on the average of 100
random configurations, as the execution of all configurations is too time consuming and
does not give more meaningful results.

The implementation of conditional values with map choice contains each value only once
and is a more memory space saving implementations than tree choice. Because map
choices do not contain redundant values, also the amount of applied calculations with
map functions (e.g., mapf) is reduced compared to tree choices. It seems that the effort
to create map choices and the increased effort for reasoning causes map choice to be less
efficient than tree choice by a factor between 1.3 and 2.5, except of for XStream where
map choices are minimal better than tree choices. For comparisons with product-based
executions, we refer to the best times measured for variability-aware execution, as we
evaluated VarexJ with two implementations for conditional values.

Comparison with Java Pathfinder

Except for the results for ZipMe, Varex is always faster than brute-force execution
with JPF. Because ZipMe only consists of 10 products, the advantage of variability-
aware execution to share calculation has a too small effect compared to the overhead
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Figure 5.1: Execution times for product-based testing with the JVM and Java
Pathfinder, and variability-aware execution with VarexJ using tree choices and map
choices as conditional values. The times are shown on a logarithmic scale. All execu-
tion times are relative to the product-based run with Java Pathfinder.

of calculation with conditional values. Furthermore, except for JTopas, XStream, and
ZipMe, VarexJ is also faster than 3-wise sampling. For AJStats, Elevator, Mine Pump,
and QuEval it is even more efficient than 2-wise sampling. The execution time for 1-wise
sampling is always faster than VarexJ. The more products are needed to be executed the
better is the efficiency of variability-aware execution. For the system QuEval VarexJ
takes only 2.27% compared to JPF, and for AJStats it takes just 0.04% of the execution
with JPF.

Relative execution times contain the exponential number of configurations and to ex-
ecute all configurations is unusual and impractical. To compare variability-aware ex-
ecution with arbitrary product-based execution, we show the overhead compared to
average time for execution of one product in Figure 5.2. The diagram shows that the
overhead for variability-aware execution rather depends on the structure and implemen-
tation of variability in the systems, than the number of features and configurations. For
the system AJstats with 32,768 configurations VarexJ only needs the same time as the
execution of 11.52 configurations. On the other hand, for XStream with only 128 con-
figurations, VarexJ already requires the same time as execution of 71.4 configurations.
Future work needs to investigate which kind of variability causes overhead to improve
variability-aware analyses and to provide rules for implementation of variability that
can be analyzed efficiently.
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Figure 5.2: Overhead of variability-aware execution compared to the average time for
execution of one product with Java Pathfinder (i.e., one product equals x1).

Comparison with the Host JVM

The measurements of the execution time with the host JVM in Figure 5.1 need to be
interpreted with caution, because the executed programs and test cases are all relatively
small. Furthermore, optimization mechanisms, such as just-in-time compilation cannot
be applied and rather have a negative effect to the execution time. Thus, the relative
times of execution with the host JVM can be much smaller. However, because of the
overhead of JPF, we did not expect that VarexJ could outperform the host JVM. The
execution of all products with the JVM is faster than variability-aware execution for
the systems BankAccount, E-Mail, Elevator, GPL, JTopas, XStream and ZipMe by up
to 33.5 times. Furthermore, τ -wise sampling is always faster than VarexJ (for τ <= 3).
For the system Mine Pump with only 64 configurations VarexJ is already faster by a
factor of 3. This efficiency seems to be caused because the test case is relatively small.
For the larger systems VarexJ again outperforms brute-force testing. For the system
QuEval VarexJ is faster by a factor of 1.17, and for AJstats by a factor of 87.4.

Sharing of Instructions

A main indicator how efficient VarexJ can share executions is the amount of required
instructions. We show the relative amount of required instructions for product-based
execution with JPF and variability-aware execution with VarexJ in Figure 5.3. Because
the implementations map choice and tree choice do not affect the implemented schedul-
ing mechanism, we have only one value for VarexJ. The diagram shows that VarexJ can
share instructions and reduce the number by at least 80%, even for ZipMe with just
10 configurations. The more configurations a system has, the more instructions can
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Figure 5.3: Instructions for variability-aware execution with VarexJ relative to instruc-
tions for product-based testing with Java Pathfinder.

be shared. For BankAccount the number of instructions is reduced by already 97.7%
for only 144 configurations. For the larger systems the sharing is even better. The
instructions for QuEval can be reduced by 98.61% and for AJstats by 99.99%.

Another measurement for sharing of instruction is the relative overhead of variability-
aware execution compared to the average instructions required for one configuration.
In Figure 5.4, we show how many configurations can be executed with the number
of instructions executed with VarexJ. The systems Mine Pump and ZipMe require an
overhead of less than one additional configuration. The systems AJstats, BankAccount,
Elevator, JTopas, and XStream require instructions for between 3 and 4 configurations,
and the systems E-Mail and GPL between 6 and 7. The most overhead is required
for QuEval with instructions for 15.78 configurations. The numbers show how big the
overhead is to execute the same code as executed by all products. Because the system
QuEval has a lot of alternative implementations, the overhead is highest compared to
the overhead of the other systems.

Reducing the instructions to execute also reduces to the required execution time. How-
ever, the actual efficiency is much lower than sharing of instructions, because variability-
aware execution needs to calculate with conditional values and needs to reason about
configuration spaces. At the point where the overhead of conditional values is com-
pensated by the reduction of required instruction, variability-aware execution is more
efficient than product-based execution. Due to of the configuration space explosion
variability-aware execution gets more efficient very fast, because executions can be
shared more efficiently within huge configuration spaces.
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Figure 5.4: Overhead of executed instructions for variability-aware execution compared
to the average instructions for execution of one product (i.e., one product equals x1).

Memory Consumption

Variability-aware execution saves all intermediate values off all configurations at the
same time. Thus, the memory consumption can increase drastically compared to a
execution of only one configurations. Because data can be shared among configurations,
the amount of unique values does not rise as much as the number of configurations.

In Figure 5.5, we show our measurements of maximal required memory for the product-
based execution with JPF and the execution with VarexJ. As to expect, the required
memory for variability-aware execution is always higher than for product-based execu-
tions. For execution with JPF the required memory is almost similar for all systems
at 90 MB, except of for XStream with 465 MB. For the simple systems BankAccount,
E-Mail, Elevator, and Mine Pump, the required Memory is not much higher as for
product-based execution, because these four systems do a lot of calculations, but do
not create many new objects. For the other systems, the required memory is already in
the gigabyte range with up to 2,294 MB for XStream. The positive observation is that
the required memory does not always increase with the number of configurations, espe-
cially because values can be shared among configurations. The measurement of ZipMe
shows that the required memory can be higher that the number of configurations. We
think that there are some problems with the current implementation of VarexJ spe-
cific to garbage collection and that data is not released correctly when it is no longer
required. Kim et al. [2012] already discussed this problem for shared execution and
proposed some specialized solutions. In particular, the experiments with QuEval did
not scale for larger data sets. To develop specialized variability-aware garbage collec-
tion is out of scope and should be a main part of future work, because the memory
consumption seems not to scale for systems that require more resources.
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Figure 5.5: Measurements of maximal required memory for product-based execution
with Java Pathfinder and variability-aware execution with VarexJ. The measured mem-
ory for VarexJ highly differs between each run. Thus we show the highest value of 10
runs.

5.4 Sharing and Interactions

To evaluate how instructions and data are shared we analyze the conditional values used
by VarexJ. In contrast to the previous evaluation, where we evaluated the efficiency of
VarexJ, we analyze the properties of the systems.

Sharing and Interactions in Computations

We measured the context in which each instruction is executed, to evaluate how good
instructions can be shared among configurations. Therefore, we counted the number of
features involved in the context (i.e., f(True) = 0, f(A) = 1, and f(¬A∨(A∧B)) = 2).
Smaller numbers of features in a context of an instruction indicate that more configu-
rations can share this instruction. If the context is True, then this instruction is shared
among all configurations. If the context is more specific, the instruction is shared for
all configurations where the context holds.

In Figure 5.6, we show the distributions of the context sizes for each system. A similar
evaluation was done for the plug-in application WorldPress with Varex [Nguyen et al.,
2014]. For WorldPress the majority of instructions were executed for True or within
contexts that contain only one feature. As WorldPress uses plug-ins which usually not
interact with each other as much as runtime variability, this is not surprising. We
measured similar results only for AJstats, GPL, and ZipMe. In particular, GPL uses
runtime variability to activate single analyses (e.g., counting of nodes). After such a
analysis is done, the next analysis is executed. Thus, the context of the execution of
each analysis is only the corresponding feature. For WorldPress a lot of instruction were
shared among all configurations. We could not reproduce these observations (only some
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Figure 5.6: Distributions of context sizes of executed instructions for each system. The
number of features of the system is shown in the braces after the names.
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10% of the overall distribution).

instructions have the context True, e.g., for initialization of the program), because our
systems generally require at least one feature to execute a specific functionality. For
the other systems the number of features in the context is usually higher. This higher
number indicates that several features influence the executions of each other. The
diagram of QuEval shows that most of the instructions were executed within a context
with six features.

In Figure 5.7, we show the distribution of the context sizes over all systems. To compare
the sharing among all systems, we use relative distribution for each system). The chart
shows that most instructions are executed where exactly one feature is specified to be
selected or unselected. Furthermore, over 50% of instructions are specified within a
context of less or equal to two features. This means that most instructions can be
shared over huge configuration spaces. Yet, the distribution must be interpreted with
caution, because the systems AJstats, GPL, and ZipMe take together around the half
of the instructions executed within a context with one feature. Generally, the number
of feature in a context is low and thus most of the instructions can be shared for huge
configuration spaces.

Most instructions can be shared among many configurations, but the effort for one
instruction highly differs for variability-aware executions. Because the instructions need
to calculate with conditional values, the effort for one single instruction can be immense
depending on the size of the values, and the effort for reasoning. To reduce these effort,
we implemented optimizations, such as a specialized method frame. Future work should
investigate which data structures, are better for calculations with conditional values.

Sharing and Interactions in Values

To evaluate interactions among features, we counted the number of features required
to define the context of conditional values. As for the evaluation of instructions, we
count each feature only once. We only measured the highest degree of interactions in
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Figure 5.8: Maximal number of features required to define conditional values. The
number of features of the system is shown in the braces after the name.

each system by observing conditional values, because values are scattered in the virtual
machine in several places, such as the frame, the heap, and fields, what makes it more
difficult to observe individual values.

In Figure 5.8, we show the size of the contexts for each system for tree choices and
map choices. Except of ZipMe, all systems have relatively high maximal interactions.
The maximal interaction in the system XStream contains already all seven features.
The highest interaction is contained in the system AJstats with 14 features. Because
choice trees can split the context with their structure, they can require less features
than choice maps as shown for GPL and QuEval. The degrees of interactions show that
some interactions might be missed by τ -wise sampling, as the generation and analysis
of the corresponding configurations gets unpractical for τ > 5 [Petke et al., 2013].

The number of involved feature is only one sight on the interaction of values, and an
interaction of n features does not require 2n unique values. Thus, we measured the
maximal number of values in conditional values. For map choice, we counted each
value. For tree choice, we counted each leaf. The number of unique values for tree
choice can be smaller than the measured value and should match the value measured
for map choices.

In Figure 5.9, we show the maximal sizes of conditional values for each system. As
discussed, the number of features in values is not directly connected to the number of
values. For the systems, Mine Pump and ZipMe the number of unique values is with
maximal three relatively small. When comparing our results for Mine Pump with the
evaluation of [Apel et al., 2013d], we need to remind that we did not use model checking
to simulate random actions. Thus, the degree of interactions we measured is lower. For
the systems E-Mail and Elevator we counted four unique values. The systems AJstats,
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Figure 5.9: Maximal size (i.e., number of concrete values) of conditional values. The
number for map choice also defines the maximal number of unique values in choices.

BankAccount, and GPL have all six unique values. For the system AJstats, VarexJ
created a tree choice with 24 values, because we only implemented simplification over
one level of the tree. The system QuEval already creates choices value with 14 unique
values. The highest interaction has the XStream with 128 unique values what is already
equal to the number of configurations. In XStream all features modify the same string
value, thus the string has 2n different results. That XStream has such a high degree
of interaction might be the reason that map choice is faster for this system. The map
choice has only one node which contains all values. In contrast, the tree choice contains
of n - 1 nodes for n values (i.e., leafs), when there are no duplicates.

The sizes of choices we measured only represent the highest degree of interactions. Be-
cause the effort to execute the system depends on how oft such values are used for calcu-
lations, a distribution of the size of conditional values would be required. Future work
should measure this distribution to identify eventual bottlenecks for variability-aware
execution specific for the system, to reduce the analysis effort or to design optimized
test cases.

5.5 Discussion

We showed that a variability-aware interpreter can reduce the effort for testing by orders
of magnitude. Only for the system ZipMe variability-aware execute took more time than
a brute force approach. However, the system only contains 10 configurations, thus the
effort for calculation with conditional values is higher than the savings with sharing of
executions. Furthermore, VarexJ is often even faster than τ -wise testing with JPF for
τ = 2 and τ = 3.
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The overhead of execution with JPF compared to execution with JVM is immense, but
also this overhead can be compensated with sharing of instructions. For the systems
AJstats, MinePump, and QuEval VarexJ is faster than brute-force execution with the
host JVM. The times for JVM can be much higher, because the systems we used are
relatively small, and optimization mechanisms, such as just-in-time compilation have
negative affects when the system is always executed within a new JVM. On the other
hand we did not measure the effort for initializing the JVMs, as each configuration has
to be initialized separately, and thus highly increase the time for executions.

Variability-aware execution saves values for all configurations. Thus, the memory con-
sumption of VarexJ is up to 19 times higher than executions of only one system. We
think that variability-aware execution not necessarily requires that much additional
memory, because values can be shared and the number of unique values in not always
that high. We think that the current garbage collection cannot handle conditional val-
ues and that unnecessary values are not released. Future work has to figure out what
exactly causes these memory leaks in VarexJ and needs to lift the garbage collection to
handle conditional values.

Comparison with JPF-BDD

We used several systems from the evaluation with JPF-BDD [Apel et al., 2013d]. They
used model checking to simulate random inputs for E-Mail, Elevator and Mine Pump,
what in not possible with VarexJ. For the system ZipMe, it is not clear what pro-
gram parameters they used for their measurements. Their measurements outperform
product-based executions. For the system AJstats, they compared variability-aware
execution with execution of only 200 products. When comparing extrapolated results,
then the execution with VarexJ is around twice as fast as JPF-BDD. In contrast to
the measurements of with JPF-BDD, we did not measure the time for initialization
of the applications. To compare both implementations for variability-aware execution,
both tools would need to be executed on the same hardware systems with equivalent
measurements for time. The implementation of JPF-BDD improves the abilities of JPF
to share instructions for features. Thus, the overhead of calculation with conditional
values and the reasoning about configurations is not as high as for VarexJ. For systems
with larger configuration spaces the sharing of VarexJ seems to outperform JPF-BDD.

Comparison with Shared Execution

We evaluated VarexJ on several programs from the evaluation of shared execution [Kim
et al., 2012]. The evaluation compared variability-aware execution with brute-force ex-
ecution with JPF. The evaluation contained measurements for time as well as measure-
ments for executed instructions (again with program initializations). For the system
GPL (Random 1) shared execution saved 94.9% of instructions and thereby saved 35%
of execution time. In comparison VarexJ saved 95.6% of instructions and 76.6% of
time. For XStream (0 Common, 30 Variable) shared execution is only able to reduce
the instructions by 81% and only saved 11% of time. In contrast, VarexJ saved 96.9%



5.5. Discussion 77

of instruction and thereby 55.78% of time. For the system JTopas (Many comments
2) the results for shared-execute were even worse with only 59% of saved instructions
and an overhead of 81.4% for execution time. In comparison, VarexJ is able to reduce
the instructions be 88.5% and save 80.9% of time. Because VarexJ can calculate with
conditional values directly, it does not need to split executions when values differ among
configurations. VarexJ can share executions more efficient than shared execution, and
thus, saves redundant calculations and time. Again a direct and more meaningful com-
parison of both approaches requires that both tools are executed on the same systems
with equivalent measurements. Furthermore, we were not able to compare our ap-
proach with details on shared execution, because the authors were not available despite
requests.

Threats to Validity

For the measurement of execution times and executed instructions, we used a metric
that is comparable among product-based execution with JVM and JPF, and variability-
aware execution with VarexJ. Each execution requires an initial phase for the virtual
machines and the application (e.g., class loading) that would add a static value to all
executions. Because such initializations do not contain any variability, they would add
an exponential overhead to the product-based measurements. For a fair comparison of
the executions, we only measured the actual execution of the programs that have po-
tentials for sharing. To minimize the computation bias, we did each execution 10 times
and used the average execution time. The comparison of VarexJ with execution of one
product is based on the average time. The times for execution can highly differ among
configurations. However, to use average times is useful, especially because sampling
algorithms try to cover several very different configurations.

To check the validity of our implementation and whether the variability-aware execution
with VarexJ is equivalent to execution of single configurations, we compared the traces
of the executions. For the product-based approach, we logged each executed instruction.
Furthermore, we logged when a field is set with a new value. We additionally logged
the corresponding context for variability-aware execution. Then we compared that
the logs of execution of all configurations match the log of variability-aware execution
(i.e., we compared the traces similar to the example shown in Table 3.1). With this
comparison we found several fault during development and are now very confident that
the implementation is valid at least for the evaluated programs. Furthermore, we are
also confident that the measurements of instructions do not contain any bias.

We used the system QuEval to evaluate a system that is not used before in the context
of variability-aware execution, and that is not developed as product-line. For QuEval
variability-aware execution only scales for small program parameters because of the
memory leaks. To implement variability-aware garbage collection was not possible at
this point and should be part of future work.

Initially, we wanted to show the scalability of our approach to large real-world systems
as in the evaluations of Varex [Nguyen et al., 2014]. Due to the unexpected difficulties
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with missing peer method this was not possible in our limited time. Because we needed
to lift or introduce some peer methods for the systems we used, we are confident that
automated lifting of peer methods to call native implementations is possible, and thus
also variability-aware execution of larger systems.

A goal of this thesis is to lift a complete language to execute arbitrary programs. We
lifted all 183 of JPF and applied VarexJ to 10 configurable systems of different size
to show that VarexJ is able to be applied to a variety of programs. We only used
small systems, thus a general conclusion to real-world systems is not possible. On the
other hand, we provide a tool and an approach that gives better insights to the feature
interactions and their causes in programs.

To evaluate sharing of computations, we counted the number of included features in the
context of each instruction. This number indicates the size of the corresponding con-
figuration space only indirectly. For example, the contexts A∨B and A∧B contain the
same number of features, but A∧B is only a subset of A∨B. To correctly measure the
correlation between configuration space and instruction, the number of configurations
which fulfill the context would need to be calculated for each instruction.

For RQ2, we also evaluated the interactions occurring in our systems. A good evaluation
on feature interactions would require a mapping of variables and fields to the degree
of interactions over time. Because such evaluation collects high amounts of data, and
requires observing all values at any time, we only measured the highest degrees. The
highest degree and the size of unique values for the value have only small expressiveness,
because such interactions might only occur once and have minimal effects. On the
other hand, small maximal degrees of interactions indicate that the overall system
only contains small iterations. To really analyze the interactions in a system better
measurements are required, which could lead to visualizations such as heat maps that
can help to localize faults and indicate design failures.

5.6 Summary

In this chapter, we evaluated variability-aware execution with VarexJ on 10 configurable
systems. At first, we discussed our evaluation framework to measure comparable results
for the host JVM, JPF, and VarexJ. Then, we showed that variability-aware execution
can reduce the number of required instructions by orders of magnitude, and thus also
reduce the time compared to product-based executions. Our measurements showed that
variability-aware execution does not require exponential memory compared to execution
of one configuration. Furthermore, our evaluation indicates that instructions are likely
to be executed on large configuration spaces where only some features are defined. To
analyze interaction in systems, we analyzed the number of features in conditional values
and the size of conditional values. Both numbers are relatively high and indicate that
some interactions are hard to detect with τ -wise interaction testing. Finally, we con-
cluded our results, compared our evaluation with previous variability-aware approaches,
and discussed threats to validity.
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Research on analysis of configurable software and software product lines was active in
the last decade. New approaches have been proposed to handle the challenges that come
with variability, such as the configuration-space explosion. Because our work focuses
on testing and execution of configurable systems we refer to recent surveys on analysis
of software product lines [Thüm et al., 2014a] and tools thereof [Meinicke et al., 2014].

Variability-Aware Testing

Several approaches for variability-aware execution were proposed in the last years. Sim-
ilar to VarexJ, they take variability into account to share execution, and thus reduce
effort for redundant calculations.

VarexJ is based on previous work on variability-aware interpreters for a WHILE lan-
guage and for PHP. The interpreter for WHILE is only a proof of concept and is written
for a toy language [Kästner et al., 2012b]. The PHP interpreter Varex is written for the
plug-in application WorldPress [Nguyen et al., 2014]. The interpreter shows that the
approach scales for 50 plug-ins on a real-world application, but the interpreter is only
able to execute WorldPress. To execute further applications the interpreter requires
further effort for lifting. With VarexJ, we developed a variability-aware interpreter for
a complete language, namely Java Bytecode, that is shown to be able to execute a
variety of different programs.

Kim et al. [2012] developed variability-aware execution based on JPF called shared exe-
cution. The approach was applied to three product lines with up to 146 configurations.
The approach improves sharing among configurations, but the reduced number of in-
structions is not always good enough to outperform brute-force execution with JPF.
Kim et al. [2012] reported savings for execution times of up to 53%. Our approach
has higher potential of sharing than shared execution, and thus is more efficient. We
evaluated VarexJ to the same programs as for the evaluation of shared execution and
measured better performances for sharing of instructions and for execution time.
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Austin and Flanagan [2012] proposed multiple facets (a kind of variability-aware ex-
ecution) that uses faceted values (similar to conditional values) for information flow
analysis based on a JavaScript interpreter. Instead of configuration options, they use
access rights that can mark elements as private. They showed that their approach
outperforms brute-force executions for already one feature and concurrent execution
on four cores for four optional features. The approach was only evaluated on a 300
lines md5-crypto algorithm with up to eight features. Thus, the evaluation cannot be
used for a general conclusion about the scalability of their approach to larger programs
with more code and more configuration options. In contrast, our evaluation covered
programs with up to 9,000 lines of code and 32,768 configurations.

Efficient variability-aware model checking with JPF is done with the extension
JPF-BDD [von Rhein et al., 2011; Apel et al., 2011a, 2013d; Kästner et al., 2012b].
JPF-BDD uses BDDs to reason about feature combinations to efficiently join and share
executions. Because JPF uses Java Bytecode instructions as transitions between states,
the difference to execution is minimal. They reuse the abilities for sharing and multiple
values of JPF and showed speed-ups compared to a brute-force execution by orders of
magnitude. Due to scalability reasons and restrictions of JPF they were only able to
evaluate JPF-BDD on small programs, similar to our evaluation. We applied VarexJ to
the same programs as for the evaluation of JPF-BDD and gained similar results. For
a meaningful comparison of both approaches, both tools have to be executed within
the same environment. As VarexJ has a higher potential for sharing than JPF-BDD,
we expect higher speed-ups for our approach on larger programs with more features.
Thüm et al. [2014c] use JPF-BDD for variability-aware execution in combination with
runtime-assertion checking of feature-based specifications. Model checkers are designed
to handle variability. Thus, there are several more approaches for variability-aware
model-checking that include feature dependencies into the verification process [Lauen-
roth et al., 2009; Classen et al., 2010; Asirelli et al., 2011; Classen et al., 2011]. These
approaches only operate on models of the system, and thus cannot be used for testing.

With symbolic evaluation values can be treated as unknown symbolic values, simi-
lar to annotated fields in VarexJ. Reisner et al. [2010] use symbolic evaluation for
variability-aware execution of configurable systems with runtime options. In contrast
to a variability-aware interpreter only marked values can be handled symbolic. Thus,
the approach cannot share executions as efficient as VarexJ and cannot join execution
paths after the executions are split for different configurations.

Rozzle is a virtual machine for multi-execution of JavaScript to detect malware [Kol-
bitsch et al., 2012]. Similar to VarexJ, the tool can execute multiple execution paths
within a single run using symbolic values. In contrast to conditional values that repre-
sent concrete values, Rozzle uses symbolic values that can lead to infeasible executions.

Sumner et al. [2011] proposed coalescing execution that uses vectors which represent
multi-values as program input. Such a vector represents multiple concrete alternative
values. In contrast to configuration options, these vectors directly introduce interac-
tions, thus each time this multi-value is used for calculations the instructions have to be
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applied to all its values. On the other hand, they do not need to reason about feature
selections. Sumner et al. [2011] reported an average speed-up by the factor of 2.3 for a
multi-value with 30 entries.

There are several more variability-aware approaches for efficient analysis of configurable
software systems, such as for type checking [Kästner et al., 2012a], static analysis [Bod-
den et al., 2013], and deductive verification [Thüm et al., 2012]. Similar to a variability-
aware interpreter, these approaches are able to reason about variability, to reduce re-
dundant calculations.

Product-Based Testing

Product-based testing is a common strategy to test configurable systems [Thüm et al.,
2014a]. With product-based testing only one configuration is tested at a time, thus
a specialized tool support is unnecessary. Because testing all configurations is often
inefficient and impractical, product-based strategies try to reduce the number of config-
urations and test cases that need to be execution, while the effectiveness to find defects
does not change.

A popular method to detect defects that are caused by feature interactions is combina-
torial interaction testing [Cohen et al., 1997, 2007]. Combinatorial interaction testing
creates and tests configurations such that all combinations of τ features are covered.
With this strategy all defects caused by interactions of τ features can be detected while
the number of configurations to test can be reduced drastically. Yet, the approach does
not scale for higher τ than 5, because the generation of configurations gets expensive.
Thus, detection of interactions of many features is impractical with combinatorial inter-
action testing. Perrouin et al. [2010] provides automated test-case generation satisfying
τ -way coverage. Because not all feature combinations affect the programs execution
Schroeder and Korel [2000] use input-output analysis to additionally reduce the num-
ber of configurations without reducing the fault detection rate. τ -way interaction testing
only looks at the variability of the program, but not at its implementation. Because
many defects might already be detected if the corresponding code would be executed,
[Tartler et al., 2012] propose configuration coverage that creates configurations where
each code fragment is active at least once. Our evaluation showed that variability-aware
execution can be faster than some product-based approaches, such as pairwise testing.

Other strategies try to avoid redundancies in executions but keep the detection rates as
if all products were tested. With automated test-case generation [Cichos et al., 2011;
Lochau et al., 2012], the number of tests to execute and the number of products to test
can be reduced. Because a test cases might not require all variability or the execution
of the test is equivalent among several configurations, the number of configurations to
test [Cabral et al., 2010; Kim et al., 2010, 2011, 2013] and the number of redundant test
cases [Qu et al., 2011, 2012; Shi et al., 2012] can be reduced. The approaches can be very
efficient, especially when only minimal variability is involved into the execution of the
test case (e.g., for unit tests). When all features are involved, these approaches might
be equivalent to brute-force testing of all configurations. For VarexJ, such analyses are
unnecessary because only the features that are used are considered during execution.
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In this thesis, we presented how testing can be efficiently applied to configurable Java
programs. We used the approach of a variability-aware interpreter [Kästner et al.,
2012b; Nguyen et al., 2014] to lift the virtual machine of JPF. Our JVM called VarexJ
is able to efficiently execute all configurations simultaneously by sharing executions with
an internal representation of variability.

To completely lift an interpreter requires significantly more effort than to reuse ex-
isting tools that are already able to handle variability, such as model checkers [Apel
et al., 2013d] and theorem provers [Thüm et al., 2012]. However, a variability-aware
interpreter has several advantages. The interpreter optimizes sharing of executions,
and thus improves the efficiency of variability-aware execution. Furthermore, the inter-
preter gives better and easier insight into feature interactions because all variables can
be observed anytime during program execution. With VarexJ, we showed that lifting of
a complete language is possible in the limited amount of time of this thesis. Except of
native methods, which require individual lifting, all elements of VarexJ are variability-
aware, such as the method frame and bytecode instructions. Through the development
of VarexJ, we gained experiences with lifting of applications using conditional values
that can also be applied to programs beyond interpreters (e.g., model checker or static
analysis tools). We discovered several refactorings that occur repeatedly and that could
possibly be automated in future work.

VarexJ optimizes sharing for efficient variability-aware execution, but we also discovered
new potentials to share further executions, such as for redundant method calls among
different configurations. We showed that the term of redundant executions is not always
clear, because sharing of executions can range from single instructions up to sharing of
methods that are called on distinct paths or on several objects. Future work on sharing
should evaluate the proposed improvements for variability-aware execution, and for
other variability-aware analyses, such as model checking.
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To evaluate our implementations, we applied VarexJ to 10 configurable programs. We
compared the efficiency of VarexJ to the unchanged interpreter of JPF. Because our
approach required this additional layer of JPF, but for product-based execution a stan-
dard JVM is sufficient, we also compared VarexJ to the JVM from Oracle. We showed
that execution of all configurations with VarexJ can be faster than pairwise testing
with JPF. Depending on the size of the configuration space, VarexJ was also able to
outperform the host JVM. Because of unexpected difficulties with native methods, we
were not able to apply VarexJ to larger real-world programs, but the results for the
smaller systems seem promising.

With VarexJ, we developed a tool that gives detailed insights into the feature interac-
tions of a configurable program. We evaluated the interactions occurring in our pro-
grams and found that high interactions of more than three features are common. The
program XStream even contains an interaction among all seven features that results in
27 unique values.

The approach of a variability-aware interpreter not only improves the efficiency of test-
ing configurable software. It also provides a tool that helps to analyze and understand
feature interactions, how they occur and how they can be avoided. With these new in-
sights, the ways of developing configurable systems can be improved, to provide better
and less error prone software.

Future Work

We already discussed several improvements of our current implementation in Chapter 4
and Chapter 5. There are currently two major pitfalls of variability-aware execution
with VarexJ that should be solved to execute larger real-world applications. The first
is that not all programs can be executed because the support of native methods is in-
complete. Future work should investigate how native methods can be lifted efficiently,
eventually leading to an automated lifting. The second challenge comes with the im-
mense memory consumption of VarexJ compared to product-based executions. We
believe that variability-aware execution not necessarily requires as much memory as
we measured, and that the current garbage collector cannot handle conditional values.
Thus, unnecessary values are not released. Kim et al. [2012] discussed this problem for
shared execution and provided some solutions that might be useful for VarexJ.

JPF itself is a Java program, which requires an additional JVM to be executed. This
overhead increases memory consumption as well as the time for executions. We used
JPF for the basis of VarexJ, especially because of the simplicity of JPF. To provide
a more efficient variability-aware interpreter, virtual machines that do not require a
second JVM to be executed could be used, but they might require higher effort for
lifting. On the other hand, these JVMs might integrate native methods in a larger
scope than JPF.

Execution of native methods is different from execution of Java Bytecode. Because we
have no access to the variables used by native implementations, these methods usually
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cannot be lifted directly and need to be executed many times. This approach might
usually work, but only for methods without side effects. These side effects can be fields
of a native class as well as a file that is written. Future work needs to investigate
how these challenges with side effects can be solved to provide sound variability-aware
executions.

Variability-aware execution provides mechanisms to analyze feature interactions effi-
ciently. With a variability-aware interpreter interactions of features can be observed
during execution. These interactions can be visualized with heat maps that show the
degree of interactions (e.g., on each value, or method). Furthermore, code coverage
among all configurations can be calculated efficiently with variability-aware execution.
This variability-aware code coverage can detect uncovered code or possibly dead code
due to invalid feature combinations.
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Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch, Sven Apel,
Tillmann Rendel, and Klaus Ostermann. Toward Variability-Aware Testing. In
Proceedings of the International SPLC Workshop Feature-Oriented Software Devel-
opment (FOSD), pages 1–8. ACM, 2012b. (cited on Page 3, 4, 17, 18, 24, 30, 31, 43, 61,

79, 80, and 83)

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings
of the European Conference on Object-Oriented Programming (ECOOP), pages 220–
242. Springer, 1997. (cited on Page 1)

Chang Hwan Peter Kim, Eric Bodden, Don Batory, and Sarfraz Khurshid. Reducing
Configurations to Monitor in a Software Product Line. In Proceedings of the Inter-
national Conference on Runtime Verification (RV), pages 285–299. Springer, 2010.
(cited on Page 81)

Chang Hwan Peter Kim, Don Batory, and Sarfraz Khurshid. Reducing Combinatorics
in Testing Product Lines. In Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), pages 57—68. ACM, 2011. (cited on Page 81)

Chang Hwan Peter Kim, Sarfraz Khurshid, and Don Batory. Shared Execution for
Efficiently Testing Product Lines. In Proceedings of the International Symposium
on Software Reliability Engineering (ISSRE), pages 221–230. IEEE, 2012. (cited on

Page 3, 17, 24, 31, 37, 59, 60, 61, 70, 76, 79, and 84)

Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sabrina Souto,
Paulo Barros, and Marcelo d’Amorim. SPLat: Lightweight Dynamic Analysis for
Reducing Combinatorics in Testing Configurable Systems. In Proceedings of the Eu-
ropean Software Engineering Conference/Foundations of Software Engineering (ES-
EC/FSE), pages 257–267. ACM, 2013. (cited on Page 81)



Bibliography 91

Clemens Kolbitsch, Benjamin Livshits, Benjamin Zorn, and Christian Seifert. Rozzle:
De-Cloaking Internet Malware. In Security and Privacy (SP), 2012 IEEE Symposium
on, pages 443–457. IEEE, 2012. (cited on Page 80)

Jeff Kramer, J Magee, M Sloman, and A Lister. CONIC: An Integrated Approach to
Distributed Computer Control Systems. IEE Proceedings E (Computers and Digital
Techniques), 130(1):1–10, 1983. (cited on Page 60)

D. Richard Kuhn, Dolores R. Wallace, and Albert M. Gallo Jr. Software Fault In-
teractions and Implications for Software Testing. IEEE Transactions on Software
Engineering (TSE), 30(6):418–421, 2004. (cited on Page 2)

Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model Checking of Domain Artifacts
in Product Line Engineering. In Proceedings of the International Conference on
Automated Software Engineering (ASE), pages 269–280. IEEE, 2009. (cited on Page 80)

Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael Schulze.
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Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, and Gunter Saake.
An Overview on Analysis Tools for Software Product Lines. In Proceedings of the
Workshop on Software Product Line Analysis Tools (SPLat). ACM, 2014. (cited on

Page 79)



92 Bibliography

Bertrand Meyer. Applying Design by Contract. IEEE Computer, 25(10):40–51, 1992.
(cited on Page 60)
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