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Abstract—Analyzing and extracting features and variability
from different artifacts is an indispensable activity to support
systematic integration of single software systems and Software
Product Line (SPL). Beyond manually extracting variability, a
variety of approaches, such as feature location in source code
and feature extraction in requirements, has been proposed for
automating the identification of features and their variation
points. While requirements contain more complete variability
information and provide traceability links to other artifacts,
current techniques exhibit a lack of accuracy as well as a limited
degree of automation. In this paper, we propose an unsupervised
learning structure to overcome the abovementioned limitations.
In particular, our technique consists of two steps: First, we
apply Laplacian Eigenmaps, an unsupervised dimensionality
reduction technique, to embed text requirements into compact
binary codes. Second, requirements are transformed into a matrix
representation by looking up a pre-trained word embedding.
Then, the matrix is fed into CNN to learn linguistic characteristics
of the requirements. Furthermore, we train CNN by matching
the output of CNN with the pre-trained binary codes. Initial
results show that accuracy is still limited, but that our approach
allows to automate the entire process.

I. INTRODUCTION

A Software product line (SPL) allows to develop a family
of products that share common functionalities and charac-
teristics satisfying the specific needs of a particular market
segment [1]. To this end, Software Product Line Engineering
(SPLE) describes a systematic development process taking
commonalities and differences (in terms of features) between
particular products into account [2], [3]. A feature in this
context is a user-visible increment in functionality [4]. While
SPLs have been proven to be beneficial, it is not used for
initial development due to a) high upfront cost and b) missing
certainty whether a large amount of variants is needed. Instead,
traditional and more unstructured techniques for reuse, such
as clone-and-own [5], [6] are used to cope with diverging
products in the beginning. However, at this point, information
about commonalities and variability is usually not explicitly
given, but rather hidden within the artifacts. Hence, in case of
a transition from unstructured to structured reuse using SPLs,
this information needs to be recovered.

Reverse engineering techniques, such as feature location and
feature extraction, are common means to support automatic
extraction of features and, in some cases, even their variabil-
ity information. While feature location has been subject to

intense research [7], it exhibits crucial limitations that hinder
applicability in an SPL context. In particular, 1) the majority
of existing feature location techniques focus on source code in
single software systems, and thus, do not recover variability
information, and 2) most of the techniques are tailored to
source code, and thus, not applicable for other artifacts.

Recently, approaches that focus on requirements to re-
cover variability information have been proposed [8]–[16],
because requirements 1) contain more comprehensive infor-
mation about commonalities and variability, and 2) estab-
lish traceability links to other artifacts of later development
phases (e.g., source code). Some of these approaches highly
depend on the syntactic information of sentences (i.e., parse
trees) [11]–[16], which requires manual intervention or exter-
nal tools (e.g., Stanford Parser [17]), while other approaches
apply external knowledge resources such as WordNet [18] to
identify synonyms and compute the similarity of each pair
of sentences [12]–[15]. However, all of these approaches lack
either accuracy (i.e., assign requirements to wrong features)
or a sufficient degree of automation, thus, requiring extensive
manual intervention [19].

To overcome these limitations, we propose a technique
based on a unsupervised learning structure to extract features.
Basically, our technique consists of three parts, 1) a Convo-
lutional Neural Network (CNN), 2) an unsupervised dimen-
sionality reduction function, and 3) a Clustering algorithm.
Using this technique allows to make use of a compressed
binary representation of the requirements and to apply word
embedding models as prediction models, which have shown
to outperform common count models [20].

In this paper, we focus on the abovementioned steps 1 and 2,
thus, making the following contributions:

• We propose a technique to extract features from require-
ments that 1) utilizes an unsupervised learning struc-
ture without relying on syntax information and external
knowledge resources, and 2) integrates a prediction model
to process raw text requirements and generate word
vectors instead of using traditional distributional semantic
models (DSMs).

• We provide insights in a preliminary feasibility study and
discuss current results and possible improvements we are
currently working on.
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II. BACKGROUND

In the process of creating and evolving an SPL, a feature
is a unit of functionality of a software system that satisfies
a requirement, represents a design decision, and provides a
potential configuration option [4]. To represent relations and
dependencies between features, feature models (FM) have
been proposed. In particular, an FM constitutes a tree-like
structure, depicting all features of a domain together with their
relationships, and thus, it is a center piece in the SPLE process
(e.g., for deriving valid configurations).

The following types of relationships exist:
• Mandatory - feature is required in each config;
• Optional - feature is optional;
• AND - all subfeatures must be selected;
• OR - one or more subfeatures can be selected;
• Alternative (XOR) - exactly one subfeature must be

selected.
In addition to the above relationships between features, cross-
tree constraints (CTCs) express dependencies between features
across the whole FM. The most common are:

• A requires B - The presence of feature A implies the
presence of feature B;

• A excludes B - The presence of feature A implies the
absence of feature B.

III. METHODOLOGY

In this section, we provide an overview of our approach
and introduce the particular techniques and how they are
applied in our context. We provide an overview of the en-
tire process in Fig. 1. Initially, the input documents (i.e.,
textual requirements specifications) are pre-processed, that
is, we decompose the documents into sentences and then
remove stop words in these sentences. Subsequently, the pre-
processed requirements are further processed in two ways:
First, by applying Laplacian Eigenmaps algorithm to obtain
a low dimensional representation, which is then converted
into binary codes. And by applying a word embedding model
that creates a word vector for each word in the requirements.
Next, requirements are projected into a matrix representation,
by employing the pre-trained word embedding set, and fed
into a CNN. Finally, the output of the CNN is compared with
the binary codes to evaluate the goodness of the CNN. This
process is executed repeatedly and eventually, the result can
be used to utilize clustering algorithms, such as k-means, to
extract features based on the characteristic representation. In
the context of feature extraction from requirements, we regard
features as domain artifacts, and thus, we assume that several
requirements, related to the same functionality, belong to a
particular feature. Next, we explain each step in more detail,
with the clustering being out of scope for this paper.

A. Laplacian Eigenmaps
Laplacian Eigenmaps (LE) is applied to compute a low-

dimensional representation of the input dataset (i.e., require-
ments) that optimally preserves local neighborhood informa-
tion in a certain sense [21]. The foundation of this technique is

Fig. 1: The flow chart of feature extraction

the laplacian matrix, which resembles a graph, based on the
input data. Hence, LE constitute a dimensionality reduction
function based on graphs with nodes being data points and
edges connecting nodes that exhibit a particular similarity
(for a given similarity definition). Moreover, the edges have
associated weights, indicating the degree of similarity between
the connected nodes, and the similarity of any two nodes
can be measured by the distance between them. Given these
properties, the goal of applying LE is to reduce dimensionality
by keeping similar nodes with short distance, as they are likely
to exhibit a relation as well in the original data.

To achieve a graph representation, we first create a vector
of each sentence by TF-IDF and then use k-Nearest Neighbors
(KNN) algorithm to link each vector to its k nearest vectors.
The similarity matrix A is computed by applying heat kernel
algorithm, that is, A is the adjacency matrix of the KNN graph
for the raw requirements. Given a diagonal n×n matrix D (i.e.,
Dii =

∑n
j=1 Aij), the graph Laplacian L can be calculated by

D − A. The matrix D denotes the requirement significance:
the bigger the value of Dii is, the more significant is the i-th
requirement which is strongly connected by neighbours. The
optimal low dimensional matrix Y can be obtained by solving
the following objective function:

arg min
Y

trace(Y LY T )

subject to Y DY T = I
Y D1 = 0

(1)
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In order to match the output of neural network in the training
process, we convert the low dimensional matrix Y into a set
of binary codes B [22].

B. Convolutional Neural Network

For our purposes. we utilize a specific kind of CNN,
that is, a Dynamic Convolutional Neural Network (DCNN),
which has been proposed for modeling sentences [23]. By
using this model, the order of words in the sentences is
preserved and word relations of varying size can be captured.
In particular, the DCNN captures word relations independent
of their distance in a sentence without any prior knowledge.

In Fig. 1 (right part), we illustrate how we employ the
DCNN model for feature extraction from requirements. Ini-
tially, we transform our requirements into a word vector
representation using the already mentioned word embedding.
As a result, we obtain a set of word vectors E, each one
characterizing a word in our requirements (i.e., the similarity
wrt. all other words).

Next, we employ the word vectors E to transform each
sentence si from the requirements into a matrix S ∈ Rdw×s,
where dw is the dimensionality of the word vector and s is
the length of a sentence. We then feed this matrix S into our
DCNN, where it is processed consecutively by different layers
(e.g., in Fig. 1 we show two exemplary convolutional layers).
Finally, the output of one iteration of our DCNN is compared
with the binary codes from our LE reduction. The result is then
propagated back to adjust weight matrices inside our DCNN
model.This process is repeated several times in order to learn
an accurate characteristic representation of the requirements.
The particular layers of our DCNN model work are as follows.

1) Wide Convolutional Layer: In our DCNN, the convolu-
tion is a matrix computation between a weight matrix, called
filter, and our input matrix S. We apply a one-dimensional
convolution to each row of matrix S, that is, we use a one-
dimensional filter to scan each sentence in order to detect its
latent semantic and structure information.

There are two types of convolution: narrow convolution
and wide convolution. For instance, given a sentence with
seven words and a filter of length five, we can execute the
narrow convolution operation only three times, because the
filter must be entirely inside the sentence. In contrast, for wide
convolution, the filter is allowed to be partially outside the
sentence with all elements out of range being zero (i.e., zero
padding). As a result, we can execute the wide convolution
operation eleven times. Consequently, wide convolution is
capable of gaining more information at the margins of the
sentence, because it make sure that each weight in the filter
scans all the words in the sentence.

More formally, in our wide convolutional layer(s), a filter
f ∈ Rf slides over each row of the requirement matrix S ∈
Rdw×s, eventually resulting into a matrix C ∈ Rdw×(s+f−1),
where f is the width of the filter and s is the length of the
sentence. The matrix C is called the characteristic map of the
requirement matrix S.

2) Folding: So far, the filter is only applied to each row of
the requirement matrix S independently, thus, neglecting the
relation between different rows. To overcome this drawback,
Folding is a method to detect latent relationships between
adjacent rows: At each folding layer, every two rows in a
characteristic map are summarized columnwise. Consequently,
for a characteristic map with dw rows, folding returns a map
Ĉ ∈ R(dw/2)×(s+f−1) with only dw/2 rows.

3) Dynamic k-max pooling: K-max pooling is a downsam-
pling strategy in CNN to reduce the dimensionality of the
intermediate layer output matrix (i.e., our characteristic map).
This technique helps to avoid over-fitting by providing an
abstracted form of our charateristic map. As a consequence,
it reduces the computational costs since it reduces the pa-
rameters that are subject to computation (i.e., the entries of
the map). The traditional k-max pooling operation is to pool
the k most active characteristics (i.e., the most important
characteristics) in a given sequence. Given a preset k, the sub-
matrix C̄ ∈ R(dw/2)×k of the k highest values in each row
of the matrix Ĉ are chosen by k-max pooling. However, we
apply dynamic k-max pooling, where the pooling parameter
k is dynamically selected. As a result, we achieve a smooth
extraction of higher-order and longer-range characteristics.
Given a fixed, predefined pooling parameter ktop for the
topmost convolutional layer, the parameter k of k-max pooling
in the l-th convolutional layer can be computed as a function:

kl = max(ktop, [
L− l

L
s]) (2)

where L is the total number of convolutional layers in the
network.

4) Output: The output layer is a key step to complete
the learning process by fitting the binary codes B, and
thus,realizing the unsupervised learning process. The output
layer of DCNN is a function:

O = WOh (3)

with (i) h being the characteristic representation, (ii) O ∈
Rq being the output vector, and (iii) WO ∈ Rq×r being the
weight matrix. Finally, we train the DCNN model by back-
propagation and speed up training by using Adam optimization
algorithm [24].

C. K-Means

Given the linguistic characteristic representation of the
requirements, learned by the DCNN, the result can be used
with clustering algorithms, such as traditional K-means algo-
rithm, to group sentences which describe similar functionality
into a cluster based on the characteristic representation. In
particular, our intuition is that the requirements, represented
by a particular cluster together, belong to the same feature.

IV. RELATED WORK

Dependency on syntax and external knowledge database:
Reinhartz-Berger et al. proposed an approach for analyzing
features and variability by combining semantic similarity with
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similarity of software behavior as manifested in requirement
statements [11]. To this end, they applied Semantic Role
Labeling (SRL) techniques that highly relies on syntactic
information. Itzik et al. also used SRL to transform each
sentence into six roles and computed similarity of each pair
of semantic roles by applying WordNet [12]. Afterwards,
Hierarchical Agglomerative Clustering (HAC) is applied to
these roles to cluster features. Based on the papers above [11],
[12], Itzik et al. proposed an approach named semantic and
ontological variability analysis (SOVA) to analyze variability
of functional requirements [15]. This approach uses onto-
logical and semantic considerations to automatically analyze
differences between initial states, external events, and final
states of behaviors, and thus, identify features [15]. Wang
proposed a method to build semantic frames for frequent verbs
appearing in requirements by applying SRL with the assistance
of Stanford Parser and WordNet [13], [14]. However, Wang’s
research only extracted semantic information of requirements
and didn’t extract features in the context of SPLs.

All of these approaches require syntactic information and
external knowledge resources to obtain accurate semantic
information of requirements. In contrast, we utilize an un-
supervised learning structure (i.e., a CNN) to gain linguistic
characteristic representation without assistance of syntactic
information and external knowledge database.

Traditional DSMs: Alves et al. conducted an exploratory
study on leveraging information retrieval techniques for feature
and variability extraction [8]. They presented a framework by
employing LSA and VSM technique to measure the similarity
between sentences and also applied HAC to cluster features
based on this similarity. Weston et al. proposed a tool suite for
processing requirements into candidate feature models, which
can be refined by domain engineers [9]. They applied LSA
to measure similarity and HAC to cluster similar texts into
same feature groups to create a feature tree. Moreover, they
built a variability lexicon and grammatical patterns to detect
latent variability information. Tsuchiya et al. proposed an
approach to recommend traceability links between sentences
in requirements and design-level UML class diagrams as
structure models [10]. They used VSM to determine similarity
between sentences in requirements. However, their research
direction is not to discover features based on the similarity.

In contrast to the research above, we utilize word embedding
instead of using traditional DSMs to gain word vector repre-
sentation of the requirements. Also, we apply CNN to learn
the linguistic characteristic representation rather than directly
computing the similarity of each pair of sentences.

V. PRELIMINARY RESULT AND DISCUSSION

To demonstrate the general feasibility of our approach, we
implemented a prototype and applied it to a small set of
requirements. In this section, we briefly state on the dataset
used, the setting for our study, elaborate on initial results, and
discuss them regarding accuracy and automation.

Dataset: We obtained the requirements from the Body
Comfort System (BCS) [25], a case study from a real-world

scenario that takes variability into account. Overall, BCS
comprises 95 requirements with 117 sentences, specifying the
functionality of the system. Moreover, BCS comes with a
feature model encompassing 27 features manually created by
domain engineers. Hence, in future work we can make use of
this model as a ground truth to further evaluate the accuracy
of our approach (e.g., when taking clustering into account).

Experiment setting and evaluation metrics: We use an API
from gensim [26] that implements the word2vec technique, to
implement word embedding, and keep all default parameters.
In order to obtain pre-trained word vectors of high quality,
we apply Wikipedia dumps (https://dumps.wikimedia.org/), an
open source corpus with three billion words, to train word
embedding. We apply cross-entropy loss function to evaluate
the training process to gain the expected DCNN model [27].

Preliminary result: Up to now, we don’t use K-means to
cluster features in terms of the characteristic representation
from current DCNN model. The key problem is that the output
of DCNN doesn’t match the binary code very accurately. The
loss value, which is used to evaluate DCNN model’s perfor-
mance, reamins around 0.5 instead of continuously decreasing
after approximately 1500 training steps. Clustering features
based on a bad performance model makes no sense for the
accuracy of extracted features.

Discussion: We discuss the results from above with respect
to our goal, i.e., to achieve high accuracy and full automation.

1) For the accuracy part, we obtain a DCNN model with
high loss, which means that we initially fail to achieve this
goal. However, even if this is not the desired result, it was
somewhat expected at this stage of our research. Basically,
we identified two reasons for the rather low accuracy. First of
all, our DCNN model has several parameters in the particular
layers, such as weights or size of the convolution filter, that
need to be tuned. While there are numerous other approaches
that elaborate on these parameters, none of these approaches
focus on requirements or feature location therein. Hence,
these parameters need to be determined experimentally and
based on a sufficiently large data set. Consequently, our initial
parameters serve only as baseline (i.e., lower bound), and thus,
need to be refined by applying it to more requirements and
gain insights on characteristics that may effect the parameter
setting. Another reason, leading to the high loss, is that
relatively small size of the dataset we used. Usually, CNNs
require a sufficiently large dataset for the training phase to
achieve reasonable results. With only 117 sentences, we have
clearly a too small sample for training a model that achieves
accurate results. We are currently seeking more requirements
to extend our dataset, and thus, overcome this limitation
that affects the accuracy. Nevertheless, we argue that even
with the current accuracy we perform better than some other
approaches with the same objective, as stated by Li et al. [19].

2) For the automation part, we propose an unsupervised
learning structure without syntactic information of sentences,
because this often impose manual analysis and correction.
Neglecting the setup of parameters, we argue that the entire
learning process is automatically conducted by DCNN model.
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Although we currently fail to obtain a sufficient accuracy by
our DCNN model, and thus, do not apply clustering, the pro-
cess of feature clustering by K-Means can be fully automating
as well. Nevertheless, some manual semantic analyses may
still be needed to gain the final features in some cases. For
instance, this may be necessary when the sentences in a cluster
belong to non-functional requirements or even are not related
to a certain software (e.g., sentences w.r.t. stakeholders).

Although we may not achieve full automation in all cases,
we argue that our proposed approach is capable of minimizing
manual intervention, and thus, highly auomates the process of
extracting features from requirements.

VI. SUMMARY AND FUTURE WORK

In this paper, we proposed an unsupervised learning struc-
ture to extract features from requirements. To this end, we
combine CNN and LE to detect the linguistic information of
requirements. Then, features can be extracted from the learned
linguistic information by applying K-Means clustering algo-
rithm. In particular, we aim at improving current limitations
regarding accuracy and automation without any dependency
on syntactic information and external knowledge database.
To this end, we apply a prediction model to build word
vectors, which outperforms traditional distributional semantic
models (DSMs), and introduce a CNN technique for modeling
sentences and to learn their linguistic characteristics. While
we are struggling with the accuracy of our approach, we
achieve a mostly automated process, thus, minimizing manual
intervention for extracting features from requirements.

In future work, we intend to complete the current research
by improving the methodology, designing a reasonable case
study and evaluating the results. So far, our work focuses on
feature extraction from requirements, but the variability infor-
mation, such as relationship between features, is not detected.
Hence, based on the features from requirements, we plan to
apply a certain combination between association rule mining
and reinforcement learning algorithms to extract variability
information. Moreover, we intend to design a reasonable
evaluation metric to measure the accuracy of extracted features
and variability. Considering manually extracting feature and
variability, this may pose the risk of uncertainty and bias due
to differences between the results from two (or more) domain
engineers. Hence, a convincing evaluation metric plays a key
role in estimating if the results are accurate or not.
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