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Chapter 1

Abstract

The purpose of the present paper is twofolds. Firstly, we present our first results to-
wards a tailored specification and validation object-oriented (OO) model for distributed
systems. Referred to as CO-Nets, the model is a variant of object Petri nets characterized
by: a complete integration of object-oriented concepts and constructions into an appropri-
ate form of algebraic Petri nets named ECATNets; two communication patterns for intra-
and inter-objects interaction that enhance modularity and concurrency without violating
the encapsulated aspects of each class and last but not least, the interpretation of the
behaviour of the constructed model into rewriting logic which allows some validation by
rapid-prototyping using rewrite techniques. Secondly, as a significant case study, we assess
the suitability of the CO-Nets approach by providing Mondel OO specification language
with a formal semantics. Mondel language has been conceived for developing distributed
applications with particularly: a state-oriented style of description, synchronous commu-
nication based on the rendez-vous mechanism and a formal semantics, based on coloured
Petri nets, that we propose to improve using the CO-Nets approach.
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Chapter 2

Introduction and motivation

The object orientation, with its powerful abstraction mechanisms, is nowadays a widely
accepted paradigm dealing with different phases i.e. analysis, specification/validation, de-
sign and implementation in the development life cycle of large software in general and
distributed ones particularly. Indeed, the object paradigm allows for: an intrinsic concur-
rency and distribution through its message passing mechanism and information hiding; a
natural conceptualization of systems as a community of objects and messages, which is very
close to the intuitive perception of distributed systems; an incremental building of com-
plex systems through its powerful abstraction mechanisms (including object composition,
inheritance and interaction).

These advantages and appropriateness have been fully exploited and confirmed by a
great number of OO approaches, languages and formalisms for developing large systems
in general and distributed ones in particular. Among them we have especially: OOD
[Boo91] and OMT [RBP*91] as OO approaches and methodologies; TROLL [JSHS96],
Maude [Mes93] and Mondel [BBET91] as OO specification/programming languages; and
HOSA [GD93], rewriting logic [Mes92] and recently DTL [ECSD98| as (algebraic based)
formalisms.

The Mondel OO specification language is particularly distinguished by the following
features: object description as type instance with a persistent identity; multiple inheritance
based on subtyping; concurrency with synchronous communication based on the rendez-
vous mechanism and a state-oriented methodology for developing applications. Beside
that, Mondel specification has received a formal semantics [BB91], using coloured Petri
nets, that allows verification of some crucial properties of the specification like absence
of deadlock, executability of operations, etc, on the basis of coloured Petri nets analysis
properties [Jen92].

However, in spite of the strengths of the proposed Mondel formal semantics, we claim
that a more appropriate semantics can be obtained by overcoming the following shortcom-
ings, that present this formalization, both at the translating ideas level as well at the model
level.

e In the modeling of tokens in places as object instances of the form <
Id, attributes, stack >, the Id(object identifier) and attributes(object attributes
names with their actual values) components are very intuitive and sound translation
ideas; however, the stack component — storing values of actual operation parameters,



local variables and intermediate computations— is some how artificial, which make
any straightforward mechanization of the translation difficult. Moreover, the mes-
sages (i.e. operations on objects), that have to be independent entities (i.e. may be
created, deleted, etc), are rather conceived as fixed part of the stack content, which
avoids any form of concurrent processing.

e The separation between object acquaintances (i.e. attributes) and its 'controlled’
internal states, and the modeling of each object internal state as a place seems also
to be non-intuitive translation ideas. Indeed, as will be shown later in our approach,
the perception of such internal states just like the other (stateless) attributes is more
natural. On the other hand, by avoiding these (state) places, the resulting net is
more simple, manageable and understandable.

e CPNets have been suitably used for modelling object instances as ’coloured’ tokens
and object behaviour as appropriate transitions. On the other hand, some Mondel
specification properties have been verified using CPNets properties analysis. How-
ever, CPNets need for an appropriate (OO) extensions, like the one given by C. Lakos
[Lak95] for example, for dealing with the inheritance and the persistence of object
identities that are the main concepts of the OO paradigm in general, and Mondel
specification particularly.

With the aim to cope with these shortcomings, the present paper proposes to translate
Mondel specifications into the CO-Nets approach that we are currently developing. The
CO-Nets OO approach is intended to modeling and rapid-prototyping distributed systems
with more adequacy to information systems specification. As modeling framework, CO-
Nets model is based on a judicious integration of OO concepts and constructions (including
classes as modules, inheritance and interaction) into the ECATNets [BM92] algebraic Petri
nets, which is mainly distinguished by its capability of separating between the enabling
tokens and the destroyed ones and by its true concurrent semantics expressed into rewriting
logic. For rapid-prototyping, CO-Nets behaviour is expressed into rewriting logic, and
hence rapid-prototypes can be directly generated using rewriting techniques.

The structure of the remaining sections is as follows: in section 2, the main concepts
of the ECATNets model are reviewed. The third section describes the CO-Nets approach,
but without entering into technical details (a more formal presentation can be found in
[AS99]). In section 3, we explain the basic features of the Mondel language using the
vending machine example. In the main section, with the help of the vending machine
example, the main ideas of translating Mondel into CO-Nets are detailed. Section 5 closes
the paper by giving some concluding remarks.

For the rest of the paper we assume the reader is more or less familiar with algebraic Petri
nets and rewriting techniques and logic. Good references for these topics are respectively
[EMS85], [JRI1] and [Rei91] for the algebraic setting and the algebraic Petri nets, [DJ90]
and [Mes92] for rewriting techniques and logic. Throughout the paper, we use for the
algebraic description of different structures an OBJ notation [GWM™192].
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Chapter 3

ECATNets : An Overview

The ECATNets [BMB93] model has been conceived around three formalisms, the first
two ones constitute a net/data model and serve for describing the structural aspects of the
modeled system, while the third one allows for defining the semantics (i.e. the behaviour)
of the system expressed into rewriting logic which will be first reviewed.

3.1 Rewriting logic

Rewriting logic, as a new paradigm for concurrent systems, have been introduced by
J.Meseguer in[Mes92] by observing, first that concurrent rewriting is a natural process in
terms rewriting and second the inadequacy of interpreting rewrite rules as (oriented) equa-
tions when dealing with non Platonic(i.e. reactive) systems. Then, in rewriting logic while
rewrite rules have the usual form, they are rather interpreted as a change (i.e. becoming) in
concurrent systems. To be more precise we present some definitions borrowed from[Mes92]:

e A (labelled) rewrite theory R is 4-tuple R= (3, E, L, R) where ¥ is a ranked alphabet
of functions symbols, F is a set of Y-equations, L is a set called the set of labels, and R
is a set of pairs R C L x (Tx z(X)?)" whose first component is a label, and whose second
component is a nonempty sequence of pairs of E-equivalence classes of terms, with X =
{z1,..,2n} a countably infinite set of variables. Elements of R are called rewrite rules. A
rewrite rule (7, [t], [t'])([u1], [v1]. - .([uk][vk]) is denoted

re[t] = [E]if [wa] = (1] A - A [ug] = [vg]

e Given a rewrite theory R, we say that R entails a sequent r : [t] = [t'] and write
R E[t] = [t'] iff [t] = [t'] can be obtained by finite application of the following rules of
deduction:

1. Reflexivity : For each [t] € T g(X),

[t]=[¢]

!

[ta]= (8] - -[ta]= (L]
GRS ECES

2. Congruence : For each f € ¥,, n € N,

3. Replacement : For each rule 7 : [t(z)]' =[t'(z)] if [u1(z)] = [v1(@)] A A [ug(z)] =
[vr(2)] in R,

1z is just a simplified notation of z1, ..., zn
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[ (w/ 3 )= [or (w/T)]A. . ~/\[ulk(17)/5)]=>[vk(1_v/5)}
[t(w/z]=[t(w /]

if [wy] = [w)]...[w,] = [w,] then

[t1]=[t2] [ta]=>[ts]
[t1]=ts]

4. Transitivity :

e Given a rewrite theory R= (X, FE,L,R), a (X, E)-sequent [t] = [t'] is called : a
concurrent R—rewrite? (or just a rewrite) iff it can be derived from R by finite application
of the rules 1-4.

3.2 ECATNets : Structural aspects

As a usual Petri net, an ECATNet is a digraph with two kinds of vertices, called places and
transitions, respectively represented by circles and boxes. However, tokens contained into
ECATNets places are of complex form. More precisely, tokens into places® are (ground al-
gebraic) terms following a given user signature [EM85]. Places are connected to transitions
by directed (input) edges labelled of by two informations: The input Conditions(IC) and
the Destroyed Tokens(DT) which are both multisets (i.e. set with possibility of repetition)
of terms. Also, transitions are connected to places by directed (output) edges labelled of
by a Created Tokens(CT) multiset. Finally, with each transition is associated a boolean
expression called Transition Condition(TC). The generic ECATNets [BM92] model is de-
picted in figure 1(a). Note that, Destroyed Tokens(DT) are omitted when they are equal
to Input Condition(IC).

The ECATNets operational behaviour is defined as follows: the firing conditions of
transition ¢ are : first, for all input places p to the transition ¢, IC(p,t) are included in
M (p); second the transition condition of ¢ is valued to true. After firing the transition ¢, we
have simultaneously deletion of Destroyed Tokens from the corresponding (input) places
and addition of the Created Tokens to the corresponding (output) place.

@ O
’ ae
P t q l True ]‘1 ‘ GB%Q ]‘2 l True l 1 l True ]‘2
DT(p.t) CT(q.t) @
Omfmles) =7 A0 o5 3

@ (b) (©

Figure 3.1: The Generic ECATNets and illustrative example

Example 3.2.1 Assuming a,b,c,d,e and f as algebraic (constant) terms with respect to

a given signature, and ® as multiset union symbol on algebraic terms, figure 1(b) depicts
a simplified ECATNet O

2Noting that, other more restricted kinds of sequent are possible[Mes92]
3as usually, tokens into a given place p are denoted by M(p)
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3.3 ECATNets : Semantical Aspect

The ECATNet semantics is expressed into rewriting logic, where the effect of each transition
is captured by a rewriting rule in this logic. Depending on the relation between the Input
Condition and the Destroyed Tokens, four cases have been distinguished[BMB93]. We
recall the corresponding rewrite rules for these cases after giving some necessary notations:

e as described above, the content of each place is a multiset of closed terms w.r.t. a
given signature. The usual union (assoc. and commu.) operation on this multiset is
denoted by .

e to capture rewrite rules and ECATNets states (i.e. tokens distribution), another
multisets form having as elements pairs of the form: (place_name, multiset of terms)
was used. The union operation on this multiset is denoted by ®.

e given a transition ¢, let {pl,..,pn} its input places and {q1, .., gm} its output places.

casel: IC(p,t) = DT (p,t), for each p € {pl,...,pn}. In this case the rule takes the form:
t:(pl,1C(p1,1)) ® .. ® (pn, IC(pn, 1)) = (q1,CT(q1,1)) ® .. ® (gm, CT (gm, 1) if TC(t).

case2: IC(p,t) N DT (p,t) =0, for each p € { pl,...,pn}. In this case the rule takes the form:
t:(pl,IC(pL,1)) @ (pl, DT (pl,1)) ® .. ® (pn, I1C(pn,t)) @ (pn, DT (pn.t) =
(p1,I1C(pL.1)) ® (q1,CT(qL,1)) ® .. ® (g, IC(gm: 1)) @ (Gm, CT (am.t) if TC(t) -

case3: IC(p,t)NDT(p,t) # 0, for at least one p € {pl,..,pn}. It has been shown in [BM92] that
this case could be brought to the two already cases.

case4: The first three cases concern the CATNet version [BM92]: For the E(xtended) CATNets,
two additional notations have been introduced [BMB93]. Both notations concern the Input
Condition. In the first one IC takes the form: IC(p,t) =~ multiset of terms. Where ~ is a
new symbol. The enabling condition in this case means that IC(p, t) has not to be included
in M(p). Using the second notation we may have IC(p,t) = (} which simply means that
the associated transition may be fired only when its input places are empty. The associated
rewrite rules are detailed in [BMB93].

Example 3.3.1 For the above simple example, by applying the first case, we obtain the
following rules for the transitions t1 and t2.  t1: (p,d) = (r,e® f)  t2:(p,a®b) —
(q,¢). The intial state, represented in figure 2(b), is equivalent to: (p, a®bdd)®(q, )R (rd).
Deduction of the next state depicted in figure 1(c) may be obtained by the following rewrite
sequent: (p,a®b®d) ® (¢,0) ® (r,0) = (p,a ®b) ® (p,d) ® (q,0) ® (r,0) “By applying the
decomposition rules [BM92]” = (q,¢) ® (r,e ® f) ® (¢,0) ® (r,0) “By applying concurrently
the rewrite rules associated with t1 and 127 = (q,¢) ® (r,e & f) “by applying concurrently the
commutativity and the structural azioms of identity [BM92]” .
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Chapter 4

The CO-Nets Approach

As mentioned above, the CO-Nets is an OO approach for developing distributed systems.
In this sense, CO-Nets aim to cover the important phases in developing such systems,
particularly the formal specification and the verification/validation phases. In what follows,
we present the main aspects of this approach by putting more emphasis on the modelling
phase. Firstly, we present how structural aspects of a given system are captured using
suitable OO signature, we then deal with the representation of objects and classes into the
CO-Nets model. More complex systems are modeled next, using more advanced abstraction
mechanisms, especially the specialization and the interaction between components.

4.1 The CO-Nets: Structural Aspects

The first intuitive basic ideas for representing an OO system (i.e. a community of objects)
into the ECATNets framework is to regard object states and message instances (i.e. method
invocation) as algebraic terms— with adding logical identities to objects states and ensuring
their uniqueness. Second, represent such message and state terms into associated places
and their effect— as a result of interaction of messages with the objects to which they are
sent— by corresponding transitions.

However, for the modelling of more complex systems as interacting components, we need
further powerful mechanisms that allow for capturing OO constructions like: specialization,
object composition and particularly the interaction between differents classes. For this aim,
on the one hand, we propose to make clear distinction between local properties (i.e. objects
attributes) that have to be hidden from the outside of the object and external ones that
can be observed (and may be modified) by other objects classes. On the other hand, we
propose as well to distinguish between the internal messages that allow for evolving the
object states over the time and the external messages used for interacting different classes.

More precisely, each object state will be regarded as a term —with respect to the OO
signature below— of the form < I|atry : valy, ..., atry, : valg, atbsy : valy, ..., atbs, : val, >*;
where [ is an observed object identity taking its values from an appropriate abstract data
type typed by OId; atry,..atry are the local attributes identifiers component that have as
actual values respectively valy, .., val,. The observed part of an object state is identified by

!This structure is inspired by the Maude language [Mes93] but with an explicit distinction between
hidden and observed —from the outside— attributes.
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atbsy, .., atbs; with their associated actual values val}, .., val,. Also, we assume that all the
attributes identifiers(local or observed) range their value over a suitable sort denoted AID,
and their associated values are ranged over the sort Value with OId < Value (i.e. OId as
subsort of Value) to allow object valued attributes. Also, in order to have more flexibility
of this object state and allow by the way to exhibit intra-object concurrency, we introduce
an appropriate operator that we denote by @ for splitting (resp. recombining), if need be,
this state into part (resp. its part). This splitting/recombining operation, reflected by the
axiom in the object-state signature as depicted below, is particularly important for the
respect of the encapsulation property when interacting different classes.

Messages are viewed as operations with at least one of their arguments is of OId sort
— in this sense a message should involve at least one object as sender or receiver. Each
message generator ms; will be typed by a sort denoted Ms;. Moreover, as mentioned above,
we distinguish between local and external messages. The local messages to a given class C'
have to include at least the two usual messages: the message destinated for creating a new
object state and the message for the deletion of existing object that we denote respectively
by AdCl and DlCl.

All for all, following these informal description and some ideas from [Mes93], the formal
description of the object states as well as the class structures, using an OBJ [GWM'92]
notation, is depicted in figure 4.1.

On the basis of the class description, we define informally the associated CO-Net struc-
ture as follows:

e The places of the CO-Net are precisely defined by associating with each message
generator one place that we called message place. Therefore, each message place
have to contain message instances, of a specific form, sent to the objects (and not yet
performed). In addition to these message places, we associate with the object sort
one (object) place that have to contain the current object states of this class.

e CO-Net transitions reflect the effect of messages on the object states to which they
are sent. Also, we make distinction between local transitions that reflect the object
states evolution and external transitions modeling the interaction between different
classes. The conditions to be fulfilled for each kind of these transitions forms is given
the subsection below.

e Conditions may be associated with transitions. They involve attribute and/or mes-
sage parameters variables.

4.2 CO-Nets : Semantical Aspects

After giving how CO-Nets templates, as description of classes, are constructed, we focus
herein on the behavioural aspects of such classes. That is, how to construct a coherent
object society as a community of object states and message instances, and how such a
society evolves only into a permissible society. By coherence we mean the respecting of the
system structure and the uniqueness of objects identities. And by permission we mainly
understand the respecting of the encapsulation property.
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obj Object-State is
sort AId .
subsort 0Id < Value .
subsort Attribute < Attributes .
subsort Id-Attributes < Object .
subsort Local-attributes External-attributes < Id-Attributes .
protecting Value 0Id AId .

op _:_ : AId Value — Attribute .

op _,- : Attribute Attributes — Attributes [associ. commu. Id:nil]

op (]-) : 0Id Attributes — Id-Attributes .

op _®_ : Id-Attributes Id-Attributes — Id-Attributes [associ. commu. Id:nil]

vars Attr: Attribute ; Attrs;, Attrss: Attributes ; I:0Id .
eql (I|attrs,) @ (I|attrss) = (I|attrsy, attrss)
eq2 (Ilnil) =1

endo.

obj Class-Structure is

protecting Object-state, s-atry,...,s-atr,, s-argii,1,-.., S—argm i,
-..,87argi11,- - - ,87aArGi1,41 - - -
subsort Id.obj < 0Id .
subsort Mes;;, Mes;s,...,Mes; < Local Messages .
subsort Mes.;, Mes.,...,Mes.. < Exported Messages .
subsort Mes;;, Mes;s,...,Mes; < Imported Messages .
sort Id.obj, Mes;;, . . . ,lMesy
(* local attributes *)
op {(_latry: _,...,atry : _) : Id.obj s-atr; ...s-atry

— Local-Attributes.
(* observed attributes *)
op (-latrbsy :, ...,atrbsy : ) : Id.obj s-atbsi ...s-atbs
— External-Attributes.
(* local messages *)

op ms;;: s-argn, ...s-argpn — Mesp
(* export messages *)
OP MSeq @ S—argei,1 ---S"argel,el — Mesel
(* import messages *)
OoOp mS;q: s—argi;i,1 ---S-argii, e Mesip .
endo.

Figure 4.1: The Template Object Signature of Object Systems

4.2.1 Object creation and deletion

For ensuring the uniqueness of objects identities in a given class that we denote by Cl, we
propose the following conceptualization:

1. Add to the associate (marked) CO-Net modeling such class, a new place of sort Id.obj
and denoted by Id.Cl containing actual objects identifiers of objects of the place obj.

2. Objects creation is made through the net depicted in the left hand side of figure 4.2.
Where the notation ~ captures exactly the intended behaviour (i.e. the identifier
Id should not already be in the place Id.Cl). After firing this transition, there is
an addition of this new identifier to the place Id.C'l and a creation of a new object,
< Id|atry :ing, ..., atrg :ing >, with inq, ..., ing as optional initial attributes values.
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Id

EXIST

d.obj
. notexist(ld)
M

Figure 4.2: Object Creation and Deletion Using OB-ECATNets

d
<Id |air1:vall,.., atr,: vaJk>
DEL

<ld|atr:in,.., atr, :in >

This objects creation model is very general, and can be adapted to specific cases. For
example, when restriction conditions should be associated with initial values, the signature
of the creation message can be modified to: adeg; : Id.obj s_atry .. s_atry — ade; which
allow to associate conditions with the transition NEW.

As depicted in the right hand of figure 4.2, the objects deletion is modelled following
the same reasoning.

4.2.2 Evolution of Object States in Classes

For the evolution of object states in a given class, we propose a general pattern that
have to be respected in order to ensure the encapsulation property—in the sense that no
object states of other classes participate in the communication — as well as the preserva-
tion of the object identity uniqueness. Following such guidelines and in order to exhibit
a maximal concurrency, this evolution schema is depicted in Figure 4.3, and it can be
intuitively explained as follows: The contact of the only relevant parts? of some object
states of a given Cl, —namely < [|attrs, >3 ;..; < I;|attrsy >— with some messages
MSi1, .., MSip, MSj1, .., msj;—declared as local or imported in this class— and under some
conditions on the invoked attributes and message parameters results results in the following
effects:

e The messages ms;i, .., mS;p, MSj1, .., MS;q vanish;

e The state change of some (parts of ) object states participating in the communi-
cation, namely Iy, .., I5;. Such change is symbolized by attrs.,, .., attrs), instead of
atirsgy, .., attrsg.

e Deletion of the some objects by sending explicitly delete messages for such objects.

I' mSI

e New messages are sent to objects of the class Cl , namely msj,,, .., msj,, msi,, .., ms/ .

4.2.3 Rewriting rules gouverning the CO-Nets behaviour

In the same spirit of the ECATNets behaviour, each CO-Net transition is captured by
an appropriate rewriting rule interpreted into rewrite logic. Following the communication

2Such selection is possible due to the ’splitting/combination’ axiom that have to be performed in front
of each evolution depending on the invoked rewrite rule.
3attrs; is simplified notation of atr; : vals, .., atry, = vali.
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Ms

i Ms.
| ] | ] Ip
(I1|attrs1) @ ... ® (Ip|attrsy) mJSq
ms
\ A\ [
obj ' ] _
Ms
< | atr

>

S]l
A Conditions on attributes values < 3 e
i and messages parameters .
T ..... ms; ’
ms’
T

(Isq \attrsgl) ® .. @ (s lattrsy,) @ (Liy \attrsgl) @ .. (I, \attrsgr)
QMs

Figure 4.3: The Intra-Class CO-Nets Interaction Model.

pattern in figure 4.3, the general form of the rewrite rule associated with this intra-class
interaction model takes the following form:

T:(Msj,msi) ®..Q0 (Msiyy,msyy) @ (Msj1,msj1) ® .. @ (Msjq, msjq)®
(obj, < Li]attrs; > &..® < Ik|attrsk >) = (Msp,msh;) @ ... ® (Msj},, ms},)®
(Msj1,ms})) ® .. ® (Ms},, ms},) ® (0bj, < Lalattrsyy > &...0 < Lylattrsy, >)
1f Conditions and M(Ad¢e) = 0 and M(Dlgy) =0 *

4.3 CO-Nets : More Advanced Constructions

So far, we have presented only how the CO-Nets approach allows for conceiving independent
classes. In what follows section, we give how more complex systems can be constructed
using advanced abstraction mechanisms like the inheritance and the interaction between
classes.

4.3.1 Inheritance in CO-Nets

In this paper, we restrict ourselves to the simple case of inheritance without overriding—
the other forms of inheritance (i.e. multiple and with redefinition) may be found in [AS99].
Giving a (super)class modelled as a CO-Net, for constructing a subclass—with additional
attributes and behaviour— that inherit the structure as well as the behaviour of its su-
perclass and that it may exhibit new behaviour involving the additional attributes, we
propose the following modeling. First, for allowing the inheritance of the structure and
the behaviour of the superclass, we propose, on the one hand, to gather the object states
of both classes (i.e. the super as well as the subclass objects) into the same object place
(of the superclass). On the other hand, we add an attribute variable (i.e. variable of sort
Attributes as declared in the object-state signature) to all arcs going to or from this place.
Finally, the proper behaviour of the subclass is constructed in the usual way (i.e. by adding
new places for each message and constructing the associated transitions reflecting the new
behaviour that should take into consideration the additional attributes).

In a more clear way, if the IC', DT and CT associated with the arcs related to the object
place contain terms of the form < Id|atry : Vi, ..., atrg : Vi >, we propose to transform them

4This condition requires that the creation and the deletion of objects have to performed at first. In
other words, before performing this rewrite rules the marking in the Adg; as well of the Dlg; places have
to be empty.
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into < Id|atry : Vi, ...,atry, : valy, AT'S > where ATS can be instantiated either by nil
whenever the objects of the superclass are involved by the associated transition or by the
additional attributes(i.e. by at_ad; : Vary, .., at-ad, : Var,)® whenever the subclass objects
are involved. Noting that, Vary, .., Var, should be declared as variables of Attributes sorts
(see, the object-state signature). Semantically, each instantiation of the ATS variable is
captured by a corresponding rewriting rule. Therefore, two rewrite rules are associated
with each transition of the superclass.

4.3.2 Interaction in CO-Nets

Our conceptualization of the inter-class communication is inspired by the general communi-
cation schema proposed by J.Meseguer for concurrent OO systems [Mes93], but with taking
into account the fact that intra-class objects evolution in each class is ensured by the model
proposed in Figure 4.3. Therefore, as depicted in figure 4.4, the inter-class communication
that we propose can be characterized as follows: The contact of some imported or exported
messages namely ms;i, .., ms;p, MSj1, .., Msjq, that may belong to different classes denoted
by Cly, ..., Cl,,, with exclusively the ezternal parts of some objects states included in such
classes, namely < [j|attrs; > ..., < Ij|attrsy > . Such contact, under some conditions
that may involve objects attribute values and parameter messages, results in the following:

e The messages ms;i, .., ms;,, Msj1, .., Ms;, vanish;

e The state change of some (external parts of) object states participating in the com-
munication, namely Iy, .., I. Such change is symbolized by attrs,,, .., attrs), instead

of attrsg,..,attrsg. The other objects components remain inchanged (i.e. there is no

delection of parts of objects states).

e new external messages (that may involve delection/creaction ones) are sent to objects of

: ! ! ! !
different classes, namely msj,, .., msj,,, msj, .., ms,.

(I1,1lattrs1,1) @ ... @ (11 g lattrsy gq)

Im,1lattrsm,1) @ .- @ (Im ko, [0ttrSm Ky )
m
cl cl, v
” - i Ms

S o Conditions on attributes values . im
<llatobslval)> = . <l1,atobsl:val )> and messages parameters
T (Im,1|attrs'm’1) Do ® m ke |attrs'm km) m% ms’hr msl,m

(11,1|attrs’1‘1)€9...@(11,k1|attrs’1‘kl) .. lehr
Ms,

Figure 4.4: The Interaction General Model Between classes

*Where at_ad,, ..., at_ad, are assumed to be the additional attributes of the subclass.
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Chapter 5

Mondel Overview

The Mondel language has been designed particularly for modelling and specifying dis-
tributed applications into an object oriented setting. The main features of Mondel speci-
fication include: object persistence, multiple inheritance, rendez-vous communication be-
tween objects. An object, in Mondel, is an instance of a type (i.e., a class in other OO
languages) that specifies the properties that characterize all its instances and the opera-
tions that can be accepted by the object following their specific behaviour. More precisely,
each object type is described through three sections:

The Attributes Section: that may be empty, describes the attributes identifiers and
their types (i.e., their sorts) that are often object-valued. Moreover, as mentioned
above, one of the specific feature of Mondel specification is that some attributes,
those modeling internal objects states, are implicit and their value depend on the
actual procedure being executed (on the object).

The Operations Section: The definition of a given type include the declaration of op-
erations (called methods in other OO languages) that may be invoked by objects
of other types. Each operation has a fixed number of parameters(which may be of
objects and/or predefined types).

The Behaviour Section: It describes, through some procedures, the execution of each
operation . Noting that, the Mondel specification philosophy favors communication
over computation. In other words, types behaviour is specified using a state-oriented
style, where internal states are modeled as Mondel procedures. Such communication
is made through a rendez-vous between the caller and the callee (accept for receiving
and ! for sending), where the caller must wait until the callee has issued the
corresponding return statement.

Example: Let us consider a vending machine [EDB93]which receives a coin and delivers
candies to its users. The specification of the vending machine system consists of one
module composed of two types: the type Machine and the type User, as described below
using Mondel syntax. The relation between the types User and Machine is represented by
the attribute m of type Machine, defined within the User type. The operations, InsertCoin
and PushAndGetCandy, are specified within the operation clause (as shown in lines 2 and
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4). Note that these operations are without parameters. The user is initially in a Thinking
state, and when he decides to buy a candy he inserts a coin. After the coin has been ac-
cepted, the user enters the GetCandy state, ready to accept a coin. Once a coin is inserted,
the machine accepts the coin and then it enters the DeliverCandy state. After the user has
pushed the button of the machine, it delivers him /her a candy and it becomes Ready again.

0
1
2
3
4
5
6
7
8
9

10
11
12
13

14
15
16
17
18
19
20

unit VMsystem =
type Machine = object with
operation
InserCoin ;
PushAndGetCandy ;
behaviour
Ready
where
Procedure Ready =
accept InsertCoin do
return;
end;
DeliverCandy ;
endproc Ready

Procedure DeliverCandy=
accept PushAndGetCandy do
return;
end;
Ready
endproc DeliverCandy
endtype Machine

21
22
23
24
25
26
27
28
29

30
31
32
33
34

type User = object with
m : Machine ;
behaviour;
Thinking ;
where;
procedure Thinking =
m!InserCoin ;
GetCandy ;
endproc Thinking ;

procedure GetCandy
m!InserCoin ;
Thinking ;

endproc GetCandy ;
endtype User ;

{the vending machine system behaviour }

35
36
37
38
39

behaviour

define Amachine new(Machine) in
eval new(User(Amachine)) ;

end ;

endunit VMsystem
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Chapter 6

Translating Mondel Specifications
into CO-Nets

In this section, we provide Mondel specifications with a clean semantics based on CO-Nets.
For this aim, first, we present how object types including attributes, operations and
behaviour are modeled using CO-Nets. Also, for the behaviour section, more emphasis
will be done to the communication aspects; because we estimate that the modelling of the
computational aspects, using the define statement, are more trivial. Second, we shortly
comment how inheritance can be taken into account. Our translation ideas are illustrated
using the vending machine example.

6.1 Translating Mondel Specifications into CO-Nets

According to the CO-Nets approach as presented in section 2, a Mondel specification may
be translated into CO-Nets in straightforward manner. More precisely, with each type, we
associate an CO-Net (i.e. a class) composed of:

e One object states place: containing object states having as attributes those de-
clared explicitly in the attribute section plus the implicit ones modeling the states
of the object, and which are usually initialized in the beginning of the behaviour
section.

Example 6.1.1 For the machine type, we have no explicit attributes. However, each
machine is characterized by its state (shortly, st) initialized by the value Ready that
can become Deliver-Candy. Then, object instances of type machine, modeled by a
corresponding place, should be declared as follows:
op < _|st: _>: Id.machime state — Machine.

Where Id.machine stands for Machine identities sort, and state have two values { Rd,
Dv} (i.e. Rd stands for Ready and Dv for Deliver-Candy). The same reasoning may
be applied to the User type, where the machine m is an explicit attribute and the User
state (shortly, su), that can be in Thinking(shortly Th) or Get-Candy (shortly, Gt),
15 an internal state.
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e Operations places: For each declared operation, we associate a corresponding
place. If an operation is declared as opr(argy, .., argy), where argy, ..., arg, are types
parameters, we associate to it the following OBJ declaration:

op opr:arg, ... arg, Id.callee Id.caller — Msg;

The addition of the identifier sorts of the caller and the callee is necessary. In fact, it
allows us to know, when a message is accepted by an object (identified by Id.callee),
which object is concerned by the associated return (i.e. which object receive the
permission to continue its execution here the Id.callee).

According to this, we should also add to each object type that send messages (i.e.
containing the primitive ’!") a place containing return messages declared as:

op ret: Id.callee — M sg;

Example 6.1.2 Following the above translation ideas, the CO-Net associated with
the vending machine is described below. For instance, the two machine operations,
modeled by two corresponding places, are declared as follows. The InserCoint
operation 1s declared as:

op ins : Id.machine Id.User — Msg;.
Hence, ins(u,m), means that the User u inserts the button of the machine m. The
PushandDeliver Candy operation is declared as:

op push : Id.machine Id.User — Msgs.

For the User type, we have no explicit operation and then no operations places.
However, it contains (two occurrences of ) a sent primitive, and therefore we have to
conceive a ‘return’ place that store messages instance of the form:

op ret : Id.User — Msgs.

e A Transition is associated with each procedure: According to the two CO-
Nets communications patterns, each procedure describing state change of an object
can be easily captured by a transition. Particularly, the rendez-vous communication
is modeled as follows:

1. An object changes its state by accepting some operation. Following the accept
general form [BBI1]: accept OpName[Provided PureEzpr do stat end. This
behaviour is captured by a suitable transition that express the contact of
OpName with the associated object state—both modeled as tokens into their
associated places— under the (transition) condition PureEzpr. The result of
firing such transition (i.e. the created tokens) is described by the statement stat.

Example 6.1.3 If we take, for example, the ready procedure from the machine
type:

8 Procedure Ready =

9 accept InsertCoin do
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10 return;

11 end;

12 DeliverCandy ;
13 endproc Ready

This procedure is captured by the transition RD, as depicted in the associated
net below, that takes as input places the ins(sertCoin) and the Mc(i.e., ma-
chine) places and as output ones the Mc and the Ret(i.e. return) places. More
precisely, the contact of ins(u,m) with < m|st : Rd > results in the change of
the machine state to < m|st : Dv > and a sent of a knowledge to the User u
that the message is accepted, expressed by ret(u,).

2. The same reasoning may be applied to the statement of the form: PureFxpr
! OpName[PureFEzprList)]. More explicitly, here the caller Id.caller send the
message OpName(Id.Callee, PureFEzpr, PureEzprList) to the object place
associated with OpName. This fact is captured by a transition that takes as
input place the caller object place and as output place OpName.

Example 6.1.4 The procedure Thinking described in the User type as:

26 procedure Thinking =

27  m!InserCoin ;

28 GetCandy ;

29 endproc Thinking ;
1s captured by the transition Th, having as input place the User place which
send the message ins(u,m) to the machine. But according to the rendez-vous
communication principle, the User must wait until the acceptance of such a
message (i.e. the firing of the transition Ac-Is : accept-insert).
In order to make this waiting state explicit, we propose to add to the User states
two other values, namely wtl (i.e. waitl) and wt2 (wait2). Where, wtl ex-
presses that the User, after he send a ins(u, m) message, is in a waiting state
before he enters the GetCandy(Ge) state (i.e. before receiving the associated re-
turn expressed by the firing of the transition Ac-Is). The wt2 expresses the wait-
ing to enter the Thinking(Th) state as modeled by the transition Ac-Ps(short
for accept-push) (i.e. waiting for the acceptance of the message push(u,m)).

Note that these intuitive suggestions should be taken into account in each similar case.
In other words, for each send primitive occurrence (i.e. ! operation) one should associate
a waiting value. We can also, as done in [BB91], model all wait occurrence as one and
associate with each return a corresponding place. However, in this case the number of
places may become unmanageable.

All for all, the structural as well as the behavioural (i.e. the associated CO-Nets)
aspects of the vending machine are described as follows:

e The machine and user states Specification:

obj MU-state is
protecting string .
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sort st-user, st-mc, Id.machine, Id.User .
subsort Id.machine, Id.User < String
op Rd, Dv : — St-mc .

op Th, Gc, wtl, wt2 : — St-user .

endo

e Specification of the Machine and User states

obj Machine is .

protecting MU-state .

sort Machine Msgl Msg2 .

op < st : - > Id.machine St-mc — Machine .
Imported Messages .

op ins : Id.User Id.machine — Msgl .

op push : Id.User Id.machine — Msg2 .

vars m:Id.machine

endo

obj User is

protecting MU-state .

sort User return .

op < _|su: _,mc: _> St-user Id.machine — User.
Imported Messages .

op ret : Id.User — return .

vars u:Id.user

endo

The User Class
Y

ret(u) Ret  ret(u)

ra(ui)
<u | su:wtl, mc: m> w <u | su:wt2, meic>

¢ Ge Th
True
<u | su:th, mc:m>

I-_TI'UE
<u| su:Ge, me:m>
<u|su:Th, mc:m>

<u | su:Gc, me:m>
Psh
I: Insert True
True
<u | su:wtl, me:m> <u | me:m, su:wt2>

ins(u,m The Machine Class push(u,m

User
<u |su:Th, mem >

<L5< |su:Gc,mc:n1( >

<ml|s:Rd>

<m |st:Dv>

<m | st:Dv>

<m|st:Rd>

Figure 6.1: Modeling the VMachine Using CO-Nets
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6.2 Translating Mondel subclasses into CO-Nets

Hereafter we explain how the proposed CO-Net inheritance allows for capturing the
Mondel subtyping-based inheritance. For this aim, we propose to extend our running
vending machine example. We assume that, beside the already specified machine, we
may have a particular machine that before becoming ready it should be initialized.
Moreover, we suppose that such initialization (operation) is possible only if the cor-
responding button is one-line. For capturing this informal description, we propose
to add to the machine type new attribute named signal(shortly, sg), that have to be
initialized by the value one(1), and a new state denoted by init. On the other hand, we
assume that the user may send a message to initialize (shortly, initialize) such (special)
machine. More precisely, this special vending machine can specified with Mondel as follows:

0 unit SVMsystem =

1 type SpMachine = Machine with

2 sg: VAR[integer] 14 type User = object with
3 operation ; 15 m : Machine ;

4 initialize ; 16 newbehaviour;

5 newbehaviour 17  initial ;

6 init 18 where;

7 where 19 procedure initial =

8 Procedure init = 20 m!Initialize ;

9 accept initialize do 21  Thinking ;

10  ifsg =1 then 22 endproc initial ;

11 Ready 23 endunit SpVMsystem

12  endproc init
13 endtype Machine

Following the CO-Nets inheritance principles, this vending machine extended behaviour
can be easily captured as depicted in figure 5. Where the Machine place have to include
now the usual machine states as well as the special machine states. The behaviour of the
usual machine remains unchanged except, as required by the inheritance principle, the
introduction of the AT'S variable(that can take nil or sg : Var as value) in the arcs related
to the Mc place. For capturing the new behaviour in the machine subclass, a new place
associated with the message initialize is constructed with its associated transition. Also, a
new transition in the User class is added that reflect the sent of an initialization.

6.3 Rapid-Prototyping Mondel Specification using
CO-Nets

As pointed out in the introduction, for proving crucial properties of a given specification
using the CO-Nets approach rapid-prototypes can be generated using rewriting techniques
and specifically the current implementation of the Maude language [MOM96]. Here we
restrict ourselves to present the associated rewrite rules that reflect the CO-Nets behaviour
associated with the vending machine system.
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The User Class

v

ret(u) Ret

@ ret(u)
<u|su:wtl mc: m> SC Y | su:St, me:m>

‘ G Y Th
c
St=wt2 or St=wt0
rTrue <u|su:Th, mc:m> Q
User
<uy lsuTh, meim, > <u| su:Gc, mc:m>
<u | su:Gc, me:m> o
<y, |su:Gc,mc:rrL> / <u|mc:m, su:wt2>

<u|su:Th, mc:m>

<u | mc:m, su:init> S Psh
initializ True
True

Insert
True
<u | su:wtl, mc:m> <u|mc:m, su:wt0>
init push(u,m)
. . ni
The Machine and the SpMachine classes
ins(u,m)
SpMc
Ins P -
ins(u, m <m |st:init, sg:1> m | st:init, sg:1> init(u,
ins(u, k) < Dus
) <m | st:Rd, sg:1>
ins(u.m) <m|st:Rd,ATS> |
¢ <m | t:Dv, ATS>
Ac Is Y Ac_ps
E’rue True
<m | st:Dv, ATS> |$: Rd ATS
<m . Rd, >
ret(u) ret(u)

Figure 6.2: Modeling the SpVMachine Using CO-Nets

The User Class

Insert: (User, < u|su:Th,mc:m >)
= (User, < ulsu : wtl,mec: m >) ® (Ins,ins(u,m))

Psh: (User, < ulsu: Ge,me :m >)
= (User, < ulsu : wt2,me : m >) @ (Push, push(u, m))

Gce: (Ret,ret(u)) @ (User, < u|su : wtl,me:m >)
= (User, < u|su : Ge,me : m >)

Th: (Ret,ret(u)) @ (User, < u|su: wt2, me:m >)
= (User, < ulsu : Th,mc:m >)

The Machine Class

Ac-Is: (Ins,ins(u,m)) ® (Mc,< m|St: Rd >)
= (Me, < m|st: Dv >) ® (Ret, ret(u)

Ac-Ps: (Push,push(u,m)) ® (Me, < m|st : Dv >)
= (Mec, < m|st: Rd >) ® (Ret,ret(u)
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For the special Machine depicted in figure 5, the associated rewrite rules can be splitted
in two classes: The rewrite rules that allows the inheritance of the behaviour of the machine
and the rules that specify the new behaviour. The inherited part is captured by the
following two rewrite rules

Ac-Is: (Ins,ins(u,m)) ® (Mc,<m|St: Rd,sg:V >)
= (Mc,< m|st: Dv,sg:V >) ® (Ret,ret(u))’

Ac-Ps: (Push,push(u,m)) ® (Mc,< m|st: Dv,sg:V >)
= (Mc,< m|st: Rd,sg:V >)® (Ret,ret(u))

!Here the AT'S attribute variable is instantiated by sg : V, where V is a variable that can take any
variable of sg.
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Chapter 7

Conclusion

In this paper, we proposed in a more intuitive way the CO-Nets approach as a formal
model for concurrent OO systems. The approach is based on a complete integration of
OO concepts and constructions into the ECATNets model, which is a form of high level
Petri nets combining the strengths of Petri nets with those of abstract data type. Some
key advantages of CO-Nets include: the modelling of simple and multiple inheritance in a
straightforward way; the characterization of two communication patterns for intra-class as
well as inter-class evolution promoting intra- and inter-objects concurrency and preserving
the encapsulation property; the interpretation of the model into rewriting logic which allows
the generation of rapid-prototypes using rewriting techniques and particularly the Maude
language [Mes93].

As a significant case study for the assessment of the adequacy of the proposed model,
for specifying and validating distributed systems in an object-oriented setting, we have
shown how Mondel specifications can be easily and naturally translated into the CO-Nets
framework. Moreover, due to the CO-Nets semantics, some of the Mondel properties can
be verified either through graphical animation or by symbolic deduction using rewriting
techniques. However, on the one hand, we have to investigate in a more detail which
properties are particularly verifiable using these techniques. On the other hand, we plan
to adapt the analysis techniques developed for coloured Petri nets and its object-oriented
extensions developed in [Lak95].

Besides that, we are working for tailoring the CO-Net approach for the specification and
validation of distributed information systems that present more difficulties at the structural
level, which necessitate more advanced structuring mechanisms like the aggregation and
the notion of role, as well as at the behaviour level, where notion of events composition
have to be taken into account.
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