My Yol lil Uil AAdvaliibin L LJdatdabdobs allid AUl iavivilo oy oo (A JU)

September 8-11, 1998, Poznan, Poland, LNCS, Springer-Verlag, Berlin, 1998.

Deriving Relationships between Integrity
Constraints for Schema Comparison

Can Tiirker and Gunter Saake

Otto-von-Guericke-Universitit Magdeburg
Institut fiir Technische und Betriebliche Informationssysteme
Postfach 4120, D-39016 Magdeburg, Germany
{tuerker|saake}@iti.cs.uni-magdeburg.de

Abstract. Schema comparison is essential for integrating different
database schemata. Since the semantics of a schema is also represented
by its integrity constraints, they must be considered by a correct schema
comparison method. Especially the extensional relationships between
classes are determined by the relationship between the corresponding
integrity constraint sets. In this paper, we work out the relationships be-
tween different types of integrity constraints. As a result, we present rules
for comparing integrity constraint sets. These rules can be used after a
schema conforming step, where naming, type and structural conflicts are
solved, to exactly fix the extensional relationship between object classes.

1 Introduction

Schema integration [1] is one of the central issues in logically integrating database
systems [6]. Schema integration aims at deriving an integrated schema which is
a virtual view on all database classes to be integrated. Traditionally, all existing
schema integration methods, e.g. [4,7, 3,2, 5], assume that the database designer
— as integrator — is an expert of the application domain who has complete know-
ledge about the semantics of the schemata to be integrated. Thus, the database
designer should be able to exactly define the extensional relationship between
two classes of different schemata in the schema comparison step. Obviously, this
is a very hard task for the database designer.

A key point which is not regarded by the existing integration approaches is
the correspondence between integrity constraints and extensional relationships.
In case a schema captures all relevant integrity constraints occurring in the mod-
eled real world, the extensional relationships between the classes are completely
determined by the corresponding integrity constraints defined on these classes.
Thus, our idea is to exploit the relationship between the integrity constraints of
two classes to derive the correct extensional relationship between these classes.

In this paper, we work out the problem of relating different sets of in-
tegrity constraints. This issue is essential for comparing two classes of different
schemata correctly. However, the comparison of arbitrary constraints is undecid-
able. Hence, we restrict ourselves to a certain set of constraint types. For these
types we provide rules for computing the relationship between two integrity con-
straints. These rules can be used to extend existing schema comparison methods.

The paper is organized as follows: Section 2 investigates rules for comparing
integrity constraint sets. The application of these rules is presented in Section 3.
Finally, a short outlook on future work concludes the paper.

2 Relationships between Integrity Constraint Sets

Definition 1. A set of object integrity constraints TC restricts the set of possible
objects, i.e. the database universe i/, to the semantically correct objects 4%€. In
the sequel, we use the term integrity constraint set to refer to such a set. From
a logical point of view, an integrity constraint set corresponds to a conjunction
of integrity constraints. An integrity constraint itself is a formula. |

Objects with similar properties can be grouped into classes, i.e., classes are sub-
sets of the database universe. The integrity constraint set of a class C', denoted as
IC¢, defines the semantically correct objects of that class. Additionally, we also
consider uniqueness constraints which describes correct sets of database states.

Definition 2. Two constraints ICy and IC> defined on the same variables (at-
tributes) are called directly related by one the following relationships:

IC, @ IC, & U NUC: =

IC; = IC, & UM =1

IC, D IC, & UIC c Y1

IC, M IC, & =((IC, @ ICy)V (IC, = ICy) V (IC, C IC,) Vv (ICy D ICy))

Two constraints defined on different variables can be transitively related if there
is another constraint defined on both variables. Two constraints are called un-
related (ICy U ICy) if they are neither directly nor transitively related. O

In order to relate integrity constraint sets to each other, implicit constraints
must be considered. The following example illustrates the application of implicit
constraints. Let there be two integrity constraint sets given as follows:

IC ={(x<y),(y<2)}
70, = {(x < 2)}

Comparing each pair of constraints of the given sets, results that these sets must
be unrelated. However, since the conjunction of (x < y) and (y < z) implies
(x < z), we can derive that ZC; D ZC, holds. For our following considerations
we use the notion of extended integrity constraint set to denote an integrity
constraint set capturing all its implicit constraints. Since the implication problem
is not decidable for general constraints, we restrict our considerations to the
following types of constraints’:

C1: X1 0C1

! We are aware of that there are other types of constraints which also decidable.
However, this issue is not focused in this paper.

C2Z X1 0 X2
C3: unique(xy, ..., Xy)
C4: C; = C;,where C; and C; are constraints of type C1 or C2

The symbol 8§ € {<,<,=,#, >, >} stands for a comparison operator, x1, ..., X,
are variables (attributes), and c; is a constant.

Relationships between C1-Constraints. A Cl-constraint restricts the possible val-
ues of exactly one attribute. Obviously, when we compare two C1l-constraints, the
resulting relationship between such two constraints depends on the respective
comparison operators and constants:

(X1 o1 C1) A (X2 0o C2) /\(C1(93C2) = (ICl on ICQ)
—_——— S —

101 102

The comparison operators 8; and 6 are in {<, <,=,#, >, >}, whereas the con-
stant relationship operator 03 is in {<,=,>}. Thus, there are 108 (6 x 6 x 3)
possible combinations (for the antecedent of the implication). Fig. 1 summarizes
the rules for computing the relationship @, (€ {@,D,=,C,M}) between two
given Cl-constraints. The symbol ¥ stands for one of the comparison operators
{<,<,=,#,>,>}. The tenth row states that two Cl-constraints are equivalent
if and only if they have the same comparison operators and constants. In Fig. 1,

| (x1 61 c1) A (x2 02 c2) A (c1 03 c2) = (IC1 B4 IC,) |

L 6 | 6 | 6 [6. |

<, <,= =2>,> < %]
< =2,> = a

< > = (%]

= <, #,> = g
= <,s= > a
<, <,= <, <, # < D
< < # = >

= 512 =)
= #,2>,> >)

9 o = =
<, < <, <,= > C
< , = = C
<, < #,>,> > M
< #,> = m

Fig. 1. Rules for Computing Relationships between C1-Constraints

we have only listed the rules for the combinations where at least one comparison
operator is in {<, <, =}. Based on these rules we can also derive relationships be-
tween constraints basing on the “complement” comparison operators {>, >, #}.

For that, we first have to build the complement constraints, i.e. change the
comparison operators by their complements (< for >, < for >, and = for #).
Then, we compute the relationship for the complement constraints according to
the rules depicted in Fig. 1. Finally, the result is “reversed” using the following

complement rules for relationships: (& «w M), (D ew C), (= &w =).

Relationships between C2-Constraints. Similar to Cl-constraints, rules can be
derived for computing relationships between C2-constraints. Two C2-constraints
are directly related if they are defined on the same variables. The relationship
type is determined by the corresponding comparison operators, e.g. the con-
straint (x > y) implies the constraint (x > y):

(x01y) A(xb2y) = (IC1 O3 1Cy)
—_—— N —
1Ch ICo

The comparison operators 6; and 6 are in {<,<,=,#,>,>}. Fig. 2(a) sum-
marizes the rules for computing @3 (€ {@,D,=, C,M}) between C2-constraints.
The symbol ¥ stands for one of possible comparison operators. Analogously to
Fig. 1, Fig. 2(a) contains only the rules for the operators {<, <,=}. Fig. 2(b)
presents rules to derive an implicit C2-constraint from two C2-constraints:

(x01y) A (yb22) = (x052)

The comparison operators 61, 82, and 85 are in {<, <,=,#,>,>}, whereas x, y
and z are variables (attributes). Please note that these rules also hold when z is
a constant. In this case, we derive an implicit Cl-constraint from a pair of (C2,
C1)-constraints. Example 1 illustrates this fact.

| (01 y) AN(x 62 y) = (IC1 O3 IC>) | | (x01y)A(yB22) = (x03 z) |

o [o [&] [&6 [& T & |
< =2,> % < << <
< >] << < <
= <, #> z < < <
< < # > = v 4
9 9 = > > >
< <, = C > >, > >
< #, > m >, > > >

Fig. 2. Rules for (a) C2-Constraints and (b) Implicit C2-Constraints

Example 1. Suppose that the following integrity constraint sets are given:

IC = {(x<y)}
ICy ={(x 2y)}
According to the last rule in Fig. 2, ZC1 and ZC» are overlapping. O

Example 2. Assume that the following integrity constraint sets are given:

IC = {(x>y),(y > 4)}
ICy ={(x>2)}
IC; = {(x>y),(y > 2)}
ICy ={(x>2)}

According to the last but one rule in Fig. 2(b), the constraints (x > y) and (y > 4)
imply (x > 4). Since (x > 4) implies (x > 2), we can state that ZCy D ZC» holds
(cf. Fig. 1). Using rule six in Fig. 2(b) we can derive (x > z) from the constraints
(x >y) and (y > z). Since the constraint (x > z) implies the constraint (x > z),
we may reason that ZC3 M ZC4 holds (cf. Fig. 2(a)). O

Relationships between C3-Constraints. A uniqueness constraint (type C3) is de-
fined on a set of attributes. The effect of a uniqueness constraint is that the
values of the respective attribute combinations must be unique. The following
theorem defines the relationships between two uniqueness constraints depending
on the corresponding attribute sets.

Theorem 1 (Relationships between Uniqueness Constraints). Let x and
y be two sets of attributes. Then the following rules hold:

(unique(x) = unique(y)) iff (x=1y)
(unique(x) D unique(y)) iff (x Cy)

From (semantically) overlapping or disjoint attribute sets we can only reason
that the respective uniqueness constraints overlap. |

Proof. A uniqueness constraint unique(xy, ...,X;) can be expressed as follows:
(V01,02 € U(Ol.Xl = 09.X1 A\ ... N 01.Xy, = 09.X;, = 01 = 02))

Such a formula is weakened by strengthen the antecedent of the implication. This
can be done by considering further attributes, i.e., by adding further terms to the
conjunction on the antecedent of the implication. In consequence, a uniqueness
constraints is stronger than another uniqueness constraint if it is defined on a
subset of the attributes of the other one. Considering this fact in both directions,
we can derive that two uniqueness constraints are equivalent if and only if they
are formulated over the same set of attributes.

In case the attribute sets are overlapping or disjoint, the antecedents of both
implications contain attributes which occur only in one of the respective for-
mulas. Thus, the antecedents are not comparable and we have to conclude that
such kinds of uniqueness constraints are overlapping. |

Example 3. Let there be a class Employee with the attributes ssn, name, salary,
and address. If a constraint unique(ssn) hold on class Employee, then the con-
straint unique(ssn, name, salary) must also hold on this class. In this case, the

latter constraint is a specialization of the former one. On the other hand, the con-
straints unique(ssn) and unique(name,salary) overlap since the set of employee
objects restricted by these constraints are overlapping. The same argument holds
for the constraints unique(ssn, name) and unique(name, salary). m|

Relationships between C4-Constraints. The relationship between C4-constraints
is determined by the relationships between the antecedents and consequents
of the implications. Let there be two C4-constraints IC; and ICs of the form
(X1 = Y1) and (X3 = Y»), respectively, where X1, X2, Y1, and Y2 are constraints
of type C1 or C2. Then, we can derive rules of the following form to compute
the relationship between C4-constraints:

(X1 eh Xg) A (Y1 O, Y2) = (ICl @3 ICQ)

The most combinations of ©; and @, result in an | 61 | 02 || O3 |
overlap relationship between ICy; and IC5. The ta- = = =
ble beside summarizes the combinations which lead = D D
to another relationship than overlap. We omit the - =D D
proofs of these rules. Instead, we present an example O | = C
to demonstrate some of these rules. = C C

Example 4. Let there be the following integrity constraints sets:

ZCy = {(salary > 10000) = (age > 35)}
ICy = {(salary < 5000) = (age < 25)}
IC3 = {(salary < 2000) = (age < 40)}

From the rules above follows that ZC; M ZC2 hold (because the antecedents as
well as the consequents of the implications are “disjoint”). For example, a forty
year old employee with a salary of 2000 is conform to ZCy, but not to ZCs. On
the other hand, a twenty year old employee with a salary of 30000 is conform to
7ZC>, but not to ZCy. However, there are employees which are conform to both
integrity constraints, e.g. a fifty year old employee with a salary of 15000.
Comparing ZC» with ZC3 lead to a superset relationship ZC2 D ZC3 (see the
third rule in table above where the antecedents are in a subset relationship and
the consequents are in a subset relationship). That is, the integrity constraint ZCs
is more restrictive than ZCs. For instance, ZC3 allows thirty year old employees
with a salary of 4000, whereas ZC2 does not. O

Relationships between Different Types of Constraints. Up to now, we have dis-
cussed relationships between constraints of the same type. We worked out a set
of rules for computing the corresponding relationships. Investigating relation-
ships between constraints of different types, we come to the conclusion that, as
a rule, the only possible relationship is overlap. We will not formally prove this
fact. Instead, we present some examples for illustration.

Ezample 5. Suppose, there are the following integrity constraint sets given:

ZCq = {(salary > 2000)}

ICo = {(salary > bonus)}

ZC3 = {unique(salary)}

IC4 = {(salary > 2000 = bonus < 1000)}

Comparing the sets of possible objects restricted by the constraints ZC; and ZCa,
we see that ZC; allows employees to have an arbitrary value for the attribute
bonus — since there is no restriction on this attribute. Thus, an employee may
have a “fixed” salary higher than 2000 and bonus “salary” higher than 1000. Such
a value combination is forbidden by the constraint ZC,. However, this constraint
allows employees to have a salary less than 2000. Since both constraints also allow
same value combinations for salary and bonus, e.g. (salary=3000, bonus=500), we
can state that these constraints are overlapping.

When we compare the constraints ZC; and ZC3, we obtain the result that 7Cy
allows two employees with the same salary (which must be higher than 2000),
whereas this is forbidden by ZC3. On the other hand, ZC3 allows employees to
have a salary less than 2000. Since both constraints also allow same values for
the attribute salary, we derive that these constraints are overlapping.

Finally, let us have a closer look at the relationship between the constraints
ICy and ZC4. The constraint ZCo states that the “fixed” salary of an em-
ployee have to be higher than his bonus “salary”. Hence, an employee may
have a “fixed” salary higher than 2000 and bonus “salary” higher than 1000, e.g.
(salary=5000, bonus=2500). Such an attribute value combination is forbidden by
the integrity constraint ZC4. However, the constraint ZC4 allows employees to
have a bonus “salary” which higher than their “fixed” salary, if the “fixed” salary
is less than 2000, e.g. (salary=1000, bonus=2500). Since both constraints also al-
low same attribute value combinations for salary and bonus, e.g. (salary=3000,
bonus=500), we can state that these constraints are overlapping. O

In contrast, when we consider integrity constraint sets containing at least two
constraints, further relationships are possible. Sometimes, it is possible to derive
an implicit constraint of type C2 from two constraints of type C1. In the following,
we investigate the relation between a set of two constraints of type C1l and a
constraint of type C2. We start with an illustrating example.

Ezample 6. Let there be the following integrity constraint sets:

ZCy = {(salary > 2000), (bonus < 1000)}
ZCy = {(salary > bonus)}

The first integrity constraint set states that all employees must have a “fixed”
salary higher than 2000 and a bonus “salary” which does not exceed 1000. The
second integrity constraint set says that the “fixed” salary of each employee
must be higher than his bonus “salary”. Obviously, the latter constraint is also

implicitly expressed by the conjunction of the two constraints of IC;. Thus, we
can state that ZC; is stronger than ZCs, i.e. that ZC; D ZC» holds. O

Motivated by the example above, we have analyzed all combinations of compar-
ison operators and constant relationships (of two Cl-constraints). As a result,
we found a set rules of the form

(x01¢c1) A (yB2¢2) A(c103¢2) = (xbay)

to derive an implicit C2-constraint from two Cl-constraints. We have to point out
that not all combinations of the comparison operators 61, 0>, and 63 lead to an
implicit C2-constraint. Fig. 3 depicts the combinations which lead to an implicit
constraint. Furthermore, there are some cases where a relationship between an

| (xB1c1) A(yB2c2) A(c163¢c2) = (x0ay) |

[6 [6 [6 [6. |
< =,>,> <,= <
<,= =>,> < <
<= > = <
< => = <
= > = <
= 7z = 7z
= < = >
= 5= > >
= < = >

Fig. 3. Rules for Deriving Implicit C2-Constraints

integrity constraint set with (at least) two constraints of type C1 (or C2) and
a C4-constraint exists. An C4-constraint (x = y) can be expressed as (—x V y).
Since we know that generally

(101 /\ICz) = (101 VICz)

holds, we can derive the following rules for computing relationships between
an integrity constraint set ZC; with two constraints x; and y; and an integrity
constant set ZCo with an C4-constraint of the form (xo = y,):

(ZIC1 D IC3) & (x1 O1%2) A (y1 O2Y,), ©1,02 € {=,C}

All other combinations of ©; and @, lead to an overlap relationship between
IC 1 and ICQ

Ezample 7. Suppose the following two integrity constraint sets are given:

ZCy = {(salary > 2000), (bonus < 1000)}
ZC, = {(salary < 2000) = (bonus < 1000)}

Then, we can state that ZC; D ZC» holds, since ZC; implies ZC. O

Deriving Relationships between Integrity Constraint Sets. Up to now, our dis-
cussion was restricted to single integrity constraints or integrity constraint sets
with specific constraint types. In the following, we extend our considerations
to general integrity constraint sets which may contain constraints of different
types. The following theorem provides the rules for computing the relationship
between two general integrity constraint sets.

Theorem 2 (Relationship between Integrity Constraint Sets). For two
extended integrity constraint sets ZC; and ZC5 the following rules hold:

(ZC1 WICy) :& (VICh; € IC1(AICy; € IC2(ICH; ¥ ICs;), ¥ € {@,=,C,D,M})

(IC, B ICy) :& (3ICy; € IC1(3ICy; € TCo((IC; @ ICy;))))

(ICy = ICy) & ((VICy; € IC1(AICy; € ICo((ICy; = ICy;))) A

(VICs; € IC2(3ICh; € IC1((ICh; = ICy;5))))

(ZC1 D ICy) & (VICy; € IC2(3IC; € IC1((IC1; = ICy;) V (ICy; D ICs5))) A

(3ICy; € ICH(3IC; € IC1((IC1; D IC5))))

(ICy MICs) e ~((IC1 WICs) V (IC, @ ICo) V (ZC1 = ICo) V (ICy C ICs) V
(ICy D ICs))

Please note that IC' D true always holds, if a corresponding related constraint
does not exist in the other integrity constraint set. O

Proof. In the following, we exemplary prove the “disjoint” rule. Since the proofs
of the other rules can be shown analogously, we omit the proof of these rules in
order to keep the paper concise.

The integrity constraint sets ZC; and ZC2 can be represented as a conjunction
of logical formulas where each term corresponds to an integrity constraint:

IC1 > IC11 N ... NIC1p
ICy — ICy A ... N ICoyy,

Since we assume that each integrity constraint set is consistent, the conjunction
of the logical representation of the integrity constraint sets implies false if and
only if there exists at least one pair of terms whose conjunction implies false:

((IC11 A . ANIC1) A (IC91 A ... N1ICsyy,) = false)
& (AIC1;(AIC;(ICy; A ICy; = false)))
& (3ICy; € IC1(3ICy; € IC2((IC; @ IC3;))))
& (IC1 @ IC,)

Thus, we can conclude that the disjointness of two integrity constraints implies
the disjointness of the corresponding integrity constraint sets. O

Theorem 3. The relationship between integrity constraint sets containing con-
straints of type C1, C2, C3, and/or C4 is computable in polynomial time. O

Proof. The rules can be realized by an algorithm consisting of two loops where
each pair of constraints of the different sets are compared. Let the cardinality
of the integrity constraints sets be n and m, respectively. Then, the cardinality
of the extended integrity constraint sets is n2 and m?, respectively, in the worst
case (for our constraint types). Hence, at most n? x m? comparison operations
are needed to determine the relationship between integrity constraint sets. O

3 Comparing Classes of Different Schemata

Suppose, the following three example schemata are given:

__SchemaDept Schema Dep2 ___Schema Dep3
(Employee (Employee (Employee
‘| name ‘| name '| name 3
age || age i age
ssn 3 1| ssn 3 || ssn
salary ! 1| salary ! 1| salary
|| unique(ssn) | || unique(ssn) | H unique(ssn)
\age>16 /! i| age>18 3 ' age>25

L t salary > 2000 i | t salary > 5000 i
(" Manager ‘[Manager !

bonus bonus

age > 35 | (age > 35)=> ;
1| salary >7000 |: i _ (bonus < 1000)) !
bonus < 1000)

In the sequel, we relate the classes of these schemata using the rules previously
introduced. First, we derive the integrity constraint sets of all classes existing in
the three example schemata:

ICDepl.Emp = {unique(ssn), (age > 16)}

ICpep2.Emp = {unique(ssn), (age > 18), (salary > 2000)}

ICDep2.Mng = {unique(ssn), (age > 35), (salary > 7000), (bonus < 1000)}

ICDep3.Emp = {unique(ssn), (age > 25), (salary > 5000)}

ICDep3.Mng = {unique(ssn), (age > 25), (salary > 5000),

(age > 35) = (bonus < 1000)}

By definition of the class specialization concept the following relationships holds:

ICDep2.Emp C IC'Dep2.Mng
ICDepS.Emp C ICDep3.Mng

Comparing the integrity constraint sets of the employee classes leads to:

ZCDepl.Emp C ICDepQ.Emp
ICDepl.Emp c ICDep3.Emp
ZCDep2.Emp C ICDep3.Emp

Below we exemplary sketch the derivation of the first relationship above:

1. Take the first integrity constraint in ZC Depl.Emp and search for a related
constraint in ZC Dep2.Emp- Since the constraint unique(ssn) is in both in-
tegrity constraints sets, notice that there is an equivalent constraint:

unique(ssn) = unique(ssn)

2. When we apply the same procedure on the second constraint of ZC Depl.Emp
we obtain the following relationship:

(age > 16) C (age > 18)

3. Since for all constraints in ZC Depl.Emp there exists a related constraint in
Ic Dep2.Emp which is equivalent or stronger, we can derive according to
Theorem 2 the following relationship for the given integrity constraint sets:

ICDepl.Emp c ICDep2.Emp

In summary, we imply that class Employee of schema Depl is a superclass of class
Employee of schema Dep2. The class Employee of schema Dep2, on the other hand,
is a superclass of class Employee of schema Dep3. Thus, class Employee of schema
Depl is transitively a superclass of class Employee of schema Dep3.

Comparing the integrity constraint sets of the manager classes, we obtain the

relationship ICDepZ.Mng D ICDep3.Mng:

unique(ssn) = unique(ssn)
(age > 35) D (age > 25)
(salary > 7000) D (salary > 5000)
(bonus < 1000) D true
{(age > 35), (bonus < 1000)} D {(age > 35) = (bonus < 1000)}

For the first relationship see Theorem 1. The second and third relationships are
derived using the negated result of rule 11 in Fig. 1. The fourth relationship
is given by definition. The fifth relationship is computed by the rule given at
Page 8 (see also Example 7). From the relationship ZCDep2.Mng D ICDep3.Mng
immediately follows that the class Manager of schema Dep?2 is a subclass of the
class Manager of schema Dep3. In consequence, the class Manager of schema

Dep? is transitively a subclass of the other classes. In conclusion, the extensional
relationships among the classes of the example schemata are as follows:

Depl.Emp D Dep2.Emp D Dep3.Emp D Dep3.Mng D Dep2.Mng

These extensional relationships hold if all extensional restrictions are expressed
by integrity constraints. Since extensional relationships are used as basic input
information for a schema integration algorithm, we can state that the quality of
the integrated schema (which should be conform to the modeled real world) also
depends on the quality of the result of the schema comparison.

4 Conclusions

In this paper, we worked out the correspondence between integrity constraints as
foundation for semantic schema comparison. We pointed out the relevance of a
correct schema comparison as basis for a semantically correct schema integration.
In particular, we have presented rules for computing the relationship between
integrity constraint sets consisting certain types of constraints. These rules can
be used to derive extensional relationships between classes of different schemata.

Currently, we are investigating how far rules for relating complex integrity
constraints can be derived. There are also relationships between aggregation
constraints and other types of integrity constraints. For instance, from the con-
straint (salary > 2000) we can derive the constraint (avg(salary) > 2000). In this
case, the first constraint implies the second one.

Acknowledgments: We thank Kerstin Schwarz for useful hints. This work was partly
supported by the German Federal State Sachsen-Anhalt under FKZ 1987/2527R.

References

1. C. Batini, M. Lenzerini, S. B. Navathe. A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys, 18(4):323-364, 1986.

2. Y. Dupont, S. Spaccapietra. Schema Integration Engineering in Cooperative
Databases Systems. In [8], pp. 759-765.

3. M. Garcia-Solaco, M. Castellanos, F. Saltor. A Semantic-Discriminated Approach
to Integration in Federated Databases. In S. Laufmann, S. Spaccapietra, T. Yokoi
(eds.), Proc. CoopIS’95, pp. 19-31, 1995.

4. S. B. Navathe, R. Elmasri, J. A. Larson. Integrating User Views in Database Design.
IEEE Computer, 19(1):50-62, 1986.

5. I. Schmitt, G. Saake. Schema Integration and View Generation by Resolving Inten-
sional and Extensional Overlappings. In [8], pp. 751-758.

6. A. P. Sheth, J. A. Larson. Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Computing Surveys, 22(3):183—
236, 1990.

7. S. Spaccapietra, C. Parent, Y. Dupont. Model Independent Assertions for Integra-
tion of Heterogeneous Schemas. The VLDB Journal, 1(1):81-126, 1992.

8. K. Yetongnon, S. Hariri (eds.). Proc. 9th ISCA Int. Conf. on Parallel and Dis-
tributed Computing Systems, PDCS’96, International Society for Computers and
Their Application, Six Forks Road, Releigh, NC, 1996.

