DYyH1posiuill Ol AdvallCes 11 LJatabascs alld 11I011H1atloll Jystellls | AUJD1o J0),
September 8-11, 1998, Poznan, Poland, LNCS, Springer-Verlag, Berlin, 1998.

Extending Transaction Closures by N-ary
Termination Dependencies

Kerstin Schwarz, Can Tiirker, and Gunter Saake

Otto-von-Guericke-Universitit Magdeburg
Institut fiir Technische und Betriebliche Informationssysteme
Postfach 4120, D-39016 Magdeburg, Germany
{schwarz|tuerker|saake}Qiti.cs.uni-magdeburg.de

Abstract. Transaction dependencies have been recognized as a valuable
method in describing restrictions on the executions of sets of transac-
tions. A transaction closure is a generalized transaction structure consist-
ing of a set of related transactions which are connected by special depen-
dencies. Traditionally, relationships between transactions are formulated
by binary dependencies. However, there are applications scenarios where
dependencies must be specified among more than two transactions. Since
n-ary dependencies cannot be expressed by binary dependencies, appro-
priate extensions are required. In this paper, we extend the concept of
transaction closure by ternary termination dependencies. We show how
n-ary termination dependencies can be expressed by binary and ternary
termination dependencies. As a result, we present rules for reasoning
about the combination of these termination dependencies.

1 Introduction

The concept of transaction closure [10] provides a uniform framework for de-
scribing advanced transactions and activities. A transaction closure consists of a
set of related transactions which are connected by dependencies. By using special
dependencies we are able to model classical nested transactions as well as activ-
ities where a transaction may survive the termination of its parent transaction.
This is needed for example in models for long-during activities [4, 9], workflows
[6], or transactions in active databases [7,2]. The concept of transaction closure
enables us to model such advanced applications in a modular way.

Transaction dependencies have been recognized as a valuable method in de-
scribing certain restrictions on the executions of sets of transactions [1,12]. In [11]
we have introduced different kinds of binary dependencies. We distinguished be-
tween termination, object visibility, and execution dependencies. However, there
are application scenarios which cannot be modeled by only binary dependen-
cies. This is due to the fact that in general n-ary dependencies which describe
relationships among more than two transactions cannot be expressed by a set

This research was partly supported by the German State Sachsen-Anhalt under FKZ
1987A /0025 and 1987/2527R.

of binary dependencies. For instance, the fact that a transaction ¢; has to be
aborted in case two other transactions ¢; and t; abort can only be expressed by
a ternary dependency.

In this paper, we concentrate on termination dependencies and extend our
framework by n-ary termination dependencies. First, we investigate n-ary re-
lationships among transactions and define a set of ternary dependencies. We
show that each kind of n-ary dependency can be expressed by a combination
of binary and ternary dependencies. Since ternary dependencies may be influ-
enced by other ternary or binary dependencies defined on the same (sub)set of
transactions, we have to analyze the connection between binary and ternary de-
pendencies. Some of these dependency combinations are valid and reasonable;
others are incompatible in the sense that the ternary dependency is relaxed by
the binary dependencies. As a result, we derive rules for reasoning about the
combination of two dependencies. Using these rules we are able to state how two
or more transactions are interrelated.

The paper is organized as follows: Sect. 2 provides the basic notions whereas
Sect. 3 introduces ternary termination dependencies. In Sect. 4, we show how
n-ary termination dependencies can be expressed by binary and ternary depen-
dencies. In Sect. 5, the ternary dependencies among three transactions are com-
bined with binary termination dependencies between pairs of the corresponding
transactions. An example scenario of a transaction closure containing binary and
ternary dependencies is considered in Sect. 6.

2 Foundations

Traditionally, a transaction is an execution unit consisting of a set of database
operations. A transaction ¢; is started by invoking the primitive begin (b;,) and is
terminated by either commit (c;,) or abort (at,). These primitives are termed as
significant events [3]. A transaction invokes operations, termed as object events,
to access and manipulate the state of database objects. A history of a concurrent
execution of a set of transactions T' comprises all events associated with the
transactions in T and indicates the (partial) order in which these events occur.
The complete history contains only terminated transactions and is denoted as
H, the current (incomplete) history is termed as Hy;.

A set of transactions with dependencies among them can be considered as
transaction closure [10,11]. The concept of transaction closure is a generalization
of the well-known concept of nested transactions [8]. Each transaction closure
consist of a set of transactions. Exactly one of these transactions is denoted as
root transaction. A root transaction is a transaction which has no parent. Each
non-root transaction has exactly one parent and its initiation must follow the
initiation of the parent. Each transaction closure is acyclic. The effects of transac-
tions on other transactions are described by dependencies which are constraints
on possible histories. We distinguish between termination, object visibility, and
ezecution dependencies.

Constraints on the occurrence of the significant termination events commit
and abort leads to different termination dependencies. In case of two transactions
t; and t; there are four possible combinations of termination events:

(1) both transactions abort (ay;, as;),
(2/3) one transaction commits whereas the other one aborts (ay,, c;)/ (¢, a;),
(4) both transactions commit (c;, ct;).

These termination event combinations may be valid in any order (denoted by
V') or are not valid (denoted by —). As depicted in Table 1, we identify five
dependencies as reasonable according to real-world application semantics. The
termination dependency between ¢; and t; is called vital-dependent, denoted as
vital_dep(t;, t;), if the transactions are abort-dependent on each other. That is,
the abort of transaction ¢; leads to the abort of ¢; and vice versa. Thus, either the
transactions commit together or both abort. The vital-dependent dependency is
(as the name suggests) a combination of the dependencies vital and dependent.
The vital dependency between two transactions ¢; and t;, denoted as vital(¢;,t;),
concerns the case where the abort of transaction ¢; leads to the abort of ;.
In contrast, a dependent transaction t; has to abort if ¢; aborts. This fact is
defined as dep(t;, t;). Two transactions are called ezclusive dependent on each
other, denoted as exc(t;,t;), if only one of the transactions is allowed to finish
successfully. Our fifth dependency concerns the case where each combination of
transaction termination events is valid. Therefore, the involved transactions %;
and ¢; are called independent, denoted as indep(t;,t;). For a formal definition of
the termination dependencies and more detail information see [11].

[ti [t; [Jvital dep(ti, t;)]vital(ti, t;)|dep(ts, t;)]exc(ti, t;)]indep(ts, ;)]
at; atj \/ \/ \/ \/ \/
Qt; Ct]- — — v v v
Ct; agj — \/ — \/ \/
Ct; |Ct; v v v — v

Table 1. Termination Dependencies between two Transactions ¢; and t;

3 Ternary Termination Dependencies

Relations between activities refer to dependencies between transactions of a
transaction closures. In [11] we defined different binary transaction termination
dependencies such as vital, dependent, vital-dependent, exclusive, and indepen-
dent. Obviously, we cannot express all possible kinds of relations among trans-
actions using only binary dependencies as illustrated by the following example.

Ezample 1. Assume, we want to book a room in one of the hotels Hilton and
Maritim, respectively, and hire a car. Booking a room in the Hilton hotel is
realized by transaction ¢; and in the Maritim hotel by transaction ¢;. Hiring a

car is represented by transaction tj. In case we cannot book a room in one of
the hotels (both ¢; and t; abort), we do not need to hire a car (abort of t).
An attempt to model this situation by binary dependencies may be first to
cancel the hiring of the car in case a room in the Hilton hotel is not available and
second to cancel the hiring of the car if we cannot book a room in the Maritim
hotel. This is equivalent to the dependencies vital(t;, tx) and vital(t;, tx,). How-
ever, this specification would lead to an abortion of the car hiring (transaction
tr) in case either ¢; or t; aborts (which means that one room cannot be booked).
Consequently, a car can only be rent in case a room in both hotels is booked.
This contradicts the intended semantics of the example scenario. O

Thus, statements such as “if both transactions t; and t; aborts, then transaction
tx has to abort, too” corresponds to the following formulas' which cannot be
expressed by binary dependencies:

((ati A atj) = atk) = (a’ti = (a’tj = a’tk)) (1)

Therefore, we have to extend our framework by ternary termination dependen-
cies. Formula (1) forces the abort of transaction tj in case both transactions t;
and t; abort. However, the abort of ¢, may also be the consequence of the commit
of one the transactions ¢; and ¢;. We define the following ternary dependencies:

Definition 1 (Vital). The predicate vital(t;,t;,ty) is true if and only if trans-
action ti, has to abort in case both transactions t; and t; abort:

vital(ti, tj,tx) & (ay; Nag;) = ayg,
Definition 2 (Dependent). The predicate dep(ti,t;,tr) is true if and only if
transaction t; has to abort in case transaction t; commits and transaction t;
aborts:

dep(ti7tj7tk) = (cti A atj) = Qy,

Definition 3 (Exclusive). The predicate exc(t;,t;,ty) is true if and only if
transaction ty has to abort in case both transactions t; and t; commit:

exc(ti, tj, tr) =& (cy; Ney;) = ag,

vital (ti,tj,tk) dep (t;,tj.ty) exc (t;,tj.ty)

! For improving the readability we simplify the predicate (a:; € H) to (as;). This is
also done for the other transactions and termination events.

Table 2 illustrates the termination events of the transactions t;, t;, and t;. The
dependencies introduced so far disallow exactly one termination event combina-
tion. Ternary vital dependencies disallow the cases where two transactions abort
and one commits, e.g. vital(t;,t;,t;) disallows that t; and ¢; abort whereas t;
commits. Ternary dependent transactions disallow a case where two transactions
commit and one aborts. In contrast, ternary exclusive dependencies disallow the
case where all related transactions commit.

Theorem 1. The following relationships immediately follows from the Defini-
tions 1 to 8 (Therefore, we omit the (trivial) proofs):

vital(t,-, tj, tk) = vital(tj, t;, tk) (2)
dep(ti7 tj7 tk) = dep(tk7 tj: tz) (3)
exc(ti,tj, ty) = exc(ti, tr, t;) = exc(ty,ti,t;) 4)

A binary dependency between ¢; and ¢; either disallows no (indep(t;,t;)), two or
four (vital_dep(t;,t;)) termination event combinations among three transactions
t;, t;, and t. In contrast, an arbitrary termination event combination can be
disallowed using the introduced ternary dependencies. Thus, this set of ternary
dependencies is minimal. All other kinds of dependencies among three trans-
actions can be expressed by combinations of ternary and binary dependencies.

At; |Qt; |At; |Qt; [Ct; |Ct; | Ct; |Ct;

atj atj Ctj Ctj atj atj Ctj Ctj

Qty, [Cty, |ty |Cty, |ty |Cty | Oty |Ciy,
vital(ti, t5,)|V |—| v |V |V |V |V |V
vital(ti, te,)|V |V | — |V |V |V |V |V
vital(tr, b, 6|V |V |V |V |— |V |V |V
dep(ti,tj tr) |V |V |V |V |V |—|V |V
dep(tj,tirtr) ||V |V |V | —|V |V |V |V
dep(ti tirty) ||V |V |V |V |V |V | —|V
exc(ti,tj,tp) ||V |V |V |V |V |V |V |—

Table 2. Termination Event Combinations of Ternary Termination Dependencies

4 N-ary Termination Dependencies

Additionally to binary and ternary dependencies, there may be relationships
among more than three transactions. Such n-ary dependencies can be expressed
by binary and ternary dependencies. This is done by decomposing an n-ary
dependency into a set of binary and ternary dependencies which are connected
by so-called dummy-transactions. For example, the 5-ary dependency

vital(ti, 5, te, ti, tm) © ((a; Aag; Aag, Aag) = ay,,)

can be expressed by the following ternary dependencies including the dummy
transactions t, and t;:

(ati A atj) & ag,
(at,c A at,) & Qg
(ata A atb) = ag,,

An equivalence expression can be transformed into a conjunction of binary and
ternary dependencies as follows:

((ag; Nag;) & ag,) = ((a; Aagy) = ag,) A (az, = (ag; Aag;)))
= ((ag; Nag;) = ag,) A (ag, = ag;) Aag, = ay;))

~ A N 7\ v

~~

vital (ti,tj,ta) vital(ta,ti) vital(tq,t;)

Analogously, the second equivalence is transformed into a set of binary and
ternary dependencies among the transactions tx, t;, and t:

((atk A atz) < a'tb) = ((atk N atl) = atb) A (atb = (a’tk A atl)))
((atk A atl) = atb) A (atb = atk) A (atb = atl))

- - s - i

’U‘ital(tk,tl,tb) vital(tb,tk) vital(tb,tl)

In summary, the 5-ary dependency and its equivalent representation with only
ternary and binary dependencies is illustrated below. A binary dependency like
vital(tq,t;) is represented by an arrow from ¢, to t;:

The method of decomposition can also be used for ternary dependent and exclu-
sive dependencies. Rules for reasoning about the transitive relationship between
two arbitrary transactions of a transaction closure can be generated considering
the introduced termination dependencies. In case of n-ary dependencies, we have
to consider the combination and transitive relation of each type of n-ary depen-
dency. However, this is too complex. N-ary dependencies are easier to handle
when they are mapped onto binary and ternary dependencies.

The following example illustrates the decomposition of a 4-ary dependency
which contains a disjunction of events on the right-hand side of the implication:

((ati N Cltj) = (atm Vatn)) = (Ct,- \Y Ct; \Y ag,. Vatn) = (((lti N ag; N Ctm) = atn)

~ >

vital (t; st stk Jtm)

The resulting expression ((a¢; Aag; Act,,) = ay,) can be decomposed to a ternary
dependency involving the dummy transaction t,:

(ag; Nag;) € ag,
(at, Net,,) = ay,

Using the method described above, each n-ary dependency can be decomposed
into a set of binary and ternary dependencies with dummy transactions.

5 Combining Binary and Ternary Dependencies

In this section, we consider ternary termination dependencies among the transac-
tions t;, t;, and ¢ in combination with binary dependencies between each related
transaction pair. We start with the ternary vital dependency. As depicted below,
the ternary dependency among transactions t;, t;, and ty is vital(t;,t;,t), the
transactions ¢; and ¢;, are related over the dependency X (¢;,tx), t; and t; over
dependency Y (ty,t;), and t; and t; over dependency Z(t;,t;):

The binary termination dependencies are graphically represented as follows:

vital(t;,t;) corresponds to t; — t;
dep(t;,t;) corresponds to t; ¢— t;
vital_dep(t;,t;) corresponds to t; +— t;
exc(t;, t;) corresponds to t; </ t;
indep(t;,t;) corresponds to t; — t;

5.1 Considering Dependency Z(t;, t;)

We start with the discussion of the dependency Z(¢;,t;) in combination with the
ternary vital dependency vital(t;,t;,tr). We show that there are dependency
combinations where the ternary dependency can be substituted by a binary
dependency without changing the effect of the dependency combination. The
dependency Z(t;,t;) can be one of the five termination dependencies:

vital_dep (ti,tj) vital (ti,tj) dep (ti,tj) exc (ti,tj) indep (ti,tj)

1. vital_dep(t;, t;) A vital(t;,t;, tx): The ternary dependency wvital(t;,t;,tr)
states that ¢; has to abort if both ¢; and ¢; abort. Due to vital_dep(t;,t;),
both transactions t; and ¢; abort if either ¢; or ¢; aborts. For expressing such a
relationship among three transactions we do not need a ternary dependency:

((ati :>atj A ag; iati)/\((ati /\at].):>atk)) = ((ati :>atj N ag; = ati)/\(ati :>Cltk))

~ v ~ A . ~4

vital_dep(t;,t;) vital(t; ,t,tx) vital_dep(t; t;) vital(t; ,tr)

An alternative to force t;’s abort is to extend vital_dep(t;,t;) by dep(ti,t;).

2. vital(t;, t;) A vital(t;, tj, ti): The ternary dependency vital(t;, t;,) requires
the abortion of transaction ¢ if both transactions ¢; and t; abort; vital(¢;, ;)
forces transaction ¢, to abort if ¢; aborts. As in the case before, the same situation
can be modelled without the ternary dependency, for instance, as follows:

((ag; = ag;) AN ((ag; ANag;) = ag,)) = ((ag; = ag;) A(ay; = ay,,))

~ N v ~ D - -4

vital(t;,t;) vital(ti,tj,ty) vital(t;,t;) vital(ti,tx)

3. dep(ti,tj) /\Vital(ti,tj,tk): Since vital(ti,tj) = dep(tj,ti) holds [11], the
result is similar to the previous case. The only difference is that here transaction
t; (instead of t;) force the abortion of the other transactions.

4. exc(t;, tj) A vital(t;, tj, tx): Due to the exc(t;,t;), one of the transactions ¢;
and t; has to abort in case the other one commits. The ternary vital dependency
cause the abortion of transaction t;, if both ¢; and ¢; abort. In this case, we
cannot express such as relationship by binary dependencies. For instance, the
transactions ¢; and t; book a room in different hotels whereas transaction ¢y
prints the invoice. In case one room is booked, the other booking transaction
has to be canceled. This is modeled by the exclusive dependency. On the other
hand, if we cannot book a room in any hotel, then the whole transaction closure
has to be canceled. This is specified by the ternary vital dependency.

5. indep(t;,t;) A vital(t;, t;, tx): Independent transactions have no influence
on each other. A ternary vital dependency is an additional restriction on the
execution of the corresponding transactions.

5.2 Considering the Dependencies X (t;,tx) and Y (ty,t;)

The dependency vital(t;,t;,t;) disallows the case where transaction ¢, commits
and the transactions ¢; and ¢; abort. In the sequel, we consider how far the
dependencies X (;,tx) and Y (tx,t;) already avoid this case. So, we do not need
to specify a “redundant” ternary vital dependency.

vital_dep (ti,
Ti

1. vital-dependent: As depicted above, the ternary vital dependency is already
fulfilled if one of the dependencies X (¢;,t;) and Y (¢,¢;) is vital-dependent.
That is, the termination event combination (ay,, ¢y, ,as;) is already disallowed.
The abortion of t; or t; leads to the abortion of t; in case of vital_dep(t;,tr)
and vital_dep(ty,t;), respectively. In this case, transaction ¢; cannot commit.
Thus, the dependency vital(t;,t;,tx) does not put further constraints on the
termination events of the related transactions.

2. vital/dependent: The termination event combination (ay,,cy,,a;) is al-
ready disallowed by the dependencies vital(t;,tx) and dep(tx,t;). In contrast,
the dependencies vital(ty,t;) and dep(t;,tr) specify that the transactions ¢; and
t;, respectively, are aborted in case t; aborts. In these cases, the ternary vital
dependency is a further constraint on the execution of the related transactions.

3. exclusive/independent: Exclusive dependencies for X (¢;,t;) and Y (¢, ;)
cannot avoid the case in which transaction ¢; commits and the other transac-
tions abort. Therefore, in this case we need the ternary dependency to force t’s
abort in case of the abort of both ¢; and ¢;. The same is valid for independent
transactions which do not influence each other.

5.3 Combining the Dependencies X(t;, tx), Y (tx,t;), and Z(t;, t;)

Up to now, we investigated the dependencies X (¢;,tx), Y (tx,t;), and Z(t;,t;)
in combination with the ternary vital dependency. As a result we obtained the
following dependencies which can be (reasonable) combined with vital(t;,t;,tr):

X(ti, tk) H indep(t,-, tk), exc(ti, tk), dep(t,-, tk) (5)
Y(tkat]') : indep(tka tj): ewc(tk, tj): vital(tka tj) (6)
Z(ti,t;) : indep(ti, t;), exc(ti, t;) (7

Due to space restrictions, we summarize the valid dependency combinations for
dep(ti, t;, tr) and exc(t;,tj,tx) and only discuss some interesting cases.

The dependency dep(t;, t;,tr) forces the abort of ¢ in case ¢; commits and
t; aborts. If dependency Z(t;,t;) is vital_dep(t;,t;) or dep(t;,t;), then the case
that ¢; commits and ¢; aborts cannot occur. The dependencies vital_dep(t;, tx)
and dep(t;, tx) require t;’s abort in case ¢, abort. This contradicts dep(t;,t;,tx).
Additionally, the combinations of dep(t;,t;,tx) with vital(¢;, tx), exc(ts,t;), and
exc(t;, t;) can also be expressed by only binary dependencies. The dependencies
exc(t;, ty), vital_dep(ty,t;) and dep(ty,t;), on the other hand, makes the depen-
dency dep(t;,t;,tx) superfluous. Here, only the commit of ¢; and the abort of ¢;,
respectively, leads to an abort of t;. The following binary dependencies can be
combined with dep(t;, t;, tr):

X(tla tk) : anep(t’la tk) (8)
Y (t, t;) : indep(tx,t;), vital(ty,t;) 9)
Z(ti,t]’) : indep(ti,tj), ’Uital(t,’,t]’) (10)

Due to dependency exc(t;,t;,tr), transaction ¢, aborts in case both transac-
tions ¢; and ¢; commit. Since a binary exclusive dependency between the related
transactions already disallows that all transactions t;, t;, and t; commit, the
ternary dependency exc(t;,t;,tx) is superfluous. The following dependencies can
be combined with exc(t;,t;,t,) without relaxing the latter dependency:

X (ti, tx) = indep(ti, tx), vital(t;, ty) (11)
Y(tk,tj) : indep(tk,tj) (12)
Z(tz’,tj) . indep(ti,tj) (13)

The combination of exc(t;,t;,t;) with the remaining binary dependencies can
be expressed by only binary dependencies.

6 Example Transaction Closure

The following example is intended to clarify the application of transaction clo-
sures containing ternary termination dependencies. Especially, we show the com-
bination of the ternary and binary termination dependencies in such a transac-
tion closure. The transaction closure in our example can be considered as a
workflow with special dependencies among the related transactions.

Example 2. A commonly used example is a travel planning activity. In our ex-
ample this activity consists of reserving a flight, booking a room in the Hilton
hotel including a diving course or booking a room in the Maritim hotel including
a car rental. We model this activity as a transaction closure with the transac-
tions tq, t3, t4, t5, tg, and the coordinating root transaction t;. Transaction to
represents the flight reservation which is essential for the trip. Moreover, a room
in the Hilton hotel (¢3) or in the Maritim hotel (¢4) may be booked. The diving
course (t5) is directly connected with a room in the Hilton hotel. Additionally,
we try to rent a car (tg) which is a condition for staying at the Maritim hotel.

One possibility to model this scenario is as follows. The transactions ts, t3,
and t4 are child transactions of the root transaction ¢; and are connected to
transaction ¢1 by the following binary termination dependencies:

vital _dep(t1,t2) A vital(t1,t3) A vital(t1,ts)
Transaction t3 is vital for t5 whereas transaction tg is vital-dependent on t4:

vital(ts, t5) A wvital_dep(ts,te)

The travel planning activity has to be canceled if there is no room available in
the hotels. Furthermore, there is the restriction that we only need a room in one
of the hotels. These facts are expressed by the following dependencies:

Uital(t3,t4,t1) A €$C(t3,t5,t4) A 6$C(t3,t4)

Our example transaction closure is graphically illustrated as follows:

t1 | Travel Planning

Hilton Hotel
to Reservation
Flight
Reservation

Maritim Hotel
t4) Reservation

Book Diving Course Car Rental

From our dependency definitions and the rules (5)—(13) we can now derive
whether the specified ternary dependencies can be simplified to binary depen-
dencies or not. We start with the ternary dependency vital(ts,t4,t1) and the
corresponding transactions t3, t4, and t;. The following dependencies are spec-
ified for X (t3,t1), Y (t1,t4), and Z(t3,t4) (Here,we used the rule: vital(t;,t;) =
dep(tja tz))
dep(ts,t1) A vital(t1,ts) A exc(ts, ts)

Considering the rules (5)—(7) these dependencies are reasonable for X (t3,t1),
Y(tl, t4), and Z(tg,t4) in combination with ’l)ital(t3,t4,t1).

The ternary dependency exc(ts,ts,ts) has to be considered in combination
with the dependencies X (t3,t4), Y (t4,15), and Z(t3, t5). If there is no dependency
explicitly defined on these transaction pairs, we assume that the corresponding
transactions are independent:

exc(ts, ta) Aindep(ts,ts) A vital(ts,ts)

According to rule (11) the ternary dependency exc(ts,ts,ts) can be simplified
when it is considered together with the dependency exc(ts,t4). In this case,
transaction t4 aborts if transaction ¢3 commits. However, the ternary exclusive
dependency specifies that both transactions t3 and t5 have to commit to force the
abort of t4. Here, we have to decide whether exc(t3,t4) or exc(ts, ts,t4) better fits
the application semantics. In this example, the binary dependency is essential
because only one of the room booking transactions should finish successfully.
The diving course is only booked in addition to the room in the Hilton hotel. In
consequence, the ternary exclusive dependency can be removed. O

Different ternary and binary termination dependencies allows the transaction
designer to specify complex applications. Example 2 showed that we are able to
reason about the dependencies of a transaction closure definition.

7 Conclusions and Outlook

Transaction closures are collections of transactions where the connection be-
tween the transactions is specified by special dependencies. In this paper, we

extended the framework by ternary termination dependencies. The fact that n-
ary termination dependencies can be expressed by combinations of binary and
ternary dependencies make the problem of reasoning about the correctness of
dependency combinations much more simple. In this context, we analyzed the
relationship between ternary and binary dependencies. As a result, we stress out
that some combinations are invalid or superfluous.

Currently we are investigating the transitivity of ternary termination depen-
dencies. Here, we consider ternary as well as binary dependencies. For example,
three transactions ¢;, t; and ¢, are connected over a ternary dependency and one
of them, e.g. t;, is binary dependent on a forth transaction ¢;. We are interested
in the transitive binary dependencies between ¢; and the transactions t; and
tr- Our goal is to derive rules which can be used to automatically compute the
transitive dependencies among arbitrary transactions of a transaction closure.

References

1. P. C. Attie, M. P. Singh, E. A. Emerson, A. Sheth, M. Rusinkiewicz. Scheduling
Workflows by Enforcing Intertask Dependencies. Distributed Systems Engineering,
3(4):222-238, 1996.

2. A. Buchmann, M. T. Ozsu, M. Hornick, D. Georgakopoulos, F. Manola. A Trans-
action Model for Active Distributed Object Systems. In [6], pp. 123-151.

3. P. K. Chrysanthis, K. Ramamritham. Synthesis of Extended Transaction Models
Using ACTA. ACM Transaction on Database Systems, 19(3):450-491, 1994.

4. U. Dayal, M. Hsu, R. Ladin. A Transaction Model for Long-Running Activities.
In G. M. Lohmann, A. Sernadas, R. Camps (eds.), Proc. VLDB’91, pp. 113-122.
Morgan Kaufmann, 1991.

5. A. K. Elmagarmid (ed.). Database Transaction Models For Advanced Applications.
Morgan Kaufmann, 1992.

6. D. Georgakopoulos, M. Hornick, A. Sheth. An Overview of Workflow Management:
From Process Modeling to Workflow Automation Infrastructure. Distributed and
Parallel Databases, 3(2):119-153, 1995.

7. M. Hsu, R. Ladin, D. R. McCarthy. An Execution Model For Active Data Base
Management Systems. In C. Beeri, J. W. Schmidt, U. Dayal (eds.), Proc. 3rd Int.
Conf. on Data and Knowledge Bases: Improving Usability and Responsiveness,
1988, pp. 171-179, Morgan Kaufmann, 1988.

8. J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. MIT Press, Cambridge, MA, 1985.

9. M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, P. Muth. Towards a Cooperative
Transaction Model — The Cooperative Activity Model. In U. Dayal, P. M. D.
Gray, S. Nishio (eds.), Proc. VLDB’95, pp. 194-205, Morgan Kaufmann, 1995.

10. K. Schwarz, C. Tirker, G. Saake. Analyzing and Formalizing Dependencies in Gen-
eralized Transaction Structures. In Proc. Int. Workshop on Issues and Applications
of Database Technology, IADT’98, 1998.

11. K. Schwarz, C. Tiirker, G. Saake. Transitive Dependencies in Transaction Closures.
In Proc. Int. Database Engineering and Applications Symposium, IDEAS’98, 1998.

12. J. Tang, J. Veijalainen. Enforcing Inter-task Dependencies in Transactional Work-
flows. In S. Laufmann, S. Spaccapietra, T. Yokoi (eds.), Proc. 3rd Int. Conf. on
Cooperative Information Systems,CoopIS’95, pp. 72-86, 1995.

