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Abstract

Activities of advanced applications can be modeled by interrelated transactions. These relations
can be described by different kinds of transaction dependencies. The notion of transaction closure
is a generalization of nested transactions providing means to describe complex activities such as
transactional workflows. In this paper, our main focus lies on execution dependencies for describing
certain control flows among related transactions of transaction closures. In particular, we consider the
transitivity property for all kinds of transaction execution dependencies and discuss their relationship
to other kinds of dependencies such as transaction termination dependencies. We point out that some
of these dependency combinations are incompatible. As a result we present rules for reasoning about
the transitivity of execution dependencies. Thus, we are able to conclude how arbitrary transactions
of a transaction closure are transitively interrelated.

Keywords: transaction closure, execution dependencies, transitive dependencies, dependency com-
binations.

1 Introduction

Modern information systems require advanced transaction models providing means to describe complex
activities such as transactional workflows. Complex activities consist of sets of transactions which
are interrelated, i.e., there are dependencies among several transactions. As a suitable framework
for the design of complex applications, we introduced the concept of transaction closure [STS98a]
as a generalization of the well-known concept of nested transactions [Mos85] together with a set of
transaction dependencies. A transaction closure comprises a set of transactions which are (transitively)
initiated by the same (root) transaction. In contrast to classical nested transactions, a child transaction
in a transaction closure may survive the termination of its parent transaction — a case which is needed
for example in models for long-during activities [DHL91, RKT*95], workflows [GHS95, KR96], or
transactions in active databases [HLM88, BOH'92].

Ezecution dependencies play a central role in transaction closures. An execution dependency is
a constraint on the temporal occurrence of the start and termination events of related transactions.
The set of execution dependencies determine the valid control flows among related transactions of
a transaction closure. Whereas the execution dependencies for direct child transactions have to be
explicitly specified, the dependencies of transitively related transactions can be computed based on this
direct dependencies. Execution dependencies are especially required for defining the precise relationship
between the triggering and triggered transaction in active database systems [DHW95]. Considerations
where transactions has to meet certain constraints with regard to their invocation and completion times
(known from the area of real-time transactions [SKS96]) are not subject of this paper.

As discussed in detail in [STS98b)], termination dependencies are another issue of transactions clo-
sures. A termination dependency is a constraint on the possible combinations (and orders) of the



termination events (commit/abort) of two related transactions. Execution and termination depen-
dencies constrain the set of valid execution orders for transaction pairs. Execution dependencies may
influence termination dependencies such that only the abortion of one or more transactions is valid.
These dependency combinations are denoted as incompatible.

As an extension of the work we presented in [STS98a, STS98b], we present in this paper a framework
for handling execution dependencies for transitive ancestor relations in transaction closures. The result
is a practical algorithm for computing derived execution dependencies for transitively related transac-
tions. Furthermore, we combine execution and termination dependencies and investigate incompatible
dependency combinations. The rules obtained by the algorithm and the rules which identify invalid
dependency combinations enable us to reason about the transitive relationship between transactions
and to detect invalid parts of the specification during the design time. The concept of transaction clo-
sure together with the dependencies and rules provide the basis for a transaction design and analyzing
tool. Such a tool can help to understand the entire semantics of a complex application and thus it may
support the design of better and more efficient applications.

The paper is organized as follows: In Section 2, we introduce the basic notions including the
concept of transaction closure. Thereafter, in Section 3, we discuss transaction execution dependencies
which deal with the valid ordering of the start and end event of related transactions of a transaction
closure. In Section 4, we consider the transitivity property of the execution dependencies introduced
and develop an algorithm for deriving all valid transitive dependencies. Afterwards, in Section 5,
execution dependencies in combination with termination dependencies are considered. The application
of transaction closures, especially the derivation of transitive dependencies in transaction closures, is
shown by an example in Section 6. Finally, the paper is concluded by an outlook on future work.

2 Foundations

In this section, we declare the basic concepts and notions which are used throughout this paper. Here,
we use the basic notions of the ACTA formalism [CR91, CR94|.

Traditionally, a transaction is an execution unit consisting of a set of database operations. A
transaction ¢; is started by invoking the transaction management primitive begin (by;) and is terminated
by the primitive end (e ). In detail, the termination primitive of a transaction ¢; is either commit (cy;)
or abort (at;). These primitives are termed as significant events. Furthermore, a transaction invokes
operations, termed as object events, to access and manipulate the state of database objects. A history
[BHG8T] of a concurrent execution of a set of transactions 7' comprises all events associated with the
transactions in 7" and indicates the (partial) order in which these events occur. The complete history
which contains only terminated transactions is denoted as H, the current (incomplete) history is termed
as H.

A single arrow (—) between significant events of transactions which appears in H denotes temporal
sequence. For instance, the begin of transaction t; precede the begin of transaction t; is expressed by
(by; — by;). We assume that two events cannot occur at the same time. Constraints on the significant
events involving the begin and end of two related transactions are called ezecution dependencies. The
following fundamental axiom has to be fulfilled by each transaction. The begin event of a transaction
always precedes the end event of the same transaction:

(br; — ex;) (0)

A set of transactions with dependencies among them can be considered as transaction closure [STS98a].
Transaction closures are a generalization of the well-known concept of nested transactions [Mos85]. For
the definition of the notion of a transaction closure we first define some basic notions.

Definition 2.1 The following self-explanatory functions and predicates describe gemeral relationships



between a transaction and its initiator:

parent(t;,t;) = (t; is parent of ¢;)
root(t;) := (t; has no parent)
ancestor(t;,t;) = (parent(t;,t;)V (Ity : ancestor(t;, tx) A parent(ty,t;)))

Definition 2.2 (Transaction Closure) Suppose tc denotes the set of transactions of a transaction
closure and let t; and t; be two transactions of this closure:

e FEach transaction closure has exactly one' root transaction:
At; € te: root(t;)
e Fach non-root transaction has exactly one parent transaction:
Vt; € tc: —root(t;) = (Nt € te: parent(t;, t;))

e Fach transaction closure is acyclic:

At; € tc: ancestor(t;, ;)

e The initiation of a transaction must follow the initiation of the parent:

Vit; € tc: —root(t;) = (3t; € tc: parent(t;, tj) A (b — by;))

The effects of transactions on other transactions are described by dependencies which are constraints
on possible histories.

3 Execution Dependencies

In this section, we investigate execution dependencies between transactions which can be expressed in
terms of significant events associated with the corresponding transactions. The begin and end events are
the significant events which are relevant for execution dependencies. Execution dependencies restricts
the temporal occurrence of the significant events of the related transactions in H. Considering two
transactions ¢; and ¢; there are four cases in which the significant events of transaction ¢; occur before
the significant events of transaction t;. We identify the following basic ordering terms:

(b, = bt;) (1)
(be; — ex;) (2)
(er; — ex;) (3)
(er; = by;) (4)

The negation of such a term means that the arrow is changed into the opposite direction. For example,
term (2) express that the begin of transaction ¢; has to precede the termination of transaction ¢;. The
negation results in a term (2) where the termination of transaction ¢; precedes the begin of transaction
t;: (etj — bti)-

Our investigations in combining these basic terms lead to the three execution dependencies: parallel
strict overlapping (lap(t;,t;)), parallel including (inc(t;,t;)), and sequential (seq(t;,t;)). The execu-
tion dependency parallel is a generalisation of the parallel strict overlapping and parallel including
dependencies. These execution dependencies are defined over the basic ordering terms.

!The symbol 3! stands for “it exists exactly one”.



Definition 3.1 (Parallel Strict Overlapping) Two different transactions t; and t; are evecuted
parallel strict overlapping if and only if the begin of t; precedes the begin of t;, the begin of t; pre-
cedes the termination of t;, and the termination of t; precedes the termination of t;:

lap(ti,tj) = (btv, — btj) A (btj — eti) A (eti — etj)

The execution dependency lap(t;,t;) is illustrated in Figure 1. Here, we explicitly depict the rela-
tionships between the significant events of the transactions ¢; and ¢;. Each relationship represents an
ordering term. The numbers of the related ordering terms is illustrated next to the corresponding
term. In case of parallel strict overlapping transactions #; and #;, transaction #; begins before transac-
tion ¢; and terminates before ¢;’s termination. Additionally, the begin of transaction ¢; precedes the
termination of transaction ¢;.

@

Figure 1: Ordering of Significant Events in Case of Parallel Strict Overlapping: lap(t;, ;)

Definition 3.2 (Parallel Including) Two different transactions t; and t; are executed parallel in-
cluding if and only if the begin of t; precedes the begin of t; but the termination of t; precedes the
termination of t;:

inc(ti,tj) = (bt, — btj) A (etj — eti)

The relation between the significant events of the transactions ¢; and ¢; which are parallel including are
presented in Figure 2. A parallel including dependency between the transactions ¢; and ¢; means that
the begin of transaction #; precedes the begin of ¢; whereas the termination of transaction ¢; follows
the termination of transaction ¢;.

Moreover, we define a general form of the parallel strict overlapping and parallel including depen-
dencies. Such a dependency is useful in case the termination order of the related transactions is not
important.

Definition 3.3 (Parallel) Two different transactions t; and t; are executed parallel if and only if the
begin of t; precedes the begin of t; and the begin of t; precedes the termination of t;. In other words, two
transactions t; and t; are executed parallel if and only if they are executed parallel strict overlapping or
parallel including:

par(ti, t;) & lap(t;,t;) Vinc(ts, t;)

Finally, transactions may be executed sequentially. This leads to the sequential execution dependency
defined in the following:
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Figure 2: Ordering of Significant Events in Case of Parallel Including: inc(t;,t;)

Definition 3.4 (Sequential) A transaction t; is ezecuted sequentially after another transaction t; if
and only if the termination of t; precedes the begin of t;:

seq(ti,tj) = (ey; — by;)

The sequential execution dependency is illustrated in Figure 3. Here, transaction %; is completely
executed before transaction t; starts executing. Therefore, this execution can be defined only by the
ordering relation between the end event of transaction ¢; and the start event of transaction ¢;. The
other relation between the significant events of the corresponding transactions can be derived from this
ordering term. This observation is discussed in detail in the following section.

Figure 3: Ordering of Significant Events in Case of Sequential: seq(t;,t;)

4 Deriving Transitive Execution Dependencies

In the previous section, we defined the execution dependencies parallel strict overlapping, parallel
including, parallel, and sequential between two transactions. In Figure 4 we illustrate the scenario in
which more than two transactions are involved. Suppose, the transactions t; and t; are related by
an execution dependency X and the transactions ¢; and ¢; by an execution dependency Y. We are
interested in the transitive dependency Z between the transaction ?; and ¢;. Especially, we want to
know in which way the relation between the transactions ¢; and ¢; is constrained by the dependencies
X and Y.



Figure 4: Example of a Transitive Dependency

Deriving the dependency Z between the transactions ¢; and ¢; from the given dependencies X
between the transactions ¢; and ¢, and Y between the transactions ?; and t; leads to the following
considerations. As presented in Section 3, the dependencies X and Y consist of a set of ordering terms.
Furthermore, each begin event of a transaction precedes the termination event of the same transaction
(see formula (0)). Combining the basic ordering terms (1)—(4) with formula (0) we are able to derive
further ordering terms which are valid in addition to the basic terms:
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= (b, — et;) A(by; = by;) A ey, — er;)
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(3):
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From this follows that all basic terms including the term (2) itself imply that the begin of transaction
t; has to precede the termination of transaction ¢;. Term (4) which build the basis for the sequential
execution dependency implies all other basic terms (see (8)). Analogously, the inverse terms (1)-(4)
can be extended:

1) : (by; = by;) = (b, — ey;) (9)
(2): (e; = b)) = (by; = ey) Aby = by,) A(er; — ex,) (10)
(3): (ey; = e) = (b = ey) (11)
(4): (by; = ey) = true (12)

A simple method to derive the transitive execution dependency Z between the transactions ¢; and t;
over another transaction t; and the dependencies X and Y is a graph based approach. The vertices of
the graph are the significant events of the related transactions ¢;, t, and t;, e.g. by, and e;;. The directed
edges are the ordering terms defined by the dependencies X and Y, the derived relations summarized
in the formulas (5)—(12), and the relation between the start and end event of the related transactions.

For example, assuming the dependency X is lap(t;,tx) and dependency Y is inc(t;,tx). The depen-
dency lap(t;,tx) is specified by the ordering terms: (b;; — by, ), (by, — e;), and (e;; — ey, ), whereas
the dependency inc(ty,t;) is defined by: (b;; — by, ) and (e, — ey;). These relations and the relation
between the begin to the end event of the transactions are illustrated by an arrow in Figure 5. Due to
formulas (5)—(12), the graph is extended by the derived terms: (b;; — ey, ), (by, — ey;), and (by; — ey, ).
These derived terms are represented by dashed arrows.

The dependency Z between the transactions ¢; and ¢; can be derived by determining a path from
the significant events of ¢; to the significant events of #; and vice versa. In the first direction we try
to find a connection of arrows from the vertex by; to b, from by, to e, from e;; to b, and from ey,
to e;;. The same is done for the other direction. This is a classical problem which can be computed
by Dijkstra’s algorithm [Dij59] or by Floyd’s algorithm [Flo62]. Dijkstra’s algorithm evaluates a path
(shortest path) from one vertex to all other vertices and Floyd’s algorithm solves the all-pairs shortest
path problem. The complexity of both algorithms is polynominal.



Figure 5: Graph of lap(t;,tx) and inc(t;, tx)

In our example we can derive the following relations between the transactions ¢; and ¢; (compare
Figure 5):

(bti — btk) AN (btk — et].) = (btl — etj)
(eti — etk) A (6tk — etj) = (Gti — th)
(btj — btk) A (btk — eti) = (btj — eti)

The transitive dependency Z between the transactions t; and t; may be lap(t;, t;), inc(t;, t;), seq(ts,t;),
lap(t;,t;), inc(t;,t;), and seq(t;,t;). Considering the ordering term of these execution dependencies
only the dependencies lap(t;,t;) and inc(t;,;) consist of the three terms (b;; — ey;), (e, — et;), and
(bs; — et;) evaluated by the algorithm above:

lap(ti, t;) = (by; = by;) A (by; — eq;) A (e, — eq;) A (b, — ey;)
inc(ti, tj) © (b, — b)) A (b, — er;) A(er; — eq,) A (b, — er,)
seq(ti;tj) : (b — b)) A(er; — by;) A(er; — er;) A (b, — er;)
lap(tj,ti) = (by; — by;) A (by; — er;) A (e, — e;) A (b, — ey;)
inc(ty,ti) : (b, = b)) A (by; — er;) A (er; — er;) A (b, — et;)
seq(tj,ti) : (b, — b)) A (b, — er;) A(er; — er;) A (e, — byy)

This solution is also illustrated in Figure 6. In the set of ordering terms derived by the algorithm
a relationship between the begin events of the transactions ¢; and ¢; is absent. Thus, we have to
distinguish two cases. In case the start of transaction ¢; precedes the start of ¢; we conclude the
transitive dependency is lap(t;,t;). In contrast, the start of transaction ¢; may precede the start of
transaction ¢; which leads to a dependency inc(t;, ;).

Figure 6: Transitive Dependencies between the Transactions ¢; and ;



Applying the method above leads to a set of paths from the vertices of transaction ¢; to the vertices
of transaction ¢; and vice versa. These paths represent ordering terms. The algorithm evaluates one
to four ordering terms. More ordering terms cannot be evaluated because we have only eight possible
terms (1)—(4) and (1)—(4) and the combination of one term and its inverse term is always contradictory,
e.g. (1 A1). Thus, more than four terms, e.g. (1 A2 A3 A4 A1), are always contradictory and cannot
be results of the algorithm.

In the following we investigate the cases in which the algorithm evaluates one, two, three, and four
terms, respectively. In doing so, we combine the basic ordering terms of the formulas (1)—(4) including
the inverse formulas (1)—(4). From these term combinations as results of the algorithm we can derive the
dependencies between the transactions ¢; and ¢;. These dependencies are candidates for the transitive
dependency Z.

1. In case we only evaluate one term as a path from the significant events of transaction ¢; to ¢; by
the algorithm then dependency Z can be of one of the following dependencies. The dependency
any(t;,t;) stands for the disjunction of lap(t;,t;), inc(t;, t;), and seq(t;,t;).

(1) : (b; = b)) = any(ti,t)) (13)
(2): (b, = etj) = any(t;,t;) Vlap(t;, t;) Vinc(t;, t;) (14)
(3): (e, = ey;) = lap(ti,ty) V seq(ti,tj) Vinc(t), t;) (15)
(4): (ey; = btj) = seq(ti, t;) (16)

Due to symmetry, the inverse terms (1)—(4) are not considered.

2. On the other hand, the algorithm may evaluate two terms as paths, e.g. the terms (1 A 3).
We investigate combinations of two terms and derive dependencies which are valid as transitive
dependency Z. In this discussion, we follow four rules which are directly derived from the formulas

(5)-(12):
(a) A combination of a term and the inverse form of this term is always contradictory, e.g. (1A1).

(b) Combining term (4) with another term is equivalent to term (4). In other words, term (4)
implies the terms (1)—(4) (see formula (8)). Thus, an inverse term always contradicts term
(4). For example, in case of a combination (3A4), term (4) implies term (3) which contradicts

term (3).

(c) All terms (1)—(4) implies term (2) (see the formulas (5)—(8)). Thus, a combination of these
terms with term (2) can be reduced to a combination without term (2), e.g. (1A 2) = (1).

(d) The term (2) contradics the terms (1)—(4). This directly follows from the first and the third
rule.

In the following, we consider the combinations of two terms which may be results of the application
of the algorithm. We start with term (1). A combination with term (2) is equivalent with term (1)
because the last term implies term (2) (see the third rule). Due to the last rule, a combination with
(2) is contradictory. On the other hand, the term (3) and the inverse term are valid combinations
to term (1). The second rule indicates that a combination of term (4) with term (1) is equivalent

to term (4) which is already expressed in formula (16). Finally, the combination with term (4) is
valid. The intermediate results of the contradictory and implicit terms are listed below:

1 = (1)
1A2) = (1A2A2)
1A4) = (4)



The term (2) has additionally to be combined with term (3), (3), (4), and (4). Due to the third
rule, the terms (3) and (4) implies term (2). Thus, these combinations are equivalent to the
formulas (15) and (16). The negative terms are valid combinations to term (2). Moreover, term
(3) has to be combined with term (4) and (4). Due to the last rule, only the combination with
term (4) provide new results. The other are summarized in the following:

2A3) = (3)
2Ad) = (4)
BA4) = (4)

The valid term combination and the corresponding dependencies between the transactions ¢; and
t; are listed below:

(LA3): (b — b)) A(er; = er;) = lap(ti,ty) V seq(ti, t;) (17)
(LA3): (b, — byy) Aley; = er) = inc(ti,ty) (18)
(LA4): (b, = byy) A (by; = er)) = lap(ti, ty) Vinc(ts, t;) (19)
(2A3): (by; = ey) Aey; —er) = lap(ty,t;) Vinc(ts, t;) (20)
(2A4): (b, = ey;) N(by; = e,) = lap(ts,ty) Vinc(ti, ;) Vlap(ty, t;) Vinc(tj, t;)  (21)
(BA4): (e — e) N(by; —er) = lap(ti,ty) Vinc(t, t;) (22)

. The algorithm may also evaluate three terms (paths). Thus, we have to consider the term com-
binations (1 A2A3), (1A2A4), (1A3A4), and (2 A3 A4) including the negative form of the
terms. First, we reduce the term combinations to the combinations which consist of term (2).
We omit the combinations which consist of the term (2) because the term (1) implies (2) which
contradicts (2) (see the last rule):

(1A2A3) = (1A2A2A3)
(1A2A3) = (1A2A2A3)
(1A2A4) = (1A2A2A4)
(1A2A4) = (1A2A2A4)

The combination (1 A 2 A 3) is equivalent to (1 A 3) which is already considered in formula (17).
The same is valid for (1 A 2 A 3) which is equivalent to (1 A 3). These terms are listed below:

(IA2A3) = (1A3)
(1A2A3) = (1A3)
Due to the second rule, all combinations with the basic terms (1)-(3) involving term (4) are

represented by formula (16). In contrast, a combination of term (4) with a inverse term is always
contradictory. In the following we state these intermediate results:

4)
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Thus, we have only to consider term combinations without (2) and (4). (1 A 2 A 4) is equivalent
to (1 A4) (see formula (19)), (1 A3 A4) is valid, (1 A3 A4) is equivalent to (1 A 3) (see formula



(18)), (2A 3 A4) is equivalent to (3A4) as considered in formula (22), and (2 A3 A4) is equivalent
to (2 A 3) presented in formula (20). The intermediate results of the contradictory and implicit
terms are listed in the following:

(1A2A4) = (1A9)
(1A3AL) = (1A3)
(2A3A4) = (3A9)
(2A3A4d) = (2A3)

In conclusion, only one valid combination of three terms is left.

(LA3AZ): (by — byy) Aer, = ey) Aby, = er) = lap(ti, t;) (23)

4. After investigating combinations of three or less terms, we consider the case in which four terms
are evaluated by the algorithm. Due to symmetry, the second and third rule we only investigate
the combinations with the terms (1), (4) and (2): (1A2A3A4) and (1 A2A3A4). The first
combination (1 A 2 A 3 A 4) is equivalent to the combination (1 A 3 A 4) which is discussed in
formula (23) and (1A2A3A4) is equivalent to (1A3). Thus, in the formulas (13)—(23) all possible
combinations of terms are presented. These contradictory and implicit term combinations are
stated below:

(LA2A3A4) = (4)

(1A2A3A4) = (1A2A2A3AN4)
(1A2A3A4) = (1A2A3A3AN4)
(1A2A3A4) = (1A3A4D)
(1A2A3A4) = (1A2A2A3A3NA4)
(1A2A3A4) = (1A2A2A3AD)
(1A2A3A4) = (1A3)
(IA2A3A4) = (1A2A2A3AD)

Applying the method described in this section leads to one of the transitive dependencies stated b
the formulas (13)—(23). Please note, a transaction closure consisting of n transactions has n(n%
dependencies (edges between n vertices). The full set of rules evaluated by the algorithm is summarized
in the Appendix A.

5 Combining Execution and Termination Dependencies

Execution dependencies are defined over the begin and end events of related transactions. In contrast,
termination dependencies explicitly distinguish between the commit and abort of a transaction as
termination event. Investigating constraints on the occurrence of the significant termination events
commit and abort leads to different termination dependencies. In case of two transactions ¢; and {;
there are four possible combinations of termination events:

(1) both transactions abort (ay;, ay;),
(2/3) one transaction commits whereas the other one aborts (ay;, ct;)/(ct;, at;), and

(4) both transactions commit (ct;, ct,).

10



These termination event combinations may be valid in any order (denoted by /) or are not valid
(denoted by —). As depicted in Table 1, we identify five dependencies as applicable according to real-
world application semantics. The termination dependency between t; and ¢; is called vital-dependent,
denoted as vital_dep(t;, t;), if the transactions are abort-dependent on each other. In detail, the abortion
of transaction t; leads to the abortion of ¢; and vice versa. Thus, either the commit of #; and ¢; or
the abort of these transactions are valid. The vital-dependent dependency is (as the name suggests) a
combination of the dependencies vital and dependent. The vital dependency between two transactions
t; and t;, denoted as vital(t;,t;), concerns the case where the abortion of transaction ¢; leads to the
abortion of transaction ;. In comparison to a vital transaction, a dependent transaction ¢; has to abort if
transaction t; aborts. This fact is defined as dep(t;,t;). Two transactions are called ezclusive dependent
on each other, denoted as exc(t;,t;), if only one of the transactions is allowed to finish successfully. Our
fifth dependency concerns the case where each combination of transaction termination events is valid.
Therefore, the involved transactions t; and t; are called independent, denoted as indep(t;,t;). For a
formal definition of the termination dependencies and more detail information see [STS98b)].

| ¢ | t; || vital-dep(ti,t;) | vital(ti,t;) | dep(ts,t;) | exc(ti,t;) | indep(ti,t;) |
ai; | A \/ \/ \/ \/ \/
ag; ctj e - \/ \/ \/
Ct, ag; - \/ — \/ \/
Ct; ctj \/ \/ \/ - \/

Table 1: Termination Dependencies between two Transactions #; and %;

Combining execution and termination dependencies leads to an ordering of the termination events of
the related transactions. The general parallel execution dependency has no influence on the termination
dependencies, because we cannot state whether the termination of ¢; precedes the termination of ¢; or
vice versa. Therefore, we omit the discussion of combining par(t;,t;) with the termination dependencies.

The execution dependency parallel strict overlapping lap(t;,t;) requires that the termination of
transaction ¢; precedes the termination of ¢;. Combining this dependency with the termination depen-
dencies leads to the results represented in Table 2.

|t vital_dep(t;, t;) | vital(ti, t;) | dep(ti,t;) | exc(ts,t;) | indep(ts,t;)
ag; | G ag; — Ay ag; — Qg ag; — Ay g, — Qg ag; — Qg
ag, Ci; — — ag; — Cy; ag; — Ciy Qg; — Ciy
Ct; | Oy — Ci; — Qg — Ci; — Qg Ci; — Qg
Ct; | Ciy Cti = Ciy Cti = Cty Ct; = Cty — Cti = Cty

Table 2: Termination Dependencies in Combination with Parallel Strict Overlapping

In comparison to the parallel strict overlapping dependency, the parallel including dependency influ-
ences the termination dependencies in the opposite direction. Here, the termination of transaction
t; precedes the termination of transaction ¢;. The combinations of parallel including and the termi-
nation dependencies are illustrated in Table 3. A combination of the dependency lap(t;,t;) with the

t | 1 vitql_dep(ti, t;) v.ital(t,-, t;) c'iep(ti, t;) ?mc(ti, t;) i??dep(ti, t;)
inc(t;, t;) inc(ti, t;) | inc(ts,t;) | inc(t;, t;) | inc(t;,t;)
ag;, | Qg ag; — Gy, ag; — Gy, ag; — Qg ag; — Gy, ag; — Gy,
at; | Ct; — — Ct; = Q; | Ct; — Gy, Ct; — Ay,
Ci; | Oy — ag; — Cy, — ag; — Ci, ag; — Cy,
Ct; Ci; Ci; — Ct; Ci; — Ct; Ci; — Ct,; — Ci; — Ct;

Table 3: Termination Dependencies in Combination with Parallel Including
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termination dependencies where transaction ¢; is the first argument and #; the second argument, e.g.
vital_dep(t;,t;), leads to the same results concerning the termination events.

In contrast to the parallel execution dependencies, the sequential execution dependency may con-
tradict termination event combinations. Here, we explicitly distinguish between the termination events
commit and abort. We define the following two additional dependencies:

Definition 5.1 (Sequential-Commit) Two different transactions t; and t; are ezecuted sequentially
after commit if and only if the commitment of t; precedes the begin of t;:
seq-commit(t;, t;) = (cy; — by;)

Definition 5.2 (Sequential-Abort) Two different transactions t; and t; are ezecuted sequentially
after abort if and only if the abortion of t; precedes the begin of t;:

seq-abort(t;, t;) & (ay; — by;)
In case transaction t; is executed sequential after the commit of ¢; (seq-commit(¢;,%;)), the event
combination of the abortion of ; (a;;) and the commit of #; (c;;) is invalid. In contrast, the abortion
of both transactions is always valid. The commitment of transaction ¢; precedes the termination of ¢;

because of the sequential-commit dependency. The resulting dependency combinations are illustrated
in Table 4.

o |+ vital_dep(t;, t;) vital(t;, t;) dep(t;,t;) exc(t;,t;) indep(ti, t;)
¢ T\l seq_commit(t;,t;) | seq-commit(t;,t;) | seq-commit(t;,t;) | seq_commit(t;,t;) | seq-commit(t;,t;)
ay; | ay v v v v v
ag; Ctj — — — — -
Ct, ag; — Cy, — Qg — Ct, — ag; Ct, — Qg
Ci; | Ciy Ci; — Ci; Ci; — Ci; Ci; — Ci; — Ci; — Ci;

Table 4: Termination Dependencies in Combination with Sequential-Commit

If we have a closer look at Table 4, we see that the combination of the exclusive termination dependency
with the sequential-commit dependency only allows the abortion of transaction ¢; (atj). Thus, t;
does not need to be executed. On the other hand, a combination with the termination dependencies
vital-dependent and dependent cannot be fulfilled. In this cases, transaction ¢; is only allowed to
commit if transaction ¢; commits, too. Due to the sequential-commit dependency, the commitment of
t; has further to precede the commitment and the begin of ¢;: (c;; — by; — c¢t;). However, in case
transaction ¢; aborts after the commit of ¢;, transaction ¢; cannot be aborted afterwards. On the other
hand, transaction ¢; cannot be forced to commit if ¢; is executed after the commit of #;. Thus, these
dependency combinations are invalid.

The sequential-abort dependency disallows the termination event combination where transaction ;
commits (see Table 5). On the other hand, the abortion of ¢; always precedes the termination of ¢;.
A combination of this execution dependency and the vital-dependent or vital termination dependency
makes no sense, because only the abortion of both transactions is valid.

o |+ vital_dep(t;, t;) vital(t;, t;) dep(t;, t;) exc(t;,t;) indep(ti, t;)

¢ 7| seg_abort(t;,t;) | seq_abort(ti,t;) | segabort(t;,t;) | seq_abort(t;, t;) | seq_abort(t;,t;)
ag; | Gy ag; — Ay ag; — Qg g, — Qi ag; — Ay g, — Qi
ag, Ct; — — ag, — Ci; ag, — Ci; ag, — Ct;
Ct; atj — - - - -
Ct; Ctj - — — — —

Table 5: Termination Dependencies in Combination with Sequential-Abort
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In summary, the following dependency combinations are contradictory («~+). The sequential depen-
dency is a disjunction of the sequential-commit and the sequential-abort dependency. Transactions
which are vital-dependent cannot combined neither with sequential-commit nor with sequential-abort.
From this follows that this termination dependency also contradicts the sequential dependency.

seq_commit(t;, vital_dep(t;, t;) (24)
dep(ti, t;) (25)
exc(ti, t;) (26)
vital_dep(t;, ;) (27)
(28)
(29)

seq_commit(t;,

seq_abort(t;, vital(t;, ;)

t
t
seq_commit(t;, t;
t
t
t vital_dep(t;, t;)

A O O

(

(

(
seq_abort(t;,

(

(

seq(t;, j

In this section, the impact of the execution dependencies on the termination dependencies was con-
sidered. Execution dependencies partially restricts the occurrence of termination events by adding an
ordering constraint on valid termination event combinations of the corresponding transactions. We
identified combinations of execution and termination dependencies which are incompatible.

6 Execution and Termination Dependencies in an Example Scenario

The following example is intended to clarify the application of transaction closures. Especially, we show
the derivation of transitive execution dependencies and their combination with related termination
dependencies in such a transaction closure. The transaction closure in our example can be considered
as a workflow with special dependencies among the related transactions.

Example 6.1 A commonly used example is a travel planning activity. In our example this activity
consists of the recording of the customer’s data, reserving a flight, applying a visa, booking a room
including a sport car or a family car rental. This activity is modeled as a transaction closure with the
transactions ta, t3, t4, ts, tg, t7, and the coordinating root transaction ti.

Transaction ty represents the recording of the customer’s data which is done independently whether
the trip reservation is successful or not. The flight reservation (t3) is essential for the trip. After
reserving a flight, we apply a visa (t5). Moreover, a room in a hotel (t1) may be reserved and a sport
car rent (tg). If no sport car is available, we try to rent a family car (t7).

From this scenario follows that the transactions to, t3, and ty which are child transactions of the
root transaction t1 are connected to t1 by the following termination dependencies:

indep(t1,t2) A vital_dep(ti,t3) A vital(ty,ts)

Furthermore, these transactions are executed parallel to t, while the transactions ts and t4 have to
terminate before the end of the travel planning.

par(ti,t2) A inc(ti,t3) A inc(ti,ts)

Transactions ts is a child transaction of transaction t3 and the transactions tg, and t7 are child trans-
actions of transaction ty. Transactions ts is connected to its parent transactions by the vital-dependent
termination dependency and the other by a vital termination dependency. Thus, the abortion of a par-
ent leads to the abortion of the child transactions. Furthermore, the child transactions are executed
sequentially after the parent:

vital_dep(ts,ts) N wvital(ts,ts) Awvital(ts,t7)
seq(ts,ts) A seq(ts,tg) A seq_commit(ty,t7)
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Additionally, we specify a parallel strict overlapping dependency between the sibling transactions t3 and
ty and a sequential-abort dependency between tg and t7:

lap(ts,ts) N seq_abort(ts,tr)

Thus, the flight reservation and the hotel reservation is executed parallel whereas the flight reservation
has to terminate before a room in a hotel is booked.

Our example transaction closure is graphically illustrated in Figure 7 where the arrows denote the
direction of the abort dependencies. For example, t1 — t4 means that the abortion of transaction t,
leads to the abortion of t4. The termination dependencies are graphically represented as follows:

vital(t;, t;
dep(t;

(tiyt;)  corresponds to t; — t;

(s, t5)
vital_dep(t;,t;)  corresponds to t; «—t;

(s, ;)

(i, ;)

corresponds to  t; <— 1;

S,

exc(t; corresponds to  t; </ 1;

corresponds to  t; — t;

-~
@L o~ H~ H—
.

Record
Customer’s Flight

Data Reservation

d
Visa Sport Car @ Family Car
Application Rental Rental

Figure 7: A Sample Transaction Closure for Travel Planning

From our dependency definitions, the contradictory dependency combinations summarized in the for-
mulas (24)-(29), and the rules in Appendiz A we can now derive the transitive and wvalid execution
dependencies in the underlying transaction closure. Before considering transitive dependencies, we in-
vestigate the combinations of the specified termination and execution dependencies. All combinations
including the parallel execution dependency are valid (see Section 5). Therefore, we consider the sequen-
tial dependencies and their combinations with the termination dependencies in detail. In our example
the following dependency combinations occur:

seq(ts, ts)
seq(ts,t6)
seq_commit(ty,tr)

vital_dep(ts, ts
vital (ta, te
vital(ty, t7
(

exc(tg, 7

> > > >

)
)
)
)

seq_abort(te, t7)



The vital dependency can be combined with the sequential-commit dependency as well as with the se-
quential dependency. The exclusive dependency is compatible with the sequential-abort dependency. In
contrast, a combination of vital-dependent and sequential is incompatible (see formula 29). In conse-
quence, either the termination or the execution dependency has to be changed. Considering the seman-
tics of the application, we have two possibilities. FEither the termination dependency is set to vital or
the execution dependency is adapted to parallel.

After considering the dependency combinations, we discuss some interesting cases of transitive ex-
ecution dependencies which refer to the dashed lines and the corresponding letter (a), (b), (c), and (d)
in Figure 7:

(¢)

(b)

(d)

We start with the consideration of the transactions t1, to, and t3. As specified, t1 is executed
parallel to to and parallel including to t3. From these basic dependencies we can derive that the
ezecution dependency between the transactions to and t3 may be transitively of any introduced
ezecution dependency (see the Rules 87 and 46 in Appendiz A):

par(ti,t2) Ainc(t,t3)

D 3.3
L3 lap(ty, to) Vinc(ty, 1)) Adne(ty, ts)
= (lap(t1,t2) Ninc(ti,t3)) V (inc(ty, t2) A inc(ty, ts))
Rule 3046 Gine(ty, t3) V lap(ts, t2) V seq(ts, t2)) V (any(ts, t3) V any(ts, t2))
= any(te, t3) V any(ts, t2)

In relation to transaction ti, both transactions the recording of the customer’s data and the flight
reservation are executed parallel. Thus, there is no constraint on the execution of these two
transaction in relation to each other. In this case, the transaction designer can specify an arbitrary
execution dependency. The only restriction is that the execution dependency has be compatible
with the transitive termination dependency between t1 and t3.

An ezxecution dependency between the transactions ts and ty is already specified. Thus, we have to
check whether the parallel strict overlapping dependency is a valid specification or not. Again the
Rule 46 is used to derive the transitive dependency between these transactions over transaction
tl.‘

inc(ty,t3) Ainc(ty, ta) Rule 26 any(ts,ts) V any(ts, t3)

Thus, the dependency lap(ts,ts) is valid.

Considering the transactions ts, t4, and tg we derive the transitive dependency between ts and tg
with Rule 32:

lap(ts, t) A seq(ts, t6) "2 seq(ts, to)

The hotel reservation finished after the flight reservation and the sport car rental follows the hotel
reservation. Thus, renting a sport car is done after a room in a hotel is booked. Because of the
vital termination dependency between the transactions t4 and tg, the car rental is only executed if
ty commits. Therefore, the dependency seq(ty,ts) is refined to a sequential-commit dependency.

Finally, we consider the sequential-abort dependency between the transactions tg and t7. Due to
the termination dependencies between the transactions ty, tg, and ty7, the scenario is as follows.
If a hotel room cannot be booked, then the car rental is aborted, too. This case is reflected by
the sequential-commit dependency between t4 and ty;. Transaction t7 starts executing only after
a successful execution of transaction ty. Furthermore, the exclusive dependency between the car
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rental transactions express that in case one of the transactions finished successfully the other
activity is canceled. Therefore, at most one car is rent. Additionally, transaction ty is executed
sequentially after the abortion of transaction tg. In the case that no sport car is available, we try
to rent a family car. Thus, there is a priority specified between the two car rentals. According to
Rule 56 the specification of these dependencies are valid:

Rule 56
seq(ts, te) A seq(ts, t7) "= any(ts, t7) V any(tz, te)

Example 6.1 showed that we are able to detect contradictory and redundant parts of a transaction
closure definition. Different execution dependencies in combination with the termination dependen-
cies allows the transaction designer to specify complex applications. The transitivity property of the
execution dependencies is essential to conclude how two arbitrary transactions are related in terms of
execution and termination ordering.

7 Conclusions and Outlook

The original model of nested transactions is not suitable for generalized transaction models where
child transactions may survive the termination of the parent transaction. The concept of transaction
closures together with the dependencies introduced provide an appropriate model for discussing such
extended models (as proposed in e.g. [Elm92]). Transaction closures are collections of transactions
where the connection is given by termination conditions between transactions and their immediate
child transactions. In this paper, we extended the framework by execution dependencies. Here, we
explicitly distinguish between different kinds of parallel and sequential execution dependencies. The
framework allows to effectively compute derived execution conditions, and, thus, it builds the basis for
transaction design tools which can help in designing less failure-prone and more efficient applications.

The concept of transaction closure also captures dependencies considering the aspects of transaction
compensation and object visibility constraints [STS98a, STS98b]. However, due to space restrictions
we have omit a discussion on the impact of such kinds of dependencies on execution dependencies.

Our future work will concentrate on the enforcement of execution and termination conditions in
generalized transaction management systems. Here, we will attempt to adopt the methods proposed in
e.g. [GHK93, Giin96] to our framework and provide some extensions to capture the transitive properties
of transaction dependencies. Besides this, we will use our framework for describing global transactions
in federated database environments where the component systems support different transaction types.
We believe that with our framework we are able to exactly formulate the different relationships of the
global child transactions which are executed by the possibly heterogeneous and autonomous component
database systems.
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A Rules for Transitive Execution Dependencies

The algorithm presented in Section 4 brings out a set of rules for deriving transitive execution dependen-

cies. We omit the discussion of the generale parallel dependency par(t;,t;) because its the disjuncition

of lap(t;,t;) and inc(t;,t;). Thus, we can easily derive the rules for the parallel dependency.

In the following, we list the resulting transitive dependency rules which have to hold for three

different transactions t;, 5, and ¢;:

la'p(ti,tk)/\lap(tkatj) = la’p(ti,tj)vseQ(tiatj)

lap(t;, ty) Ninc(ty,t;) =  any(ti,t))

lap(ti,tk)/\seQ(tkatj) = SeQ(tiatj)

lap(ti, ty) Nlap(tj,te) = lap(ti,t;) Vinc(ti, t;) Vlap(tj, t;) Vinc(t;, t;)

= lap(t;, tj) Vinc(tj, t;)

(35)
(36)
(37)

= inc(ti, t;) Viap(ts, ti) V seq(t;, t;)

lap(ti,tx) N seq(t;,tx)

= lap(t;, tj) Vinc(ti, t;) Vlap(tj, ti) V inc(t;, t;)

la'p(tka tz) A lap(tka t])
= inc(ti, t;) Viap(t;, ti) V seq(t;, t;)
= any(t;,t;)

lap(tk, ti) A inc(tk, tj)
lap(ti,ti) A seq(ty,t;)

= lap(t;, tj) Vinc(t;, t;)

inc(ti,tk)/\inc(tk,tj) = inc(ti,tj)

inc(t;, ty) Alap(ty, t))

inc(ti, ty) A seq(ty,t;) = any(ts,t;)

inc(ti, ty) ANlap(t;,ty) = inc(ti,t;) Vlap(t;,t;)

= lap(ti,tj) Vinc(ti, t;) Viap(t;, t;) Vinc(t;, t;)

inc(ti, ty) A seq(tj, ty) = inc(ti,t;) Vilap(tj,t;) V seq(t;, t;)

inc(ti, ty) Ainc(t;, ty)

(44)
(45)

= lap(t;, tj) V seq(ti, t;) Vinc(t), t;)
= any(t;, t;) Vany(t;,t;)

= seq(ti, 1))
= seq(ti,t))
= seq(ti,t))

inc(ty, t;) Alap(tg, t))
inc(ty, t;) Ainc(ty, t;)
inc(tk, ti) N SeQ(tka tj)

SGQ(tZ', tk) A lap(tk:a t])
seq(ti, ty) Ninc(ty, t;)

SeQ(ti,tk)Aseq(tkatj) = SeQ(tiatj)

seq(ti,tx) Alap(tj t) = lap(ti, t;) V seq(ti,t;) V inc(t;, t;)

(52)

= lap(ti,tj) V seq(ti, t;) Vinc(t;, t;)

Seg(ti,tk) A SeQ(tj,tk) = a’ny(tia tj) v any(tjati)

seq(t, t;) ANlap(ty,t;) = any(t;,t;)

seq(ti,tk) A inc(ty, ty)

seq(ty, t;) Ninc(ty,t;) = seq(t;,t:)

= any(t;, t;) Vany(t;,t;)

seq(tg,t;) N seq(ty,t;)
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