ANALYZING AND FORMALIZING
DEPENDENCIES IN GENERALIZED
TRANSACTION STRUCTURES*®

Kerstin Schwarz

Can Tirker

Gunter Saake

Otto-von-Guericke-Universitéit Magdeburg
Postfach 4120, 39016 Magdeburg, Germany
E-mail: {schwarz|tuerker|saake}@iti.cs.uni-magdeburg.de

ABSTRACT

Modern information systems require advanced trans-
action models providing means to describe complex
activities such as transactional workflows. Complex
activities consist of sets of transactions which are in-
terrelated, i.e., there are dependencies among several
transactions. We analyze different kinds of dependen-
cies and present an extended formal framework (based
on ACTA) for describing advanced transaction mod-
els. We introduce the notion of transaction closures as
a generalization of nested transactions which captures
different orthogonal dependencies such as abort and ob-
ject visibility dependencies, and explicitly show how
these dependencies work together. The formal frame-
work is demonstrated by formalizing detached transac-
tions known from the area of active database systems.

1 Introduction

Advanced transaction models are the basis for realizing
complex activities in information systems. Tradition-
ally, such models base on the idea of nesting transac-
tions. Nested transactions (Mos85) consist of smaller
transactions called child transactions. The initiating
transaction is called parent. A child transaction may
also consist of child transactions. Depending on the dif-
ferent variations of the nested transaction model, child
transactions can be executed sequentially or parallel,
and the nesting of the transactions can be closed or
open (WS92). However, all transactions have to be ter-
minated before the parent transaction can be commit-
ted. This follows immediately from the term ‘nesting’
which means to include something.

In recent years, especially with the introduction of
active databases (DHW95), there is an increasing de-
mand for transaction models which provide a more gen-
eral framework in order to support more flexible trans-
actions realizing complex activities. For instance, de-
tached transactions with various modes are required
(Buc94). A detached transaction is initiated by an-
other transaction and is executed as a separate trans-
action. In comparison to classical child transactions,
detached transactions may leave the execution bound-
aries of the initiating transaction. Depending on the de-
tached mode, the abortion of the initiating transaction
may not have any influence on a detached transaction.

The DOM transaction model (BOH'92) goes in
this direction by providing different kinds of transac-
tions such as wvital, non-vital, contingency, and com-
pensating transactions. A further step towards a more
general transactional execution framework are the ac-
tivity model (DHL91), the ConTract model (WR92),
and (transactional) workflow models (RS95). All these
models have in common that they support the specifi-
cation of a certain control flow among transactions.

We present a general formal framework for describ-
ing advanced transaction models. For that, we extend
the ACTA formalism (CR94) concerning aspects of ac-
tivity models. One extension is the notion of trans-
action closures generalizing nested transactions. A
transaction closure contains all transactions initiated
(transitively) by one (root) transaction. In contrast to
nested transactions, a transaction closure may consist
of transactions' which terminate after the termination
of their parents. In other words, a parent can terminate
without waiting for the termination of the child.

There may be different kinds of dependencies among
transactions of a transaction closure. We analyze an or-
thogonal set of dependencies. First, we consider abort
dependencies in both directions, from parent to child
transactions and vice versa. Furthermore, we inves-
tigate how results of transactions are made visible to
other transactions. Another interesting issue concerns
execution order dependencies being used to describe the
control flow among transactions.

The paper is organized as follows: Section 2 de-
fines basic properties of advanced transactions. In Sec-
tion 3 we analyze abort dependencies among transac-
tions. Section 4 discusses object visibility dependencies
whereas Section 5 deals with execution order depen-
dencies. In Section 6 the notion of transaction closures
is introduced and different dependencies are combined.
The application of our formal framework to detached
transactions is demonstrated in Section 7.

2 Foundations

A transaction is an execution unit consisting of a set
of operations. A transaction t; is started by invoking
the transaction management primitive begin (bs,) and

*This research was partially supported by the German State
Sachsen-Anhalt under FKZ 1987A /0025 and 1987/2527R.

1We explicitly do not use the term subtransaction because tra-
ditionally subtransactions are executed in the scope of the parent.
From our point of view, a parent initiates child transactions with-
out any requirements on the termination of these transactions.

is terminated either by commit (c;;) or abort (az;). A
transaction invokes operations, termed as object events,
to access and manipulate the state of database objects.
The object event py,[ob] refers to the invocation of an
operation p on an object ob by a transaction ;. The
effects of an object event of ¢; are made persistent by
using the operation c[py, [0b]] and are obliterated by the
operation a[py,[ob]]. The access set AS;, contains all
operations plob| for which transaction ¢; is responsible.
The commit of ¢; commits all its operations.

A history of a concurrent execution of a set of trans-
actions T is a partial order of all events associated with
the transactions in T. The complete history H contains
only terminated transactions, the current (incomplete)
history is termed as H.;. The occurrence of an event in
a history may be constrained as follows:

(1) An event € may occur only after another event €
in a history H: € = € is true iff € precedes €’ in H.

(2) An event € may occur only if a certain condition is
true: (e € H) = Condg specifies € can belong to H only
if Condp is satisfied. Condg is a predicate involving
the events in H, e.g. (¢ — ¢€). It can be formulated using
well-known logical connectives, e.g., =, A,V, =, <, V, 3.
(3) A condition requires the occurrence of an event:
Condy = (e € H) specifies that e should be in history
H if Condg holds.

A transaction must be in one of the following states:
active(t;) < by, € Hee Acy, € Hee Ay, & Het
committed(t;) < ¢, € Het
aborted(t;) :& at; € Het
The effects of transactions on other transactions are
described by dependencies being constraints on possible
histories. In the sequel, we recall some fundamental

dependencies described in more detail in (CR94). Let
t; and ¢; be transactions and H be a finite history:

Begin Dependency (t; BDt;). Transaction t; can
only be initiated if ¢; is already initiated:

bti eEH= (btj — bti)

Commit Dependency (t; CDt;). If ¢; and t; commit,
then the commit of ¢; must precede the commit of ¢;:
Ct; € H= (Ctj €H= (Ct]. — Ct,-))

Abort Dependency (t; ADt;). If t; aborts, ¢; has to
abort, too: a;; € H=a;;, € H

Weak-Abort Dependency (t; WDt;). If t; commits
and ¢; aborts, the commit of ¢; precedes the abortion
of tj: a; € H= ((cy; = ag;) V (ag; € H))

Serial Dependency (t; SDt;). Transaction ¢; cannot
begin executing until ¢; either commits or aborts:

bti €H= ((Ctj - bti) \Y% (at_j - bti))
Begin-on-Abort Dependency (t; BADt;). Trans-
action ¢; cannot begin its execution until ¢; aborts:

bti €EH= (at]. — bt,)

Begin-on-Commit Dependency (t; BCDt;). Trans-
action ¢; cannot begin executing until ¢; commits:

(be; € H) = (ci; — by,)

Additionally to the dependencies from (CR94) stated
above, we introduce the following dependencies:

Force-Begin-on-Abort Dependency (t; FBADt;).
If t; aborts, t; has to begin: a;; € H = (a;; = by,)

Commit-on-Termination Dependency (¢;CTDt;).
Transaction #; cannot commit until ¢; either commits
or aborts: ¢;; € H = ((¢y; = ¢;) V (ag; = ¢,))

Begin-before-Abort Dependency (t; BBADt;).
Transaction ¢; cannot abort until ¢; starts its execu-
tion: ay; € H= (btj — ati)

Begin-before-Commit Dependency (¢; BBCDt;).
Transaction ¢; cannot commit until transaction ¢; starts
executing: ¢;;, € H = (b, = ¢4;)

Advanced transactions are structured, i.e., they consist
of sets of transactions which are interrelated.

Definition 2.1 The following predicates describe gen-
eral relationships between a transaction and its creator:

root(t;) := {t; has no parent}
parent(t;, t;) := {t; is parent of t;}
superior(t;, t;) := (parent(t;,t;) V
(3t : superior(t;, ty) A parent(ty,t;)))

Definition 2.2 Suppose ST denotes the set of struc-
tured transactions:

o Each structured transaction has ezactly one root:
Vst € ST : t; € sty, : root(t;)

e Each non-root transaction has exactly one parent
and the begin of the child must follow the begin of
the parent: Vst € ST : Vt; € sty : —root(t;) =

(3t; € sty, : parent(t;, t;) A (t; BDt;))

e FEach transaction structure is acyclic:
Vst € ST : At; € sty, : superior(t;,t;)

3 Abort Dependencies

Fundamental dependencies in transaction structures
are abort dependencies which state whether the abor-
tion of a transaction has an influence on another trans-
action. In the literature, e.g. (CR94), the abort de-
pendencies in nested transactions are well investigated.
However, due to the basic assumption of nested trans-
actions that a child transaction may not leave the scope
of the parent, the abortion of a parent implies the abor-
tion of all its child transactions. Consequently different
abort dependencies are only considered in one direction
(from a child to its parent). In contrast, we consider
general transaction structures and thus distinguish be-
tween different upwards and downwards abort depen-
dencies, i.e., different possible effects of a transaction
abortion on superiors as well as on child transactions.

3.1 Influences of Abortions on Superiors

First, we consider the effects of an abortion of a trans-
action on its parent and other superiors. We define four
kinds of upwards abort dependencies: vital, weak-vital,
weak-non-vitel, and non-vital.

Definition 3.1 (Vital) A transaction t; is vital for

another transaction t; iff t; is (transitively) abort as
well as commit dependent on t;:

vital(t;, ;) :< (parent(t;, t;) A (t; ADt;) A (¢,CDE;)) V
(3ty, = vital(t;, tg) Avital(ts, t5))

Thus, an abortion of a vital transaction ¢; leads to the
abortion of all superiors for which ¢; is vital. In other
words, a transaction is only allowed to commit, if all its
vital child transactions are committed.

Upwards abort dependencies have an influence on
the commit of the parent and on the abortion of a child.
Table 1 illustrates that a parent ¢; of a vital child ¢; may
only commit if ¢; is committed. Due to the fact, that
an abortion of a vital child leads to the abortion of the
parent, the case, in which ¢; wants to commit and ¢; is
already aborted, cannot occur. If ¢; wants to abort, we
have to consider the state of ¢;. In this case, t; cannot
be committed until the vital child ¢; is committed.

[vital(t:,t5) | ¢; wants to commit |

active(t;) t; must wait for ¢;’s termination
and may only commit if {; commits

committed(?;) || {; may commit
aborted(t;) this case cannot occur

[vital(ti,t;) [t; wants to abort |
active(t;) t; may abort and ¢; must be aborted
committed(#;) || this case cannot occur
aborted(#;) t; may abort (no effects on ¢;)

Table 1 Vital Dependency

Our second upwards abort dependency bases on the
notion of a contingency transaction.

Definition 3.2 (Contingency) Transaction t. is a
contingency transaction of transaction t; iff t. is se-
mantically equivalent® to t;, t. is force-begin-on-abort
dependent on t;, the common parent t; of t. and t; is
commit dependent on t., and t; is abort dependent on
t. or there exists a contingency transaction t,, for t.:

cont(t,t;) :< sem-equiv(tc,t;) A (tc FBADE;) A
(3t; : parent(t;, t;) A parent(t;,tc) A (t; CDt.) A
((t; AD t.) V (Tt : cont(tm,, te))))
A contingency transaction is executed as an alternative
to transaction t; in case t; aborts and may have itself
a contingency transaction. Thus, a transaction t. is

termed as an alternative to t; iff t. is (transitively) a
contingency transaction of t;:

alter(t.,t;) :& cont(t.,t;) V
(3t : alter(tc, tr) A cont(tx, t;))

Definition 3.3 (Weak-Vital) A transaction t; is
weak-vital for another transaction t; iff t; is (transiti-
vely) commit dependent on t;, begin-before-commit de-
pendent on the contingency transaction t. of t; in case
t; aborts®, and there is an alternative t,, of t; which is
vital to terminate the execution of t;’s alternatives:

2The transaction designer defines which transactions are se-
mantically equivalent (sem-equiv(tc,t;)).

3This is necessary to guarantee that the contingency transac-
tion t. do not leave the scope of its parent ¢;.

weak-vital(t;, tj) = (parent(ti,tj) A (t;CD tj) A
(3t. : (cont(te,t;) Aaborty, € H) = (t; BBCDt.)) A
(Tt : alter(ty,, t;) Avital(t;, tm))) V
(ty, - (weak-vital(t;, ty) A weak-vital(t,t;)) V
(weak-vital(¢;, tg) A vital(tg, tj)) \%
(vital(t;, tr) A weak-vital(tx, t;)))
Table 2 shows the case in which a parent ¢; of a weak-
vital transaction t; wants to commit. Transaction ¢;
may only commit if ¢; or an alternative of ¢; commits.
Hence, a weak-vital child can abort without forcing the

parent to abort, if there exists an alternative transac-
tion which commits. In case t; wants to abort, ¢; may

[weak-vital(;,t;) [t; wants to commit |
active(t;)

t; must wait for ¢;’s termination
and may only commit if ¢; or
an alternative commits

t; may commit

t; may commit

committed(t;)
aborted(t;)

weak-vital(¢:,¢;) || ¢; wants to abort |
active(t;) t; may abort but

cont(t.,t;) must be initiated
this case cannot occur

t; may abort (no effects on ¢;)

committed(#;)
aborted(t;)

Table 2 Weak-Vital Dependency

abort but a contingency transaction t. of ¢; must be
executed afterwards. However, t; cannot be committed
because ¢; has to wait for the termination of ¢;.

In contrast, the abortion of a non-vital child has no
influence on the superior, i.e., the parent may commit
even if a child aborts. Here, we distinguish two kinds
of non-vital dependencies. A transaction ¢; is called
weak-non-vital if the termination of ¢; has to precede
the commitment of the superior. Please note that the
notion of weak-non-vital we used here is usually termed
as non-vital in the literature (see e.g. (Mos85; Elm92)).
From our point of view, a transaction is non-vital if the
abortion of this transaction has no influence on commit-
ment of the parent and additionally the parent has not
to wait for the termination of a non-vital child. This
distinction in terminology is necessary because we are
working with more general transaction structures.

Definition 3.4 (Weak-Non-Vital) A transaction t;
is weak-non-vital for another transaction t; iff t; is
(transitively) commit-on-termination dependent on t;:

weak-non-vital(t;, t;) & (parent(t;,t;) A (¢; CTDt;)) V

(ty : (weak-non-vital(t;, tr,) A (vital(tx,t;) V
weak-vital(tx, t;))) V

((vital(t;, tg) V weak-vital(¢;, tx)) A weak-non-vital(¢, t;))

V (weak-non-vital(t;, tx) A weak-non-vital(tx, t;)))

Table 3 illustrates the commitment of a parent t; of

a weak-non-vital child ¢;. Transaction ¢; may commit

if ¢; is already terminated. Thus, the case that ¢; is
committed and the child ¢; wants to abort cannot occur.

weak-non-vital(#;, ¢;)]| ¢; wants to commit |

active(t;) t; must wait for ¢;’s termination
committed(#;) t; may commit
aborted(t;) t; may commit

weak-non-vital(#;,¢;)]| ¢; wants to abort |
active(t;) t; may abort

committed(#;) this case cannot occur
aborted(t;) t; may abort (no effects on ;)

Table 3 Weak-Non-Vital Dependency

The abortion of a non-vital child has no influence
on the parent. The parent may continue even if a non-
vital child aborts and can commit without waiting for
the termination of its non-vital child transactions.
Definition 3.5 (Non-Vital) Transaction t; is non-
vital for another transaction t; iff the abortion of t;
has no effects on the termination of t;.

3.2 Effects of Abortions on Child Transactions
Investigating the abort of a child and the influences on
their superiors leads to the question in which way an
abort of a superior may effect transactions. We define
the dependent, weak-dependent and independent types.

A dependent child aborts if the parent aborts and is
only allowed to commit if the parent commits.

Definition 3.6 (Dependent) A transaction t; is de-

pendent on another transaction t; iff t; is (transitively)
abort dependent on t;:

dep(t;, tj) = (parent(ti,tj) A (t]' ADt;)) v

(Htk : dep(ti,tk) A dep(tk,tj))
Table 4 represents a parent ¢; which may abort, if the
dependent child ¢; is active or aborted. The case that
t; is already committed is not valid, because the abort
dependency (t; AD¢;) has to be fulfilled. The child ¢;

must wait for the termination of ¢; to commit because
the abortion of ¢; leads to the abortion of ¢;.

[dep(t:, t;) | t: wants to abort |
active(t;) t; may abort and ¢; must be aborted
committed(¢;) || this case cannot occur
aborted(;) t; may abort (no effects on ¢;)

[dep(t:, t;) [t; wants to commit |
active(t;) t; must wait for ¢;’s termination
committed(#;) || ¢; may commit
aborted(#;) this case cannot occur

Table 4 Dependent Dependency

A weak-dependent transaction has to be aborted if a
superior aborts. In contrast to a dependent transaction,
a weak-dependent transaction is allowed to commit if
its commitment precedes the termination of the parent.
Definition 3.7 (Weak-Dependent) Transaction t;
is weak-dependent on another transaction t; iff t; is
(transitively) weak-abort dependent on t;:

weak-dep(t;,t;) :<> (parent(t;, t;) A (t; WDt;)) V
(Ftr : (weak-dep(t;,tr) A weak-dep(tr,t;)) V

(weak-dep(t;,tx) A dep(tr,t;)) V
(dep(tw tk) A Weak—dep(tia tk)))

Table 5 illustrates that a parent ¢; of a weak-dependent
child ¢; may abort independently of the state of ¢;. In
case t; is already committed, then ¢; has to be undone
or compensated (if atomicity is required). On the other
hand, t; may commit while its superior ¢; is active or
committed. Transaction ¢; cannot be aborted because
its abortion leads to the abortion of the child ¢;.

weak-dep(ts,t;)]| t: wants to abort |

active(t;) t; may abort and ¢; must be aborted
committed(¢;) || ¢; may abort but ¢; must be undone
aborted(;) t; may abort (no effects on t;)

weak-dep(t;,t;) || ¢; wants to commit |

active(t;) t; may commit
committed(t;) t; may commit
aborted(#;) this case cannot occur

Table 5 Weak-Dependent Dependency

An independent transaction, on the other hand, may
continue even if its parent or another superior aborts.
Thus, the commitment of an independent transaction
is independent of an abortion of the superior.
Definition 3.8 (Independent) Transaction t; is in-
dependent of another transaction t; iff the abortion of
t; has no effects on the termination of t;.

4 Object Visibility Dependencies

A second category of dependencies among transactions
concerns the visibility of effects of transactions to other
transactions. We have again to investigate two direc-
tions of object visibility dependencies: (1) visibility of
the effects of a transaction on its child transactions and
(2) visibility of the effects in the other direction.

4.1 Visibility of Effects on Child Transactions
Before considering different object visibility dependen-
cies, we have to introduce the notion of the view of a
transaction.

Definition 4.1 (View) The view of a transaction t
(denoted by viewy) specifies the state of objects visible
to transaction t at a point in time.

Definition 4.2 (Inheriting) A transaction t; is an
inheriting transaction from the viewpoint of transaction
t; iff tj is (transitively) inheriting the view of ¢;:

inher(t;,t;) & (parent(t;,t;) A (view;; = view;; U ASy,))
V(3ty : inher(t;, tx) Ainher(ty,t;))

The formula above expresses that ¢; sees, additionally
to its own access set, everything what ¢; sees. Here we
used the term ‘inheriting’ to indicate that a transaction
inherits the view of its parent and thus transitively the
views of all inheriting superiors. In traditional nested
transactions as introduced by Moss (Mos85) all child
transactions are inheriting transactions.

Definition 4.3 (Non-inheriting) A transactiont; is
a mnon-inheriting transaction from the wviewpoint of

transaction t; iff t; does not (transitively) inherits the
view of t;:

non-inher(¢;,t;) < (parent(t;,t;) A
(views; = {p¢[od] | committed)} U AS;;)) V
(3tk : non-inher(t;, tx) V non-inher(tx, t;))

A non-inheriting transaction sees after its creation only
the effects of committed transactions. For example,
detached transactions (Buc94) are non-inheriting.

4.2 Treatment of Results of Child Transactions
Now, we consider how the visibility of results of child
transactions can be handled. We distinguish two cases:
The effects are made visible (1) only to the parent or
(2) to all other transactions. In the first case the effects
of a transaction are delegated to the parent.

Definition 4.4 (Delegate) Transaction t; delegates
the responsibility for commaitting or aborting its access
set to transaction t; by using the operation dq, [t:]. After

d¢; [ti] the access set of t; includes t;’s access set.

Definition 4.5 (Delegating) A transaction t; is a
delegating transaction from the viewpoint of transaction
t; if the access set of t; is (transitively) delegated to t;:

del(t;,t;) :& (parent(t;, t;) A (c; € H < dy[t;] € H) A
(dtj [tz] €H= (dt]. [t,] —C; V dt]. [tz] - ati))) \Y
(Htk : de|(t,’,tk) A del(tk,tj))

A delegating transaction ¢; commits through delegation
implying that with the commit of ¢; the access set of ¢;
is made visible only to its parent t;. As a consequence,
t; cannot terminate until ¢; delegates its access set.
For performance reasons, often it is necessary that
a child makes its effects visible to concurrent transac-
tions and, thus, release all accessed and manipulated
objects with the commit. This may happen before the
termination of the parent.
Definition 4.6 (Releasing) A transaction t; is a re-
leasing transaction from the viewpoint of transaction t;
if the access set of t; is visible with the commit of t;:

rel(t;,t;) &= (parent(t;,t;) A

(Fob 3p ¢y, [plod]] € H = ¢;; € H) A
(ct; € H = (Vplodb] € ASy; = ¢4, [p[ob]] € H))) v
(

J

Tty :rel(ts, tr) V rel(ty, t;))

5 Execution Order Dependencies

In general, there are execution order dependencies
among transactions, e.g. the sequential execution of a
contingency transaction after the abortion of another
transaction. We distinguish the following execution or-
der dependencies: sequential and parallel.

Definition 5.1 (Sequential) A transaction t; is se-
quential dependent on another transaction t; iff t; is
(transitively) serial dependent on t;. Analogously, the
sequential-abort dependency and the sequential-commit
dependency are defined:

seq(ti, tj) = (tj SD ti) \% (Htk : seq(ti, tk) A seq(tk, tj))
seq-a(t;, t;) & (t; BADt;) vV

(3tr : seq-a(ts, tr) A seq(te, tj))
seq—c(t,-, tj) = (tj BCD tz') \%
(Jtr, : seq-c(ti, tr) A seq(tr,t;))

Definition 5.2 (Parallel) A transaction t; is parallel
to another transaction t; iff t; is not sequential depen-
dent on t;. Transaction t; is parallel-abort dependent
on t; iff t; is begin-before-abort dependent on t; and
parallel-commit dependent on t; iff t; is begin-before-
commit dependent on t;:
par(ti, t;) = —seq(ts, t;)
par-a(t;,t;) :& (t; BBADt;) v
(3t = par-a(t;, tr) A seq(tx,t;))
par—c(ti,t]-) = (ti BBCDtJ) \%
(Jty, : par-c(ti, tx) A seq(te,t;))

6 Transaction Closures and Dependency Com-
binations

A transaction closure is a generalization of a nested
transaction. A traditional nested transaction is a trans-
action closure where the child transactions cannot be
independent, i.e., a child transaction cannot leave the
execution boundaries of its parent.

Definition 6.1 (Transaction Closures) A transac-
tion closure is a structured transaction where each
(non-root) transaction is:

o vital, weak-vital, weak-non-vital, or non-vital, and
dependent, weak-dependent, or independent, and
inheriting or non-inheriting, and

releasing or delegating, and

sequential or parallel.

Theoretically, all introduced kinds of transaction de-
pendencies could be combined to form transactions of
a transaction closure. Due to space restrictions, we can-
not discuss all possible combinations. However, we can
state that some combinations are incompatible or re-
sult in dependencies with other properties. To simplify
the discussion, we only consider combined dependencies
between a child ¢; and its parent ¢;. The presented re-
sults are also valid for superiors with the corresponding
dependencies.

6.1 Abort Dependencies

The combination of upwards and downwards abort de-
pendencies results in restricted termination event com-
binations and special execution orders in some cases.

Theorem 6.1 Combining the wvital dependency with
the downwards abort dependencies results in an abort
and commit dependent parent t; and differ in the de-
pendency of t; in case t; aborts*:

4Due to space restrictions, we do not present the proofs of
the theorems discussed in this section. However, the theorems
immediately follow from the combinations of the definitions given
in the previous sections.

parent t; at; at; Ct; Ct;
child ¢; at; Ct; 3t Ct;
vital(t;,t;) A dep(t;, t;) true false false Ci; — Ci
vital(t;,t;) A weak-dep(t;, ;) true | ¢y, — ay, false Ci; — Ci
vital(;,t;) A indep(ts, ;) true true false Ci; — Cy
weak-vital(t;, ;) A dep(ts, t;) true false Cip = Ct; | Ct; = Cyy
weak-vital(t;, t;) A weak-dep(ti, t;) true | cy; —as; | Ct = Coy | Coy = Gy
weak-vital(t;, t;) A indep(t:, t;) true true Ctpy =+ Ct; | Ct; = Cyy
weak-non-vital(Z;, ;) A dep(t;, t;) true false ag; =+ Co; | Ct; = Cyy
weak-non-vital(Z;, t;) A weak-dep(t;, t;) true | ¢, —ay, | ay; = Cy | Gty = Cy
weak-non-vital(%;,t;) A indep(ts, t;) true true at; = Cy; | Cty; = Cyy
non-vital(¢;, t;) A dep(t;, t;) true false true true
non-vital(¢;, t;) A weak-dep(%;,t;) true | ¢y, — ay; true true
non-vital(¢;, t;) A indep(#;, t;) true true true true
del(t;,t;) A non-vital(¢;,t;) A dep(¢:,t;) true false at; =+ Cy; | Ct; = Cyy
del(ti,t;) A non-vital(¢;, t;) A weak-dep(t;,¢;) || true | ¢t; —ag;, | @y, = oy | ¢ty =y,
del(t;,t;) A non-vital(;, t;) A indep(t;, t;) true | cs; = as; | ay; =Gy | Co; = Gy
seq(ti, t;) Avital(t;, ;) A dep(t:, t;) true false false false
seq(ti, t;) A vital(t:,t;) A weak-dep(t;, t;) true false false false
seq(t, t;) Avital(t;,t;) Aindep(;, t;) true true false false

Table 6 Combined Dependencies

vital(ti,tj) A dep(t;, tj) = (t; AD tj) A(t;CD tj)
/\(tj AD t,')
vital(t;, t;) A weak-dep(t;,t;) = (t; ADt;) A (8;CDt;)
A(t; WDt;)
Vit&'(ti,tj) N indep(t,-, tj) = (ti AD tj) A (ti CD tj)
The termination events of the transactions ¢; and t; are

represented in Table 6°. In the case of a vital child ¢;,
t; is not allowed to commit while ¢; abort. The commit
of the child has to precede the commit of the parent.
The downwards abort dependencies influence the case
in which the child aborts and the parent commits (see
the third column of Table 6).

Theorem 6.2 Combining the weak-vital dependency
with the downwards abort dependencies:

weak—vital(tz-, tj) A dep(t,-, tj) = (tz’ CD tj) A

(Etk : cont(tk,t]-) Nag; = (ti BBCDtk)) N (t]‘ AD ti)
weak-vital(t;,t;) A weak-dep(t;,t;) = (t;CDt;) A

3ty : cont(tk,tj) Aay = (t; BBCD1ty)) A (tj WDt;)
weak—vital(ti,tj) A indep(t;, tj) = (t;CD tj) A

(Fty : cont(tr,t;) ANay; = (t; BBCD1y,))
The weak-vital property forces that the parent is com-
mit dependent on the child transaction and, moreover,
that there exists one alternative transaction which is
executed in case the child aborts and which must be
committed in order the parent can commit.

The weak-vital dependency allows that the parent ¢;
commits and t; aborts (see Table 6). However, in this

case an alternative transaction t; has to be initiated
and committed before the parent can commit.

5Termination event combinations which are valid in both ex-
ecution orders are denoted as true and invalid termination event
combinations are denoted as false. There are termination event
combinations which are only valid if they are executed in a special
order. In this case the corresponding execution order is noted.

Theorem 6.3 The combination of the weak-non-vital
dependency with the downwards abort dependencies:

weak-non-vital(¢;, t;) A dep(t;,t;) = (¢ CTDt;)

A(t; ADt;)

weak-non-vital(t;, t;) A weak-dep(t;,t;) = (t; CTDt;)
/\(t]- WD tz')

weak-non-vital(¢;, ;) Aindep(t;,t;) = (t; CTDt;)

In contrast to a weak-vital or vital child, a weak-non-
vital child requires that the abortion of the child pre-
cedes the commit of its parent (if this case occurs).

Finally, we consider the case that transaction ¢; is
non-vital for ¢;. If ¢; is further independent of ¢;, there
exists no restrictions on the termination order.

Theorem 6.4 Combining the non-vital dependency
with the downwards abort dependencies:

non-vital(t;, t;) A dep(t;,t;) = (t; ADt;)
non-vital(¢;, ;) A weak-dep(t;,t;) = (t; WDt;)
non-vital(¢;,t;) A indep(t;,t;) = true

6.2 Object Visibility Dependencies

Abort dependencies are constraints on the occurrence
of the termination events of related transactions. In
contrast, object visibility dependencies have an influ-
ence on the view of the related transactions:
Combining delegating and inheriting: The view
of a child ¢; includes its access set and the view of the
parent t; wﬂich consists of the commit projection of the
current history (H, = {p[ob] | committed(t)}) and the
access set of ¢; (view;, = H{; U AS;). Thus, ¢; can see
the results of #; and delegates its own access set with
the commit to ¢;. In consequence, the access set and,
thus, the view of the parent ¢; is extended by the access
set of the committed child ¢;. However, these results
are not visible to (other) concurrent transactions.

Combining releasing and inheriting: The child ¢;
inherits the view of its parent ¢;. Due to the releasing
property, the results of the child ¢; are immediately
reflected in the commit projection of the current history
with the commit of ¢;. Thus, the view of the parent ¢; is
the same as in the case of a delegating child. However,
the access set of ¢; is not extended by the results of ¢;.
Combining delegating and non-inheriting: A
non-inheriting dependency reduces the view of a child
t; to the commit projection of the current history and
its own access set. In other words, a child does not see
the effects of its parent. A combination with the dele-
gating property leads to an extension of the view of the
parent t; by delegating t;’s access set with its commit.
Combining non-inheriting and releasing: This
combined dependency is equivalent to a dependency
between two concurrent transactions of different trans-
action closures. Both transactions see only their own
access set in addition to the commit projection of the
current history, i.e., they do not see the effects of each
other since the effects are committed.

viewtj viewy,

(at by,) (at c;)

HZe UAS:, [HZe UAS:; UAS,
Hg UAS,, |HS UAS,,

S Hg: UAS,, UASLJ-
Hgt U ASti

inher(t;, t;) A del(t;, t;)
inher(t;,t;) Arel(t;, t;)
non-inher(t;, t;) A del(t;, ;) || Ho:
non-inher(t;, t;) Arel(t;,t;) |[[HE;

Table 7 Combined Object Visibility Dependencies

In Table 7 we compare the view of the child ¢; at the
starting time of ¢; and the view of the parent ¢; at the
commit time of ¢; for all combinations discussed above.
Due to the consideration of the views of the related
transactions at different points in time, the commit pro-
jection of the current history H¢, may be changed, e.g.
with the commit of a releasing transaction.

6.3 Object Visibility and Abort Dependencies

The object visibility dependencies have also an influ-
ence on the abort dependencies. Concerning the del-
egating property, the delegation of the access set of
t; to its parent ¢; has to precedes the termination of
t;- A combination with the independent property re-
stricts the independent property to a weak-dependent
property because the requirement that the commit of
t; must precede the abortion of ¢; is added by the del-
egating dependency.

A combination of a non-vital dependency with the
delegating property, converts the former one to a weak-
non-vital dependency. This is due to fact that the com-
mit of transaction ¢; has to precede the commit of its
parent t;. The abortion of ¢; has also to precede the
commit of ¢; because the parent has to wait for the
termination decision of the child to commit.

Theorem 6.5 Combining independent and non-vital
with the delegating dependency leads to a transforma-
tion (~) to a weak-dependent and weak-non-vital de-
pendency, respectively:

indep(t;, t;) A del(t;, t;) ~ weak-dep(t;,t;)

non-vital(¢;, t;) A del(t;, t;) ~ weak-non-vital(t;, ;)

Because of space restrictions, we only consider the com-
bination of the delegating dependency with non-vital
and the downwards abort dependencies (Table 6). We
can easily see that the delegating dependency constrain
all valid termination event combinations by adding that
the child has to terminate before the parent.

In contrast, a releasing dependency requires no re-
striction on the termination order of the related trans-
actions. Therefore, in this case, there are no additional
constraints on the abort dependencies. The inheriting
and non-inheriting properties are related to the begin of
a child. Thus, these dependencies have also no influence
on the abort dependencies of the related transactions.

6.4 Execution Order Dependencies

Execution order dependencies can be combined with
the abort and object visibility dependencies. In gen-
eral, parent and child transactions are executed in par-
allel. However, in advanced applications, e.g. in active
databases, a transaction may be triggered within an-
other transaction and executed sequentially after the
termination of the triggering transaction.

Assume that a child ¢; has to be executed sequen-
tially after the termination of the parent ¢; (seq(t;,t;)):

(1) In case t; has to be started after the commit of ¢;
(seg-c(t;,t;)), the dependency between these two trans-
action should be non-vital. In case of the vital depen-
dency, the abortion of the child may force the parent to
abort, too. However, in combination with a sequential
dependency, this is not reasonable because the parent
terminates before the child begins executing. As shown
in Table 6, the vital, weak-vital, and weak-non-vital de-
pendency requires that the child ¢; commits before the
parent t; can commit. However, this contradicts the
requirement of the sequential dependency that ¢; has
to start after the termination of ¢;. Thus, this combi-
nations are incompatible.

(2) The same argument holds also for the case that
the child ¢; has to be started after the abortion of the
parent t; (seq-a(t;,t;)). Here, the downwards abort de-
pendency should be independent. According to Table 6,
a weak-dependent transaction ¢; requires that its com-
mit precedes the abortion of its parent t;. However,
this also contradicts the requirement of the sequential
dependency that ¢; has to start after the termination
of ¢;. In case of dependent transactions, the case that
t; aborts and t; commits is disallowed. Thus, the ex-
ecution of t; after the abortion of ¢; cannot lead to
a commit of t;. However, the abortion of ¢; is valid.
Thus, the execution of transaction ¢; makes no sense
because it is aborted in any case.

Table 6 represents the combination of the sequential
dependency with vital and the downwards abort de-
pendencies. Analogously to the weak-vital and weak-
non-vital dependency, a combination of vital and se-
quential leads to contradictions in the execution order-
ing requirements. Thus, the last column is completely
adapted to false where in the second column only the
combination with weak-dependent is changed to false.

The delegating dependency requires the delegation
of the results of ¢; to the parent ¢;. From this follows,

a sequential execution of ¢; after the termination of ¢;
is impossible (analogously to the abort dependencies).

Finally, we can state that a sequential dependency
between two transactions requires () that these trans-
actions are also non-vital, independent, and releasing;:

seq(t,-,t]-) n non—vital(ti,tj) A indep(t;, tj) A rel(t;, tj)

The combination of a sequential dependency with the
other abort and object visibility dependencies are either
not reasonable or (logically) impossible.

7 Exemplary Application of the Framework

Using the notion of transaction closures we are now
able to specify advanced transaction models as well as
detached transactions. In the literature (for a survey
see (Elm92)), several advanced transaction models are
proposed which base on the nested transaction model
(Mos85). For instance, closed nested transactions are
transaction closures which consist of transactions which
are vital, dependent, inheriting, and delegating from the
viewpoint of their parents. In the following, we concen-
trate on detached transactions.

The notion of detached transactions comes from the
area of active databases where triggered actions are ex-
ecuted as separate transactions out of the scope of the
triggering transaction. We will focus on the four de-
tached modes described in (Buc94).

In our framework, the triggering transaction is the
parent t; of a triggered child ¢; with special dependen-
cies. Here, we have to consider two dimensions of de-
pendencies: the execution order dependency and the
commit dependency.

Detached transactions are executed as separate
transactions. From this follows that a detached trans-
action is a mon-inheriting and releasing transaction. It
has its own scope and does not see the effects of its
parents and other superiors until they are committed.
A further implication is that detached transactions are
non-vital, i.e., the abortion of a detached transaction
has no influence on the parent and the transaction can
leave the execution boundaries of the parent. The other
dependencies like the downwards abort dependency or
the execution order dependency differ in the four cases
of detached transactions:

(1) A detached independent transaction is executed in
parallel to the parent and is independent of the termi-
nation of the parent:
non-inher(t;,t;) Arel(t;,t;) A non-vital(t;,t;)A
par(ti,tj) A indep(t,-,tj)

(2) A detached parallel causally dependent transaction
is executed parallel to the parent transaction, but it
may only commit if the parent commits. Thus, a de-
tached parallel causally dependent transaction is abort
dependent on the parent:
non-inher(¢;,¢;) A rel(t;, t;) A non-vital(t;,t;)A
par(ti7 t]) A dep(tia t.])

(3) A detached sequential causally dependent transac-
tion is only executed if the parent transaction commits.
Hence, there exists no abort dependency between a de-
tached transaction and its parent:

non-inher(¢;,t;) A rel(¢;,t;) A non-vital(¢;, t;) A
seq-c(t;,t;) A indep(t;, ;)

(4) A detached exclusive but causally dependent trans-

action which is executed sequential after an abortion of

the parent has to be independent of the parent’s abor-

tion. This type is called exclusive because the detached

transaction may only commit if the parent aborts:
non-inher(t;,t;) A rel(t;, t;) A non-vital(t;, t;)A
seq-a(t;, tj) A indep(t;, tj)

In conclusion, we have shown that the proposed ex-
tended framework allows an easy and elegant formal-
ization of non-traditional transaction models which go
far beyond the nested transaction model.

8 Conclusions and Outlook

In this paper, we presented a generalized framework for
describing and classifying dependent transactions. The
concept of transaction closures extends the concept of
nested transaction for example allowing detached child
transactions in such transaction closures. For formally
describing transaction closures, we extended the ACTA
framework. The resulting framework gives a richer
repertoire for classifying dependency relations between
transactions inside a transaction closure. These exten-
sions may become relevant for example in the applica-
tion areas of active databases and database federations,
where classical nested transactions are too restrictive
because a child of a nested transaction tree has to ter-
minate in the scope of its parent transaction.

Our future work will concentrate on dependency en-
forcement in transaction closures. We will attempt to
adopt the methods proposed in (GHK93) to our frame-
work and provide some extensions to capture the tran-
sitive properties of the transaction dependencies.

REFERENCES

A. Buchmann, M. T. QOzsu, M. Hornick, D. Georgakopou-
los, and F. Manola. A Transaction Model for Active
Distributed Object Systems. In (Elm92), pp. 123-151.

A. P. Buchmann. Active Object Systems. In A. Dogac,
M. T. Ozsu, A. Biliris, and T. Sellis (eds.), Advances
in Object-Oriented Database Systems, Nato ASI Series,
pp- 201-224. Springer, 1994.

P. K. Chrysanthis and K. Ramamritham. Synthesis of Ex-
tended Transaction Models Using ACTA. ACM Trans-
action on Database Systems, 19(3):450-491, 1994.

U. Dayal, M. Hsu, and R. Ladin. A Transaction Model for
Long-Running Activities. In G. M. Lohmann, A. Ser-
nadas, and R. Camps (eds.), Proc. 17th Int. Conf. on
VLDB, pp. 113-122. Morgan Kaufmann, 1991.

U. Dayal, E. Hanson, and J. Widom. Active Database Sys-
tems. In W. Kim (ed.), Modern Database Systems, pp.
434-456. ACM Press, 1995.

A. K. Elmagarmid (ed.). Database Transaction Models For
Advanced Applications. Morgan Kaufmann, 1992.

D. Georgakopoulos, M. Hornick, and P. Krychniak. An
Environment for the Specification and Management of
Extended Transactions in DOMS. In H.-J. Schek, A. P.

Sheth, and B. D. Czejdo (eds.), Proc. 3rd Int. Work-
shop on Research Issues in Data Engineering, pp. 253—
257, IEEE Computer Society Press, 1993.

J. E. B. Moss. Nested Transactions: An Approach to Reli-
able Distributed Computing. MIT Press, 1985.

M. Rusinkiewicz and A. Sheth. Specification and Execution
of Transactional Workflows. In W. Kim (ed.), Modern
Database Systems, pp. 593620, ACM Press, 1995.

H. Wachter and A. Reuter. The ConTract Model. In
(Elm92), pp. 219-263.

G. Weikum and H.-J. Schek. Concepts and Applications
of Multi-level Transactions and Open Nested Transac-
tions. In (Elm92), pp. 515-553.

