Integrity Independence in Object-Oriented Database Systems

Hussien Oakasha and Gunter Saake

Fakultét fiir Informatik
Otto-von-Guericke-Universitéit Magdeburg
Postfach 4120, 39016 Magdeburg, Germany

e-mail: {oakasha, saake}@iti.cs.uni-magdeburg.de

1 Introduction

Applying the feature of integrity independence means that we can modify constraints without
modifying and hence recompiling updating transactions and applications. Implicit constraints
of OODBS are a superset for almost all constraints that are considered as explicit for other data
models, in particular for the relational model [JQ92,GJ91]. However, the principle of integrity
independence is still missing in OODBS. Following one basic concept of the object-oriented
paradigm, encapsulation, the explicit constraints are maintained through encoding them in meth-
ods.

The aim of this short paper is to present an approach for implementing the feature of
integrity independence formally and in terms of basic OO data model concepts only. That is,
we will consider the problem of how state constraints can be compiled, stored and manipulated
using OO data model notions and operations. In this paper we use a generic OO data model that
has basic features of the OODBMS manifesto presented in [ABD189]. In addition, we assume
that the inverse relationship is maintained by the model automatically. Examples of such a
model are Oz [BDK92] and GOM [KM94]. Here we follow the notations of O,.

Integrity constraints are range-restricted wif in prenex normal form. Due to space limitation
and for sake of exposition, we only consider local and inter-class constraints, that is constraints
on relationships between different classes. We also assume that relationships between classes are
one-to-one. Thus the quantifier structure of constraint will only contains universally quantified
variables. As an example database we will use the following example.

Ezample 1. The database represents information concerning persons and their vehicles. The
relationship between class Person and class Vehicle is one-to-one. This relationship is imple-
mented through the attribute car in class Person and the attribute owner in class Vehicle.
Thus car is an inverse attribute for owner and vice versa. In other word, for a person p and
vehicle ¢, p.car = ¢ <= c.owner = p. In every class there is an attribute named constraints
that will be described later (see definitions 8 and 10).

Classes:

Class Person [salary : numeric, age : numeric, car : Vehicle, constraints : Hpepson)

Class Vehicle [model : string, owner : Person, constraints : Hyepice)

Constraints:

Wi : (Vp : Person)(p.age > 40 — p.salary > 2000).

Wy : (Vp : Person)(VYc: Vehicle)(p.car = ¢ A c.omodel = “X” — p.age > 40).

2 Constraints
The presence of inverse relationships in our model leads to the fact that there is more than one

form for specifying a given constraint. Thus for a given constraint there is a set of equivalent
wifs that represent it.

Congtraints

Handler

Fig. 1. The Relationship among Classes, Handlers and Constraints

Definition 2 (Equivalent Forms of a Constraint). Given a constraint W in prenex normal
form (Vo1 : Cp) ...(Yo, : Cp)(M), where {C1,...,C,} is a set of distinct classes and M is an
open wif over attributes of objects o;. The form of W w.r.t. the class C; is a wif, M,,, obtained
by applying the following steps:

— replacing every occurrence of o; ,% # 7, in M by o0;.p, where p is a path expression that has
as a destination an object of type C;; and

— then replacing every term of form exp = exp or o;.exp = 0; by exp # nil and o;.exp # nil
respectively.

The set of all forms of the constraint W will be denoted by M (W). For every form m € M (W),
the evaluation of m will be denoted by |ml|.

Ezample 3. Consider the constraint Wo.
Mperson = (p.car # nil A p.car.model = “X” — p.age > 40).
My ehicie = (c.owner.car # nil A c.owner.car.model = “X” — c.owner.age > 40).

To separate constraints specifications from object schema we will consider constraints as first-
class citizen. That is for every constraint W there is a class Ky that represents all information
necessary for evaluating the constraint during running of application programs.

Definition 4 (Constraint Classes: The structure). Given a constraint W. The class of W
is denoted by Kjyy. The structure of Ky includes the following attributes:

— For every class C subject to W there is an attribute ¢ in Ky of type C,
— an attribute named “form ”of type M (W), and
— an attribute named “valid ”of type boolean.

Ezample 5. For the constraint Wy. Kyy, has the following structure:
Constraint Ky, [person : Person, vehicle : Vehicle, form : M(W), valid : Bool].
Where the type M (W) can be defined as M (W) = {Mperson} U {Mvenicie}-

Definition 6 (Constraint Classes: Operations). The dynamic part of constraint class Ky
consists of the following operations:

— For every class C subject to constraint W there is an operation with the signature: c(o : C).
c(o) takes an object, o, of type C as an argument and assigns this object to the attribute c
in Ky . In addition it assigns the form M¢ to form and T to the attribute valid.

— An operation named evaluate to evaluate the constraint. evaluate() sets the evaluation of
form to the attribute valid.

— An operation named inform. inform() informs users upon violation of the constraint W.

Ezample 7. The behavior part of constraint class Kyy, consists of the following operations.

person(o : Person){ vehicle(o : Vehicle){ evaluate(){ inform(){
valid + T; valid < T; valid < |form|.} If —walid
person <— o; vehicle < o; Inform User
form < Mperson-} form < Myepicie-} EndIf.}

3 Constraint Handler

Assume that the class C is subject to constraints Wi...W,,. Representing the relationship
“subject to "between C and Kyy, ... Ky, directly, first will complicate the structure of C and
second modifying constraints leads to recompile the schema of C and that is what we want to
avoid. Thus we will define another class H¢ that gathers all constraint classes Ky, ... Ky, and
makes it responsible for controlling all aspects of constraints W7 ... W, such as evaluation. This
motivates the definition of constraint handlers.

Definition 8 (Constraint Handler: The structure). Given the class C. The constraint han-
dler for C is a class, denoted by H¢, that has the following attributes:

— An attribute named “object”of type C.

— An attribute named “constr”of type [con; : Kw,,,...con, : Kw,, |, where Ky, ,... Kw,
are constraint classes over class C.

— For every attribute A that represents a relationship between C and a class C’ there is an
attribute named “A ”of type H¢r.

— An attribute named “checked ”of type boolean.

Ezample 9. The constraint handlers for Person and Vehicles are respectively the following
classes:

Class Hperson [0bject : Person, constr : [conl : Ky, ,con2 : Kyw,], car : Hyepjce, checked : Bool]
Class Hyepice [0bject : Vehicle, constr : [conl : Kyy,|, owner : Hperson, checked : Bool]

Definition 10 (Constraint Handler: Operations). The dynamic part of constraint class
H¢ consists of the following operations:

— For every attribute A in class C of type that is different from class names there is an operation
named “A() 7. A() executes a sequence of statements of forms constr.con;.evaluate(). Where
every con; is a constraint class that could be effected by modifying attribute A.

— For every attribute B in class C of type, C' , where C' is a class name, there is an operation
named “B() ”. B() assigns the value of attribute B in class C to B.object of H¢r. Formally
sel f.B.object < sel f.object.B, here self denotes the objects of class H¢.

— A method named “Instantiation”. Instantiation(), sets the attribute checked to F'. Then,
for every attribute A in class H¢ of type Her, Instantiation() tests whether A.object is nil.
If it is nil, Instantiation() assigns object.A to A.object and then execute A.Instantiation().
Finally, for every attribute con in constraints Instantiation() calls con.c(object).

— A method named “check . check() executes a statements of of the form

If —constraints.con;.valid

constr.con;.Inform() EndIf;
for every con; in constr. Then it executes a statement of form A.check() for every attribute
of type constraints handler. Finally, check() assigns F to the checked attribute.

Ezample 11. The operations of constrain handler Hpg,so, are:

Instantiation(){ check(){ salary() {
checked < F If —checked constr.cony.evaluate().}
If object.car.constraints = nil checked + T,
car.object < object.car; For con in constr Do age() {
car.Instantiation(); If —con.valid constr.cony .evaluate();
EndIf ; con.Inform() const.cong.evaluate().}
For con in constr Do EndIf;
con.person(object) EndDo;
EndDo. } car.check(); car() {
EndIf; car.object < object.car.}
checked < F . }

4 Constraint Maintenance

Our description for how constraints may be specified separately from object schema and how
this can be handled is completed. It remains to describe how constraints can be maintained using
our approach. The general idea can be summarized into the following steps. Given an object o
to be updated, first, create an instance for every constraint to which o is subjected. This will
be done by executing the statement o.Instantiation(). Second, every time an update is made
to an attribute of o by a statement of form o.p.a < v, where p, a and v are a path expression,
an attribute and a value, respectively, the statement o.constraints.p.a() is executed. By this
statement the constraint that could be violated by modifying the attribute a is evaluated and
its evaluation is stored in its attribute valid. Finally there are three places where constraints
should be checked:

1. At the end of every method for object o that has a side effect. In this case, statement
o.constraints.check() is executed.

2. At the commit time of a transaction. In this case, statements o.constraints.check() and
then o.constraints < nil are executed. Here the constraints attribute is set to nil for otherwise
constraints instance will be persistent.

3. Immediately before a statement of form o < o' where o' is an object of same type as o. In this
case, statements o.constraints.check() and then o.constraints < nil are executed immediately
before 0 < o/. Then the constraints must be instantiated again to reset the valid attribute of
every constraint class to T'.

Ezample 12. RaiseSalary is a short transaction. The intended meaning of RaiseSalary is to
increase salary of every person whose salary less than 1000.

RaiseSalary(precent : numeric){

(1) Vperson new Person;
(2) For Vperson € {o|o € Person A o.salary < 1000} Do
(2.1) Vperson.Instantiation();
(2.2) Vperson.salary < Vperson.salary = precent + Vperson.salary;
(2.3) Vperson.constraints.salary();
(2.4) Vperson.constraints.check();
(2.5) Vperson.constraints < nil;
EndDo.}

In step (1) a new object of type Person is created and named Vperson. Step (2) is an iterator,
that is, every object of type Person satisfies the condition that exists between For and Do, steps

(2.1) to (2.5) are executed. All constraints relevant to the class Person are instantiated by step
(2.1). In (2.2) the salary is increased, this may affect some constraints, therefore in step (2.3)
the constraints affected by this modification are evaluated, the evaluation will be stored in valid
attribute of every constraint. Since there are no more modification, constraints are checked. This
is the task of step (2.4), every constraint instantiated by step (2.1) is checked by testing the valid
attribute of that constraint. In this step the user will be informed for every violated constraint.
Before executing steps (3.1) to (2.5) for another object, constraints attribute of Vperson is set
to mal.

Ezample 13. The NewPerson method is considered here as one of the encapsulated methods of
class Person. Thus self here denotes an object of
Person. Here constraints are instantiated outside the
NewPerson method as object is created out too. The | NewPerson(Vsalary,Vage,Vcar){
value Vsalary is assigned to attribute salary Salary, | self.salary < Vsalary;

this may affect some constraints. These constraints | self.constraints.salary();

are evaluated by sel f.Constraints.salary. In the same | self.age < Vage;

way constraints affected by modifying age and car at- | self.constraints.age();

tributes are evaluated. Here constraints are checked at | self.car < Vcar;

the end of the method but neither instantiated again | self.constraints.car();

nor deleted as long as this modification apply only to | self.constraints.check().}

one object namely self.

5 Conclusion and Future Works

In this short paper we presented an approach for implementing the feature of integrity indepen-
dence formally and in terms of basic OO data model concepts only. We have shown how state
constraints can be compiled, stored and manipulated using OO data model notions and opera-
tions. This is made under two restriction. The first one for relationships between classes, here
we only consider one-one relationships. The other one is for constraints, here, only constraints
that have some pattern are considered (see definition 2).

Currently we investigate how this approach can be generalized. We do that in several direc-
tions. The first and the most important one is considering more general types of constraints, for
example key constraints. Second, putting restrictions on cardinality of relationship is not realis-
tic thus this must be avoided. Third, for maintaining constraints we present a general method,
subjects like efficiency of instantiation and evaluation of constraints must be considered. Finally
our final goal is to apply this work for long duration transactions.

References

[ABD*89] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The Object-Oriented
Database System Manifesto. In W. Kim, J.-M. Nicolas, and S. Nishio, editors, Proc. of the 1st Int.
Conf. on Deductive and Object Oriented Databases, Kyoto, Japan, pages 40-57, Amsterdam, December
1989. North-Holland.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-Oriented Database System —
The Story of O2. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

[GJ91] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers. In Interna-
tional Conference On Very Large Data Bases, pages 327-336, Hove, East Sussex, UK, September 1991.
Morgan Kaufmann Publishers, Inc.

[JQ92] H. V. Jagadish and X. Qian. Integrity maintenance in an object-oriented database. In International
Conference On Very Large Data Bases, pages 469-480, San Mateo, Ca., USA, August 1992. Morgan
Kaufmann Publishers, Inc.

[KM94] A. Kemper and G. Moerkotte. Object-Oriented Database Management. Prentice Hall, Englewood Cliffs,
NJ, 1994.

