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Abstract

The evaluation of constraints needs in many cases that a large portion of the database
to be accessed. This makes the process of integrity checking very difficult to implement
efficiently. Thus finding methods to improve the evaluation of integrity constraints is
an important area of research in the field of database integrity. Most of these methods
are based on simplification principles. One of these methods is presented by Nicolas
in [Nic82]. In this method the simplified form of a constraint depends on updating
operations performed on database states. For that reason, the simplified form is obtained
at update time. In this report we show that, for a given constraint W and an update that
is to be performed to a relation R, it is not necessary to do all the steps of the method at
run time, but we can do most of these steps at compile time. We do that by developing
a representation that stores simplified instances of W together with other information
about occurrences of R in W into meta relations. The simplified instances stored in the
meta relations are obtained form W by applying the same simplification steps of the
method, but here we use generic constants instead of specific update values. When an
update is performed to the relation R, the generic constants in the meta relations are
replaced with the update values and a relational algebra expression is performed on the
obtained relation, resulting in a set of formulas. We will show that by only applying the
third step of the method to the conjunctions of these formulas we can get the simplified
form obatined by the simplification method at run time.

Keywords: state constraints, integrity maintenance, constraints compilation, constraints
representation.
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Chapter 1

Introduction

In the simplification method presented in [Nic82], the simplified form of a constraint
depends on updating operations performed on database states. The type of each of
these operations and the update values involved in it have to be known in advance. For
that reason, the simplified form is obtained at update time. This report addresses the
following problem: The steps of the method include analyzing the quantifier structure
of the constraint to define substitutions and search for atomic formulas (i.e., pre-valued
literals) that have to be eliminated from the instances of the constraint. Therefore, ob-
taining the simplified form for the constraint at update time leads to a significant increase
in response time of updating operations performed to database states, particularly for
transactions. This is a serious drawback of the simplification method [BM88, MH89].

The objective of our work presented in this report is to show that, for a given con-
straint W and an update that is to be performed to a relation R, it is not necessary to do
all the steps of the method at update time. We do that by developing a representation
that stores simplified instances of W together with other information about occurrences
of R in W into meta-relations. The simplified instances stored in the meta-relations are
obtained form W by applying the same simplification steps of the method, but here we
use generic constants instead of specific update values. When an update is performed to
the relation R, the generic constants in the meta-relations are replaced with the update
values and a relational algebra expression is performed on the obtained relation, result-
ing in a set of formulas. We will show that in the case of atomic modifying operation by
only applying the third step of the method to the conjunctions of these formulas we can
get the simplified form obatined by the simplification method at run time.

This report is organized as follows. The representation consists of two meta-relations,
denoted by 74" and ’7}_—6"", that are developed through three stages. Chapter 4 presents
the first stage, in which, for a given constraint W and a relation R, substitutions are
defined according to the occurrences of R in W. This is done in the same way as the
substitutions of the simplification method defined, but using generic constants instead of
specific updates values. The formulas obtained by applying these substitutions to W are
stored in pair of meta-relations denoted by Fy and .7-"sz Chapter 5 presents the second
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stage of developing the representation. In this stage, a pair of meta-relations denoted
by SY and SY, is obtained from FJ and FJ respectively by simplifying formulas
stored in F}{ and ﬁ,VzV in a process analogous to simplifying the instances of W in the
third step of the simplification method. Chapter 6 presents the third stage of developing
the representation. In this stage, the two meta-relations 73" and TY are obtained
respectively from S} and S§ by applying the fourth step of the simplification method
to formulas stored in S)Y and SJ¥. In all these sections we consider the operations of
inserting a tuple into a relation extension and deleting a tuple from a relation extension.
In Chapter 7, we will consider transactions of these operations.



Chapter 2

Basic Notation and Definitions

Throughout the rest of the report we assume the following. R is a relation with arity
n, Art(R) = n. The " component of R will be denoted by $i. {g;...9g,} is a set of
distinct elements called generic constants such that Dom(R) N {g;...g.} = 0, where
Dom(R) is the union of all underlying domains of all attributes of the database. W is an
integrity constraint that is a closed well-formed form in prenex conjunctive normal form
and which satisfy the range-restricted property [Nic82]. S is the current database state,
in which W is satisfied. O(R,u) is either an inserting operation, I(R,u), or a deleting
operation, D(R,u). Tr is a transaction, i.e., a set of insert and/or delete operations. S’
is a new database state obtained from S by O(R,u) or Tr. We will use the symbol ‘¢’
to denote ‘—’ (resp. ‘+’), when O(R,u) is an inserting (resp. deleting) operation.

Arg(f) is a tuple whose components are arguments of a literal £. The i"* argument
of ¢ will be denoted as Arg({);. For example, if ¢ is the literal ~R(x,y, z,c), then
Arg(l) =< x,y,z,¢ > and Arg({)s = z. EQ(W) is the set of all variables z in the
constraint W such that z is either a universally quantified variable governed by an exis-
tentially quantified variable in the constraint W, or an existentially quantified variable.
Eq(a, W) is the set of all elements (z/g) in the substitution « such that + € EQ(W).
mod(A) is the set of all database states that are models to wifs of the set A. Ry is
the relation obtained from the relation R by applying the substitution 7 to each tuple
uin R. Ly (resp.Ljy, ) is the set of all negative (resp. positive) occurrences of the
relation R in the constraint W. Lgw is the union of Ly, and L}y, Ly is the set of
all literals in W. UQ(¥) is the set of all variables x in the literal £ € Ly such that z is
a universally quantified variable not governed by an existentially quantified variable in
the constraint W. Finally, The symbol ‘o’will be used for the operation of substitutions
composition.






Chapter 3

The Simplification Method

The evaluation of constraints needs in many cases that a large portion of the database to
be accessed. Thus it can be time consuming. This makes the process of integrity checking
very difficult to implement efficiently. For that reason finding methods to improve the
evaluation of integrity constraints is an important area of research in the field of database
integrity [Nic82, HMN84, Dec87, Llo87, KSS87, QS87, Qia88, LLI3]. Most of these
methods are based on simplification principles [GMN84]: Given an integrity constraint
that is satisfied in the current database state, these methods derive an equivalent but
simplified form to the constraint. Except in some special cases, the evaluation cost of the
simplified form is less than the evaluation cost of the initial constraint. In this chaper
we will introduce the method proposed in [Nic82] by Nicolas.

The simplification method applies to databases that correspond to the model-theoretic
view of relational databases and to integrity constraints that satisfy the range restricted
property. The simplification method derives a simplified form to the constraint depen-
dent on the type of update operation that will change the current state to a new one
and which may violate the constraint.

The simplified form depends on the type of the updating operation which leads to a
state change. The method considers the cases in which database states are modified by
simple atomic operations of inserting, deleting a tuple in a relation and transactions of
such operations. The operation of updating a tuple is considered as a special transaction
that consists of a deletion followed conditionally by an insertion.

In this chapter we present how the simplified forms can be obtained for atomic modifi-
cations operations and then for transactions of these operations.

3.1 Basic Definitions

The simplified form of W is mainly built by applying to W substitutions defined accord-
ing to the quantifier structure of W, occurrences of R in W and the components of the
tuple u. The following definitions are a slight modification for the characterization of
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6 3.1. BASIC DEFINITIONS

substitutions given procedurally by Nicolas.

Definition 3.1 (The substitution «})

Let £ € Lrw. o is a substitution defined according to the components of the tuple u
and the variables of literal ¢ as follows.

ap = {(z/u;)|Arg(); =2 € Var(W) and Arg({); # = for every j < i}.

O

Informally, for every i € [1,n], (x/u;) € o iff the i'* argument of literal £ is a variable
x that does not appear in any argument of ¢ that precedes the i** argument.

Definition 3.2 (Sets of substitutions A%, and G3'y,
A%w = {aflt € Ly and Arg(loy) = u}.

ww = 17i = of — Ba(af, W) and of € ARy ).
O

Remark 3.1 Several remarks can be made about the definitions of Az, and Gyl
o Arg(loy) = u iff:

— whenever Arg(¢); (1 <1i < n) is a constant then Arg(¢£); = u;; and

— whenever there exists ¢ and j (1 < 4,5 < n) such that Arg(¢); = Arg({),
then u; = u;. For example, consider the literal £ : —R(z,y,z,e). For the
tuple u =< a,b,a,e >, of = {(x/a),(y/b)} and lo} is = R(a,b,a,e). Thus
Arg(Lay) = u. Contrarily, for the tuple u =< a,b,c,e >, Arg(aj}) # u.

e The substitution 7} is obtained from of € A7, by deleting every element (z/c) in
oy such that z is either an existentially quantified, or it is a universally quantified
variable governed by an existentially quantified one. Thus, 7} = ¢, the identity
substitution, iff af = Eq(aj, W) For example, let the quantifier structure of W be:
Vz3zVy. Let £ be : =R(x,y, z). For the tuple u =< a,b,c >, af = {z/a,y/b, z/c}
and 7§ = {x/a}. If Vz is replaced by 3z, then Eq(ay, W) = o}, and hence v} = ¢.

o Apyy = 0 iff at least one of the following cases occurs:

— There does not exist any occurrence of the relation R in W.

— There does not exist any negative occurrence of the relation R in W.

— For every negative occurrence £ of the relation R in the constraint W, Arg(faj) #

u.



CHAPTER 3. THE SIMPLIFICATION METHOD 7

o Gpw =0iff Agy, = 0.

Assume that the two substitutions 7§ and 7} exist in Gy such that v subsumes
vs. Nicolas has proved that if W~§ is true in S’ then so is Wnj. In this case Wrj is
redundant with respect to W+j'. This point motivates the next definition.

Definition 3.3 (The set of wifs I';,

I3 is a set of instances of the constraint W defined as follows.

F?zuw ={W~v € G w and for every v € GR wo Ve €V}

The simplified form of the constraint W for inserting (resp. deleting) a tuple u into
the extension of R is denoted by C, (resp. Cx%). The simplified form maily derived
from the instances of set I'%'y,,. Now we will present the steps of the algorithm given
by Nicolas to obtain Cf%’f{,[,. The algorithm as presented here is reformulated using our
notation.

3.2 The Simplified Form CgY,

Given the operation O(R, u), the simplified form C3Y;, is derived from W by doing the
following steps:

Step 1. Construct the set of substitutions A%, using Definition 3.2. If A%, = 0,
then W is unaffected by the O(R, u), let ny{,v =T.

Step 2. Construct the set of formulas I'z'y, using Definition 3.3. If '}y, = {W}, then
City = W,

Step 3. Let V.= Wi A --- AW, where '}y, = {W;---W,}. Replace in V each pre-
valued literal by its truth value in the new state S’ and apply as much as possible
the absorption rules. Let V' be the obtained formula. If V' = T (resp. V' = F),
then CpYy, =T (resp. CgYy, = F).

Step 4. Let V! = W'y A--- AW',. Remove from V' any W’; such that there is W’;
(i # j) identical to W'; up to the permutation of the disjunctions, a permutation
of the atomic formulas and a renaming of variables. C37; is the obtained formula.



8 3.3. TRANSACTIONS

3.3 Transactions

For a transaction 7T'r, the simplified form for W is denoted by Cj;,. To present how CY;,
is derived from W we need the following definitions.

Definition 3.4 (The set of substitutions A4}, and G3};)

AT/V = U A%?W G*W = U G%,uw-
O(Ru)ETT O(Ru)ETT
O
Definition 3.5 (Set of wifs I'};)
I}y is a set of instances of the constraint W defined as follows.
Iy = {Wnly € Gy and for every v' € Gy, v € v}
O

The simplified form Cf;; is derived in the same way from W as the simplified form C7%;
was derived from W by steps 1 — 4 presented in previous subsection, but this time in
steps 1-2, sets ARy, and '3y, are replaced by Aj, and I'jy, respectively.

As a main step towards proving that the evaluation of Cj;, in the new state S’ can
be substituted for the evaluation of W, Nicolas proves the next theorem.

Theorem 3.1 If T}, = () then S’ € mod(W); otherwise

S" € mod(W) iff 8" € mod(Tyy).
O

In other words, if for every operation I(R,u) € Tr and D(R,u) € Tr, Ty, = 0 and
F;:UW = () respectively, then W is not affected by any operation of Tr and hence it
remains satisfied in the new state S’. If T}, # 0 then W could be falsified in the new
state S” and W remain satisfied in S’ iff every instance of W in I'};, is satisfied in S'. As
consequence for the previous theorem is the following corollary.

Corollary 3.1 If I's, = () then S’ € mod(W); otherwise
S" € mod(W) iff 8" € mod(Ty).
Where

* eu
I_WW - U 1—‘R,W’
O(Ru)eTTr



Chapter 4

Meta Relations

In this Chapter, we define the first pair of meta relations )/ and F)Y. Then we show
that the set of wifs Fj’}fw, defined by Definition 3.3, can be obtained by applying a

general, but simple, substitution to the tuples of the meta relations F}; and .7?1‘%’ and
then applying a relational algebra expression, that consists of selection and projection
operations, to the obtained relation.

We start with definitions of substitutions that will be used to define the tuples of
meta relations 7} and F} .

Definition 4.1 (Substitutions 3;", §;” and 4;%)
Let £',¢ € Lrw. 3", 6} and &}, are substitutions defined as follows.

B = {(x/g:)|Arg(€); = x € Var(W) and for every j < i, Arg(€); # z}.

& ={(z/g:)(z/g:) € B and & ¢ EQ(W)}.
5%, = 61 U (6 — X).

where
x =A{(z/g:)|(z/g:) € 6 and x € UQ(¢)}.
O

In other words, (z/g;) € 3}" iff the i argument of literal ¢ in W is a variable z that
does not appear in any argument of ¢ preceding the i"* argument. 6}" is obtained
from ()" by deleting each element (z/g;) in 3} such that z is either an existentially
quantified variable, or it is a universally quantified variable governed by an existentially
quantified one. Notice that the definition of )" (resp. 6,") is very similar to the
definition of substitution o (resp. 7}') but here we consider generic constants instead of
the components of the tuple wu.

The next lemma states the relationship between the substitution 8" (resp. 6" ) and
the substitution aj (resp. ;). Also, it states some properties of these substitutions and
the substitution (55% that will be used in the rest of this chapter.

9



10

Lemma 4.1 Let A\, = {(g1, /u), ..., (g9a/un)}. For every o € AR, and v}, v € GRw
such that UQ(¢) C UQ(¢') we have the following:

Of% = (65}/‘10)%) - /\u
V= (0 o M) = Ay
W is identical to W4)¥ o A,
Arg(La) = Arg(LB)Y o \y)
Ve C e M (08 0 Au) — Au =7
W is identical to Wdyh o Ay iff v} C j

AN AN AN SN S N
e
S O = W N
— ' N

Proof:.

1. Let (xz/c) € of. From Def. 3.1, Arg(fa}) = u. Therefore, there exists i (1 < i < n)
such that Arg(¢); = z and u; = c. From Def. 4.1, Arg(¢); = x implies that
(z/g;) € 8", for some j (1 < j <1i). We have two cases:

i=7: In this case, (z/g;) € B3}V and u; = c implies (g;/c) € \,. Thus (z/c) in
(8 0 M)

j <i: In this case, (z/g;) € 3" implies that Arg(¢); = z. Therefore Arg(£); =
Arg(?); = z. Since Arg(fof) = u, then u; = u; = ¢, which implies (g;/c) € A,.
Thus (x/c) € (8} 0 A\y)-

By Def. 4.1 x is a variable and so it is not a generic constant. Therefore, (z/c) & \,.
Hence in both cases (z/c) € (8}" o Ay) — Ay. This shows that a¥ C (8 o A\y) — Ay

Let (z/c) € ((8)Y o A\y) — A\u), then there exists i (1 < i < n) such that (z/g;) € B}
and (g;/c) € A. Thus, by Def. 4.1 and definition of )\, respectively, we have
Arg(f); = x and u; = c. Since Arg(faf) = u, then (z/c) € af. This shows that
(8 0A) = A C o

2. The proof is similar to (1).

3. None of the generic constants appears in W. Therefore, W, = W§)¥ o n,.

4. The proof is similar to (3).

5. We shall denote the substitution (55% o Ay) — Ay by A. By the definition of (5}’,‘2,,

we have §)V C 4. Since UQ(¢) C UQ(¢'), then §)V C 4). From (2), we have
¢ = (6} o Ay) — Ay- Thus, v C A.
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Only if part: Assume that v} is a subset of . Since v} C A, then A = v}
if and only if A — v} = vp —v¢. Now

(@/ui) € A=nf
z/u;) € A and (z/g;) € 6}°  from (2)

(/us)

(/us)

(x/9:)

(z/g;) € 6 and (x/g;) € 6)Y from Def. 4.1
(x/u;) € 6}/ o Ay, and

(z/u;) & 6} o Ny since (gi/u;) € Ay
(x/u;) » and

(x/u;) u since (z/u;) & Ay
Ex/uz; € vy and (z/u;) € v from (2)

- A
- A

1o rrent

This shows that if v} C v then A = .
If part: Assume that A = 7}i. As we have just shown, v} C A. Hence, v} C vp.

6. We will prove first that the number of elements in 8} o ), is equal to the number
of elements in 8} o A,.

07 0 Xl =60+ [Nl

= [UQ()|+ | | from Def. 4.1

= \5{‘2,\ + | Ay from Def. 4.1

= |6Z£l O Au|
Also

Wog is W(8)p o Ay) iff £f is /(8% o A\y)
iff 210y o Ny is €/(0)7 0 M)

Since [0y o M| = [07% © Ay| then 6} o Ay = &% o Ay. For otherwise, there was

z € UQ(!') such that (z/d) € 8 o Xy, (z/c) € &)/ o Ay, and ¢ # d, which
contradicts that £'6;” o A, is identical to £'(8;% o A). Thus
W is W(@VQ, oN,) iff &Y oA, = 5}’}2, o\,
iff 5}70)\“—)\“:5&0)\“—%
iff p =0y ol — A from (2)
iff Ay Cp from (5)

4.1 First Pair of Meta Relations: FEV and .7?]?/

We will now define the meta relations F} and ﬁ'}l%V The tuples in these meta relation
are mainly defined by using the substitutions 3}", 6} and (5}5’7[2,.
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7 i
91| g2 | ¢ | W) | — g g |c| WO, | —
91| 92| 93 W(SX -

Figure 4.1: The Meta Relations F)y and F}/ of Example 4.1

Definition 4.2 (Meta Relations F}/ and F})

Fr= U {<Arg(tp]"),We e > |l € Ly}
ec{+,—}

FY = U {<Args),Wép,e> 0,0 € Ly and UQ(L) C UQ(L)}.
ee{+,—}

O

In other words, for each (positive or negative ) occurrence ¢ of the relation R in the
constraint W, there is a tuple ¢ in F}} that has n+ 2 components, where n is the arity of
R. These components are defined as follows. The first n components are the arguments
of the ground instance £8}" of £. These components are, therefore, generic constants in
{91,---,9,} and/or constants of £. The (n + 1) component is a formula obtained by
applying the substitution of §;" to W. The (n + 2)™ component is either the symbol ‘+’
or ‘=7, It is ‘4’ (resp. ‘=" ) if £ is positive (resp. negative) occurrence of R in W. The
tuples of 7} are defined in the same way as those of F}, but the substitution 4}, is
considered instead of 6)".

Remark 4.1 Several remarks can be made to the above definitions:

1. 6)Y = eiff UQ(Y) = 0, i.e, iff every variable z in £ is either an existentially quantified
variable in W, or it is a universally quantified variable governed by existentially
quantified variable.

2. FY =0 iff Lgw =0, i.e., iff W has no occurrences of R.

3. FI = 0 iff either F} = 0 or for every £ and £ in Ly neither UQ(€) C UQ(¢')
nor UQ(¢') Cc UQ(¥)

Example 4.1 Let W be VaVyVz(—R(z,y,c)V-R(y, z,2)VQ(z,y, 2)). The meta-relations
FY and F} for this example are given in Fig. 4.1 and the components of tuples in both
of them are given in Table 4.1. O
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gQZ

VaVyVz(=R(z,y,c) V = R(y,z,2) V Q(z,y, 2)).

LE,W =0
Lrpw = {~R(z,y,c),~R(y,,2)}

-R(z,y,c)

UQ(t4) = {z,y}.

B ={x/g1,y/92}.

Arg(6,8))) =< g1,92,¢ >;e = —

5 ={z/g1,y/92}

W(SE/ : VZ(_'R(gl, 92, C) \ _'R(927 g1, Z) \ Q(gla 92, Z))
VZV : VZ(ﬁR(QQ, 91, Z) \ Q(gla g2, Z))

-R(y,x, 2)

UQ(ls) = {z,y, 2}

By =A{y/91,2/92,2/93}-

Arg(@ﬂg’) =< 01,092,093 >;€6 = —

S ={y/g1,2/92,2/ g5}

W(SZ/ : (~R(g2,91,¢) V ~R(91, 92, 93) V Q(92, 91, 93))-
Vel o (=R(92, 91, ¢) V Q(g2, 91, 93))-

UQ(4) C UQ(Ly).

50 0, = {x/91,y/ 92, 2/ 93}-

W5Z/,e2 : (=R(g1, 92, ¢) V R(92, 91, 93) V Q(91, 92, 93))-

V?;[,/KQ : (ﬂR(gla g2, C) \ Q(gl, g2, g3))

Table 4.1: Components of )Y and F} of Example 4.1
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4.2 The Main Theorem

Given the operation O(R,u) and the constraint W, the central point of deriving the
simplified form C%Y, is to obtain the set of wifs I'},,. This is made by the first two
steps of the algorithm given in Subsection3.2. First we shall illustrate by means of an
example that I'3%, can be obtained from (F}'),) and (F¥ X,) by using a relational
algebra expression. Then we will prove this claim in Theorem 4.1.

FH M FH A
alalc|We ol |- a‘a‘c‘W&}’Vth)\u‘—
alalc|Welol |—

Figure 4.2: The Meta Relations )/ \, and FJ \, of Example 4.2

Example 4.2 Let W be VaVyVz(—R(z,y,c)V-R(y,x,z)VQ(z,y, z)). For inserting the
tuple u =< a,a,c > into the extension of R, T'y’, = {W1} where

Wi : Vz(=R(a,a,c) V-R(a,a,2) V Q(a,a,z)).
F¥ and f}’zv for the given constraint are shown in Fig. 4.1. Now for the given tuple
u, Ay = {91/a,92/a,g3/c}. Applying \, to Fy and f}g’ yields respectively the two
relations FJi A, and FJ¥ \, shown in Fig. 4.2 Where:

Wo)yY o), :Vz(-R(a,a,c)V -R(a,a,z)VQ(a,a,z)).
WéY oA, :(—R(a,a,¢)V -R(a,a,c)VQ(a,a,c)).
Wéy s, 0 = (mR(a,a,¢)V —=R(a,a,c) VQ(a,a,c)).

Let F(u,—) be ($1 =a) A ($2 = a) A ($3 = ¢) A ($5 = —). Therefore,

M40 (ue) (FR Au) = {WE 0 Ay, WY 0 A\, }
TAO F (u,e) (f}‘%v)‘u) = {W&XVhez © )‘U}

Since W1 is identical to Wy, o Ay, and Wy, o A, is identical to W)}, o Ay, then
F;zjqva = 7T4UF(u,e) (f;}zv/\u) - 7T40F(u,e) (ﬁg/Au)
Note that Art(R) = 3. O

Theorem 4.1 The main Theorem Given the operation O(R,u) and the constraint W.
Let F(u,e) be AI_;($i =u;) A ($(n+1) =) and A\, = {(g1, /u),...,(gn/un)}. Then

F%?W = Tn4+10F (u,e) (}}/gv)\u) — Tn4+10F(u,e) (ﬁ-}-‘/gv)\u)

O

Proof:. Assume that 7} € Gy and for every 7§ € G3, 74 ¢ 7¢. From Def. 3.3,
this is equivalent to assuming that Wry € T'gY,. First we show that:

Ve € Gty it Wy € Tpi10 ey (FR Au) (4.7)
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Then, we show that:

for every vj € Giw, Ve ¢ VWA € 10 @we) (FR Au) (4.8)
Proof of 4.7
7t € GRw
— o} € ARy from Def. 3.2
< Arg(l(BV o Au) — M) =u from Def. 3.2
and (1) of Lemma 4.1
= Arg(l(B) o M\)) =u,l € Ly from (4) of Lemma 4.1

= < Arg(€B) o X\y), W8} o Ay, e >€ Op(ue)(FR Au)  from Def. 4.2
= W6} oMy € Mpi10p(ue) (FE Au)
= Wt € Tnt10rue)(FE M) from (3) of Lemma 4.1
Proof of 4.8 B
WAy € Tni10pwe) (FR Au)
= <u, Wt e>ec FY
= <u, Wrg,e >=< Arg(€'8)) o \y), W(Sl% 0 Ay, € >
for some ¢' € L%y such that UQ(¢') C UQ(Y) from Def. of F}
< W1y} is identical to W/, o Ay, and
Ve € GRyw such that UQ() C UQ(Y)
< 74 C vy for some v € G3y from (6) Lemma 4.1
&
In obtaining the set I';, as in Theorem 4.1, we do not need to define the set of
substitutions A%y, and Gy, but we need only to define A, and F'(u,e). The advantage
of obtaining T’y as in Theorem 4.1 is that the definitions of A, and F(u, e) are easier
than those of AR%, and G3jy. Also, these definitions do not require analyzing the
quantifier structure of W which were among the disadvantages of the simplification
method.
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Chapter 5

Simplifying the Formulas of Meta
Relations

Now we present the second stage towards defining the meta relations 7 and 7. In this
stage we do the following. First, for each W§}" appearing in F}, we define a simplified
form, denoted by V;, such that if Wd;" o X, € I'3Yy, then V'V A, is equivalent to Wo Ay,
and either it does not contain pre-valued literals or it contains a small number of them
compared to the number of pre-valued literals that appear in W}V o \,. Second, we
define two meta relations SJ¥ and S} in the same way as the meta relations F}y and F}y
were defined but this time we consider the simplified forms V,/V instead of the instances
wa).

5.1 Simplifying Formulas of Meta Relation ¥}/ and
A

We start by the following definition in which we formally state how simplified forms for
formulas appearing in 7 and in F} can be obtained.

Definition 5.1 (wff V)
Let £ € LGy V7V is a wif defined as follows:

o if 6}V # 3}V then VV is W¢}"; and

e if 3 = )V then V)V is the wif derived from W4," by replacing in W¢" each
occurrence of /6" by F and applying the absorption rules as much as possible.

O

Definition 5.2 (wff V%)
Let £,0' € LS, . V,y is a wif defined as follows:

17
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o if 65 # B then V') = W}%; and

o if §y = B}V then V}j is the wif derived from W% by replacing in W, each
occurrence of ¢ (5}’}2, by F and applying the absorption rules as much as possible.

O

Informally, if 6;" is not equal to 3}", which means that at least one of the arguments of
£5)V is a variable, then V)V is W¢}"; and if 6}" is equal to (8}", which means that none
of the arguments of £5}” is a variable, then V)V is obtained from W¢}" by deleting all
occurrences of £5)V in W4}V, such that the obtained expression is a wif. The definition
of V}y is very similar to that of V}"V.

The reader can notice that the simplified form V' is derived from W§;" in a process
analogous to simplifying instances of W in '}’ in the third step of the simplification
method. But here we use the generic constants instead of specific update values. The
next lemma validates the simplified form V,V.

Lemma 5.1 Let W¢;" o A, € T’} Then in the new state S’
VIV Ay — W6 o A,

O

Proof:. We will prove the lemma for the case in which the operation O(R,u) is an
inserting operation, the proof for a deleting operation is very similar. Therefore e = —,
and in the new state S', ~R(u) is equivalent to F'. Let Wé}" o A, € T'zy. Then from
Theorem 4.1, Arg(¢3}" o X\,) = u and £ € Ly . This means that £3}" o A, is ~R(u).
Therefore, in the new state S’, £3}" o )\, is equivalent to F'.

If 6}V # B} then V)V is W¢}" and thus there is nothing to prove. Assume that 6} = 3}V
then 46}V o )\, is identical to £8)" o \,. Therefore, £5}" o )\, is identical to =R(u) and
hence it is equivalent to F'.

Now, let V be a wif deriverd from W§," o \, by replacing in W§}" o \,, each occurrence of
25}V o A\, by F. and applying the absorption rules as much as possible. In the new state
S'. V is equivalent to Wd," o \,. From the definition of V)V, V is identical to VY \,.
Thus, in the new state S’, V,V'\, is equivalent to W4,V o \,

&
As a consequence of Lemma 5.1 we have the following corollary.

Corollary 5.1 Let I'z%y, # 0. and AR, = {V}V A, [W6)Y o Xy € TRy} Then

S € mod(Tgy) iff S" € mod(ARY).
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Sy Sy
g1 92| c| Vo |- gl lc| Vil |-
g1 | 92| 93 WZV

Figure 5.1: Meta Relations S) and S})¥ of Example 5.1

5.2 Meta Relations S}/ and S}: Motivation

According to the steps of the algorithm given in Subsection 3.2, CRY is derived from
applying the steps 3 — 4 to the conjunction of formulas in I'g"y,. From the definition of
'3 and (2) of Lemma 5.1, every W} € I'gy, can be written as Wé;" o\,. According to
the way the formula V"V is defined, V¥ \, can be seen as if it were derived by eliminating
the pre-valued literals R(u) and —R(u) from W§}¥ o\, in the third step of the algorithm.
Thus the simplified form C’fz’,uw can be derived by applying the steps 3 — 4 of the algorithm
to the conjunction the formulas in A%Y;,. As stated by Nicolas in his discussion of the
simplification method (see page 249 of [Nic82]), the elimination of the pre-valued literals
from the instances in I'}"y, disadvantages the simplified form CR%,. This is done by
the third step of the algorithm. According to the way the formula A%"y, is defined, the
number of pre-valued literals that appear in the conjunction of formulas of A%’f‘w is less
than or equal to the number of pre-valued literals that appear in the conjunction of
formulas of I';",. This means that, obtaining Cgy, from A%y, is more desirable than
of obtaining it from '3y

5.3 Meta Relations S} and S)Y: Definition

The above motivates the definition of ) and SY¥. In fact S}/ and S} are defined such
that

A%;ILW = Mn4+10F (u,e) (SEV)\U) — Tn4+10F (u,e) (g}/{v)\u)

Definition 5.3 (Meta Relations S}/ and SY)

SW and S} are two meta relations obtained from F¥ and FJ respectively by using
definitions 5.1 and 5.2 as follows.

Sp =1{<Arg(t3"), V¥ e > | < Arg(€8,"), Wé," e >€ Fy }.

Sy ={< Arg(tB"), Vip,e > | < Arg(£8)"),Wé}y, e >€ F}I'}.

Example 5.1 Let W be VaVyVz(=R(z,y,c) V ~R(y, 7, 2) V Q(,y, 2)), as in Example
4.1. The meta relations Fj and Fy for this constraint are shown in Fig. 4.1. From
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Table 4.1 we have

VoV :V2(=R(g2, 91, 2) V Q91 92, 2)).

WZV : 7 R(g2,91,¢) V Q(92, 91, 93))-

Vale, + (2R(91,92,¢) V Q(g1, 92, 93))-
Thus replacing Wy, Wé,), and Wy, ,, by V¥, VW and V})V,,, respectively, we get the
meta-relations S}/ and S}Y shown in Figure 3.3.

SY A, SH A
ala Vo,
ala VoA,

alalclVilyoh| -

Figure 5.2: The meta-relations S§ A, and SI A, of Example 4.1

Suppose that the tuple u =< a,a,c > is inserted into the extension of R. Then )\, =
{g1/a,92/a,gs/c} and F(u,—) is (81 = a) A (82 = a) A ($3 = ¢) A ($5 = —). Applying
Ay to 8§ and Sf we get the two meta-relations shown in Figure 3.4, where

VW olX,: Vz(=R(a,a,2)VQa,a,z)).

Vot R(aa,e) v Qaa,c))

VX’/& oM (—R(a,a,c)VQ(a,a,c)).
By evaluating the expression 7r4op(u,_)(8}’zv)\ ) — M40 (8 M), we get the formula
V¥ Ay which is identical to the simplified form Cyy, O

We conclude this section by the next theorem which states that for the operation
O(R, u), the set of wifs that result from performing the expression 7,10 p(u,e) (S Au) —

Trni10 (e (SH ) s A% ; and that the evaluation of the formulas in A%, is sufficient
for determining whether W is satisfied in the new state S’ or not.

Theorem 5.1
A%,UW = Tn+10F (u,e) (S}év)\u) — Tn410F(u,e) (§EV)\U)
If Afly # 0 then S € mod(W) iff S’ € mod(Afhy).

O
Proof:.
1.
VIV € ARy = W o)X, € TF, from Def. of AR
< We) o\, € 7rn+1ap o(FF) and
WV o, & Tpt10F(u,e) }%V) from Theorem 4.1
= <u, WV o, e>€ ( Fg) an
<u,Wé) oy, e > (FY)
= <u, VA, e>€ (Sy) and
<u, VA, e > (SY) from Def. 5.3
— V€ 7rn+1ap(u,e)(SR ) and

‘/eW )\u ¢ Tn+1 UF(u,e) (SJI-%V)
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2.
Let ARy, # 0 then 'z, # 0. From the validation of the simplification method, we have,
S" € mod(W) iff ' € mod(I'gYy,). Also, from Corollary 5.1 we have S' € mod(ARYy) iff
S € mod(I'gYyy). Hence S" € mod(W) iff S" € mod(ARYy)
O
In conclusion, we have shown that the simplified form Cy'}, can be derived by apply-
ing Steps 3-4 of the simplification method to the conjunction of the formulas of A%, .
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Chapter 6

Removing Redundancy

In Chapter 5, we have shown that the simplified form C%7;, can be derived by applying
Steps 3-4 of the simplification method to the conjunction of the formulas of A%, In
this chapter we will show that by deleting some redunadent tuples from meta relations
SWW and 8 we can obatin an equivalent pairs of meta relations 7" and 75" Using T
and 7~'}¥V we can obtain C’f{f{,[, by just only applying the third step of the simplification
method.

6.1 Meta Relations 73" and 7}': Motivation

Let ARy # 0, then ARy, can divide into subsets Ay, ..., Ay such that
e for every i and j, (1 <14,j <k), A;nA; =0; and

e all formulas in A;, (1 < i < k), are identical up to the permutation of the disjunc-
tions, a permutation of literals and a renaming of variables.

Let  be any subset of A%, such that Q| = k. Then

1. for every W' € , there exists one and only one A;, (1 < i < n), such that W' € A,.
This means that no two formulas in €2 are identical up to the permutation of the
disjunctions, a permutation of literals and a renaming of variables; and

2. for every V' € ARy either V€ Q or there exists V' € Q such that V and V’ are
identical up to the permutation of the disjunctions, a permutation of literals and
a renaming of variables, thus S’ € mod(A%'Yy,) iff S” € mod(Q).

Let Wa and Wy be the conjunction of wffs of ARy, and Q respectively. From 1 and 2,
Wq can be seen as if it were derived by applying Step 4 of the simplification method to
Wa. The order of Step 3 and Step 4 of simplification method is immaterial, i.e., C5%
can also be derived by applying Step 4 first and then Step 3 to Wa. Thus C’fgf{,v can be
derived by applying only Step 3 of the simplification method to Wy,.

23
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This motivates the definition of 75" and 7}”’. In fact 73" and 7~}W will be defined
such that

Q= Tn+10F(u,e) (EW)‘U) — Tn+10F(u,e) (ﬁw)\u)

6.2 Meta Relations 73" and 7}": Definition

T& and TV are defined by deleting some tuples from S} and SY respectively. The fol-
lowing definition characterizes these tuples, in which we define a binary relation, denoted
~, on the tuples of S} .

Definition 6.1 (Binary Relation ~)Let t,#' € S}Y. t and t' are said to be similar,
denoted t ~ t', iff < ty,...,t,,tyso > isequal to < t'y,..., 1, "0 > and t,41, t',, 41 are
identical up to a permutation of the disjunctions, a permutation of the atomic formulas
and a renaming of variables. O

It is clear that ~ is an equivalence relation on S". The next definition defines the meta
relations 75" and TAV.

Definition 6.2 (Meta Relations 7 and 7}")
Let m be the number of equivalence classes generated by ~ on S} .

e TV is a subset of S} such that |74 | = m, and for every two distinct tuples ¢ and
tin TRV, t £t

o T4V is a subset of S} such that < Arg(¢8}"), Vi, e > € TV iff

— < Arg((B"), V)V, e > € SY,
— < Arg(eB)), V') ;e > € SY, and
- < AT!J(EﬂXV)aW%,e > € SV}VzV

O

In other words, if there are m equivalence classes for the relation ~ on S}, then T is
any subset of S}/ that has one and only one tuple from each equivalence class. Notice
that if m > 1, then there are at least two subsets of S} that satisfy the two conditions
stated for the definition of 75'; in this case one of these subset may be taken as meta
relation 7.

Example 6.1 Let W be VzVyVz(—=R(z,y) V - R(z, 2) Vy = 2z). The meta-relations F}
S§ and TV for the given constraint W and relation R are shown in Fig. 6.1. The
components of tuples in each of these meta-relations are given in Table 6.1. Note that
FW = 0 because neither UQ(¢;) € UQ(¥;) nor UQ(fy) C UQ(4;). Thus S and TH
are both empty.
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Suppose that the tuple u =< a,b > is inserted into the extension of the relation R.
Then A\, = {g1/a,92/b}, and F(u,—) is ($1 = a) A ($2 =b) A ($4 = —). Applying A, to
T yields the relation 74"\, shown in (d) of Figure 3.4 where:

V¥ Ayt Vz(=R(a,2) Vb = 2).

This wif results from evaluating m30p(,—) (T3 Au). According to the algorithm of the
simplification method the simplified form, C’;a,’;fv, for this example is one and only one of
the following wifs:

Wi Vz(=R(a,z) Vb= z).

Wy VYy(=R(a,y)Vy=0>b).

Since VY \, is identical to W/, then
Ia 1

T30 F(u,—) (T M) = {Criw }-

F¥ A, Sy
[ ‘ g | W& | — g | g | V)Y ‘ -
91| g2 | W) | — g | g | VY |-
T T M
g le| Vil |- alb] Vil ol | -

Figure 6.1: Meta Relations FJY, S¥, T@ A, and T\, of Example 6.1

6.3 Validating Derivation of Cjj, from Meta Rela-
tions

Now we will prove that C%Y; is the formula obtained by only applying the third step of
the simplification method to the conjunction of the formulas result from performing the
expression:

Tn+10F (u,e) (7;{W/\u) - ﬂ—n—l—lo-F(u,e)(,i;{W)\u)-
Theorem 6.1 Let AR, # (0. Let Ay, ..., Ag be subsets of ARy, such that
o ARy = Ui A
e for every i and j (1 <4,j <k) A;NA; =0; and

e all formulas in A;, (1 < i < k), are identical up to the permutation of the disjunc-
tions, a permutation of literals and a renaming of variables.
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Let Q3% = Tni10F(u,e) (TR M) — Tnt10F(ue) (ﬁw)\u). Then
Oy C ALy
|Q;£LW| = k.
S" € mod(ARw) iff 8" € mod(QFy).

O
Proof:.
1. From Def. 6.2 T C S§ and T3 C S. Therefore TA¥ A, C SF' A, and T\, C
SP A\u. Thus
7Tn+10-F(u,e)(7;zW/\u) g 7Tn+10'F(u,e)(8¥2V)\u)
7Tn+10-F(u,e)(7;2W/\u) - 7Tn+1UF(u,e)(8¥zV)\u)
Hence

Q(IB%;:LW - Tn+10F (u,e) (S A ) W”+10F(u’e)(8~g)\U)
ARy

2. From the definition of 7.V, for every tuple ¢t € S, there is t' € T,V such that
t ~ t'. Therefore for every < u, V}V \y, e >€ 0rue)(Si M) there is < u, V') Ay, e >
in opye) (8 Ay) such that V' \, and V’ZV/\U are identical up to the permutation
of the disjunctions, a permutation of literals and a renaming of variables. Thus
for every Vi € ARYy, there is V, € QF such that Vi and V; are identical up to
the permutation of the disjunctions, a permutation of literals and a renaming of
variables.

Suppose that for some i, (1 <4 < k), Q3 NA; = 0. Let V€ A;, then V € AR,
Then there is V' € Q3" such that V and V' are identical up to the permutation
of the disjunctions, a permutation of literals and a renaming of variables. From
definition of A;, this implies that V' € A;, which contradicts that Q3% N A; = 0.
Thus for every i, (1 <14 < k), Q5 NA; # 0.

From the definition of 75", for every two tuples ¢, € TV, t 4 t'. Therefore for
every two wifs V, V' € QF%,, V and V' are not identical up to the permutation
of the disjunctions, a permutatlon of literals and a renaming of variable. Thus for
every 4, (1 <i < k) |A; NQF | = 1. Hence the number of wifs of Q%Y is k.

3. Let ARy # 0 then Q3 # 0.

Only if part: Assume that S' € mod(A%y ). From (1), Qz'y € ARYy. Thus
S € mod(Q5y).
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If part: As we have just shown in the proof of (2), for every V € A%y, — Q%'
there is V' € Q3" such that V and V' are identical up to the permutation of
the disjunctions, a permutation of literals and a renaming of variables. This
implies that for every V' € AR, — Q3'y, there is V' € Q%' such that V and
V" are equivalent. Thus if S € mod(Q%") then S" € mod(A%Y,, — Q%) and
hence S’ € mod(ARy)

&

From Theorem 6.1 and the first paragraph of this subsection, it follows that C%Y; is
the formula obtained by only applying the third step of the simplification method to the
conjunction of the formulas result from performing the expression:

Tn+10 F (u,e) (IEEW/\U) ~ Tn+10F (ue) (,tfw/\")'
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W VaVyVz(—-R(z,y) V ~R(z,2) Vy = 2).
LE,W =0

Lpw = {~R(z,y),~R(z,2)}

gl : _'R(Ia y)

UQ(4:) = {z,y}

By =1{z/91,9/9:}-

Arg(élﬂgvf) =< 41,02 >;€ = —

8, ={x/91,y/92}.

Woy :Vz(=R(g1,92) V= R(g1,2) V g2 = 2)).
V¥V :V2(=R(g1,2) V g2 = 2).

ly: —R(z,2)

UQ(4) = {x, z}.

B ={x/g1,y/92}-

Arg(la))) =< g1,92 > =" —".

521 ={z/91,9/92}

Woy :Vy(=R(g1,y) V 7 R(g1,92) V¥ = g2).
Vey :¥y(=R(g1,y) Vy = go).

Table 6.1: Components of tuples of ¥ and S} of Example 6.1



Chapter 7

Transactions and Meta Relations

In this chapter we will generlaize results obtained in the Chapter 6 by considering trans-
actions rather than atomic operations.

7.1 The Main Theorem: Transactions

In the following theorem we will use the results obtained on the meta-relations TV and
T in Chapter 6, to prove the following:

e if for every operation O(R,u) in the transaction T7, op(ue Ty A = 0, then W is
unaffected by operations in 71'r, i.e., it will remain satisfied in the new state S’; and

e if for some operation O(R,u) in the transaction 7'r, O'F(u,e)EW # (), then W may
be affected by the operations of Tr, and in this case we can obtain a subset of
Uo(ruerrQgw that is sufficient to evaluate W in the new state S'.

Theorem 7.1 If Uo(ru)err Or(ue)Ta Au = 0 then S € mod(W), otherwise
S" € mod(W) iff S" € mod(Qy).
Where
- *
Sy = { g;t} :)ft}IinveviiiW and €y, = O(R’LUJ)ETT Qrw-
O
Proof:. Let Uo(ruyers OF(ue) TR Au = 0. Then Uo(ruyerr OF(ue)F R Ay is 0. By Theorem

4.1, this implies that T3, = @ for every O(R,u) € Tr. Thus by Theorem 3.1, T}, = 0,
and hence, S" € mod(W).

29
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Let Uo(ruerr OF(ue)Ta Auw 7# 0. Then Q3 # 0. If W € Oy, then Q3 = {W} and thus
there is nothing to prove. So let W ¢ €)j;,. Therefore Q3 = Q3;,. Thus

S’ € mod(Yy) S" € mod(SYyy,)
— S € mod(QRy) for every O(R,u) € T,
such that Q3% # 0
< S € mod(ARYy) for every O(R,u) € T,
such that AR, # 0 from Theorem 6.1
< S € mod(T'gYyy) for every O(R,u) € T,
—
—

!

such that 'Yy, # 0 from Corollary 5.1
S" € mod(T3y) from Corollary 3.1
S" € mod(W). from Corollary 3.1

Hence S" € mod(W) iff S € mod(Qy,)
O

7.2 Deriving Cj;; from Meta Relations 7, and 7}’

In Chapter 6, we have shown that the simplified form Cy%, (resp. Cyy/%), defined by the
simplification method in case of changing state S by operation I(R,u) (resp. D(R,u)),
is the wif obtained by applying the third step of the simplification method to the con-
junction of wffs of Q%%

To complete this work, we will discuss in the remainder of this section whether the
simplified form CY;,, defined by the simplification method in case of changing state S
by the transaction 7'r, can be obtained by applying the third step of the simplification
method to conjunctions of wifs in 2};,. Two remarks have to be made about the set of
wifs 23, .

L. For every O(R,u) € Tr, Q% C ARy Thus for every Wy and W, in QF'y
such that Wy # Wy, Wi and W, are not identical up to the permutation of the
disjunctions, a permutation of literals and a renaming of variables. So is the case
for every two wifs of (2f;.

2. For every Wy € Q3'yy,, either Wy € T3, or there is a W, € 'Yy, such that W is
obtained by deleting some pre-valued literals from W,. Thus, for every W, € O,
either W, € I'};, or there is a Wy € I}, such that W is obtained by deleting some
pre-valued literals from Wj.

Let Ky be the wif obtained by applying the third step of the simplification method to
the conjunction of wifs in 2};,. By the two remarks given above the wif Ky can be seen
as obtained by applying the steps of the simplification method to the set I'}j;,. Since the
simplified form Cf;; is obtained by applying the steps of the simplification method to the
set of wits I'j;; and I'j; C I'y,. Then to determine whether Ky is identical to Cyy, we
have to consider the following cases:
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[}y = Iy ¢ In this case it is clear that Ky and Cf;, are identical.
'y, C Iy ¢ In this case there are two subcases:

W € T}y, : In this subcase, on the one hand, W € Q. Thus Qf;, = {W} and hence
Ky is W. On the other hand, W € I'};, iff € € G}, (cf. Definition 3.4) which
by the definition of I'j;, implies that I'},, = {W}. Thus Cj, is W. Hence Ky
and Cj, are identical.

W & I'jy ¢ In this subcase, neither C}, nor Ky, contains the constraint W. But
since I'}, C I}y, C}, may be a subformula of Ky .

In conclusion, the simplified form Cj;, is identical to Ky, except for the subcase W & '},
of the case I'};, C I'},. In this subcase, it may happen that Cfj;, is subformula of Kyy.
But we emphasize that in this subcase, Ky does not contain the constraint W. Thus
the redundancy that may exist in Ky with respect to Cf;, is not serious.
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Chapter 8

Conclusion and Future Work

In this report we have shown that all the steps of the method proposed by Nicolas in
[Nic82] for simplifying constraints can done at compile time.

We have done that by developing a representation that stores simplified instances of
W together with other information about occurrences of R in W into meta relations.
The simplified instances stored in the meta relations are obtained form W by applying
the same simplification steps of the method, but here we use generic constants instead of
specific update values. When an update is performed to the relation R, the generic con-
stants in the meta relations are replaced with the update values and a relational algebra
expression is performed on the obtained relation, resulting in a set of formulas. We have
proved that it is sufficient to evaluate these formulas in the new state to determine that
the constraint W is satisfied in the new state. Also, we have proved that in the case of
inserting (resp. deleting) a tuple u into (resp. from ) the relation R, applying the third
step of the method to the conjunctions of these formulas is identical the simplified form
Crw (resp. Cpyyy) obtained by steps of the simplification method.

Many researchers have address problems of compiling constraints before the database
becoming in interactive use. In this point, works presented in [HMN84, Dec87, L1087]
are related our work. However our approach different in that we use model-theoretic
view for databases rather than proof-theoretic which is taken in these approaches.

The meta relations is presented in the context of passive database. However the work
can be extended to active databases as follows. We can add a new component to meta
relations. These component can be used to store user-defined actions or actions derived
from simplified forms of meta relation using techniques of [FPT92, CFPT94]. By this
way the components of meta relation can be viewed as representations for ECA rules.
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