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Abstract

The usual approaches to object specification based on first-order temporal logic
fail in capturing the often occurring need to change the dynamic behaviour of a
system during lifetime of that system. Usually all possible behaviours have to be
described in advance, i.e. at specification time. Therefore, we here present an
extension going beyond first-order temporal logic. Now, it becomes possible to
specify ways of dynamically changing the behaviour of a system during lifetime.
This can be done by giving each object an additional (non-first-order) attribute.
The value of this attribute contains a set of first-order formulas being the currently
valid behaviour specification. In addition, this approach can easily be extended for
introducing a way of default reasoning.

1 Motivation

In the area of information systems, temporal logic is a widely accepted means to specify
dynamic behaviour of objects. This is due to the fact that information systems (as a
generalization of database systems) are state-based systems for which the state-based
approach of temporal logic is obviously appropriate.

Currently, the (temporal) specification of information systems has become a popular re-
search area based on a clean and well-understood theory (cf. e.g. [KM89, FM91, EDS93]).
Several specification languages like ALBERT [DDP93|, LCM [Wie91, FW93], OBLOG
[SSE87, SSG191], and TROLL [JSHS96] have been developed for supporting the speci-
fication of objects and their dynamic behaviour based on temporal or dynamic logics.

Of course there are other formal approaches to specifying dynamic behaviour of objects.
For instance, conditional term rewriting [Mes93] is another way of describing object be-
haviour. The specification language Maude [Mes92, MQ93] is based on a conditional term
rewriting semantics.

However, all these approaches to specifying information systems assume that the dynamic
behaviour of the system and its parts is totally known at specification time. In addition,
once specified the behaviour is fixed for the entire life (or run) time of the information
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system. This restriction seems not to be adequate for a large number of typical information
system applications. Because of the long life (or run) time of information systems changes
of the dynamic behaviour are often required within the lifetime of a system.

Typical examples for such changes of the dynamic behaviour are given in information
systems for libraries and banks: For a library it may happen that the rules for borrowing
and returning books change in order to avoid too much administrative work in writing
reminders. Due to changes of laws (or bank rules) it could become necessary to change
the computation of yearly interests or to restrict the evolution of an account in some
way. These changes are modifications of axioms describing the dynamic behaviour of the
system. In consequence, we have to find a framework for describing evolving specifications
where we can specify the evolution of first-order dynamic behaviour specifications.

In this paper we continue the work started in [SSS95] where a first, very restricted form
of evolving temporal specification was proposed. The extensions we are considering form
a stable basis for future work in which we aim at integrating additional aspects like
normative specification (based on deontic logic). In [SCT95] we sketch a vision of a future
specification language incorporating several specification concepts going beyond current
object-oriented specification formalisms. The work presented here is a major step into
that direction. This is due to the fact that we leave the level of first-order temporal logic
by allowing the manipulation of first-order specification axioms within the specification.
Thereby, we introduce some kind of reasoning capabilities into the objects. We do not
strive for a real higher-order approach. Nevertheless, we think that some higher-order
aspects (as they have recently been investigated in several areas, for instance for algebraic
specification [M6194, Sch94]) could help.

The approach we present here do not deal with the question who is allowed to change the
behaviour of objects. Of course, this is an important question which must be solved for
a specification framework which is intended to be used in practice.

The remainder of this paper is organized as follows: We start with sketching the current
state of object specification based on temporal logic by presenting a typical example
specification for information systems and by giving a basic definition of the temporal
logic we use. In Sect. 3 we extend our example in a way which cannot be captured by
first-order temporal logic. In order to get a grasp of the evolving dynamic behaviour
of objects on the specification level we introduce an extension of temporal logic which
we call Evolving Temporal Logic (Sect. 4). In addition, we briefly sketch first ideas of
integrating default reasoning. Finally, we conclude by discussing several problems left for
future work.

2 Current State of Object Specification

In this section we first present the current state of object specification for information
systems by giving an example specification using an object specification language. Then,
we show the corresponding description in temporal logic.

2.1 Specifying Objects in Information Systems

Object specification languages based on a temporal logic framework for specifying the dy-
namic behaviour of objects in an information system offer a number of modelling concepts



object class Bank
identification BankID: (Name, No) .
attributes Name: string .
No:  nat constant
restricted No>100000 and No<999999 .
components Acct: Account set.
events Open(BankName:string, BankNo:nat)
birth
changing Name := BankName,
No := BankNo .
OpenNewAccount(Holder:|Customer|, AcctNo:nat)
calling  Account(AcctNo).Open(AcctNo, Holder)
changing Acct := insert(Acct, Account(AcctNo)) .
Transfer(AcctNol:nat, AcctNo2:nat, M:money)
enabled in(Account(AcctNol), Acct) and
in(Account(AcctNo2), Acct) and
M > 0.00
calling  Account(AcctNol).Withdrawal(M) ,
Account(AcctNo2).Deposit(M) .
end object class Bank

Figure 1: A specification of bank objects.

(cf. [JSHS96]): First, there are structural concepts for modelling different kinds of rela-
tionships between objects (like is-a relationships, inheritance, aggregation, etc.). Second,
there is the concept of attributes for giving an internal structure to objects. Attributes
have values which determine the state of an object. The third kind of modelling concepts
is used for describing the temporal evolution of objects by prescribing allowed life cycles.
The state of an object can only be changed by the occurrence of local events. Enabling
conditions for events, general temporal constraints as well as life cycle descriptions can
be used for restricting the temporal evolution of objects.

Example. In Fig. 1 and 2 object specifications of bank objects and account objects using
concepts of the specification language TROLL are depicted. A bank has attributes Name
and No. The latter is marked as constant, thus it must not change its value during lifetime
of the object. Furthermore, this attribute is restricted to take only values out of a given
range. A bank object has a set of account objects as components. There are several
events which may happen to a bank object: The Open event is the birth event for a bank
object giving values to the attributes Name and No. The OpenNewAccount event calls the
birth event for a new account object and inserts this account object into the component
set of the bank object. The Transfer event transfers a given amount of money from one
account object to another one, provided both account objects are in the component set
Acct of the bank object and the requested amount is positive. In addition, the called
Withdrawal event for the first account as well as the called Deposit event for the second
account object must currently be enabled in order to execute the transfer.

Account objects have attributes No, Holder, Balance, and Limit. Similar to bank objects,
the attribute No is marked as constant and is required to take only values out of the given



object class Account
identification AccountID: (No) .
attributes No: nat constant
restricted No>100000 and N0<999999 .
Holder: |Customer| .
Balance: money initialized 0.00 .
Limit: money initialized 0.00
restricted Limit<=0.00 .
events Open(BID:|Bank|, AcctNo:nat, AcctHolder:|Customer|)

birth
changing Bank := BID,
No := AcctNo,
Holder := AcctHolder .
Withdrawal(W:money)

enabled W > 0.00 and Balance — W > Limit
changing Balance := Balance — W .
Deposit(D:money)
enabled D > 0.00
changing Balance := Balance + D .
Close  death
end object class Account

Figure 2: A specification of account objects.

range. The attribute Holder refers to the customer object representing the owner of
the account. The current balance of the account is given in the attribute Balance. The
attribute Limit is used for allowing only a restricted overdrawing. For Balance and Limit
initial values are specified. There are four kinds of events which may occur in account
objects. The birth event Open brings the object into life and sets the attributes Bank,
No, and Holder to the value given by the event parameters. An account can be closed
by an occurrence of the event Close. Furthermore, we can withdraw and deposit money.
An occurrence of the event Withdrawal is only enabled when then Balance will not fall
below the current Limit. In addition we require the amount of money to be positive for
both the events Withdrawal and Deposit.

In this example there is no explicit use of temporal logic formulas. Nevertheless, it is
possible to state temporal constraints, for example: If the balance of an account once
becomes greater than 1,000.00, then it must never fall below 0.00 from that moment.

2.2 Translation into Temporal Logic

Here, we briefly present the translation of object specifications into temporal logic. We use
a first-order, discrete, future-directed linear temporal logic which can be considered as a
slightly modified version of the Object Specification Logic (OSL) which is presented in full
detail in [SSC92]. In [Jun93] a comprehensive translation of TROLL object specifications
into OSL is given. Some modification with regard to compositionality issues are discussed
in [Con94b, Con95] for this logical framework.



We start with some basic definitions of temporal logic:

e We assume a collection of elementary propositions to be given: e.g., p, ¢, 7, ...

e Elementary propositions are formulas as well. In addition we may build formulas
using the usual boolean operator: provided f and ¢ are formulas then —f and
f N g are also formulas. Other boolean operator like V, —, <, ...are defined as
abbreviation in the usual way.

e We may build formulas using the future-directed temporal operator O (always) and
O (next) in the following way: if f is a formula, then Of and Of are formulas, too.
The operator & (eventually) can be introduced as abbreviation: < f = —0O-f.

e By introducing variables and quantifiers we obtain a first-order variant of linear
temporal logic: provided z is a variable and f a formula, then Vx : f and dz : f are
formulas.

For our purposes we need several different kinds of elementary propositions:

1. o.Attr = v expresses that the attribute Attr of an object o has the value v (we have
adopted this form from the specification language used for our example; instead we
could also take a predicate expression like Attr(o,v)).

2. 0.Ve stands for the occurrence of event e in object o.

3. o. > e represents that event e is enabled for object o.

For the rest of this paper we need at least an intuition about the semantics of temporal
logic formulas. Therefore, we here present a basic fragment of the semantics:

e A life cycle X is an infinite sequence of states: A = (sg, $1,S2,...). We define
A" as the life cycle which is obtained by removing the first ¢ states from ), i.e.
X = (s;,8i11,8i+2,---)- The states in a life cycle are assumed to be mappings

assigning a truth value to each elementary proposition.

e The satisfaction of a formula f by a life cycle A (written A |= f) is defined as follows:

AEDp for an elementary proposition p if p is true in state sy of A.
AE-f  ifnot A = f.

AEfAg ifAEfand A Eg.

AEOf  ifforalli>0: X = f.

A EOf if \' = f.

For brevity we omit the treatment of variables. This can be done in the usual straight-
forward way. All variables which are not explicitly bound by a quantifier are assumed to
be universally quantified. Fully-fledged definitions of syntax and semantics of first-order
order-sorted temporal logics for object specification can be found for instance in [SSC92]
or [Con94a].

Example. Here, we only present some temporal logic formulas representing properties of
the objects described in Fig. 1 and 2. We start with the effect an event occurrence has on
the attributes. For instance the effect of Open events for account objects is represented
by the following temporal logic formula:

O( a.VOpen(B, N, H) — O(a.Bank = B A a.No = N A a.Holder = H) )



Due to the fact that Open is a birth event it may only occur once in the life of an object.
This property being inherent to the object model of the specification language TROLL
is expressed by:

O( a.VOpen(B,N,H) — O0O~(3B',N', H' : a.VOpen(B',N',H") ) )

The enabling condition for Transfer events in bank objects can be put into a simple
formula as follows:

O( b. > Transfer(A;, Ag, M) — ( Account(A4;) € AcctA
Account(A4y) € Acct A M > 0.00) )

Then, we can use a general axiom scheme for describing the requirement that only enabled
events may occur (for each object o and arbitrary event e):

O(o.Ve—o0.>e)

Event calling as it is specified for the Transfer events in bank objects can be expressed
by temporal logic formulas as follows:

O( b.VTransfer(A;, As, M) — ( Account(A;).VWithdrawal(M)A
Account(A,).VDeposit(M) ))

In this way all parts of the dynamic behaviour specification can be translated into temporal
logic.

3 Going Beyond First-Order Temporal Specification

As already motivated in the introduction, the dynamic behaviour can often not totally
specified in advance. Usual first-order temporal specification is too restrictive because all
possible behaviours have to be fixed at specification time. For systems which run for a
long time, e.g. information systems, this cannot be adequate. In fact, we have to face
the often occurring situation that during the lifetime of a system the dynamic behaviour
must be changed to a certain degree. For instance, a new law could require a change in
the managing of bank accounts by introducing a new tax. Such changes of the dynamic
behaviour cannot always be foreseen, so that they cannot be respected in advance at
specification time.

Because this is an unsatisfactory situation, there is need for some specification mechanism
allowing a later change of the dynamic behaviour. In order to realize this, we have to
go beyond first-order temporal logic. The approach we present here is based on the
introduction of a special attribute having specification axioms as values. The current value
of this attribute denotes the currently valid, additional behaviour specification. Thereby,
the behaviour specified in advance can be restricted during lifetime of the object.

Example: In order to demonstrate our intuition of higher-order specification we have
extended the specifications of bank and account objects (see Fig. 3 and 4). In these
descriptions we omit the usual first-order part which we have already seen before (Fig. 1
and 2).



object class Bank
identification ...
attributes
components
events ..
axiom attributes
Axioms initialized { };

mutators AddAxioms(P:Formula);
ResetAxioms;
dynamic specification
AddAxioms(P)
changing Axioms := Axioms U{ P };
ResetAxioms

changing Axioms := {};
end object class Bank;

Figure 3: Extended specification for bank objects.

Here, we explicitly introduce a special attribute Axioms which has sets of first-order
temporal logic formulas as possible values. The value of this attribute may be changed
during the lifetime of an object.

In the extended specification for bank objects we allow the manipulation of this special
attribute through two additional events (called mutators): AddAxioms and ResetAxioms.
AddAxioms has a first-order temporal logic formula as parameter. In case AddAxioms
occurs its parameter value is added to the current value of the attribute Axioms. Thus,
we can more and more restrict the possible dynamic behaviour of a bank object by simply
adding additional formulas to the attribute Axioms. In this way it is now possible to
modify the dynamic behaviour of a bank object in accordance to the requirements of a
new law, a new banking rule, etc.

In contrast to the extended specification for bank objects, we only allow a quite restricted
form of manipulating the dynamic behaviour of account objects. In Fig. 4 we specify
two mutator events Warnings and NoWarnings. After an occurrence of the mutator event
Warnings the value of the special attribute Axioms includes exactly one formula. This
formula says that, in case a Withdrawal event occurs in this account object and the
balance of this account will be negative after this withdrawal, a warning message has to
be sent to an object called Supervisor (by calling a Warning event of the Supervisor
object). An occurrence of the mutator event NoWarnings turns off this warning mechanism
by simply resetting the attribute Axioms to its initial value (which is an empty set of
formulas). In this way we can easily switch on and off the validity of a certain specification
axiom.”

In our example we have presented a very general form of manipulating the dynamic
behaviour (for bank objects) and a very restrictive way (for account objects). Of course,

*Obviously, we can achieve the same behaviour of account objects with a purely first-order object
specification by introducing an attribute as a switch and by using its value for invoking the warning
mechanism.



object class Account
identification
attributes ...
events
axiom attributes
Axioms initialized { };
mutators Warnings;
NoWarnings;
dynamic specification
Warnings
changing Axioms := {
VWithdrawal(W) A Balance—W<0.00
— Supervisor.VWarning(No,Balance— W)

5
NoWarnings
changing Axioms := {};
end object class Account;

Figure 4: Modified specification for account objects.

there are a lot of other more or less restrictive forms in between because our specification
framework can be used in a quite flexible way. As it is already possible for usual events we
may impose enabling conditions to mutator events. Thereby, an arbitrary manipulation
of the behaviour specification can be prevented. This seems to be reasonable because
otherwise nearly everything might happen due to nonsensical changes of the behaviour
specification.

A first, more restricted approach to evolving behaviour specification is given in [SSS95]
where only the switching between a number of pre-given behaviour specifications is con-
sidered. Our approach sketched here is much more liberal by allowing a more fine-grained
manipulation of behaviour specifications. In the next section we briefly sketch an extended
temporal logic as a semantical basis.

4 Evolving Temporal Logic

In this section we present the basic ideas for formalizing the extension of temporal logic
we need for capturing the properties sketched in the previous section. We will call this
extension Evolving Temporal Logic (ETL). Afterwards, we show how the example given
in the previous section is formulated in ETL.

4.1 Basic Ideas for Formalization

The formalization of ETL is based on the basic definition of temporal logic given in Sect. 2.
Here, we present a rather straightforward extension of that temporal logic.

The starting point for this extension is the treatment of the special attribute having sets
of first-order formulas as values. In order to represent this special property we introduce



a corresponding predicate V into our logic. This predicate is used to express the current
validity of the dynamic behaviour axioms. For simplicity, we restrict our consideration to
one special predicate over first-order temporal formulas. !

This predicate is used to express the state-dependent validity of first-order formulas: V(p)
holds in a state (at an instant of time) means that the specification ¢ is valid w.r.t. that
state.

In a more formal way we can express this as follows: if V(¢) holds for a (linear) life cycle
A (i.e., A E V(¢)) then ¢ holds for \ as well:

AEV(p) implies AEg

In order to avoid severe problems especially caused by substitution we assume ) to work
only on syntactic representations of first-order temporal formulas instead of the formulas
themselves. Here, we use the notation V(y) only for convinience. For a correct formal
treatment we have to define an abstract data type Formula for first-order temporal for-
mulas as possible parameter values for V. In addition a function translating values of this
abstract data type into corresponding formulas is needed. Then, we are able to strictly
separate the usual first-order level from the higher-order part.

With regard to the reflection of V() on the first-order level, we may establish the following
axiom for ETL:

V(p) = ¢

By the predicate V we simulate the finite set of behaviour axioms which are currently
valid. Thus V(p) can be read as “p is in the set of currently valid behaviour axioms”.
Due to V() — ¢, it is sufficient that V holds only for a finite set of specification axioms
because the theory induced by these axioms is generated on the first-order level in the
usual way.

Please note that V() can be considered as an elementary proposition in ETL. Therefore,
we may assume that for each state s; in a life cycle A there is a truth assigning function
denoting the validity of V(¢) for each first-order formula ¢.

From the definition given before and from the usual properties of the temporal operators
we can now immediately conclude:

AEV(Op) implies Vi>0: )\ E ¢
AEV(Op) implies F>0: )\ Eop

This is due to A = V(Ogp) implies A = Oy and A\ = Oy is defined by Vi > 0 : \* = ¢ (and
analogously for &y). This special property is depicted in Fig. 5: Assume V(Og) holds in
state s; in a life cycle A. Then ¢ holds in all the states s;, S;11, Sit2, ... — independent of
whether V(Oyp) is true in s;41, Siy9,... Therefore, it should be clearly noted that there is
a big difference between V(Oyp) and V(). Once V(Oy) has become true, ¢ remains true
forever. In contrast, if V(¢) becomes true, ¢ needs only to remain true as long as V(p)
does.

For the events manipulating the special attribute Axioms (in the specification called mu-
tators) we need counterparts in the logic. For a general manipulation of the predicate
V we introduce two special events aziom™(¢) and axiom () for adding an axiom to V

tFor dealing with several objects having different sets of currently valid behaviour axioms, we could
extend this view to several predicates or to introduce an additional parameter to the predicate for referring
to different objects.
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Figure 5: Interpreting Evolving Temporal Logic.

and for removing an axiom from V), respectively. From the logical point of view these
two events are sufficient for representing all possible ways of manipulating the attribute
Axioms. As introduced in Sect. 2, we use the notation Vaxiom™ (¢) and > aziom™ () for
the occurrence and enabling of the event aziom™ (analogously for aziom™). Enabling can
be used in constraints for restricting the manipulation. For occurrences of these events
the following axioms are given:

Vaziom™ (o) — OV(p)
Vaziom™ (@) = O-V(p)

Vaziom™(¢) (or Vaziom™ (p)) leads to V(¢) (=V(p), resp.) in the subsequent state.
Frame rules are assumed which restricts the evolution of V to changes which are caused
by occurrences of the events aziom™(y) and axiom™ (p):

=V(p) AOV(p) — Vaziom™ ()
V(o) ANO=V(p) = Vaziom™ ()

Before we show how to formulate the properties specified in Fig. 3 and 4 we want to briefly
discuss the understanding of negation w.r.t. the predicate V. The question to answer is
whether V(—¢) is different from —V(¢). The answer is quite simple: From A\ E V(—¢)
it follows that A = —p. In contrast we cannot derive the same from —V(y). Therefore,
V(=) and —V(¢) have to be distinguished. This is of course not surprising because it
corresponds to our intuition about the predicate V.

Another important issue we do not discuss in full detail is a proof system for ETL. In
fact, we think of taking a proof system for first-order linear temporal logic and modifying
it a little bit in order to get a grasp of the predicate V. As already mentioned, the main
problem is substitution. We have to distinguish between variables in usual first-order
formulas and variables in formulas being parameter values of V. Although it seems that
this can be done in a straightforward way, we have to work this out in detail.

4.2 Expressing the Example Using ETL

In the example given in Fig. 3 and 4 several properties are specified for the special attribute
Axioms. Here, we present their formulation as formulas of ETL where the attribute Axioms
is represented by the special predicate V. Due to the fact that we have to distinguish
between different objects we prefix each occurrence of V in a formula by a variable (or
an object name) referring to the object concerned. This corresponds to the way we have
prefixed predicates denoting an event occurrence or the enabling of an event for an object
in Sect. 2.2.



In all the formulas given below there is an implicit universal quantification over all vari-
ables including ¢. Please note that we assume ¢ to be a variable over an abstract data
type Formula.

First, we consider the additional properties for bank objects. The way we express the
initial value property for Axioms, i.e., that directly after the occurrence of the birth event
Open there is no formula ¢ for which V(¢) holds is a little bit tricky:

O( 0b.V(¢) — —b.VOpen(B, N) )

The effect the so-called mutator event AddAxioms has on the value of Axioms can be
described by simply reducing the occurrence of AddAxioms to an occurrence of the special
pre-defined event aziom™:

0O( b.VaddAxioms(p) — b.Vaziom™ (p) )
For the mutator event ResetAxioms we choose a similar way of expressing its effect:
O( b.VResetAxioms A b.V(p) — b.Vaziom™(p) )
Considering the property of axiom™ described before we can immediately conclude:

O( b.VResetAxioms A b.V(p) — O-b.V(p) )

Similarly we can describe the additional properties for account objects. The formula
describing the initial value property of the attribute Axioms looks like that for bank
objects:

O( OCa.V(¢) = —a.VOpen(B,N, H) )

However, the effect of the mutator event Warnings is rather different from the mutator
event AddAxioms for bank objects. Here, only a single pre-specified formula is added to
the value of Axioms:

0 ( 0.V Warnings — a Vaxz'om+< a.VWithdrawal(W) A Balance — W < 0.00 ) )

— Supervisor.VWarning(No, Balance — W)

Again, the effect of the mutator event NoWarnings can be expressed in the same way as
we did it for the mutator event ResetAxioms for bank objects:

O( a.VNoWarnings A a.V(¢) = O—a.V(p) )

In this way we have demonstrated that we are able to describe the intended properties in
ETL. Of course, ETL offers additional possibilities which we did not use for our example.
In order to give an impression of the expressiveness of ETL, here are some examples
describing additional possibilities:

e The following formula expresses that every formula which can already be derived
from a formula in ¥V must not be added to V:

0. V(¢1) A (p1 = p2) — —o. >aziom™ (p,)



e Assume a certain given first-order formula ). Then we can describe that only those
formulas may be removed from V which do not imply :

o V(p) A=(p = ¥) — o.>aziom™ (p)

Obviously, it is possible to express a nearly arbitrary manipulation of the behaviour spec-
ification. From a pragmatic point of view this is not a desirable property. Therefore, we
think of restricting the possibilities by means of the specification language. The speci-
fication language should only allow those ways of manipulating the dynamic behaviour
specification which can be captured by the logic in a reasonable way. For instance, we
should explicitly exclude any possibility to express undecidable properties.

4.3 Integrating Defaults

In order to allow the specification of defaults for the behaviour of objects (or agents) we
could think of a slight extension of ETL as sketched here.

Instead of the predicate V we introduce a sequence of predicates Vg, Vi, Vs, ... where
Vo plays exactly the role of the original V (which means that Vy(¢) — ¢ holds). The
additional predicates are used to specify and manipulate defaults with different priorities.
The intuitive idea is that a default axiom given in V; holds as long there is no contradictory
axiom in V; for any 0 < j < 4. Viewing the other way round, this means an axiom in
V; can be overruled by an axiom in V;. In this way the axioms in V, have the highest
priority (in fact, they must be fulfilled without exception). The higher the index i of V
the lower the priority of the axioms of V; is.

This property could formally be expressed by the following rules:

Vi1 () A=Vi(=p) — Vie)
Vitr1(=9) A=Vi(p) — Vi)

Example: Let us assume the following specification for a certain object (where a, b, ¢ are
statements for this object):

Vo : a, b
Vi —a, ¢
VQ . b

and there is no ¢ for which V;() holds with ¢ > 2. It can easily be seen that b is the only
formula ¢ for which V() holds. On the next higher level it is explicitly specified that
Vi (—a) and V;(c) hold. Due to the fact that V;(—b) is not given, Vy(b) causes that V;(b)
holds as well. In this way, b is assumed to be a default. Considering the upper-most level,
we have explicitly specified that Vy(a) and Vy(—b) hold. Thereby, the defaults —a and b
from V; are overruled. c is propagated from V; to V, because there is no contradictory
—c explicitly given for Vy. Finally, Vy(a), Vo(—b), and Vy(c) hold and describe the current
object behaviour.

Of course, it should be possible to manipulate the default specification during the lifetime
of an object in a similar way we have presented for ETL before. The effect of such
manipulations can easily be understood. In our example removing a from V, would cause
that —a would be propagated from V; to Vy. Removing ¢ from V; would imply that Vy(c)
does no longer hold. Then neither ¢ nor —c¢ is required to be fulfilled by the object.



In this way we have presented a simple (possibly naive) approach to introducing defaults
with priorities into evolving temporal specifications. Of course, these are basic ideas which
have to be worked out in more detail. Especially, it is not clear in which way this should
be integrated into a specification language.

5 Discussion and Conclusions

We motivated the necessity of evolving specifications in the area of information systems.
We presented an approach to get a grasp of this additional requirement by integrating a
new concept into an object specification language. The underlying logic is a first-order
temporal logic (for objects) which is extended by a higher-order concept.

The work presented here is a quite novel approach to object specification. Therefore, there
is no related work in this area, beside [SSS95] which we have used as starting point of the
work presented here. [SSS95] sketches a first, rather restricted way for evolving temporal
specifications because there is only the possibility to switch between several different, but
pre-specified behaviours. In contrast we allow a more flexible way of specifying changing
behaviour. As shown in the examples we do not have to explicitly specify any possible
behaviour in advance. It is now possible to restrict the behaviour of an object during its
lifetime by adding a new first-order temporal logic formula to its currently valid behaviour
specification. In our approach a certain part of the behaviour is fixed by giving an usual
first-order object specification. The changeable part of the behaviour specification is cap-
tured by an additional non-first-order predicate over first-order temporal logic formulas.
This predicate is used for denoting which additional behaviour axioms are currently valid
for an objects.

Although the manipulation of the dynamic behaviour could also be done on a global
level, i.e. outside the objects, we think that it is more adequate to allow an explicit
local manipulation of the object behaviour. Thereby, this new specification feature fits
into the object-oriented view of system specification. Especially, the notion of locality is
quite useful for a pragmatic specification method. Furthermore, we are able to allow an
own local time for each object where synchronization only occurs due to communication
between objects. In this way we achieve a specification framework which does not lack
compositionality and reusability — in contrast to most other approaches based on linear
temporal logic with a next operator (for details cf. [Con95]).

The approach sketched in this paper has to be rounded off by a corresponding proof sys-
tem. As already explained in the previous section we work on a straightforward extension
of an existing proof system for linear temporal logic with objects (cf. for instance [SSC92]
or [Con94a)).

With regard to the temporal logic used for object specification a remark is necessary.
There are several linear temporal logics using an until operator. By means of this
operator the temporary validity of a proposition can be expressed. Also the first-order
temporal logic we use can in general not express these kinds of properties, the logic ETL
is able to do this, by virtue of the V predicate. Thus we can simulate an until operator
in ETL — at least up to a certain degree. We will investigate whether the expressive
power of an until operator is totally subsumed by the existence of the V' predicate.

In our future work, we intend to focus on different ways of coping with evolving temporal
specifications. Here, a number of different aspects, like belief or knowledge revision or
like changes of defaults or preferences, seems to lead to combinations of different logical



frameworks (e.g., temporal logic and default logic) promising a better treatment of be-
haviour evolution. These ideas are motivated and informally described in more detail in
[SCT95].

Obviously, we cannot expect the user to decide in which way the behaviour of objects
has to be changed. In fact, we do not want the user to be able to arbitrarily change the
behaviour of objects. Therefore, we will have to offer a mechanism in the specification
framework for describing who is allowed to cause which kinds of changes.

In this paper, we combined first-order temporal logic with some temporal mechanism for
reasoning about temporal evolution of the first-order level. In addition we have shown
that this mechanism can easily be extended to capture even a simple form of default
reasoning. This more or less ad hoc combination seems to be sufficient for the purposes
we pursued in this paper. For the more general aim of combining two possibly different
logics, e.g. for dealing with the temporal evolution of deontic norms, we think a more
clean separation of the two levels is needed.

Nevertheless, the basic ideas presented here obviously provide a general way of talking
about evolution of behaviour. Although we restricted our presentation to a temporal logic
as first-order basis, this approach can also be applied to other logics which are interpreted
over sequences of states (or sequences of actions) like dynamic logic.

Acknowledgements: We are especially grateful to Amilcar and Cristina Sernadas.
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