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Abstract. Data expiration is an essential component of data warehousing solu-
tions: whenever large amounts of data are repeatedly collected over a period of
time, it is essential to have a clear approach to identifying parts of the data no-
longer needed and a policy that allows disposing and/or archiving these parts of
the data. Such policies are necessary even if adding storage to accommodate an
ever-growing collection of data were possible, since the growing amount of data
needs to be examined during querying and in turn leads to deterioration of query
performance over time.

The approaches to data expiration range from ad-hoc administrative policies or
regulations to sophisticated data analysis-based techniques. The approaches have,
however, one thing in common: intuitively, they try to identify the parts of the
data collection that are not needed in the future. The key to deciding if a piece of
information will be needed in the future lies in identifying what queries can be asked
over the collection of data and how the collection can evolve from its current state.
The various techniques proposed in the literature differ in the way they identify
parts of data no longer needed.

This chapter formalizes the notion of data expiration in terms of how the data
is used to answer queries. We survey existing approaches to the problem in a unified
framework and discuss their features and limits, and the limits of data expiration
based techniques in general. The particular focus of the chapter is on comparing
the space performance of various data expiration methods.

1 Introduction

Modification and evolution of data over time is essential to most applications
of information systems, databases, and data warehouses. Change of data is,
however, not restricted to information systems and databases: state transi-
tions of programs can also be viewed as updates of internal data structure(s).
In general, programs

• query the data they manage using a query language; this language ranges
from primitive look-ups of memory locations fully under control of an
application program to sophisticated declarative queries over large data
warehouses;

• modify the data; again the changes range from writing a single value to
a memory location to refreshing data in a data warehouse.
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It is sufficient for most applications to keep track of the current state of the
data only. However, there are many important cases where access to data that
have existed in some past state of the system is necessary. Typical situations
in which access to the historical data is required are:

• monitoring applications
• data warehouse evolution analysis
• enforcement of dynamic/temporal integrity constraints

The access to historical data can be conceptually formalized by considering
queries to be expressed in a query language over the history of the evolution
of the system’s state: a sequence of consecutive snapshots of the data rep-
resenting this state. This model provides an easy to understand conceptual
foundation for accessing and querying the history. However, if such a history
was stored naively, e.g., by making a copy of the current state before every
modification, storage and subsequent retrieval costs would quickly became
prohibitive with the progression of time. Application programs must there-
fore attack such an unbounded growth. There are two general approaches:

1. The application assumes all responsibility for all aspects of data in par-
ticular for discarding data no longer needed.

2. The application delegates the responsibility of data removal to a data ex-
piration (or garbage collection [27]) subsystem that, based on the knowl-
edge of future queries and updates the application may perform, attempts
to analyze the stored data and discard any parts no longer needed.

The second approach is becoming much more popular; its applications range
from data warehousing solutions designed to maintain historical data [49,50]
to compilers and execution environments of modern programming languages
[27]. It embodies the usual advantages of using a higher-level interface (e.g.,
a database system) to manage data.

In this chapter we study techniques that can be used to limit the growth
of histories. In general, the techniques attempt to encode the history in some
compact way while preserving answers to queries issued by an application.
Note that the encoding must carry sufficient information not only to be able
to provide answers to an application query at a particular point in time, but
also to retain this ability in all possible extensions of the history.

While data expiration is the main focus of the chapter, the results pre-
sented here are applicable in other fields. In particular, the goals of recent
research in the area of streaming data management systems and on queries
over continuous data streams [7] are very similar to those of data expiration:
the continuous query processing techniques attempt to limit the amount of
data needed to answer a given query over an ever-growing (append-only)
data stream. Similar to data expiration, the approaches try to be selective in
remembering only the necessary parts of the data stream (called synopses) in
a limited space. For example, recent results on streaming queries [5] parallel



Logical Data Expiration 3

results on enforcement of temporal integrity constraints [10,12], a special case
of data expiration (cf. Section 4.1 in this chapter).

The chapter is organized as follows. Section 2 defines a general framework
for data expiration. Section 3 reviews policy-based approaches to data expira-
tion. Section 4 outlines two principal approaches to query-driven expiration.
Section 5 discusses the implications of allowing queries over potentially infi-
nite histories. The chapter concludes with open problems and directions for
future research.

While the chapter attempts to be self-contained and provides most of the
necessary definitions, it still assumes a certain level of familiarity with tem-
poral query languages (for a survey see [13]), with basic results on temporal
logic [16], and with the relational model [2].

2 Framework for Data Expiration

In this section we introduce a basic framework in which data expiration can
be studied. The framework is centered around two main notions, the notion of
a history of evolution of an system, and the notion of an expiration operator.

2.1 Histories

We formalize the evolution of a system in terms of histories : Let Si be the
description of the system state at time i (in some data model). With the
progression of time the system makes transitions from state Si−1 to state Si.
This transition is usually reflected in modification of the data associated with
the state Si−1. We (conceptually) record the sequence of such transitions as
a history of the system, a finite1 sequence

H = 〈S0, S1, . . . , Sm〉

of system states. We use 〈 〉 to denote the empty history and H ; S to denote
the extension of H by an additional state S. For example, we can record

• changes of variable values in a program: each time a value is updated in
a variable, a new state of the system is created;

• enrollments of students in classes: each term produces a new state of our
system that records who is taking what class in the particular term.

The history records discrete changes of a system as a linearly ordered se-
quence of states Si. The subscripts i are therefore drawn from a temporal
domain, a discrete, linearly ordered structure (T, <), and are called the time
instants2. Intuitively, the history records the facts that the system was in

1 We consider the implications of relaxing this condition in Section 5.
2 These values may be different from the actual real, wall-clock time values at

which the state change occurred.
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state Si at time i. The discrete nature of of the temporal domain also yields
the notion of a previous or next state of the system in terms of consecutive
time instants. Therefore, in the remainder of this chapter we assume, without
loss of generality, that time is modeled by natural numbers with the usual
linear ordering (and thus we use natural numbers to index the states in his-
tories). From a temporal database point of view, the histories can be viewed
as append-only, transaction-time temporal databases.

The histories allow us to formulate questions that span multiple system
states. For example, in a history generated by variable assignments, we can
ask the following questions:

• Has variable x been modified? Has it been modified before y?
• What were the values of x so far? What were the values of x when the

value of y was 1 (e.g., when the system was executing a critical section)?
• Were the values of x increasing? If not, what were the cases of decrease?

Similarly, for the history of class enrollments we can ask

• Who was taking classes in the first term (first ever—i.e., since the opening
of the school)? In the last 5 terms?

• Which students have taken the same class twice?

The queries over the histories are usually formulated in a temporalized version
of a (query) language used by the application to interrogate individual states.
The temporal queries rely on the time instants attached to the individual
states of the history to gain access to past states of the history and/or to
compare the relative age of various pieces of the data represented in the
history. The queries must, however, respect the structure of time: the only
defined relation on this structure is the discrete linear order (<). Thus all
relationships between time instants must be defined in terms of this order
or must depend on values stored in the states Si. This is, in particular, true
for the real-time wall clock should we need one (cf. Section 4.1). This also
means that queries must not distinguish between discrete linearly ordered
sets; hence our choice of natural numbers for time instants.

2.2 Expiration Operators

In practice, we often cannot afford to store the whole history explicitly. There-
fore, various history compression and/or data expiration methods have been
devised. These approaches can be characterized in terms of an expiration
operator. More precisely, given a temporal query language L over histories
of system states and a query Q ∈ L we define an expiration operator as a
mapping

E : Q → (0E , ∆E , QE).

Given a query Q, the mapping produces three components. The first two com-
ponents, 0E and ∆E , provide the actual inductive definition of the expiration
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operator. These two functions define the result of the expiration process with
respect to extensions of a history:

E(〈 〉) = 0E (initial state)
E(H ; S) = ∆E(E(H), S) (extension maintenance)

We call the result E(H) the residual history.
The third component, QE , is a query over the residual history that mimics

the original query Q. The three components must maintain the following
soundness condition:

Q(H) = QE(E(H)) (answer preservation)

In general, we do not restrict the structure of E(H); in particular we do not
insist that this value has to conform to a particular data model, e.g., the data
model of H .

The following examples show that our formalization is general enough to
capture the two extremes: keeping the whole history and keeping the current
state only:

Example 1 (Retaining Complete History). One extreme in defining the expi-
ration operator Eid is defining

0Eid = 〈 〉
∆Eid =λHλS.H ; S

where QEid = Q

This trivial operator simply keeps the whole history intact and maps queries
to themselves. It is easy to verify that this definition trivially satisfies the
requirements placed on expiration operators above.

Example 2 (Retaining Current State Only). The other extreme is keeping
only the current (last) state of the history. Here, the query language L may
only contain queries that reference the current state; otherwise, there is no
possibility to satisfy the answer preservation property. The definition of the
operator Enow is then as follows:

0Enow = 〈 〉
∆Enow =λHλS.〈S〉

where QEnow = Q

Another common approach to storing histories is the use of compression:

Example 3 (Compression). Let compress and decompress be two functions
implementing lossless compression of histories. Then the triple

0Ecompress =compress(〈 〉)
∆Ecompress =λHλS.compress(decompress(H); S)

QEcompress =λH.Q(decompress(H))

defines an expiration operator.
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The three examples above have shown operators that do not depend on the
query Q. However, it is easy to see that knowing queries that are asked over
the history in advance can (and will) improve the chances of an expiration
operator to remove unneeded data from the history.

Example 4. Let H be a history of relational databases with the schema con-
taining two (unary) predicate symbols R(x) and S(x). Then, given a (first
order) query3 {(t, x) : R(t, x)}, it is easy to see that an expiration operator
can be defined by mapping the original history

H = 〈(R,S)0, (R,S)1, . . . , (R,S)n〉

to the history
E(H) = 〈R0,R1, . . . ,Rn〉,

where Ri and Si are instances of the predicate symbols R and S, at time i, re-
spectively. This mapping satisfies all the requirements imposed on expiration
operators.

In general, we can use a much finer classification of data objects, depending
on what query or queries are asked over the original history. Other typical
examples include classifying predicates to historical (for which the whole
history is to be kept) and current (for which only the last state is kept), etc.
Note that if the application doesn’t ask queries over the history, we don’t
have to keep any (historical) data at all.

2.3 Relational Setting

In the rest of this chapter we constrain our attention to the relational setting;
we assume that the system states Si can be described by a finite relational
database Di over a fixed schema ρ.

This restriction does not limit the applicability of techniques and results
presented in this chapter to other data models. Indeed, in many cases, other
models of finite data collections can be naturally embedded into the rela-
tional model (e.g., an object-oriented database can be viewed as a relational
database with unary and binary relations).

In this setting a history can be defined as follows:

Definition 1 (History). Let ρ be a relational signature. A history H is
a finite integer-indexed sequence of databases

H = 〈D0, D1, . . . , Dn〉

where Di is a standard relational database over ρ. We call Di a state of H
at a time instant i.

The data domain DH of a history H is the union of all (data) values that
appear in any relation in Di at any time instant; the temporal domain TH is
the set of all time instants that appear as indices in the history H .

3 Section 4.2 gives a precise definition of semantics for such queries.
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Note that the sets TH and DH represent the active domains for the temporal
and data sorts, respectively. In particular, given a (linearly ordered) structure
(T, <) that models time we have TH ⊆ T .

Example 5. Let TA(x, y) be a binary relation recording student names and
classes for which they worked as Teaching Assistants. An example history
(indexed, e.g., by the academic term) may look as follows:�

(John, CS448)� �
(John, CS448)
(Sue , CS234)

� �
(John, CS448)�

0 1 2

A history H can be extended by adding a database D to the end of the
sequence. The database D then becomes a new state Dj of H and we require
that the time instant j associated with D is strictly larger than the last time
instant associated with any state of H . This way, the new state D effectively
becomes the new current state of H . This process can be repeated arbitrarily
many times.

Example 6. The history in Example 5 can be extended by a database repre-
senting an additional term as follows:�

(John, CS448)� �
(John, CS448)
(Sue , CS234)

� �
(John, CS448)� �

(Sue, CS234)
�

0 1 2 3

This history is used for the remaining examples in the chapter.

In general, we can inductively define an extension of a given history by an-
other history—a concatenation of histories. Let H ′ be the sequence of states
successively added to H up to a given time instant. We call H ′ a suffix of H
and write H ; H ′ for the extension of H by H ′.

Query Languages. The choice of the relational model for describing the
states of a system allows us to use a declarative language—the relational
calculus (first-order logic FOL)—to query the individual states of the sys-
tem. There are two standard extensions of FOL to histories (and, in general,
temporal structures):

1. by adding temporal operators, or

2. by adding explicit references to time instants.

The first choice leads to various first-order temporal logics while the second
approach yields a two-sorted first-order logic (temporal relational calculus).
Both these options have been extensively investigated; for a survey see [13].
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Finite Histories vs. Infinite Extensions of Histories. When consider-
ing the semantics of a query language over histories, we are faced with an
additional choice:

1. We can assume that the current history contains complete information
about the system and define semantics of queries with respect to the cur-
rent (finite) history. This approach is similar to the closed-world assump-
tion (CWA) and is equivalent to choosing the active domain semantics
for queries [2].

2. Alternatively, we can treat the current history as a finite prefix of an
infinite (often called complete) history. In this setting the semantics of
queries is defined with respect to infinite extensions (completions) of the
current history and is similar to the open-world assumption4 (OWA).

In most parts of this chapter we restrict our attention to the active domain
semantics only. This restriction postulates that, for the purpose of query an-
swering, the only data values and time instants that exist are those present
in the history. Note that, in particular, all the quantifiers in the definitions of
the temporal operators range over the active temporal domain: the set of time
instants present in the finite history H . All the expiration techniques are de-
veloped with this restriction in mind. In Section 5 we discuss the implications
of relaxing the restriction.

Real Time vs. Sequence Numbering. The other assumption we use is
that the structure of the temporal domain is based on the discrete ordering
of natural numbers (apart from the discussion of Metric TL in Section 4.1).

2.4 Properties of Expiration Operators

The methods differ in the query language they are able to handle and in the
space needed to store the residual database, |E(H)|. This last feature can be
measured with respect to several parameters:

• the size of the history itself, |H |,
• the size of the active data domain, |DH |,
• the length of the history, |TH |, and
• the size of the query, |Q|.

An expiration method provides a bounded encoding of a history if |E(H)| does
not depend on the length of the history (more precisely, |E(H)| is bounded by
a function constant with respect to |TH |) [10]. The expiration operators E id

and Ecompress introduced in Section 2.2 are not bounded while the operator

4 The open-world assumption, however, is only assumed for the extensions of the
history; the individual databases that describe states in the current history are
still considered to contain complete information about those states.
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Enow is bounded. Note however, the last operator works only for a very limited
set of queries. It is easy to see that expiration operators utilizing lossless
encoding of histories cannot be bounded. This is in particular true for the
interval encoding of temporal databases (and thus histories) [42].

The ability to expire data from a history depends on the expressive power
of the query language in which queries over the history are formulated. In
particular, allowing an arbitrary number of ad-hoc queries precludes any pos-
sibility of expiring data:

Proposition 1. Finite relational structures can be completely characterized
by first-order queries.

Thus, for common temporal query languages, the observation leaves us with
two essential options:

1. we can adopt an administrative solution and expire a given history using
a set of policies independent of queries. Now we can still allow ad-hoc
querying of the history. However, we would like to fail queries that try
to access the already expired values, perhaps informing the application
that the returned answer may be only approximate, or

2. we can adopt a query driven data expiration technique. Such a technique,
however, can only work for a fixed set of queries known in advance.

Alternatively, we can restrict the expressiveness of the temporal query lan-
guage in such a way that it is no longer able to distinguish sufficiently large
finite histories. However, this option usually leads to restrictions on nesting of
quantifiers in the formula and in essence is equivalent to restricting ourselves
to a finite set of queries.

3 Administrative Approaches to Data Expiration

One approach to expiring data from histories, and, in turn, to defining ex-
piration operators, can be based on query-independent expiration policies.
However, when data is removed from a history in a query-independent way,
the system should be able to characterize queries whose answers are not af-
fected.

3.1 Expiration Operators vs. Materialized Views

A query-independent expiration operator can be thought of as a fixed view
E(H) defined over the original history H . Thus, we can transfer results and
techniques developed for maintaining materialized views and for answering
queries using these views to the problem of administrative data expiration.
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Answering Queries using Views. The ability to answer an (ad-hoc) query
Q over the residual history E(H) reduces to deciding whether there is an
equivalent query Q′ that can be expressed solely using the view E(H):

Q(H) = Q′(E(H)) for all histories H.

The problem of answering queries using views [29] has been studied exten-
sively; for a recent survey see [21]. Application of these techniques to expi-
ration of database histories, however, requires reasoning about queries and
views whose definitions take into account the inherent linearly ordered struc-
ture of time. The problem of answering queries over views with ordered data
domains has been recently addressed by Afrati, et al, [3].

Maintenance of Materialized Views. The second essential requirement
imposed on the view of the history defined by an expiration operator is that
we must be able to maintain the view(s) that define the residual history under
arbitrary history extensions without access to the original history.

Similarly to the problem of answering queries using views, the issues con-
nected with maintenance of materialized views have been widely studied [20].
Standard techniques for maintenance of materialized views use sets of tuples
inserted and deleted to/from base relations (so called delta relations) to in-
crementally update the instance of the materialized view.

These techniques, however, often need access to the whole underlying
database to perform the update. This is contrary to the goals of expiration
operators: the goal of data expiration is to discard the original history (source
database) and maintain only the result of the operator (a materialized view).
This requirement restricts the allowed views of the original history to those
that are self-maintainable [37]: the update of the view can be computed from
the current instance of the view and the delta relations.

3.2 Vacuuming Database Histories

Probably the most common approach to defining an expiration operator in-
dependently of the application queries is the history truncation or cutoff point
approaches. In the world of materialized views, these approaches correspond
to temporal selection, single-table views defined over the schema of the his-
tory. Such selection-based views define in two major variants of cutoff-based
expiration policies:

1. policies based on a fixed, absolute cutoff point, or
2. policies based on a now-relative cutoff point.

It is easy to see, that the first choice is a generalization of the E id operator and
does not lead to a bounded history encoding. The second choice—a sliding
window style generalization of the Enow operator—keeps a consecutive but
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fixed number of past states. In this case the length of the remaining history
is independent of the history length.

The interaction of these extremely simple policies for data expiration with
queries can be summarized as follows:

Proposition 2. It is undecidable whether a first-order query refers to fixed
past only.

On the other hand, we can detect at query evaluation time whether a query
tried to access expired parts of the history and issue an error message.

Jensen, et al, [26,41] extended the allowed specifications of expiration
policies to include expressions of the form

• ρ(R) : e (a remove specification), and
• κ(R) : e (a keep specification).

where R is a relation name and e a boolean combination of selection condi-
tions involving R’s attributes and constants. The selection conditions involv-
ing temporal attribute(s) of R may, in addition, use a special constant symbol
now that is replaced with the current time, the time instant referring to the
last element of the current history. The ρ and κ symbols indicate whether the
tuples satisfying the selection condition e are to be removed from the history
or kept while the remaining tuples are kept or removed, respectively.

Similarly to the above simple cases, it is not possible to (statically) detect
if a first-order query accesses removed parts of a history and the approach
resorts to run-time detection of such illegal data accesses.

In addition to introducing policy-based expiration operators, Skyt, et al,
[41] also studies situations in which the expiration policies change (or, more
precisely are allowed to change). Clearly, once we physically remove parts
of the history, we cannot reverse this process to re-obtain the deleted data.
Therefore, should we require a change to the expiration policy, we face the
question of deciding whether such a change is consistent with the current
state of the residual history. In general, policies based on temporal selections
from the original history can be changed, but in some cases we may need to
wait for the new policy to be fully consistent with the residual history.

Example 7. Consider a now-relative keep specification κ(R) : t > now −
5. This specification keeps the last five states in the residual history (and
removes all other states). To evolve this policy to a new keep specification
that keeps last 10 states, κ(R) : t > now − 10, we need to wait for five time
units without expiring any states from the history until the new policy takes
hold. In the transitional period, the new policy is used to expire the data
while the old one to determine which queries can be faithfully answered.

4 Query-driven Approaches to Data Expiration

An alternative to a policy based expiration is the removal of unnecessary data
based on queries that can be asked over the history. We focus on techniques
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handling a fixed set of queries perhaps tailored to the needs of a particular
application. Again, in the terminology of materialized view maintenance, we
are trying to define special-purpose self-maintainable materialized views that
can be used to answer the original queries, but take (much) less space than
the original history5.

For simplicity, all the techniques are introduced with respect to a single
query; multiple queries are handled using natural generalizations of the tech-
niques, e.g., by forming a single query whose answers represent the cartesian
product or the disjoint union of the results of the individual queries.

Even in this restricted setting, the first question we have to ask ourselves
is, whether there is an optimal expiration operator for a given query, that is
an expiration operator that minimizes the size of E(H). However, it is easy
to see that such an operator cannot be devised for any sufficiently expressive
query language.

Proposition 3. Let L be a query language for which query emptiness is not
decidable. Then there cannot be an optimal expiration operator for L.

This is a consequence of the observation that, for unsatisfiable queries, an op-
timal expiration operator removes all data from the encoded history. There-
fore, we are mainly concerned with expiration operators that approximate
an optimal operator as well as possible. Intuitively, there are two principal
situations in which a value in the history is no longer needed:

1. the value cannot match any selection or join condition in the given query
in any possible extension of the current history. Thus this value can not
contribute to the answering of the query and can be removed.

2. the value contributes to answering the query but there is another value
that provides the same answer ; thus one of these values is redundant and
can be removed as well.

There are many proposals that expire parts of the history based on the
first observation. These techniques [49,50] are commonly based on a garbage
collection-style reachability analysis [27] of the data (implemented by various
mark-and-sweep algorithms).

An important observation at this point is, however, that even (1) alone
can only be approximated by a computable expiration technique. On the
other hand, to achieve a bounded encoding, the approximation used has to
be tight enough: while most of the current techniques concentrate on (1) we
show that (2) is the crux to obtain a bounded encoding.

Example 8. Consider the query (in a hypothetical temporal query language)
that asks for all the valuations for tuple of variables x that have ever appeared
in a history (in temporal relational calculus expressed as {x : ∃t.R(t,x)}).
Evaluating this query accesses every state of H .

5 We sidestep the issues of the actual physical representation of relations and as-
sume that the cardinality of the relations is directly proportional to the space
needed for their physical representation.
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Therefore, reachability analysis, that forms the basis of most data expiration
methods and that is sound for arbitrary query languages does not provide
bounded encoding of histories in the relational setting.

We now turn to the main technical development of this chapter. We intro-
duce two major approaches to data expiration that provide guarantees with
respect to the size of the residual data.

4.1 First-order Temporal Logic (FOTL)

Linear-time temporal logic enjoys a widespread popularity in many areas
of Computer Science, ranging from temporal query languages and integrity
constraint enforcement to model checking of program properties. There are
two standard fragments of temporal logic

• Past Temporal Logic, the fragment that uses the � (in the previous state)
and since operators only. In this fragment, queries can refer only to the
past; therefore the top-level evaluation point is usually set to be the last
(current) point in the history.

• Future Temporal Logic, the fragment that uses the � (in the next state)
and until only. Here, the situation is reversed: queries refer only to the
future and thus the top-level evaluation point is set to 0 (the first state
of the history).

We first focus on the past fragment.

Past Temporal Logic and Materialized Views. We use the following
BNF to specify first-order Past Temporal logic (PastTL) queries:

Q ::= R(x) |F |Q ∧ Q | ¬Q | ∃x.Q | �Q |Q since Q

where R is a relational symbol, x is a tuple of variables, and F is of the form
x = y. We require the queries to obey the standard syntactic safety rules: all
variables must appear as an argument of R(x) or be equated to another such
variable, and free variables of subqueries involved in disjunction or negation
must match. We also assume that the quantified variables have unique names
different from all other variables in the query.

The semantics of queries is defined using the usual satisfaction relation
|= that links temporal logic queries with histories (H), substitutions (θ), and
an evaluation point t.

H, θ, t |= R(x) if θ(x) ∈ RDt for Dt ∈ H
H, θ, t |= xi = xj if θ(xi) = θ(xj)
H, θ, t |= Q1 ∧ Q2 if H, θ, t |= Q1 and H, θ, t |= Q2

H, θ, t |= ¬Q if not H, θ, t |= Q
H, θ, t |= ∃xi.Q if there is a ∈ DH such that H, θ[xi 7→ a], t |= Q
H, θ, t |= �Q if t − 1 ∈ TH and H, θ, t − 1 |= Q
H, θ, t |= Q1 since Q2 if ∃t′ ∈ TH .t′ < t ∧ H, θ, t′ |= Q2 and

∀t′′ ∈ TH .t′ < t′′ ≤ t → H, θ, t′′ |= Q1
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An answer to a PastTL query Q with free variables x1, . . . , xk with respect
to a history H is the relation

{(a1, . . . , ak) ∈ Dk
H : H, [x1/a1, . . . , xk/ak], n |= Q},

where n is the time instant associated with the last state in H . Note that
all the temporal variables in the semantic definitions are restricted to the
temporal domain of the history TH . Thus, for finite histories, �Q is false in
0-th state of H independently of Q. Additional standard temporal connectives�

(sometime in the past) and � (always in the past) can be defined in terms
of the since connective as follows:�

X1
4
= true since X1 �X1

4
= ¬

�
¬X1

Example 9. Students who have TA’ed at least one class twice in the past.

{x :
�

(∃y.TA(x, y) ∧
�

TA(x, y))}

The popularity of temporal logic can often be traced to the fact that temporal
connectives can be defined inductively over a history (or in general a temporal
structure) by the following equivalence:

Q1 since Q2 ≡ Q1 ∧ (�Q2 ∨ �(Q1 since Q2))

In particular, this equivalence is the key for the link between propositional
temporal logics and automata theory. Also, together with the observation that
in the 0-th state of a history �Q is identically false, the equivalence yields
an alternative inductive definition of the satisfaction relation with respect to
a history.

This approach was developed as a practical method for checking tem-
poral logic constraints formulated in PastTL formulas [10,12]. However, the
approach directly extends to answering (a fixed set of) PastTL queries with
respect to the current (last) point of a history H .

The method is based on the equivalence above and works as follows: given
a PastTL query Q we define an auxiliary relation Rα for every temporal
subformula α of Q. The arities of these relations are defined by the number of
free variables in the corresponding temporal subformulas. We denote Q[α/Rα]
a modification of the query Q in which the subformula α has been substituted
by Rα.

Definition 2. Let R1, . . . , Rk be a relational schema of states in a history
H and Q a PastTL query over H . We define an expiration operator Epast

for a given query Q that maps a history H to a relational database instance
with the schema R1, . . . , Rk, Rα1

, . . . , Rαl
defined inductively with respect to

extensions of H as follows:

0Epast = (R0
1, . . . ,R

0
k, ∅, . . . , ∅),
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∆Epast((Rn−1
1 , . . . ,Rn−1

k ,Rn−1
α1

, . . . ,Rn−1
αl

), (Rn
1 , . . . ,Rn

k )) =
(Rn

1 , . . . ,Rn
k , Qn

α1
, . . . , Qn

αl
).

The queries Qα that define the new state for the auxiliary materialized views
Rα are defined as follows:

Qn
α =

{
Qn−1 for α = �Q
Qn

1 ∧ (Qn−1
2 ∨ Rn−1

α ) for α = Q1 since Q2

where Qi denotes evaluating the query Q[α/Rα] in the state i. To complete
the definition of the expiration operator we define

QEpast = Q[αi/Rαi
],

and Epast(Q) = (0Epast , ∆Epast , QEpast).

Since all temporal subformulas of Q have been replaced by the auxiliary views
(both in QEpast and in the inductive definitions of the auxiliary views Qα),
evaluating Qn now only needs access to the states n (the current state) and
n − 1 (the last state).

Every time a new state S is being added to a history H , the inductive
definitions of the auxiliary relations Rα allow us to refresh their instances
based on the last state of H and S. Thus, at each point of time, it is sufficient
to keep at most two states of the history.

The expiration operator is thus defined to keep the last state of the ex-
tended history while incrementally maintaining the content of the auxiliary
relations using the inductive definitions.

Example 10. The PastTL query in Example 9 contains two temporal sub-
queries,

α2 =
�

TA(x, y) and

α1 =
�
∃y.TA(x, y) ∧

�
TA(x, y).

Therefore, the extended database state contains two auxiliary views, Rα1
(a

binary relation) and Rα2
(an unary relation). Their content is inductively

defined using the above rules. Applying these rules on our example history
(cf. Example 6) yields the following sequence:

Rα1
(x, y)

0 {}
1 {(John, CS448)}
2 {(John, CS448), (Sue, CS234)}
3 {(John, CS448), (Sue, CS234)}

Rα2
(x)

{}
{}

{John}
{John}
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Space Bounds The above observation immediately provides an upper bound
on the size of E(H): E(H) is a standard relational database over the origi-
nal schema extended with a fixed set of auxiliary views (with fixed arity).
Therefore, |E(H)| ≤ O(|DH |k) where k is the maximal arity in the extended
schema. In particular, this result allows |E(H)| to be at most polynomially
larger than |H |.

Example 11. Consider the query�
(p(x1) ∧ . . . ∧ p(xk))

and a history
H = 〈{a1}, {a2}, {a3}, . . . , {an}〉.

Using the method defined above the size of the materialized view Rα is

|Rα| = (n − 1)k

for α =
�

(p(x1) ∧ . . . ∧ p(xk)) with free variables x1, . . . , xk with respect to
the history H of size n. In fact the same holds for every prefix of H .

In summary, the above construction yields:

Proposition 4. There is an expiration operator Epast for PastTL that guar-
antees bounded encoding of histories.

The approach has been implemented using the materialized view technology
on top of an active DBMS ; database triggers were used to maintain the
content of the materialized views implementing the extended state [12].

Fixpoint Extensions of Past Temporal Logic. The materialized view-
based method for PastTL can be extended to handle fixpoint (more precisely
PastµTL) formulas as well. A PastµTL formula is defined by the grammar

Q ::= R(x) |F |Q ∧ Q | ¬Q | ∃x.Q | �Q |µX.Q.

PastµTL extends the first-order PastTL with a fixpoint operator µX.Q where
X is a relational variable standing for a relation of the same arity as Q. The
semantics of PastµTL is defined the same way as the semantics of PastTL;
the µX.Q least fixpoint operator is interpreted as follows:

H, θ, i |= µX.Q if H ′, θ, i |= Q

where H ′ is a copy of the history H in which each state is extended with
an interpretation X in such a way that this extension is the least solution
of X ⇐⇒ Q(X) [47]. A special case of a PastµTL query is a guarded
PastµTL query, a query in which all occurrences of the µX.Q are of the form
µX.Q(�X). In particular, the standard past temporal operator since can be
defined using the following PastµTL definition.
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Example 12. The since connective can be defined by the following guarded
fixpoint formula:

Q1 since Q2 = µX.Q1 ∧ (�Q2 ∨ �X);

this definition exactly mirrors the unfolding rule fir the since connective
introduced introduced in the beginning of this section.

The definition of an expiration operator for a PastµTL formula is based on
the unfolding property of the fixpoint operation:

µX.Q ≡ Q(µX.Q)

Similarly to the (first-order) Past Temporal logic, we define auxiliary re-
lations for temporal subformulas of the given PastµTL query to define an
expiration operator. The only difference from Definition 2 lies in the way the
auxiliary materialized views are recomputed after a new state is appended to
the history. The queries that define the view refresh are defined as follows:

Qn
α =

{
Qn−1 for α = �Q
Qn for α = µX.Q

Proposition 5. There is an expiration operator Eµ for PastµTL that guar-
antees bounded encoding of histories. Moreover, for guarded PastµTL formu-
las, ∆Eµ and QEµ are defined using first-order queries.

The fact that for guarded PastµTL formulas, the queries that define the new
instances of the materialized views are first-order queries follows immediately
from the definition of the Qα formulas: since all temporal subformulas are
replaced by auxiliary predicate symbols the fixpoints are not needed because
the subformulas in the scope of the fixpoint operator no longer contain the
fixpoint variable. The space bounds for PastµTL expiration operator mirror
those obtained for PastTL. PastµTL, however, allows queries that cannot be
formulated in PastTL [48].

Example 13. Consider the query

µX.∃y.TA(x, y) ∨ ��X

that lists all students who TA’ed “in all the even” terms (counting back
from the current term and assuming two terms per year). The temporal
subformulas of this query are the following: α1 = µX.∃y.TA(x, y) ∨ ��X ,
α2 = ��X , and α3 = �X . The inductive definitions for auxiliary relations
Rα1

, Rα2
, and Rα3

, when applied on our example history, yield the following:

Rα1
(x) Rα2

(x) Rα3
(x)

0 {John} {} {}
1 {John, Sue} {} {John}
2 {John} {John} {John, Sue}
3 {John, Sue} {John, Sue} {John}
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Intuitively, Rα2
and Rα3

model the odd and even states, respectively while
Rα1

adds the facts found in the history to the appropriate set.

Metric PastTL and Real-time Queries. Another extension of PastTL,
called Past Metric TL [4,28], allows temporal operators that refer the real
time instant associated with the particular state of the history. This extension
assumes a more structured model of time, in particular, a model that captures
temporal distance between consecutive states of a history (duration).

The extension is realized by adding the connectives �∼c and since∼c,
where c is a non negative integer (standing for duration) and ∼∈ {<, =, >},
are added to the PastTL language. The semantics of these new connectives
(conceptually) utilizes an additional constant clk that satisfies

H, [x = t], i |= clk = x if t is the real time instant associated with Di.

We require that the value clk increases as the history grows and that the
clocks in the history satisfy

∃ε > 0∀i ∈ N : clki+1 − clki > ε.

(for discrete time ε = 1). We denote clki the value of the clock at state i.
The semantics is an extension of the semantics of the standard PastTL

connectives and is defined as follows:

H, θ, t |= �∼cQ if t − 1 ∈ TH , H, θ, t − 1 |= Q and

clkt − clkt−1 ∼ c
H, θ, t |= Q1 since∼c Q2 if ∃t′ ∈ TH .t′ < t, H, θ, t′ |= Q2,

clkt − clkt′ ∼ c, and
∀t′′ ∈ TH .t′ < t′′ ≤ t → H, θ, t′′ |= Q1

The main difference between PastTL and Metric PastTL lies in the fact
that the states involved in the temporal operators must, in addition to being
ordered according to the requirements of the temporal operator, obey certain
distance constraints. More specifically,

• the clocks associated with the consecutive time instants related by the �
connective must obey the ∼ c constraint (note that the next state is still
defined the same way as in pure PastTL).

• the clock associated with the state of Q2 in Q1 since∼c Q2 must be
related to the clock of the current state in a similar fashion.

The first requirement can be enforced simply by adding the additional con-
straint to the incremental definition of the auxiliary relation associated with
the �Q subformulas. The modification handling the subformulas of the form
α = Q1 since∼c Q2 is more complex. In order to enforce the ∼ c constraint we
associate with each tuple in the auxiliary table Rα a value d ∈ {0, . . . , c + 1}
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that records the distance in the past of the particular tuple (i.e., how far in
the past has this tuple occurred in Q2(H); the value c + 1 stands for all dis-
tances beyond c). Using this additional value we can define the incremental
rules for maintaining Rα as follows:

R0
α(x, d) = false

Rn
α(x, d) = (Qn

1∧((Qn−1
2 ∧ d′ = 0) ∨ Rn−1

α (x, d′)) ∧
d = min{c + 1, d′ + clkn − clkn−1}

The replacement for a temporal subformula α of the form Q1 since∼c Q2

in queries is then the expression ∃d.Rα(x, d) ∧ d ∼ c. The definitions are
patterned after rules used for enforcement of integrity constraints formulated
in Metric PastTL [9]. These definitions are used to define a bounded expira-
tion operator for Metric PastTL. The crucial observation is that the d values
stored in the auxiliary table Rα range only over a finite set of values that is
independent of the length of the history.

The condition forcing the clocks to advance by at least a fixed ε > 0 is
essential to obtain a bounded encoding.

Example 14. Consider a history H in which clki = 1 − 1/2i. In this history,
the cardinality of the set of d values in the auxiliary relation Rα can grow
linearly with the length of the history.

Future Temporal Logic and Finite Automata. The other commonly
explored option considers the future fragment of temporal logic. The following
BNF defines the syntax of FutureTL:

Q ::= R(x) |F |Q ∧ Q | ¬Q | ∃x.Q | �Q |Q until Q

The semantics of queries is defined similarly to PastTL, the only difference
is in the definitions of the temporal operators:

H, θ, t |= �Q if t + 1 ∈ TH and H, θ, t + 1 |= Q
H, θ, t |= Q1 until Q2 if ∃t′ ∈ TH .t < t′ ∧ H, θ, t′ |= Q2 and

∀t′′ ∈ TH .t < t′′ ≤ t′ → H, θ, t′′ |= Q1

Note again that all the temporal variables in the semantic definitions are
restricted to the temporal domain of the history TH . Similar to the case of
past fragments, additional temporal connectives can be defined in terms of
until as follows:�

X1
4
= true until X1 �X1

4
= ¬

�
¬X1

In contrast with PastTL, queries in the future fragment are evaluated with
respect to the first time instant in the history, 0. The following equivalence
holds for the until operator:

Q1 until Q2 ≡ Q1 ∧ (�Q2 ∨ �(Q1 until Q2))
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The above equivalence suggests the possibility of using the connection be-
tween (infinite) histories that are models of FutureTL formulas and strings
accepted by an (finite, Büchi) automaton to construct a finite (and bounded)
representation of an expiration operator for FutureTL. Indeed, the connection
for propositional FutureTL is well known [39,36,46] and has been successfully
used in the area of Model checking (cf. Section 6).

However, extending these results directly to first-order FutureTL is not
possible. First, unlike the propositional FutureTL, the first-order extension
satisfiability of sentences with respect to infinite histories is not decidable (cf.
Section 5 for details). Thus, in our setting, we consider only finite prefixes
of histories, known at each time. The automata construction, in particular,
the acceptance conditions, can be adjusted to accepting finite histories that
satisfy a propositional FutureTL formula [35].

However, the main obstacle in developing this approach is the handling
of data quantifiers in the first-order “data” part of the query language. The
difficulty we face is that data quantifiers do not distribute/commute with tem-
poral connectives. This way the quantifiers can introduce new data variables
in multiple temporal contexts (e.g., when the until connective is unfolded).
These new variables then lead to creating a potentially infinite number of
states, one for each until unfolding, in the standard automaton construction.
Indeed, we show in Section 4.3 that, for fixpoint extensions of FutureTL, the
automata-based technique necessarily fails to produce a bounded expiration
operator due to data quantification.

Lipeck and Saake and others [34,24] attempt to avoid this problem by re-
stricting temporal formulas to biquantified formulas: those in which temporal
operators do not appear in the scope of data quantifiers (with the exception
of the final universal closure applied to the remaining free variables). For
these formulas the standard propositional construction of a finite automaton
accepting a state sequence can be used. A final touch is needed to capture the
sets of substitutions for the free data variables. Hülsmann and Saake [24] use
a constraint representation [30] of sets of answer substitutions to construct
the final answer. This technique, however, has its advantages: the automaton
(called transition graph, [18]) can be converted to a set of triggers in an active
database system.

Alternatively, in situations in which unrestricted FutureTL queries are
needed, we can obtain a bounded expiration operator by embedding a Fu-
tureTL query into temporal relational calculus and using techniques intro-
duced in next section.

4.2 Temporal Relational Calculus (2-FOL)

The second approach to temporalizing relational calculus introduces explicit
references to time instants (variables) and the associated linear ordering
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of time and quantifiers over time. We use the standard syntax for range-
restricted first-order queries.

Q ::= R(t,x) |F |Q ∧ Q | ∃x.Q | ∃t.Q |Q ∧ ¬Q |Q ∨ Q

where R is a relational symbol, x is a tuple of variables, and F is of the form
x = y for data variables and t < s for temporal variables. Similarly to PastTL
formulas, we require queries to obey the standard syntactic safety rules. The
semantics of Temporal Relational Calculus queries is defined as follows:

H, θ |= R(t,x) if xθ ∈ RDtθ

H, θ |= ti < tj if θ(ti) < θ(tj)
H, θ |= xi = xj if θ(xi) = θ(xj)
H, θ |= Q1 ∧ Q2 if H, θ |= Q1 and H, θ |= Q2

H, θ |= ¬Q if not H, θ |= Q
H, θ |= ∃ti.Q if there is s ∈ TH such that H, θ[ti 7→ s] |= Q
H, θ |= ∃xi.Q if there is a ∈ DH such that H, θ[xi 7→ a] |= Q

The only difference from the standard definition of the satisfaction relation is
in the case of base relations: the base relations are evaluated at the point of
the history specified by their first argument. We assume that the valuations θ
always map variables to values of the appropriate domain and are restricted
to the free variables of the particular query.

Example 15. Students who have taken at least one class twice.

{x : ∃t1, t2.t1 < t2 ∧ ∃y.TA(t1, x, y) ∧ TA(t2, x, y)}

Note that the binary relation TA (binary in every state of a history) corre-
sponds to a ternary predicate in temporal relational calculus: the first argu-
ment of the predicate indicates the time instant in the history at which the
relation TA is considered [13].

Materialized views have proven to be very successful approach for expiring
histories with respect to temporal logic queries. However, there is little hope
such techniques can work for general first-order queries, a language strictly
stronger than temporal logic.

Proposition 6 ([1,45]). Temporal logic is strictly weaker than first-order
logic.

The separation can be traced to the fact that first-order logic can reference
multiple temporal contexts in a query, while temporal logic always references
a single temporal context.

Explicit access to temporal contexts involves variables ranging over time
instants. The following example shows a simple case where the ability to
retrieve temporal values immediately precludes any possibility of bounded
history encoding.
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Example 16. Consider a query R(t,x) for R ∈ ρ. The correct answer consists
of the whole history of R in the warehouse; therefore we need to know (and
thus store) the whole history to compute the answer for the above query.

This problem, however, can be avoided by restricting the query language to
queries with bounded answers : |Q(H)| ≤ f(|DH |) (cf. Example 8). Unfortu-
nately, due to the usual query emptiness reduction we have:

Theorem 1. Whether a query is bounded is undecidable.

In the rest of this section we therefore restrict our attention to queries that
are syntactically bounded: we require all free variables in the query to be
data variables.

The proposed solution is based on two techniques: first we specialize a
given query with respect to the known part of the history to detect values
that can be removed and second, we extract a residual history from the
specialized query.

Specialization of Queries The partial-evaluation technique is based on treat-
ing relations in the known history H and in all its possible extensions H ′

as characteristic formulas based on equality and order constraints. Given a
history H we define abstract substitutions to be the formulas

[xa] ≡

{
x = a a ∈ DH

∀a ∈ DH .x 6= a a = •

and

[ts] ≡

{
t = s s ∈ TH

t > Max(TH) s = •

where x is a data variable, t a temporal variable and • 6∈ DH ∪ TH a new
symbol; this symbol is used to denote all the values outside of the (current)
active data and temporal domains. We allow composite abstract substitutions
to denote a finite conjunction of the above formulas, e.g., [xy

ab ] denotes the
conjunction of [xa] and [yb ].

Note that different abstract substitutions always denote disjoint sets. The
definition allows us to treat relations as disjunctions of abstract substitutions.
In particular, we can substitute these disjunctions for the leaves of the original
query and then use the usual simplification rules for first-order formulas to
specialize the query:

Definition 3 (Query Specialization). Let H be a history. We define a
function PEH that maps a query Q to a set of residual queries indexed by
abstract substitutions, Q′[x

a
], where x is the set of free variables of Q and a

is the corresponding set of abstract values (of the appropriate type). The
function PEH is defined inductively on the structure of Q in Figure 1.

This definition yields the following specialized query when applied to our
running example history (Example 6) and query (Example 15):
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PEH(Q) =

�																											
																											�

{true[txsa] : R(s,a) ∈ H}

∪ {R(t,x)[tx•a] : a ∈ (D∪{•})
|x|} Q ≡ R(t,x)

{Q′
1[

x
a ] : Q′

1[
x
a ] ∈ PEH(Q1), [

x
a ] ∧ F is satisfiable} Q ≡ Q1 ∧ F

{Q′
1 ∧ Q′

2[
xy

ab ] : Q′
1[

x
a ] ∈ PEH(Q1),

Q′
2[

y

b] ∈ PEH(Q2), |= [xy

ab]} Q ≡ Q1 ∧ Q2

{(∃y. �
Q′

1
[
xy
ab

]∈PEH(Q1) Q′
1)[

x
a] : ∃b.Q′′

1 [xy
ab ] ∈ PEH(Q1)} Q ≡ ∃y.Q1

{(∃t. �
Q′

1
[xt
as]∈PEH (Q1) Q′

1)[
x
a ] : ∃s.Q′′

1 [xt
as] ∈ PEH(Q1)} Q ≡ ∃t.Q1

{Q′
1 ∧ ¬Q′

2[
x
a ] : Q′

1[
x
a ] ∈ PEH(Q1), Q

′
2[

x
a ] ∈ PEH(Q2)}

∪ {Q′
1[

x
a ] : Q′

1[
x
a ] ∈ PEH(Q1), Q

′
2[

x
a ] 6∈ PEH(Q2)} Q ≡ Q1 ∧ ¬Q2

{Q′
1 ∨ Q′

2[
x
a ] : Q′

1 ∈ PEH(Q1)[
x
a ], Q′

2[
x
a ] ∈ PEH(Q2)}

∪ {Q′
1[

x
a ] : Q′

1[
x
a ] ∈ PEH(Q1), Q

′
2[

x
a ] 6∈ PEH(Q2)}

∪ {Q′
2[

x
a ] : Q′

1[
x
a ] 6∈ PEH(Q1), Q

′
2[

x
a ] ∈ PEH(Q2)} Q ≡ Q1 ∨ Q2

Fig. 1. Query Specialization.

Example 17. The PEH operator applied on the subquery

t1 < t2 ∧ ∃y.TA(t1, x, y) ∧ TA(t2, x, y)

yields the following set of formulas:

true [t1t2x
0 1 John]

true [t1t2x
0 2 John]

true [t1t2x
1 2 John]

∃y.(TA(t2, x, y)[yCS448]) [t1t2x
0 • John]

∃y.(TA(t2, x, y)[yCS448]) [t1t2x
1 • John]

∃y.(TA(t2, x, y)[yCS448]) [t1t2x
2 • John]

true [t1t2x
1 3 Sue]

∃y.(TA(t2, x, y)[yCS234]) [t1t2x
1 • Sue]

∃y.(TA(t2, x, y)[yCS234]) [t1t2x
3 • Sue]

(the formulas with abstract substitutions of the form [t1t2x
• • a] for all possible

a ∈ DH ∪{•} omitted for brevity). For example, the first specialized formula,
true[t1t2x

0 1 John], is derived from the first two states of the history that assert
that John was a TA for the CS448 class in the 0th and 1st terms. Similarly,
the 4th specialized formula is derived since John has been a TA for CS448 in
the 0th term and he might be the TA for the class again when the history is
extended.

The specialization itself has little impact on the size of the residual query
PEH(Q), it merely eliminates inconsistent conjunctions from the residual
formula. As we pointed out in Example 8, this is not sufficient to obtain
a bounded encoding for H . However, for the specialized queries (and their
subqueries) we can define an equivalence relation that identifies subformulas
that behave in the same way in all extensions of H . The equivalence relation,



24 David Toman

Q = R: Let Q1[
x
a1

], Q2[
x
a2

] ∈ PEH Q. Then

[xa1
] ∼H

Q [xa2
] ⇐⇒ ((Q1 = Q2 = true) ∨ (a1 = a2)) ,

Q = Q′ ∧ F :

[xa1
] ∼H

Q [xa2
] ⇐⇒ 
[xa1

] ∼H
Q′ [xa2

] where [xa1
] ∧ F and [xa2

] ∧ F are satisfiable� ,

Q = ∃y.Q′: Let S1 = {b : Q′
1[

yx

ba1
] ∈ PEH(Q′)} and S2 = {b : Q′

2[
yx

ba2
] ∈ PEH(Q′)}.

Then

[xa1
] ∼H

Q [xa2
] ⇐⇒ �(∀b ∈ S1∃c ∈ S2.[

yx

ba1
] ∼H

Q′ [yx
ca2

])

∧ (∀c ∈ S2∃b ∈ S1.[
yx

ba1
] ∼H

Q′ [yx
ca2

])� ,

Q = ∃t.Q′: Let S1 = {s : Q′
1[

tx
sa1

] ∈ PEH(Q′)} and S2 = {s : Q′
2[

tx
sa2

] ∈ PEH(Q′)}.
Then

[xa1
] ∼H

Q [xa2
] ⇐⇒ �(∀s ∈ S1∃u ∈ S2.[

yx
sa1

] ∼H
Q′ [yx

ua2
])

∧ (∀u ∈ S2∃s ∈ S1.[
yx
sa1

] ∼H
Q′ [yx

ua2
]) � ,

Q = Q′ ∧ Q′′:

[xa1
] ∼H

Q [xa2
] ⇐⇒ 
[x′

a′

1
] ∼H

Q′ [x
′

a′

2
] ∧ [x

′′

a′′

1
] ∼H

Q′′ [x
′′

a′′

2
], for [xai

] = [x
′x′′

a′

i
a′′

i
] satisfiable� ,

Q = Q′ ∧ ¬Q′′ or Q = Q′ ∨ Q′′:

[xa1
] ∼H

Q [xa2
] ⇐⇒ 
[xa1

] ∼H
Q′ [xa2

] ∧ [xa1
] ∼H

Q′′ [xa2
]� .

Fig. 2. Equivalence of Abstract Substitutions

[x
a1

] ∼H
Q [x

a2
], defined in Figure 2 relates abstract substitutions [x

a1
] and [x

a2
]

and the specialized queries associated with these substitutions. Intuitively,
the equivalence relation asserts that the related abstract substitutions al-
ways behave the same no matter how the current history is extended. For
example, since the history is append-only, the past states are always present
(and thus are equivalent).

Example 18. Continuing with our running example, the equivalence classes
are

{
[t1t2x
0 1 John], [

t1t2x
0 2 John], [

t1t2x
1 2 John]

}
,
{
[t1t2x
0 • John], [t1t2x

1 • John], [t1t2x
2 • John]

}
,

{
[t1t2x
1 3 Sue]

}
,
{
[t1t2x
1 • Sue], [

t1t2x
3 • Sue]

}

(again, the equivalence classes for the remaining substitutions are omitted.)

This equivalence relation allows us to pick a single representative for each
equivalence class, in particular for formulas under the existential quantifier.
We concentrate on temporal variables only as that is sufficient to achieve
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bounded encoding for histories. In general we could have used the same ap-
proach for data variables as well.

Definition 4 (Time Base). Let Q be a query of the form ∃t.Q′ and [x
a
] an

abstract substitution for free variables of Q. We define a time base for t with
respect to a as the set TBa(t) ⊆ {s : Q′

1[
xt
as] ∈ PEH(Q′)} such that

∀s′.Q′
1[

xt
as′ ]∈ PEH(Q′) ⇒
∃s∈TBa(t).Q′

2[
xt
as] ∈ PEH(Q′) ∧ [xt

as′ ] ∼H
Q′ [xt

as]

Note that TBa(t) has to contain an element for every equivalence class of
∼D

Q′ .

In other words, TBa(t) contains a representative for every equivalence class
of ∼H

Q′ relation. In practice we can, for example, pick the least value of each
equivalence class according to the ordering of time instants.

Example 19. The minimal elements in the equivalence classes define the time
base for the variable t1 as follows:

TB1,John(t1)= {0}
TB2,John(t1)= {0}
TB•,John(t1)= {0}

TB3,Sue(t1)= {1}
TB•,Sue(t1)= {1}

Therefore, in the expired history, it is sufficient to keep only states 1 and 2
as valuations for the variable t1.

Using the sets TBa(t) we can eliminate superfluous disjuncts under existential
quantifiers in the residual formulas of PEH(Q). The result of this transfor-
mation, PEH(Q)|∼H , can be used directly to encode the history H as follows.

Q(H) = PEH(Q)|∼H (∅)
PEH;H′ (Q)|∼H i ≡ PEH′(PEH(Q)|∼H )|∼H

The above approach falls into the category of query specialization based tech-
niques for database histories. However, in this paper we look for a physical
deletion strategy. Therefore we continue to modify the residual query ob-
tained by the PEH operator as follows:

Definition 5 (Temporal Support). Let t be a temporal variable in Q (i.e.,
Q contains a subformula ∃t.Q′). We define a temporal support of t to be the
set

TB(t) =
⋃

TBa(t)

where the union ranges over all remaining abstract substitutions generated
by PEH(Q) for Q′.
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Note that TB(t) is a valid time base for all abstract substitutions a (cf. Defini-
tion 4). This definition restricts the valuations of t to the set of non-redundant
valuations TB(t). Therefore every quantifier of the form ∃t.Q′ in PEH(Q) can
be replaced by a restricted quantifier ∃t ∈ TB(t).Q′. This formula, however,
is equivalent to the original query Q in which the quantifiers are bounded
in the same way. Thus we can simply consider these sets, restricted to the
current active domain, to be auxiliary 0-ary (in the data dimension) relations
added to D.

In this setting we are ready to define the actual expiration operator for a
fixed query Q as follows.

• QE is identical to Q except all subformulas of the form ∃tj .Q
′ are replaced

by ∃tj . TBtj
∧Q′ where TBtj

are additional 0-ary auxiliary relations.
• 0E = 〈 〉, and
• ∆E(E(H), H ′) is defined as the history

〈Di : Di ∈ E(H); H ′, i ∈ TB(tj) for some variable tj}.

The propositional letters TBtj
are defined by TBtj

≡ (i ∈ TB(tj)). The
reduction in H ’s length is effectively achieved by removing states Di for
those time instants not present in any of the sets TBtj

.

Proposition 7 ([44]). Let H be a history and Q a range-restricted query.
Then (i) Q(H) = QE(E(H)) and (ii) for all suffixes H ′ of H, E(H ; H ′) can
be constructed from E(H); H ′ using the same expiration operator.

Space Bounds Now we need to consider the size of E(H). Since every single
state is bounded by a function of the active data domain size, it is sufficient
to concentrate on the number of states kept in E(H). This number is bounded
by the sum of sizes of the TB(ti) sets. It is easy to see that the individual
sets TBa(t) are bounded by the index of the ∼H

Q relation, which in turn is
bounded by a function of the size of the active domain; here we gain up to an
exponential factor for every quantifier. Thus TB(ti) is bounded by the sum
of sizes of TBa(t) over all a. As Q is syntactically bounded, the number of
different tuples in each subquery can be also bounded by a function of the
size of DH . All together:

|E(H)| ≤ min(f(|DH |), |H | + |Q| · |TH |)

where f may contain up to the quantifier depth of Q nested exponentials.

Example 20 (Single Quantifier Alternation). Consider the query

∃t1, t2.t1 < t2 ∧ ∀x.P (t1, x) ⇐⇒ P (t2, x).

The above query is boolean and can be equivalently expressed as a range-
restricted query). It is easy to see that the expired history must keep a copy
of every possible subset of the data domain DH that appears in the original
history to see if there will be a matching set in the future. On the other hand,
it is always sufficient to keep just one such copy and remove all others.
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The example demonstrates that, in general, we cannot avoid cases where we
need to keep exponentially many time instants in the size of DH .

As a final touch needed to make the expired history E(H) truly indepen-
dent of the length of H , we need to consider the binary representation of the
indices i of Di ∈ E(H). It is again easy to see that for range-restricted queries
the actual values of the indices i do not matter as long as the relative order is
preserved. Therefore we can renumber the states in E(H) using indices with
representation bounded by the size of DH .

4.3 Beyond Bounded Encodings

While we have been able to define bounded expiration operators for PastTL
and 2-FOL queries, in this section we show examples of queries for which
bounded encoding cannot exist.

Duplicate Semantics and Aggregation. Consider a closed query over
a single unary relational scheme that asks “have there been more a’s than
b’s in the history?”, |{t : R(t, a)}| > |{t : R(t, b)}|. for a and b two distinct
constants, This query needs to maintain the difference of the number of a’s
and b’s, which in turn requires a logarithmic space in the size of the history;
this is a lower bound for any technique and follows from the pigeon-hole
principle.

Therefore there is no hope that a technique can maintain queries with
aggregation (counting), even when restricted to closed (yes/no) queries, and
guarantee that the size of the expired history does not depend on the length
of the original history.

Similar argument rules out queries with duplicate semantics: the question
asking if there have been more a’s than b’s in a history can be expressed using
using the duplicate-preserving projection and the monus6 operations.

Retroactive Updates. Similarly to aggregation, allowing even simple retro-
active updates makes bounded histories impossible. Consider the following
example:

Example 21. Let H be a history containing instances of a single unary rela-
tion symbol R. Then we execute the following “transaction”:

while ∃t.R(t, a) ∧ ∃t.R(t, b) do { while both a and b exist in R }

delete R(t, a) such that ∀t′.R(t′, a) ⊃ t′ > t;
{ delete (chronologically) first a }

delete R(t, b) such that ∀t′.R(t′, b) ⊃ t′ > t;
{ delete (chronologically) first b }

done
return ∃t.R(t, a) { return true if R contains an a }

6 The duplicate preserving multiset difference; EXCEPT ALL in SQL.



28 David Toman

It is easy to see that this transaction returns true if and only if there have
been more a’s than b’s in the original history H . Therefore, using the same
argument as for counting, there cannot be an equivalent history bounded by
a function of the size of the active domain.

Similar transactions can be exhibited for inserts and/or updates.

Syntactically Bounded Queries. In addition, bounded histories cannot
exist for queries returning time instants in their answers (i.e., for queries that
are not syntactically bounded). Consider the query asking for the last time
instant in the history. Then, with the progression of time, the single resulting
value is logarithmic in the length of the history (log(|TH |)) and therefore not
independent of the length of the history.

We conjecture, however, that in these cases the number of items, disre-
garding the size of their binary encoding, can still be bounded by a function
of the size of the active data domain DH .

Future Temporal Logic with Fixpoints. A more surprising is the case
of FutureµTL; the future counterpart of PastµTL. Formally a FutureµTL
formula is formula defined by the grammar

Q ::= R(x) |F |Q ∧ Q | ¬Q | ∃x.Q |�Q |µX.Q.

The semantics is defined analogously to the Past fragment; in particular the
µX.Q least fixpoint operator is again interpreted by:

H, θ, i |= µX.Q if H ′, θ, i |= Q

where H ′ extension of H by a “least” interpretation X . The other difference
is that the semantics of queries is again defined with respect to the first state
of the history.

One would expect that, for finite histories, the future fragment behaves
essentially the same as the past one. Unfortunately, that is not the case;
consider the query

Q = µX(x, y).R(x, y) ∨ ∃z.�R(x, z) ∧ �X(z, y)

over histories containing instances of a single binary predicate symbol R.
Now assume that there is a bounded expiration operator E for this query

such that |E(H)| ≤ f(a, q) for f(a, q) a function of the sizes of the active data
domain and the query, respectively. Let

Hn = 〈 ∅, ∅, . . . , ∅
︸ ︷︷ ︸

n

〉

be a history with n states, each containing an empty instance of R. Consider
the bounded expiration operator E applied to histories Hn for various values
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n. Since the size of the residual history is bounded by a constant f(0, |Q|),
there must be two sufficiently long histories, Hi and Hj , i < j, such that
E(Hi) = E(Hj). Now consider adding a new state D to both Hi and Hj . The
new state D in both cases contains an instance of R that has the form

R = {(a0, a1), (a1, a2), . . . , (ai−1, ai)}.

It is easy to see that Q(Hi; D) = {(a0, ai)} while Q(Hj ; D) = {}. How-
ever, since E(Hi) = E(Hj), we have ∆E(E(Hi), D) = ∆E(E(Hj), D) and thus
QE(E(Hi; D) = QE(Hj ; D). This violates the requirement of answer preser-
vation for expiration operators; a contradiction. This observation yields the
following theorem:

Theorem 2. There cannot be a bounded expiration operator for queries for-
mulated in FutureµTL.

This result also shows that there cannot be a bounded expiration operator for
fixpoint extensions of 2-FOL, since FutureµTL can be naturally embedded
into 2-FOL with fixpoints.

5 Potentially Infinite Histories

So far we only focused on finite histories. However, there is an alternative to
this approach: the finite histories can be considered to be finite prefixes of
infinite (or complete) histories. Queries are then evaluated with respect to the
infinite histories (using the same semantic definitions as in Section 2.3, the
only difference is that an infinite temporal domain is allowed for histories).
However, as only finite portion (a prefix) of the history is available at a
particular (finite) point in time, we need to define answers to queries with
respect to possible completions of the prefix to a complete history.

Definition 6. Let H be a finite history, Q a query (in an appropriate query
language), and θ a substitution. We say that

• θ is a potential answer for Q with respect to H if there is an infinite
completion H ′ of H such that H ′, θ |= Q.

• θ is a certain answer for Q with respect to H if for all infinite completions
H ′ of H we have H ′, θ |= Q.

The notion of potential answer is a direct generalization of the notion of
potential constraint satisfaction [10].

Unfortunately, the above definition leads to undecidable satisfaction prob-
lems (for closed formulas in the temporal query languages introduced in Sec-
tion 2.3) and therefore it is not useful as a basis for query evaluation. In turn,
we cannot expect a query driven expiration technique to be applicable in this
setting either. The negative results are as follows:
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Proposition 8 ([16]). The satisfaction problem for two-dimensional propo-
sitional temporal logic7 over natural numbers-based time domain is not de-
cidable.

This proposition rules out temporal relational calculus as it properly contains
the above logic. For the weaker query languages based on single-dimensional
temporal logics (e.g., FOTL, PastTL, and FutureTL) the results are as fol-
lows:

Proposition 9 ([10]). For past formulas potential constraint satisfaction is
undecidable.

The analysis of FutureTL yields the following:

Proposition 10 ([11]). For biquantified formulas with no internal quanti-
fiers (called universal), potential constraint satisfaction is decidable (in ex-
ponential time). For biquantified formulas with a single internal quantifier,
potential constraint satisfaction is undecidable.

While all the above results consider potential satisfaction only (and thus for
potential query answering), dual results can be obtained for certain query
answering. In summary, none of the standard temporal query languages can
be used in this setting and thus the question of query driven data expiration
is a moot point.

6 Related Work

Garbage Collection

Many practical approaches to data expiration [17] are patterned after garbage
collection algorithms designed for general-purpose programming languages
[27]. However, these approaches are limited in their effectiveness (as pointed
out in Example 8). This limitation can be traced to the fact that garbage
collection algorithms for programming languages are designed to operate in
a different setting. In particular:

• Data in typical programming languages is accessed navigationally (i.e.,
by following pointers). Due to undecidability considerations, the data ac-
cess is (pessimistically) approximated by reachability analysis commonly
implemented via mark-and-sweep or generational copying algorithms.

• The starting points for the navigational access are the program variables.
Thus, unlike database queries, programming languages do not allow quan-
tification over all instances of a particular data type (objects, records,
etc.). Under this restriction the reachability analysis evades the problems
of all the data being trivially reachable.

7 In a two-dimensional temporal logic the truth of atomic formulas is defined with
respect to points a plane rather than a single-dimensional line; temporal connec-
tives in such a logic naturally refer to two evaluation coordinates [16].
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Temporal and Dynamic Integrity Constraints

A restricted class of queries are the closed formulas (sentences) in a partic-
ular query language over histories. Such formulas are often used to enforce
integrity constraints over histories. Indeed, the approach to data expiration
based on variants of PastTL was originally developed for maintenance of tem-
poral integrity constraints by Chomicki [10] and implemented using triggers
on top of an active DBMS [12].

Similarly, the connection between FutureTL sentences and automata the-
ory was utilized to define integrity enforcement mechanisms based on transi-
tion graphs by Lipeck, Gertz, Saake, et al, [18,23,24,31–34].

Model Checking

The connection between temporal logic (and other modal logics) and au-
tomata has been known since the 60s [39]. Linear-time temporal logic (LTL)
[15] has been used as a specification language for program properties [36,46].
LTL formulas and finite descriptions of program behavior lead to model check-
ing: an approach to the problem of verifying whether a specification obeys a
particular LTL property. The two main differences are:

• Model checking uses an infinite temporal domain (at least infinite for the
future).

• Moreover it assumes complete information about an infinite behavior of
the checked system is provided as an input (usually in the form of an
automaton).

To preserve decidability (cf. Section 5) the LTL language has to be restricted.
In this chapter we traded potential satisfaction for the ability to evaluate
queries (by restricting queries to finite histories). However, this is not an
acceptable solution for Model Checking approaches where potentially infinite
computations are essential (e.g., when specifying a communication protocol).
Thus, most of the model checking approaches restrict themselves to propo-
sitional variants of LTL (or, equivalently, to finite and fixed data domains).
This way the logic can be embedded into S1S or S2S yielding decidability [39],
and, through the automata connection [43], we can even obtain a PSPACE
decision procedure [40].

Materialized View Maintenance

A large body of research [14,19] focuses on maintenance of materialized views
with respect to their definitions under database updates. However, in this
setting, the view definitions are usually restricted to a single database state
that can be arbitrarily updated. Yang and Widom [49,50] consider view main-
tenance for temporal databases. The temporal query language they use is,
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however, less expressive than temporal logic and thus their approach is sub-
sumed by the work of Chomicki [10].

An interesting special case is the problem of materialized view self-main-
tenance [25,38]: whether a view can be maintained based purely on its current
instance and knowledge of the updates to the base tables. Allowing the use
of auxiliary data, this problem can be studied as a special case of expiration
operator on the history of database updates (i.e., the states of the history
store the so called delta relations rather than the actual data.)

Interval Encoding of Histories and Constraint Databases

Histories (and temporal databases in general) are often encoded utilizing
interval-based timestamps [42], a lossless compression technique that takes
advantage of the fact that tuples often persist for a contiguous period of
time spanning multiple states in the history. In most cases, the semantics
of the data and queries is still point-based (i.e., temporal quantifiers range
over individual time instants rather than over intervals) as pointed out by
Chomicki and Toman [13]; the interval encoding can also be viewed as a
simple case of constraint database [30].

Interval encoding of database histories (or, similarly, transaction-time
temporal databases [42]), or any other lossless compression of histories (cf.
Example 3), cannot yield a bounded history encoding as pointed out in Sec-
tion 2.4.

7 Conclusion

This chapter provides a unifying framework in which data expiration tech-
niques can be studied and discusses existing approaches to data expiration
within this framework. Particular attention is given to logical (query-driven)
expiration operators.

Open Problems

There are many questions left unanswered. We provide a partial list of these:

Complex Temporal Domains.
Through the chapter (with the exception of the discussion of Metric
PastTL) we have assumed that the temporal domain is a simple lin-
early ordered set. That is, the only interpreted relation defined on the
temporal domain was the linear order. Can the expiration techniques be
extended to handling more complex temporal structures?

Space Bounds For Aggregate Queries.
We have shown in Section 4.3 that bounded encoding cannot exist for
queries with counting. This, however, only says that the size of the
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residual data cannot be bounded by a constant function in the size of
the active temporal domain TH . Can there be a weaker bound, e.g.,
|E(H)| ∈ O(log(|TH |)?

Fixpoint Extensions of Future Temporal Logic/2-FOL.
Similarly, the result presented in Theorem 2 shows that a bounded ex-
piration operator for FutureµTL (and consequently for for fixpoint ex-
tensions of 2-FOL) cannot exist. But there may still be an expiration
operator bounded by a o(|TH |) function.

Weaker Query Languages with Computable Potential Answers.
Results in Section 5 seem to disqualify potential query semantics as a can-
didate for query evaluation. It may be possible to limit temporal queries
to languages in which potential satisfaction is decidable. Such restrictions
have been studied by Hodkinson, et al, for various first-order extensions
of standard temporal and modal logics [8,22]. However, these languages
severely restrict first-order quantification (quantification over the data
domain) and thus are of little use as general-purpose query languages.
Applications of such languages are commonly more appropriate for, e.g.,
schema languages. This direction has been investigated in the framework
of description logics and their temporal extensions by Artale, et al, [6].
Another approach would be restricting the power of the first-order lan-
guage along the lines commonly used in database theory to gain favor-
able computational properties, e.g., to conjunctive or positive queries [2].
Note however, that computability of potential query semantics does not
automatically guarantee the existence of a bounded expiration operator
(though, since all these languages can be properly embedded in temporal
relational calculus, techniques used in Section 4.2 provide a good start-
ing point). Also, since query emptiness is decidable in these languages,
tighter, and possibly optimal, expiration operators may be feasible.
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