Towards Trie-Based Query Caching in Mobile DBS

Hagen Hopfner and Kai-Uwe Sattler

Otto-von-Guericke-University of Magdeburg
Department of Computer Science
Institute of Technical and Business Information Systems
P.O. Box 4120, 39016 Magdeburg, Germany
{hoepfner kus}@iti.cs.uni-magdeburg.de

Abstract: The usage of mobile equipment like PDAs, mobile phones, efabCs
or laptops is already common in our current information styci Typically, mobile
information systems work in a context dependent (e.g. ionadependent) manner
which means that queries differ mostly only in some conteldted predicates on the
same set of relations. Considering this characteristiasrygprocessing on mobile
devices can take benefit from results of previously perfaromeeries by using a query
cache. In this paper, we describe such a caching approael loasa trie structure
and organized by the query predicates which are associathdhe corresponding
result sets. We present the cache structure and the procqasrg rewriting as well
as discuss implementation issues.

1 Introduction and Motivation

On stationary computers managing large and complex dagasseften done by database
management systems. Due to the increasing complexity oflenisifiormation systems,
DBMS-techniques on mobile devices become more importardugh mobile devices are
quite powerful, compared to stationary computers they allea “lightweight”. Nearly
all available enterprise databases (e.g. Oracle, DB2)féred as functionally limited lite
versions usable on lightweight devices [IBM02, Ora02b,0BnIBMO03].

Today’s mobile radio technologies are still slow and expensTherefore, time based
payment models are counterproductive considering a peanmaoennection. But also vol-
ume based payment models associated with large data sstsltgh costs. Furthermore,
technical problems (net overload, electrostatic shieicl) ecan result in disconnections.
Thus, there is the need for storing necessary data directiig@mobile hosts.

In mobile information systems such data sets (replica ae¢sequested by the user via the
mobile device from a database server [Gol03] and afterwlaigly stored at the mobile
device. Therefore, locally available replica sets can besiclered agache New queries

*This research is supported by the DFG under grant SA 782/3-2.

should reuse the cached data in order to minimize wirelegse(esive and slow) com-
munication. Only locally unavailable data should be retpebfrom the database server.
Designing such a cache comprises two central tasks:

Query Rewriting: Queries, which are executed on the mobile system, have teviré+
ten in order to use the cache. If a query is not completely aredule by the cache, it
has to be decomposed into sub-queries in such a manner tiat minimal subset
of the complete result must be requested from the databass.se

Cache Replacement:If there is no more available memory on the mobile device, ncem
replica sets can be cached. Therefore, parts of the cactentshave to be deleted.
The decision to remove a subset of the cached data must eonidsible future
queries. That means, the remaining state of the cache mugptfiming queries as
good as possible.

In this paper we present first ideas of a cache which uses'@rtdexing schema to provide
an efficient access to the cached replica sets. We take ad)aot the special characteris-
tics of mobile database systems:

¢ In mobile environments queries are mostly executed in assodependeAimanner.
That means that queries in mobile information systems itetthecelements of the
context (e.g. location, time). For example, a person, whasiéing London and is
using a mobile information system offering information aboultural events, will,
in all likelihood, query current (time dependency) infotina of events performed
in London (location dependency). Such systems are oftdadcdbcation depen-
dent services”. But the context of a user contains a lot oéiodtements [LHO1]
(e.g. used hardware, group membership, task to handle).

¢ Mobile information systems consider the high cost of wisslelata transmission.
Therefore, a lot of “small” queries are used, which can bevansd by a “small”
but exact result set. If the user needs more detailed infiilomaadditional refined
gueries are issued.

We use these special characteristics of queries in molidenirations systems for indexing
the cache on a mobile device but consider only queries whigst mot include aggregate
functions or joins. In addition, we do not consider here eacdplacement and cache
coherency. Cache coherency is a big problem especially iilenenvironments but we
postpone this aspect to future work. In the face of replaceghe entries with new data
our approach is compatible with know techniques like LF@agtdrequently used) or LRU
(least recent used). Therefore, the cache entries haveaiohzanced by reference counters
or timestamps, respectively. But, having regard to an eddiguery language as presented
in [HS03b] we can denote support for context dependent iqaks here.

1A trie [Fre59] is a tree for storing strings in which there iseanode for every common prefix. The strings
are stored in extra leaf nodes (see also [Bla98]). In our,c@seeplace string prefixes by query prefixes (con-
junctions of predicates).

2based on the context of the user and/or the context of thelend®vice

There are several publications (e.g. [DB8&], [GG99]) demonstrating that semantic
caches are more effcient than time or reference based cpapiproaches. In mobile
database systems the most important approach of semantilngas the LDD-cache
[RDOQ] (based on [DK98]). In [RD99] a cluster extension o thDD-cache is presented
which increases its performance. In contrast to this aptraee provide an index structure
that allows to access cached information more efficient.

The remainder of this paper is structured as follows: Aftesspnting the index and cache
structure in Section 2, we discuss our query processing aadygewriting approach in
Section 3. We also compare our trie-based query-cache tbDBEecache in Section 3.
Finally, we discuss different implementation variants gcton 4. Because of the given
space limitations we do not discuss any cache replacenratggy in this paper.

2 Query Cache Structure

The main issue of a query cache is the granularity of the cacties. In contrastto normal
database management system caches, which store logies, prepry caches store query
results (relation or fragments of relations respectivelyjerefore, the queries are used as
access keys. Now it is possible to check new queries, whthgrcan be answered from
the cache. At this, we distinguish between the followingrfeases:

1. The same query has been performed already and its restillt $sored in the cache.

2. A query, which results in a superset of the requestedtresas been performed
already and its result is still stored in the cache. Theggftire new query can be
locally answered by using additional operations (e.g. ciele). Case (1) can be
considered as a special case of this case.

3. Acached query and a new query overlap, i.e., a subset oé¢lét can be answered
by the cache. Only the non-overlapping subset must be regfigem the database
server.

4. There is no compatible query in the cache.

Furthermore, we have to take into account, that a new quepyomanswered by a combi-
nation of cache entries. Regarding to these requirementsaghe structure has to support
an efficient search for appropriate entries.

Based on this and on the special characteristics of molfitlermation systems we chose
the following cache structure: A cache entry always comess to a fragment of a re-
lation — thus to a set of tuples. The entries are indexed bieastructure which repre-
sents the query. For that purpose we represent queries andastlized calculus nota-
tion, i.e. in conjunctive normal form. Predicates are oeden a lexicographic manner:
at first relation predicates, then the selection predicatgs (also lexicographically or-

dered). Relation predicates describe the considered scbéim relation. For example,
bui | di ngs(nane) corresponds t&ELECT name FROM bui | di ngs. Selection

predicates corresponds tOMIERE-clause, respectively (e.dui | di ngs. x>200 is a
predicate representation WHERE bui | di ngs. x>200).

Aquery@ = {ri Ara A--- AT Ap1 Apa A-- - Apy} can be represented as a sequence of
predicatesry, 2, . .., m, P1,02, - - -, Pn), Wherevi, j € 1...n,i < j = p; <p; as well
asvi,j € 1...m,i < j = r;<r; («means “lexicographically smaller”) holds. Obviously,
this query language isot strong relational complete, but is restricted to a subsealsiuli
which is sufficient for the realization of context based, ftoimformation systems.

For a trie that means, that edges represent predicates ales$ mepresent links to the
caches fragments. A path = riry---7,p1p2 - - - pp in the trie (from the root to any
node) corresponds to the quepy = {r1 Ara A+« ATy Ap1 Apa A=+ A pp}. Thus,
the result of a query) p represented by the pafh can be found in the cache as the entry
addressed by’.

This cache approach is not limited to exact query matchessifyport also the other two
cases (see above) by following a path in the trie predicaterbglicate. If a node linking

a fragment is reached and if there are more predicates inelvequery, the new query
can be answered by running it on the linked fragment. Othsawif no node linking a

fragment is reached so far but all predicates of the new qwerg used, this new query
can be partially answered by combining all fragments lingahild nodes of the current
one. Therefore, the query processor must genera@gensation quenyhich request

the missing sub result and combines it with the cached sufftres

3 Cache-supported Query Processing

After the presentation of cache and index structures in thei@us section we discuss the
cache-supported query processing in the following. Thé&rabpoint is the query rewriting
phase: the problem of splitting a query into two sub-quédnesich a manner, that a local
sub query can be performed on the cache and a remote quoempénsation queygan be
sent to the database server and performed there. The mamifoihe minimization of the
amount of data retrieved from the database server and teusitimization of transfer
costs.

Query rewriting is based on correspondence relations legtweaeries. Following the four
cases presented in the previous section we can distingarsbspondence relations of a
query P and another querg) as follows. For simplification we assume for now, tiiat
and@ contain the same relation predicates, i.e. only the selegtiedicates are taken into
account.

(A) P = @ means, that the query chbe directly performed on the cache. Therefore,
obviously equivalence of all predicates must hold:

D1y D) =1,y gny S Vi=1...n:p; = ¢

3granted that all attributes used by the filter condition anduided into the cached result

(B) P C @ means, thaf) can be answered by the cache, but an additional filter comditi
filter(P, Q) is required. This case can be distinguished into the foligvaub cases:

(a) @ consist of more predicatesp:, ..., pm) C (q1,---,qn) © m < n AVi =
1...m: p; = ¢q;. The corresponding filter condition is:

filter(P, Q) = (¢m+1,- - s qn)-

(b) @ consist ofmore restrictivepredicates tha®. A predicate; is more restrictive
than a predicatg (both defined on an attributé) if ¢ holds for less tuples than
q whereas a domain wide equipartition of the attribute valsessumed. For
instancea > 50 is more restrictive thaa > 10, written asa > 50 < a >
10. Operators used for comparison strongly depend on thevieddttribute
types (coordinates, time, date, integer, etc.). In [HS@Bahave presented an
approach, that uses type dependent “distance” functiensaléed¢-functions).
These functions can also be used in order to compare thietiegty of selection
predicates.

<p1""’pm> C <Q17'-'7Qn><:>Vi:1...k<n;
pi=q@AVji=k+1...n:q; <p;
Thus, the filter condition is the combination of the moreniete predicates:

filter(P, Q) = (qrt1s-- -+ qn)

(C) P O @ means, tha) consists of less predicates or Q is less restrictive thars
a resultQ can be partially answered by the cache. For getting the wisslelt, a
compensatiowompensatiofP, () must be performed on the database server. This
case can be distinguished into two sub-cases, too:

1) P1,---pn) 3 g1, gm) & m <nAVi=1...m: p; = q; Therefore, the

result of a compensation query has to contain all tuplesatenot included in
the result ofP but belong to the result @:

compensatiofP, Q) = (q1, - - - @m, "Pm+1s--- "Dn)

2) (p1,.-spn) TG, sqn)y ©Vi=1l...k<n:pi=qAVj=k+1...n:
p; < g; Thus, the compensation query is:

compensatiofP, Q) = (g1, - . - qn, "Pk+1,--- Pn)
(D) P # @ means, that there are no consensuses between the predidhesueries.

Thus, the cache entries belongingitare not usable for answerirdg

1Q J -
) _ ° N ° 3 1) g
PV e P " Qe Soplie SLoplie
° . ° e LA v ®
[] 1 : \‘\ ; [] 1 : N ([] 1
® Q_o\ i : g Qb_‘ ' : . Qo
N < N
P#Q @ @ E
p=
Q P3Q
caption:
_."' cached query new query

relation predicates -_— -—-—

selection predicates — - = = =

cached tuples DB on server Ej

Figure 1: Relations between a cached qu@ran a new query’

PCQ

Considering this correspondence relations (see alsoé&jwe are able to modify a given
guery in order to use the cache now. The idea is to collectdldes that link appropriate
cache entries, while passing the trie. The result of thieguare are candidate sets of
nodes corresponding to the cases mentioned above. Becausanaconsider case (A)
as case (B) with an empty filter condition, Algorithm 1 use$ydwo setsC'S,p and
CSc. If both sets are empty, case (D) is given. The trie is traabls/ using the recursive
procedurdind candidatenodesshown as algorithm 2. The generation of the candidate
sets is followed by handling the cases. The funcfiathused in the algorithm returns the
guery which corresponds to the path from root of the trie tivargnode.

Algorithm 1: trie-based Rewriting

given:

query@
trie with root node

CSAB:z {}
CSCZZ {}

find_candidatenodes (), root)

if CSap = {} ANCSc = {} then
perform@ remotely

else ifCSap # {} then

Noden € CSap

P :=path(n)

Q' :=filter(P, Q)

perform@’ on the cache-entry associated with
else ifCSc # {} then

n :=min.cos{CS¢)

P :=path(n)

Q' := compensatiofi, Q)

do Q'U cache-entry associated with
fi

Because there may exist more than one candidate node whitthlm®used for answering
a query, the best node have to be detected (see below). Aftdsvthe filter and the
compensation query is computed and performed.

Algorithm 2 implements the traversing of the trie. Startatghe root node all edges, i.e.
all predicates, will be checked. If a predicatin the trie is equal to or less restrictive than
the corresponding predicate of the new query, all child setidd, (n) are tested. But if
both predicates are contradictorily, the search will stbpone of these alternatives héld
then the predicate is ignored and the search continues ithilal nodes.

If a checked node contains a link to a cache entry, the pattttarsithe query is recon-
structed first. Afterwards the correspondence relatiowéen the query and the given new
query is computed incrementally. This is possible because@tedicate has been checked
already while running the algorithm. For the simplificatioithe presentation we skip a
more detailed discussion of this aspect here. If a consaadosind, the actual node is
added to one of the two candidate s€tS, 5 or C'S¢, respectively. IfP = @ holds, the
search stops immediately.

Algorithm 2: Traversing the trie

find_candidatenodes (level, node)
if cache-entry associated witlodeavailablethen
P := path (node)

if P =(then
CSyp :={ node}
return

elseif P C @ then

CSap :={ node}
else if P 1 @Q then

CSc := CSc U { node}
fi

4this case corresponds 71 Q

forall p € predicate$n) do
if p = Glever V Glever = p then
find_candidatenodes (leve} 1, child,(node))
else if—(p A gievel) then
/* unaccomplished condition */
return
else
/* ignore predicatep */
find_candidatenodes (leve} 1, child,(node))
fi
od

A path is chosen cost dependently from the set of alternatites. A complete estima-
tion of all costs (e.g. based on cardinalities or histoglarasises an essential additional
expense. Because of the light-weighty of mobile deviceg td maximal size of cached
fragments is taken into account.

So far we have assumed that= {r{ Ara A~ Aryy APt Apa A+ Ap,}tand@ =
{ki ANka A< ANky Aqu Aga A -+ A gy} differ only in selection predicates, i.ex = v;
Viel...m,r; =k.

Based on the previous ideas, now we discuss shortly the goesees of allowing dif-
ferences between relation predicates. That means thaequeam contain joins, too. We
assume thaR is the set of relation predicates used Byand K is the set of relation
predicates used hg. Thus, there exist four cases:

(E) RN K = 0, means, that both queries use different relati@gpsnust be sent to the
database server.

(F) R = K, means, that both queries use the same relatighgould be answered
locally by the cache but a detailed check of the selectiodipages is required (see
above).

(G) R C K, means, that the new query usgsadditional relations. A compensation
guery must be generated in order to query the missed tuplestfre database server.
The join can be computed on the mobile device.

(H) K C R, means, that the new quefyuses some of the relations used®y(Q could
be answered locally by the cache but a detailed check of thetsm predicates is
required (see above).

For definitely extending the presented approach by allowiffgrences between relation
predicates we have to modify algorithm 1 accordingly.

| hid | nanme

| phone | fax

| addr ess

1
2
3

St. Maria Hospital

Dr. Koch Hospital

University Hospital

3920811| 4433276
1237654| 9912347
8877365| 1253432

P.O. Box 1100
18 Avenue of The Star
5 Third Avenue

"z

Table 1: The Relatiohospi tal s

sid [nanme |

form

| phone |

addr ess |

a b wN k-

Ada Lovelace School
1st Primary School
Ascaneum

ECOLE
Gustav-Nitsche Schoqg

Grammar School
Primary School
Grammar School
Primary School

234555366
355355534
234234234
445613334,
| Secondary Schoal 464663698

12 Kent Street

35 East Avenue
141 11st Street
45 Church Place
1 Nitsche Street

Table 2: The Relatioschool s

| b_id [name | x | vy |

1 Ada Lovelace School | 1343 | 2345
2 1st Primary School 442 1234
3 Ascaneum 5453 11

4 ECOLE 166 23

5 Gustav-Nitsche Schogl 46667 | 98883
6 St. Maria Hospital 811 | 4476
7 University Hospital 7654 | 99147
8 Dr. Koch Hospital 8365 | 1342

Table 3: The relatiobui | di ngs: Location of the Buildings

An Example for Illustration

We now illustrate our approach (without an explicit usaggof predicates) with a small
example. We assume the following infrastructure databassisting of two relations:

1. hospitals (h.id, name, phone, fax, address)
2. schools (s.id, form nane, phone, address)
In the following we use fictive example data for an fictive exdercity (cf. Table 1 and

Table 2). Furthermore we know that the location of each Ingids stored in a third
relationbui | di ngs (b.id, nanme, x, y) (cf. Table 3).

This database is queried via a mobile client. Therefore,ssame the following sequence
of — already lexicographically ordered — queries:

Q@1: hospital s(address, nane)
Q2: school s(address, phone) A schools. nanme=" ECOLE

Qs buil di ngs(nane) A buil dings.x>200 A
bui | di ngs. x<8000 A bui | di ngs. y>1000 A buil di ngs. y<3000

The resulting state of the cache, which depends on the egamftthese queries is illus-
trated in Figure 2. For the sake of clearness we did not irectbd values of the attributes
used by the selection predicates into the result here. Bgethialues are required for using
filter queries locally.

schools(address,phone) —— buildings(name)
hospitals(address,name)
buildings.x>200
®
schools.name="ECOLE’ buildings.x<8000
buildings.y>1000
buildings.y<3000
45 Church Place 445613334 P.O. Box 1100 St. Maria Hospital
18 Avenue of The Stars University Hospital
5 Third Avenue Dr. Koch Hospital

Ada Lovelace School

1st Primary School

Figure 2: Example: Cache State after the Executio ofQ2 andQs

It is easy to understand how this trie was build. But now ttdshe can be used for
answering new queries. Lets assume the following new gsterie

Q4: hospi tal s(address, nanme) A
hospi tal s. address="5 Third Avenue’

Q@5 bui I di ngs(name) A buil di ngs. x>200 A
bui | di ngs. x<8000 A bui I di ngs. y>1000 A buil di ngs. y<2000

Qg¢: school s(address, phone)

Q7. bui I di ngs(nanme) A buil di ngs. x>200 A
bui | di ngs. x<8000 A bui | di ngs. y>1000 A buil di ngs. y<5000

Obviously, we have the following relationships betweenrbe queries and the already
cached queries:

e Qs C @Q1: Q4 covers a subset of the result §f; because it consists of more
selection predicates

e (5 C Q3. Q5 covers a subset of the result @ because a selection predicate is
more restrictiveljui | di ngs. y<2000 < bui | di ngs. y<3000)

e Qs 1 Q2: Qg covers the results @, but may cover additional tuples becauge
consists of less selection predicates.

e (7 1 Q3: Q7 covers the results af)» but may cover additional tuples because a
selection predicate is less restrictive
(bui | di ngs. y<5000 > bui | di ngs. y<3000)

So, the execution af), and@s requires the usage of additional filter queries:

o filter(Q1,Q4)=hospital s. address="5 Third Avenue’
e filter(Qs,Qs)=bui | di ngs. y<2000

On the other hand, the execution@§ andQ- requires the usage of compensation queries
for completing the results:

e compensation(Q2,Q¢) =school s(address, phone) A
school s. name<>’ ECOLE’

e compensation(Qs,Q7) =bui | di ngs(name) A buil di ngs. x>200 A
bui | di ngs. x<8000 A bui I di ngs. y>1000 A
bui | di ngs. y>3000 A bui |l di ngs. y<5000

Figure 3 illustrates the effects of the usage of the filtepeesively the compensation
gueries during the execution ¢fy, @5, Q¢ andQ~.

Comparative Discussion:

In the following we compare our trie-based query cache tccthssical online approach
without client-side caching and to a semantic caching aggrdor mobile environments.

PTTTITa.
i .,
ot ~a,

»
"“‘__--..

O ~ »,
~ o ~ N
schools(addres, phone) 4L buildings(name7 Y
R
Kd N
" B hospitals(address,name) @ TrTrTr T
) T K
i | schools.name='ECOLE" ..-"~
ey

N e “filter(Q1,Q4)

45 Church Place 445613334 P.O. Box 1100

buildings.y<3000__.->

St. Maria Hospital

18 Avenue of The Stars

University Hospital

.| 5 Third Avenue

Dr. Koch Hospital

compensation(Q2,Q6)

Ada Lovelace School

1st Primary School

—_

I

s_idl name [¢]

n| phone

address

name x |y

1 | Ada Lovelace School

1 | Ada Lovelace School

2 1st Primary School

2 1st Primary School

3 Ascaneum

4 ECOLE

6 St. Maria Hospital

5 Gustav-Nitsche School

e ——

caption:
rrrrrrrr Seee e -
result of the query new query Q4 new query Q5 new query Q6 new query Q7

Figure 3: Example: Using Filter and Compensation Queries

Without caching all queries are submitted to the databasesehere they are performed.
Afterwards the results are sent back to the mobile devicetifeocomparison to semantic
caching we fall back on the LDD cache [RD0O] that uses a loodtased and time based
indexing of data which is stored as logical pages. Everyxragry consist of the name of

the used relatioh the names of the queried attributes, the appropriateiocitom which
the query was started and a timestamp.

Algorithms for caching and retrieving data require addiibcomputation power. Because
light-weighty is the central characteristic of mobile dms, the size of the cache is strictly

limited. Thus, we do not discuss an explicit derivation é¢fradividual complexities.

A more important point is the efficiency of the cache. A cachciv prevents the ex-
pensive and slow wireless data submission is more efficient & cache which sends a
lot of queries to the database server. In the online appreébbut a cache obviously all
gueries must be send to the database. Thus, it is ineffiditretLDD cache as well as our

5The approach can only use single-relation-queries

trie-based query cache are more efficient. The differenetgden these two approaches
are the cache structure and the index structure and how #melyecused. The LDD cache
stores one separate segment per query. Our trie-basedaploes it in the same way but
allows, based on its special index structure, an easy ngeagjisemantically neighboring
or overlapping cache entries. Furthermore, we facilithgedplitting of join operations in
order to handle relation spanning queries at least partiadial. Thus, our approach is
more efficient considering the need for wireless commuitnat

Another advantage of our approach is the flexibility considethe context elements. The
LDD cache is restricted to location dependency and can kaidestamps. Because of
using a trie for indexing cache entries we are able to reflech eontext element directly
in our index and use it for retrieving adequate fragmenthéndache.

Obviously, this is only a vague and preliminary comparisahibshows that it makes
sense to follow up the ideas presented in this paper. A ddtaibst model for caching in
mobile environments would go beyond the scope of this pdprit is currently under
work.

4 Implementation Issues

Indexes on the cache of mobile devices are used to minimzeatmount of data to be
transferred and the memory required. These targets canrivedldirectly from the spe-
cific requirements of mobile information systems, i.e. skwd expensive data transfer
and limited resources of the mobile devices.

Especially, to handle the case described in Section 2, whereache already contains a
superset of the results of a new query, the client has to keetaljfrocess a query from
previously cached results. Therefore, the fragments aredtusing a local DBMS. On
the leaf level the index structure links to the fragmentsvjating an efficient access as
shown in Figure 1. In principal, the proposed approach carelkzed in three different
ways: (1) Each fragment is stored as a separate relationisthacessed using standard
interfaces like ODBC, JDBC etc. (2) All fragments are stonedne relation and are
accessed using the previously mentioned interfaces. (8ymdtively, the Oracle Object
Kernel API [Ora02a] can be used, allowing the storage otcstined objects in an Oracle
9i lite DBMS.

For implementation purposes Oracleli®e is used as a DBMS on the mobile devices, as
it is available for all operating systems of mobile devid®sd02b]. Unfortunately, JDBC
is not supported on all platforms, so it could not be used.

The following description of the implementation of the tded the corresponding algo-
rithms focuses on the linkage of cache entries in the trebadwantages and disadvantages
of the mentioned implementation alternatives.

The major advantage of the two ODBC approaches is that aadlrepecified and stan-
dardized query language (SQL) can be used. As shown in Hfgtine access to the cache
entries is possible through the relation name. Hence, iln@dde referencing a cache en-

Access via OKAPI Access via ODBC

Q
N lobj1 s |
obj2 v 47
entry 1 entry 3 entry 2 entry 1
obj3 entry 2 .
) entry 3 cache:
cache

Figure 4: Cache entry referencing using OKAPI and ODBC

try contains a SQL query on the cached results. Unfortupdtes implies a performance
loss. All queries, even those that can be answered from itieechave to be performed
via the ODBC interface. Furthermore, a separate transfiiomaf the query given in cal-
culus notation to SQL is required. Though this can easilyfy@eémented, and is required
for sending compensation queries to the server anywaypliésan extra effort for local
filter queries or if the result is included as such in the cadfia this case the fragment is
stored as a separate relation, the semantic context of tiiained tuples is retained. If the
results are all stored in one single relation, additionaloepts for the identification have
to be implemented to allow a fast filtering and retrieval airtal) result§.

The third implementation alternative using the Object évkPI1 of Oracle 9 lite works
on a level below the SQL interpreter. Tables known in SQL atéressed as a group
of objects in OKAPI. The functiowkFi ndG- oup provides access to a group using its
name. Accordingly, a trie node referencing a cached oljecttains the path to the cache
entry, as shown in Figure 4. The actual access to the cachelisés implemented using
an iterator object containing the search criteria. If theent query is equal to the cached
guery no search criteria is necessary. Otherwise, thelsedteria is used as a filter over
the cache fragment. The disadvantage of this approach tishbalescribed additional
query functionally has to be implemented.

A combination of the OKAPI and ODBC access is possible, atiogrto [Ora02a], but in
this application not necessary. The combination would becmteresting, if there were
further applications accessing the cache, requiring thie S@port of Oracle B

5 Conclusion and Outlook

In this paper we presented an approach for local caching irokilendatabase system
environment. By providing trie-based indexing on the caehties it is well suited for
context based queries, which are typical in mobile infofarasystems. We thoroughly
discussed the trie index structure, and how new queriesraowéd through” the trie to

6A trivial inefficient case is for instance the processing miéready cached query on the cache.

retrieve previously stored query results. In addition &sththeoretical considerations and
a comparison to related work, implementation alternath@sed on Oraclei9ite were
described and compared.

Based on the presented work and the described implementattithe LDD cache the
caching strategies introduced in Section 3 have to be ellend compared. Further-
more, the influence of certain query predicates has to bgzexhl Especially, the usage of
cached data in join operations requires a more detailedfgadion and analysis. Based
on the results the mobile cache will be integrated in theesanfrastructure for context-
based information systems presented in [HS03a]. Additiopen issues are, for example:

e Ordering of predicates (cost-based)
e Splitting and merging of nodes

e Context-based cache replacement

Moreover, we currently adapt this data caching approachdardo handle a great number
of mobile clients on a mobility support server. The ideahistthe cache index is used for
indexing mobile clients. That means, that the indexed watapresent the IDs of mobile
clients and the index structure represents the querieswtiere given from these mobile
clients. A first presentation of this idea can be found in [BI0

References

[Bla98] Paul E. Black. NIST Dictionary of Algorithms and RaStructures. Web page, 1998.
http://ww. ni st.gov/ dads/.

[DFJT96] Shaul Dar, Michael J. Franklin, Bjorn THor Jonssoriyeh Srivastava, and Michael
Tan. Semantic Data Caching and Replacement. In T. M. Vigyan, Alejandro P.
Buchmann, C. Mohan, and Nandlal L. Sarda, editdfisPB’96, Proceedings of 22th
International Conference on Very Large Data Bageges 330—-341, Mumbai (Bombay),
India, 3—-6 September 1996. Morgan Kaufmann.

[DK98] Margaret H. Dunham and Vijay Kumar. Location depemdédata and its management
in mobile databases. IRroceedings of the Ninth International Workshop on Databas
and Expert Systems Applications, Vienna, Austria, Augh& 1998 / W0O7: Mobility
in Databases and Distributed Systermpages 414-419. IEEE Computer Society, August
1998.

[Fre59] E. Fredkin.Trie memory Information Memorandum, Bolt Beranek and NewMan Inc.,
Cambridge, MA, 1959.

[GG99] Parke Godfrey and Jarek Gryz. Answering Queries byaeic Caches. lDatabase
and Expert Systems Applicatioqeges 485-498, 1999.

[Gol03] Christoph Gollmick. Nutzerdefinierte Replikatinar Realisierung neuer mobiler Daten-
bankanwendungen. In Gerhard Weikum, Harald Schoning,Eahdrd Rahm, editors,
Tagungsband der 10. Konferenz Datenbanksysteme fir &ssiffiechnologie und Web
(BTWO03), 26.-28. Februar 2003, Leipziglume 26 ofLecture Notes in Informatic€l,
2003.

[HS03a] Hagen Hopfner and Kai-Uwe Sattler. Semantic Rafibn in Mobile Federated Infor-
mation Systems. IiProceedings of the Fifth International Workshop on Engiireg

[HSO03b]

[iAn03]

[IBM02]

[IBMO3]

[LHO1]

[Ora02a]

[Ora02b]

[RD99]

[RDOO]

Federated Information Systems (EFIS2003), Coventry, UK1B7July, 2003pages 36—
41. Akademische Verlagsgesellschaft Aka GmbH, Berliny 20003.

Hagen Hopfner and Kai-Uwe Sattler. SMoS: A Scadlibbility Server. Inin Poster-
Proceedings of Twentieth British National Conference ontabases (BNCODZ20),
Coventry, UK 15th - 17th July, 200Bages 49-52. School of Mathematical and Informa-
tional Sciences; Coventry University, July 2003.

iAnywhere Solutions, Inc. SQL Anywhe% Studio. Data sheet, Sybase, Inc., 2003.
http://wwmv. sybase. com cont ent/ 1025129/ SQL9Dat asheet . pdf .

IBM. IBM DB2 Everyplace Version 8.1. Spec sheet, IBKorporation, 2002.
http://ww 3. i bm con sof t war e/ dat a/ pubs/ pdf s/ db2epv8ss. pdf .
IBM. IBM Cloudscape 5.1: A Technical Overview.
Whitepaper, International Business Maschines, March 2003
http://ww 3. i bm conl sof t war e/ dat a/ cl oudscape/ pubs/ \

whi t epaper s/ cl oudscape-t echover. pdf.

Astrid Lubinski and Andreas Heuer. Configured Reation for Mobile Applications.

In Janis Barzdins and Albertas Caplinskas, editbetabases and Information Systems:
Fourth International Baltic Workshop, Baltic DB&IS 2000)nfus, Lithuania, May 1-5,
2000 Selected Paperkluwer Academic Publishers, 2001.

Oracle. Oracleidite Release 5.0.1: C and C++ Object Kernel Reference, 2002.
http://otn.oracl e. conldocs/products/lite/doclibrary)\

/rel ease501/ doc/ okapi/html /toc. htm

Oracle. Oracle i9 lite: Release Notes - Release 5.0.1, 2002.
http://otn.oracle.com docs/products/lite/doclibrary)\

/rel ease501/ readne. ht m

Qun Ren and Margaret H. Dunham. Using Clustering fiiedfive Management of a
Semantic Cache in Mobile Computing. Broceedings of the ACM International Work-
shop on Data Engineering for Wireless and Mobile Accessusi@Q, 1999, Seattle, WA,
USA pages 94-101. ACM Press, 1999.

Qun Ren and Margaret H. Dunham. Using semantic cgctonrmanage location de-
pendent data in mobile computing. Rroceedings of the sixth annual international
conference on Mobile computing and networkipgges 210-221. ACM Press, 2000.

