
Using Similarity-based Operations for Resolving
Data-level Conflicts

Eike Schallehn and Kai-Uwe Sattler

Department of Computer Science, University of Magdeburg,
P.O. Box 4120, D-39106 Magdeburg, Germany�
eike|kus � @iti.cs.uni-magdeburg.de

Abstract. Dealing with discrepancies in data is still a big challenge in data in-
tegration systems. The problem occurs both during eliminating duplicates from
semantic overlapping sources as well as during combining complementary data
from different sources. Though using SQL operations like grouping and join
seems to be a viable way, they fail if the attribute values of the potential du-
plicates or related tuples are not equal but only similar by certain criteria. As
a solution to this problem, we present in this paper similarity-based variants of
grouping and join operators. The extended grouping operator produces groups
of similar tuples, the extended join combines tuples satisfying a given similarity
condition. We describe the semantics of these operators, discuss efficient imple-
mentations for the edit distance similarity and present evaluation results. Finally,
we give examples how the operators can be used in given application scenarios.

1 Introduction

In the past few years, there has been a great amount of work on data integration. This
includes the integration of information from diverse sources in the Internet, the inte-
gration of enterprise data in support of decision-making using data warehouses, and
preparing data from various sources for data mining. Some of the major problems in
this context – besides overcoming structural conflicts – are related to overcoming con-
flicts and inconsistencies on the data level. This includes the elimination of duplicate
data objects caused by semantic overlapping of some sources, as well as establishing a
relationship between complementary data from these sources. The implementation of
associated operations has a significant difference to usual data management operations:
only in some rare cases can we rely on equality of attributes. Instead we have to deal
with discrepancies in data objects representing the same or related real-world objects
which may exist due to input errors or simply due to the autonomy of the sources.
Furthermore, the amount of data to be processed in integration scenarios can be equal
to, or even greater than that from a single source, so, efficiency of the implementation
becomes a critical issue.

Duplicate elimination is a sub-task of data cleaning that comprises further tasks for
improving data quality like transformation, outlier detection etc. Assuming SQL-based
integration systems, the natural choice for duplicate elimination is the group by op-
erator using the key attributes of the tuples in combination with aggregate functions
for reconciling divergent non-key attribute values. However, this approach is limited to



equality of the key attributes – if no unique key exists or the keys contain differences,
tuples representing the same real-world object will be assigned to different groups and
cannot be identified as equivalent tuples. The same is true for linking complementary
data, which in a SQL system would be done based on equality by the join operator.

In this paper we address these problems and present similarity-based operators for
joining and grouping based on previous work. We extend our earlier work by giving
clear semantics of the operators, describing the implementation and evaluating op-
timization techniques. Both operators are based on extended concepts for similarity-
based predicates. Major concerns are the new requirements resulting from the charac-
teristics of similarity relationships, most of all atransitivity, and support for the efficient
processing of similarity predicates.

The operators have not necessarily to be provided as a language extension, though
we did this in our own query engine and use this syntax for illustration purposes. Instead
it also can be implemented by utilizing extension mechanisms which are offered by
today’s DBMS. The implementation and the evaluation results described in this paper
are based on table functions available in Oracle8i.

The remainder of this paper is organized as follows. After a discussion of related
work in Section 2, we describe the characteristics and requirements of similarity pred-
icates useful in data integration in Section 3. The proposed similarity operators are
defined with respect to their semantics in Section 4. In Section 5 we describe strategies
for an efficient implementation of these operators focusing on edit distances similarity
measures. Results of our evaluation are given in Section 6. Finally, in Section 7 we
present several aspects of the application of the similarity operations. Section 8 con-
cludes the paper and points out ongoing work.

2 Related Work

The concepts described in this paper are intended to be used in data integration and
cleaning scenarios. Related topics are from this field and similarity-based data opera-
tions, as well as from the field of analytical data processing.

Closely related to similarity-based operations is the integration of probabilistic con-
cepts in data management. In [3] Dey et. al. propose an extended relational model and
algebra supporting probabilistic aspects. Fuhr describes a probabilistic Datalog in [6].
Especially, for data integration issues and the aforementioned problems probabilistic
approaches were verified and yielded useful results, as described by Tseng et. al. in
[22]. The WHIRL system and language described in [2] by Cohen is based on Fuhr’s
work and uses text-based similarity and logic-based data access as known from Datalog
to integrate data from heterogeneous sources. Cohen describes an efficient algorithm to
compute the top scoring matches of a ranked result set. The implementation of the sim-
ilarity predicate uses inverted indexes common in the field of information retrieval. A
general framework for similarity joins for predicates on data types that can be mapped
to multi-dimensional spaces is presented by Shim et. al. in [21]. The approach is based
on an extended version of the kdB tree.

While efficient implementations of similarity predicates can be provided based on
established index structures described above, most of the real-life applications consid-



ered in this paper require predicates for string attributes. Though there is a number of
similarity measures for strings, namely the edit distance and it’s derivatives, for which
a good overview is given by Navarro in [18], the efficient implementation for large data
sets is a current research topic. In [9] Gravano et. al. present an approach for similarity-
based joins on string attributes using an efficient pre-selection of q-grams for optimiza-
tion. In short, the approach is based on down-sizing the data sets on which a similarity
predicate is evaluated by first doing an equality-based join on substrings of fixed length
q. Though our approach is not limited to string based predicates, we implemented an
edit distance string similarity predicate using a trie as an index structure based on results
by Shang and Merret described in [20] for evaluation purposes.

A major focus of our work is the problem of duplicate detection. This problem was
discussed extensively in various research areas like database and information system
integration [25, 14], data cleaning [1, 7], information dissemination [24], and others.
Early approaches were merely based on the equality of attribute values or derived val-
ues. Newer research results deal with advanced requirements of real-life systems, where
identification very often is only possible based on similarity. Those approaches include
special algorithms [16, 11], the application of methods known from the area of data
mining and even machine learning [13].

An overview of problems related to entity identification is given in [12]. In [14] Lim
et. al. describe an equality based approach, include an overview of other approaches and
list requirements for the entity identification process. Monge and Elkan describe an ef-
ficient algorithm that identifies similar tuples based on a distance measure and builds
transitive clusters in [17]. In [7] Galhardas et. al. propose a framework for data cleaning
as a SQL extension and macro-operators to support among other data cleaning issues
duplicate elimination by similarity-based clustering. The similarity relationship is ex-
pressed by language constructs, and furthermore, clustering strategies to deal with tran-
sitivity conflicts are proposed. Luján-Mora and Palomar propose a centroid method for
clustering in [15]. Furthermore, they describe common discrepancies in string represen-
tations and derive a useful set of pre-processing steps and extended distance measures
combining edit distance on a token-level and similarity of token sets. In [11] Hernández
et. al. propose the sliding window approach for similarity-based duplicate identification
where a neighborhood conserving key can be derived and describe efficient implemen-
tations.

The importance of extended concepts for grouping and aggregation in information
integration is emphasized by Hellerstein et. al. in [10]. In particular, user-defined aggre-
gation (UDA) were proposed in SQL3 and are now supported by several commercial
database systems, e.g. Oracle, IBM DB2, Informix. In [23] the SQL-AG system for
specifying UDA is presented, that translates to C code. A more recent version of this
approach called AXL is described in [23] and its usage in data mining is discussed.

3 Similarity Measures

Similarity based operators like the similarity join and the similarity-based grouping dis-
cussed here are based on similarity measures for attribute values and their logical com-
bination. Other operators requiring concepts of similarity include for instance nearest



neighbour queries and attribute similarity selections. These concepts currently find their
way into commercial data management solutions, or are the topic of ongoing research.
This section discusses useful similarity measures, their characteristics and requirements
for common applications.

3.1 Basic Similarity Predicates

We use the following basic terms of similarity measures: let x and y be objects in a
given universe of discourse U , a similarity measure is a function sim � x � y ����� 0 � 1 � .
Alternatively a distance measure d � x � y ��� IR can be used. The latter can be transformed
to a similarity measure, for instance using the simple transformation sim � x � y �
	 1 �
d � x 
 y �
max , where max is the maximum difference between objects in U , if applicable. This

transformation implies a normalization, though other normalizations of distances within
a given range are conceivable. A binary similarity predicate SIM � x � y ��� U 2, meaning ”y
is similar to x”, can for instance be derived from a similarity or distance measure using
thresholds t ��� 0 � 1 � or k � IR like SIM � x � y ��� sim � x � y ��� t or SIM � x � y ��� d � x � y ��� k.
SIM is in most cases considered as a reflexive, symmetric and atransitive relation.

While a number of approaches to describe similarity stemming from areas like in-
formation retrieval, multimedia data management or case-based reasoning exist, one
of the major problems of expressing similarity within sets of structured data is, that
the concept of similarity is in most cases highly dependent on the given application
domain. Therefore, we describe basic similarity measures for common data types and
ways of using these as primitives for combination to derive measures suitable for real
life applications.

A widely used measure is the distance d of data points x � y in a metric space S,
for instance the Euclidean Distance in an n-dimensional space. In a metric space the
distance function fulfills the following conditions:

�
x � y � S d � x � y ��	 0 � x 	 y (1)�

x � y � S d � x � y ��	 d � y � x � (2)�
x � y � z � S d � x � y ��� d � x � z ��� d � z � y � (3)

Especially the symmetry and the triangular inequality of such a distance measure given
in (2) and (3) provide the fundament for efficient applications, e.g. in information re-
trieval and data mining. To use such measures, the data objects to be compared solely
consist of coordinates in a metric space, or otherwise have to be transformed to repre-
sent points in this space, e.g. extracting feature vectors from multimedia data or deriving
term-based vector representations of textual data. Supported by multi-dimensional in-
dexing, predicates on these distance measures can be used efficiently, though efficiency
is limited by the number of dimensions.

Another well-studied distance measure is the Levenshtein or edit distance
edist � p � w � on string representations. Certain costs are assigned to operations like in-
sertion, deletion or substitution of characters to transform an original pattern string p to
a comparison string w, and the minimal distance is computed. For instance, assuming
constant costs of 1 for the three mentioned basic operations, the edit distance of ”edna”



and ”eden” is 2, because the smallest sets of applicable operations are � substitute(#3,
”e”), substitute(#4,”n”) � and � insert(#3,”e”), delete(#5) � both having two operations.
Common derivates also allow a transposition operation or apply heuristic-based costs
for the operations, e.g. substituting or deleting vowels is usually less expensive than op-
erations on consonants. This distance measure fulfills the three conditions given above
for distances in metric space, this way granting efficient implementations. Though the
edit distance is a powerful measure to detect inconsistencies in data, for instance for
applications in the field of data integration and data cleaning, it is not widely used in
current data management solutions. In Sections 5 and 6 we present an efficient im-
plementation of a similarity predicate based on edit distance used with index-based
optimization through tries as proposed in [20]. Other distance measures for strings in-
clude the Hamming distance, allowing only substitutions, the episode distance, allow-
ing only insertions, and the longest common subsequence distance allowing insertions
and deletions. A good overview of approximate string matching is given in [18]. Sim-
ilar concepts of edit distances exist for other types of data representations, e.g. special
sequences like genome data, spatio-temporal data, trees and graphs in general.

Textual and numerical data, the latter including the special case of 1-dimensional
data and the difference as a distance measure plus widely used index structures like
B-trees, is covered by the approaches introduced so far. A similarity measure for cate-
gorical data can be defined, if the categories can be mapped to a simple partial order,
a metric space as described above, or a graph representing categories and their rela-
tionships. Distance measures for nodes in graphs are not discussed here, but it is worth
mentioning that for graphs, as well as for sets, meaningful distance measures can be
defined, that do not fulfill the criteria of symmetry and the triangular inequality.

3.2 Complex and Application-specific Similarity

So far we have discussed similarity measures applicable to atomic or homogeneously
structured data types independently of a special application scenario. In real-life scenar-
ios the expression of similarity has to deal with additional aspects to improve efficiency
and the results of similarity based operations.
Complex similarity conditions: Similarity-based operators have to process tuples or
more complex objects. The description of similarity between two of those objects may
consist of a combination of more than one similarity predicate for an attribute and
may use different similarity measures on them, e.g., for information on paintings in
a database we can use the edit distance on artist names and the distance of vector rep-
resentations for descriptions of the pictures contents.
Application-specific similarity measures: The semantics of values to be compared in
given applications is known, which allows the usage of more precise similarity mea-
sures based on domain knowledge. Though we could use the edit distance to compare
names of persons, we achieve better results if the similarity measure would consider
that ”Andy Warhol”, ”A. Warhol” and ”Warhol, Andy” most likely refer to the same
person.

By using similarity predicates as described above we can simply build complex simi-
larity conditions by applying the logical operators � , � and � . As an alternative, a fuzzy
logic can be applied to similarity measures directly, as proposed for instance in [2]. To



reach the level of expressiveness we gain by specifying thresholds as part of every sim-
ilarity predicate in the former approach, the concept of weighting the desired impact
of every similarity measure would have to be added to the latter. An efficient evalua-
tion of a complex similarity condition consisting of similarity predicates is described in
Section 5.

Application-specific similarity measures and predicates can be defined in terms of
user-defined functions as supported in most database systems. As an example consider
a function distName � x � y � that takes into account the various conventions for writing
names as described above. The algorithm can remove special characters, tokenize the
string, find first letter matches and finally apply edist � token1 � token2 � on candidate to-
kens, that possibly represent the last name, to take care of typos or inconsistent spelling
of names.

Efficiency, one of the major problems of user-defined similarity, is discussed more
detailed in Section 5. The general strategy would be to conjunctively combine the user-
defined similarity predicates with index-supported equality or similarity predicates for
pre-selection purposes. Asymmetric similarity measures are not considered here, so
symmetry remains a requirement that has to be granted by the user-defined measure.

Existing operations in the relational algebra base largely on equivalence relations
established through the equality of attribute values. To integrate with these concepts
an equivalence relation can be derived from an atransitive similarity predicate SIM.
Because establishing this equivalence relation is not our major focus here, throughout
this paper we use the simple strategy of constructing an equivalence relation SIMEQ

by building the transitive closure SIMEQ : 	 SIM � , i.e. a partition of the universe of
discourse U is a maximal set of objects that are similar either directly or indirectly. Es-
pecially related to entity identification, centroid or density-based clustering techniques
proved to be useful strategies for dealing with atransitivity and provide a high level of
accuracy, as for instance described in [15] and [17].

4 Semantics of the Similarity Operators

In this section we describe the semantics of our similarity-based operators as extensions
of the standard relational algebra. We assume the following basic notations: let R be a
relation with the schema S 	 � A1 ������� � Am � , tR � R is a tuple from the relation R and
tR � Ai � denotes the value of attribute Ai of the tuple tR.

The core concept for similarity-based operations is a similarity condition. It ex-
presses whether two tuples are similar in terms of their attribute values. Because we
define our operators as an extension of the standard relational algebra, we do not deal
with probabilities in conditions – by using a similarity threshold we can always rely
on boolean values for such conditions. Hence, a similarity condition � sim cond � is a
conjunction of predicates:

� sim cond � 	
m�

i � 1

� sim pred � � Ai �



where � sim pred � denotes an atomic predicate which could be either eq or a “simi-
larity predicate” like with an associated threshold or any other similarity predicate as
discussed in Section 3.

Similarity join. Based on the similarity condition introduced above the semantics of the
similarity join between two relations R1 and R2 can be described in a straightforward
way. For a given similarity condition � sim cond � we denote the set of all attributes
referenced in this expression as

�
S 	 � Ai

�
Ai is referenced in � sim cond � �

and Si as the set of all attributes from relation Ri. Then, it holds

R1 ��� sim cond � R2 	 � t
���

t1 � R1 : t1 � S1 �
�
S ��	 t � S1 �

�
S � �

�
t2 � R2 : t1 � S2 �

�
S ��	 t � S2 �

�
S � �

� sim cond � � t1 � t2 � 	 true �
This simply means, a pair of tuples from the relations R1 and R2 appears in the result of
the join operation if the similarity condition is fulfilled for these two tuples.

Similarity grouping. For defining the semantics of the grouping operator we rely on the
algebra operator for standard grouping as presented in database textbooks [5]:

� grouping attrs � F � � aggr func list ��� � R �

Here � grouping attrs � is a list of attributes used for grouping relation R,
� aggr func list � denotes a list of aggregate functions (e.g., count, avg, min, max etc.)
conveyed by an attribute of relation R. For simplification, we assume that the name of
an aggregated column is derived by concatenating the attribute name and the name of
the function. An aggregate function f is a function returning a value v � Dom for a
multi-set of values v1 ������� vm � Dom:

f � � � v1 ������� � vm
� � ��	 v

where Dom denotes an arbitrary domain of either numeric or alphanumeric values and
the brackets � � ����� � � are used for multi-sets. We extend this equality-based grouping op-
erator F with regard to the grouping criteria by allowing an similarity condition and
call this new operator Γ:

� sim cond � Γ � � aggr func list ��� � R �

This operator again has a list of aggregate functions � aggr func list � with the same
meaning as above. However, the grouping criteria � sim cond � is now a similarity
conjunction as introduced above. The result of Γ is a relation R � where the schema
consists of all the attributes referenced in � sim cond � accompanied with eq and the
attributes named after the aggregates as described above. The relation R � is obtained by
the concatenation of the two operators γ and ψ which reflect the two steps of grouping



and aggregation. The first operator γ � sim cond � � R � 	 G produces a set of groups G 	
� G1 ������� � Gm � from an input relation R. Each group is a non-empty set of tuples with
the same schema as R. Furthermore, all tuples tG

i of a group G are transitively similar
to each other regarding the similarity condition � sim cond � :

�
G � G :

�
tG
i � tG

j � G : tG
j � tsim � sim cond � � tG

i �
where tsim � sim cond � � t � denotes the set of all tuples which are in the transitive closure
of the tuple t with regard to sim cond:

tsim � sim cond � � t ��	 � t �
�
sim cond � t � t � ��	 true ��

t � � � tsim � sim cond � � t � : sim cond � t � � t � � ��	 true �
and no tuple is similar to any other tuple of other groups

�
Gi � G j � G � i �	 j :

�
tGi
k � Gi �

�
t
G j
l � G j :

sim cond � tGi
k � tG j

l � 	 true

The second operator ψA1 
 � � � 
 Al 
 � aggr func list � � G � 	 R � reconciles (i.e., merges) the tuples
from each group and produces exactly one tuple for each group of G according to the
given aggregate functions. Thus, it holds

�
G � G with G 	 � tG

1 ������� � tG
n � there is one and

only one tuple tR � � R � with

�
i 	 1 ����� l : tR � � Ai � 	 tG

1 � Ai ��	 tG
2 � Ai ��	������ 	 tG

n � Ai �
where A1 ������� � Al are attributes referred by the eq predicates of the approximation con-
dition, (i.e., for these attributes all tuples have the same value) and

�
j 	 l � 1 ����� m � l : tR � � A j ��	 f j � l � � � tG

1 � A j � ������� � tG
n � A j �

� � �
where f1 ������� � fm are aggregate functions from � aggr func list � . Based on these two
operators we can finally define the Γ operator for similarity-based grouping as follows:

� sim cond � Γ � � aggr func list ��� � R � 	 ψA1 
 � � � 
 Al 
 � aggr func list � � γ � sim cond � � R � �
where A1 ������� � Al are again attributes referenced by the eq predicates in � sim cond � .

5 Implementation and Optimization

In this section we outline our implementation of the similarity-based operators intro-
duced in the previous sections. For an efficient realization dedicated plan operators are
required, which implement the semantics described above. That means for instance for
the similarity join, even if one formulates a query as follows

select *
from r1, r2
where edist(r1.title, r2.title) < 2



the similarity join implementation exploiting special index support has to be chosen
by the query optimizer instead of computing the Cartesian product followed by a selec-
tion. In case of the similarity grouping a simple user-defined function is not sufficient
as grouping function, because during similarity grouping the group membership is not
determined by one or more of the tuple values but depends on already created groups.
In addition, processing a tuple can be conveyed by merging existing groups.

Thus, we describe in the following the implementation of these two plan operators
SIMJOIN and SIMGROUPING and assume, that the query optimizer is able to recognize
the necessity of applying these operators during generating the query plan. This could
be supported by appropriate query language extensions, e.g. for the similarity join like

select *
from r1 similarity join r2

on edist(r1.title, r2.title) threshold 0.9

where threshold specifies the maximum allowed value for the normalized edit distance.
For the similarity grouping this could be formulated as follows:

select *
from r1
group by similarity on edist(title) threshold 0.9

Currently, for our implementation we focus on edit distances as the primary similarity
measure. For this purpose, we have adopted the approach proposed in [20] of using
a trie in combination with a dynamic programming algorithm for computing the edit
distance. The main idea is to traverse the trie containing the string values of all already
processed tuples in depth-first order, trying to find a match with the search pattern, i.e.,
the attribute value of the currently processed tuple. Due to the usage of the edit distance,
we must not stop the traversal directly after a found mismatch. Instead an edit operation
(insert, remove or replace a character) is applied and the search is continued. Only after
exceeding the given threshold, we can stop the traversal and go back to the next subtrie.
Hence, the threshold is used for cutting off sub-tries containing strings not similar to the
pattern. In addition, the effort for computing the dynamic programming tables required
for determining the edit distance can be reduced, because all strings in one subtree
share a common prefix and therefore the same edit distance. We omit further details
of this algorithm and refer instead to the original work. In our implementation of the
previously introduced operators tries are created on the fly for each grouping attribute
or join predicate which appears together with an edit distance predicate.

5.1 Similarity Join

The implementation of a similarity join outlined in this section is quite straightfor-
ward, only differing in their usage of similarity predicates as join conditions. Like for
conventional join operators index support for predicates can be exploited to improve
performance by reducing the number of pairwise comparisons. However, the different
predicates of a similarity expression require different kinds of index structures:



Algorithm 1: Processing a tuple from join relation R1 during similarity join

Globals
Conjunctive join condition c � p1

���������
pn

Set of indexes Ipi � 1 � i � n on join relation R2
for index supported predicates

Mapping table tid tid for matching tuples

Procedure processTuple(Tuple t)
begin

for all index supported equality predicates pi

set of tuples scon j : � indexScan � Ipi � t � Api 	
	
end for
for all index supported similarity predicates pi

scon j : � scon j � indexScan � Ipi � t � Api 	�� kpi 	
end for
for all tuples tl 
 scon j

boolean similar : � true
for all non-index supported predicates pi

similar : � similar
�

evaluate � pi � kpi � t � Api 	�� tl � Api 	
	
if not similar break

end for
if similar insert (t,tl) in tid tid

end for
end

– For equality predicates eq � Ai � common index structures like hash tables or B-trees
can be utilized.

– Numeric approximation predicates like diff k � Ai � can be easily supported by storing
the minimum and maximum value of the attribute for each group.

– For string similarity based on edit distances edist � Ai � tries are a viable index struc-
ture, as previously introduced.

– For the other similarity predicates discussed in Section 3 index support is given, for
instance through multi-dimensional indexes like R-trees and its derivates on data
mapped to a metric space.

Given such index structures a join algorithm can be implemented taking care of the
various kinds of indexes. In Algorithm 1 a binary join for two relations R1 and R2 is
shown, assuming that indexes for relation R2 either exist or were built on the fly in
a previous processing step. The result of this algorithm is a table of matching tuples
for usage described later on. Alternatively, result tuples can be produced for pipelined
query processing directly at this point. The notations Ipi and kpi refer to the index on
predicate pi and the specified threshold, respectively. Api refers to the involved attribute.



As a side note, more complex similarity conditions could easily be supported by
adding disjunctions. The similarity condition c can be transformed to disjunctive normal
form. For all conjunctions of c 	�� m

i � 1 con ji the scon ji are computed and the set of
relevant groups would be sdis j 	�� m

i � 1 scon ji .

5.2 Similarity-based Grouping

Like the join operator, the similarity-based grouping operator is based on the efficient
evaluation of similarity predicates, but in addition has to deal with problems arising
from the atransitivity of similarity relations. The goal of a grouping operator is to assign
every tuple to a group. A naive implementation of the similarity-based operator would
work as follows:

1. Iterate over the input set and process each tuple by evaluating the similarity con-
dition with all previously processed tuples. Because these tuples were already as-
signed to groups, the result of this step is a set of groups.

2. If the result set is empty, a new group is created, otherwise the conflict is resolved
by merging the groups according to the transitive closure strategy.

Other grouping strategies, like for instance density-based clustering, may in contrast
require more rigid similarity relations between tuples in a group. In case of any conflict
with a found group or between more than one found groups, existing groups would be
split and maybe not considered during further processing. This behavior can be utilized
to provide pipelined processing of the operator.

Obviously, the previously described naive implementation would lead to O � n2 � time
complexity for an input set of size n. Similar to processing a similarity join we assume
that there are index-supported predicates for equality and similarity, and in addition,
predicates like user-defined similarity predicates, that can not be supported by indexes.
An according Algorithm was implemented and is described in detail in [19].

5.3 Implementation using Oracle8i

Implementing the described similarity operators in a SQL DBMS as native plan opera-
tors supporting the typical iterator interface [8] requires significant modifications to the
database engine and therefore access to the source code. So, in order to add these op-
erators to a commercial system the available programming interfaces and extensibility
mechanisms should be used instead. Most modern DBMS support so-called table func-
tions which can return tables of tuples, in some systems also in a pipelined fashion. In
this way, our operators can be implemented as table functions consuming the tuples of
a query, performing the appropriate similarity operation and returning the result table.
For example, a table function sim join implementing Algorithm 1 and expecting two
cursor parameters for the input relations and the similarity join condition could be used
as follows:

select *
from table (sim join (cursor(select * from data1),

cursor(select * from data2),
’edist (data1.title, data2.title) < 2’))



However, a problem of using table functions for implementing query operators are the
strong typing restrictions: for the table functions a return type has always to be specified
that prevents to use the same function for different input relations.

As one possible solution we have implemented table functions using and return-
ing structures containing generic tuple identifiers (e.g., Oracle’s rowid). So, the SIM-
GROUPING function produces a tuple of tuple identifier / group identifier pairs, where
the group identifier is an artificial identifier generated by the operator. Based on this,
the result type gid tid table of the table function is defined as follows:

create type gid_tid_t as object gid int, tid int);
create type gid_tid_table is table of gid_tid_t;

Using a grouping function sim grouping a query can be written as the following
query:

select ...
from table(sim_grouping (

cursor (select rowid, * from raw_data),
’edist(title) < 2’))) as gt,

raw_data
where raw_data.tid = gt.tid
group by gt.gid

This approach allows to implement the function in a generic way, i.e., without any
assumption on the input relation. In order to apply aggregation or reconciliation to the
actual attribute values of the tuples, they are retrieved using a join with the original
relation, whereas the grouping is performed based on the artificial group identifiers
produced by the grouping operator.

In the same way, the SIMJOIN operator was implemented as a table functions re-
turning pairs of tuple identifiers that fulfill the similarity condition and are used to join
with the original data.

6 Evaluation

The similarity-based grouping and join operators described in Section 4 were imple-
mented as part of our own query engine and, alternatively, using the extensibility in-
terfaces of the commercial database management system Oracle as outlined in Section
5. For evaluation purposes the latter implementation was used. The test environment
was a PC system with a Pentium III (500 MHz) CPU running Linux and Oracle 8i.
The extended operators and predicates were implemented using C++. All test results
refer to our implementation of the string similarity predicate based on the edit distance
and supported by a trie index. A non-index implementation of the predicate is provided
for comparison. Indexes are currently created on the fly and maintained in main mem-
ory only during operator processing time, which appears to be a reasonable approach
considering the targeted data integration scenarios. The related performance impact is
discussed below.



0.0

1.0

2.0

3.0

4.0

5.0

6.0

0 1000 2000 3000 4000 5000 6000

P
ro

ce
ss

in
g 

tim
e

Number of original tuples

Threshold k=1
Threshold k=0 (exact match)

Fig. 1. Grouping with threshold k � 0 and k � 1

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000 6000

P
ro

ce
ss

in
g 

tim
e

Number of original tuples

Threshold k=1
Threshold k=2
Threshold k=3

Pairwise comparison

Fig. 2. Grouping with varying thresholds k � 1

For the grouping operator test runs separate data sets containing random strings
were created according to the grade of similarity to be detected, i.e. for one original tu-
ple between 0 and 3 copies were created that fulfilled the similarity condition of the test
query. The test query consisted of an edit distance predicate on only one tuple. Using
the edit distance with all operations having a fixed cost of 1 and a edit distance thresh-
old k on an attribute, each duplicate tuple had between 0 and k deletions, insertions or
transpositions. As the number of copies and the numbers of applied operations on the
string attributes were equally distributed, for n original tuples the total size of the data
set to be processed was approximately 3 � n with an average distance of k

2 among the
tuples to be detected as similar.

Grouping based on an exact matching (k 	 0) has the expected complexity of O � n � ,
which results from the necessary iteration over the input set and the trie lookup in each
step, which for an exact match requires average word-length comparisons, i.e. can be
considered O � 1 � . This conforms to equality based grouping with hash table support.
For a growing threshold the number of comparisons, i.e. the number of trie nodes to
be visited, grows. This effect can be seen in Figure 1, where the complexity for k 	 1
appears to be somewhat worse than linear, but still reasonably efficient.

Actually, the complexity grows quickly for greater thresholds, as larger regions of
the trie have to be covered. The dynamic programming approach of the similarity search
ensures that even for the worst case each node is visited only once, which results in
equal complexity as pairwise similarity comparison, not considering the cost for index
maintenance etc. The currently used main memory implementation of the trie causes
a constant overhead per insertion. Hence, the O � n2 � represents the upper bound of the
complexity for a rising threshold k, just like O � n � is the lower bound. For growing
thresholds the curve moves between these extremes with growing curvature. This is a
very basic observation that applies to similarity based operations like similarity-based
joins and selections as well, the latter providing the reason for these considerations
having a complexity between O � 1 � and O � n � . The corresponding test results are shown
in Figure 2.

The previous test results were presented merely to make a general statement about
the efficiency of the similarity-based grouping operator. An interesting question in real



0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000 7000 8000

P
ro

ce
ss

in
g 

tim
e

Number of overall tuples

No duplicates
2% duplicates

10% duplicates
20% duplicates

Fig. 3. Grouping with varying percentage of
duplicates in the test data sets

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

P
ro

ce
ss

in
g 

tim
e

Sum of input relation sizes

Threshold k=4
Threshold k=3
Threshold k=2
Threshold k=1

Fig. 4. Results for varying thresholds k � 1 for
a similarity join

life scenarios would be, how the operator performs on varying ratios of duplicates in
the tested data set. In Figure 3 the dependency between the percentage of duplicates and
the required processing time is given for the threshold k 	 2. While the relative time
complexity remains, the absolute processing time decreases for higher percentages of
detectable duplicates. Obviously, and just as expected, using a similarity measure is
more efficient, if there actually is similarity to detect. Otherwise, searching the trie
along diverging paths represents an overhead that will not yield any results.

We received similar results for the described implementation of a similarity join.
The test scenario consisted of two relations R1 and R2, with a random number of linked
tuples, i.e. for each tuple in R1 there were between 0 and 3 linked records in R2 and
the join attribute values were within a maximum edit distance. The results are shown
in Figure 4. As the implementation of the join operation is similar to the grouping
operation the complexity is between O � n � and O � n2 � depending on the edit distance
threshold.

7 Applications

As described before, the problem of duplicate elimination in databases or during inte-
gration of various sources can be solved by applying the similarity-based grouping op-
erations. Using an appropriate similarity predicate (see below for a discussion) potential
redundant objects can be identified. However, applying a suitable similarity predicate
is only the first step towards “clean” data: From each group of tuples a representative
object has to be chosen. This merging or reconciliation step is usually performed in
SQL using aggregate functions. But, in the simplest case of the builtin aggregates one
is able only to compute minimum, maximum, average etc. from numeric values. As
an enhancement modern DBMS provide support for user-defined aggregation functions
(UDA) which allow to implement application-specific reconciliation functions. How-
ever, these UDAs are still too restricted for reconciliation because they support only
one column as parameter. Here, the problem is to choose or compute a merged value
from a set of possible discrepant values without looking at any other columns. We can



mitigate this problem by allowing more than one parameter or by passing a structured
value as parameter to the function.

In particular for reconciliation purposes we have defined a set of such enhanced
aggregate functions including the following:

– pick where eq (v, col) returns the value of column col of the first tuple,
where the value of v is true, i.e., �	 0. In case of a group consisting of only one
tuple, the value of this tuple is returned independently of the value of v .

– pick where min (v, col) returns the value of column col of the tuple,
where v is minimal for the entire relation or group, respectively.

– pick where max (v, col) returns the value of column col of the tuple,
where v is maximal.

– to array (col) produces an array containing all values from column col.

With the help of these functions several reconciliation policies can easily be imple-
mented, one of them illustrated in the following example. We assume that the final
value for column col of each group has to be taken from the tuple containing the most
current date, which is represented as column m date:

select max(m_date), pick_where_max(m_date, col), ...
from data
group by ...

Another application-specific question is, how to specify the similarity predicate,
consisting of the similarity or distance measure itself and the threshold. If the chosen
threshold has such a major impact on the efficiency of similarity-based operations, as
described in Section 6, the question is how to specify a threshold to meet requirements
regarding efficiency and accuracy. Actually, this adds complexity to the well studied
problem of over- and under-identification, i.e. falsely qualified duplicates. Information
about the distance or similarity distribution can be used for deciding about a meaningful
threshold, as well as for refining user-defined similarity predicates. Distance distribu-
tions usually conform to some natural distribution, according to the specific application,
data types and semantics. Inconsistencies, such as duplicates, cause anomalies in the
distribution, e.g. local minima or points of extreme curvature.

Figure 5(a) shows a result for a sample consisting of approximately 1.600 titles
starting with an ”E” from integrated sources of data on cultural assets. Nevertheless,
drawing the conclusion of setting the edit distance threshold to receive a useful similar-
ity predicate would lead to a great number of falsely identified tuples. For short titles
there would be too many matches, and longer titles often do not match this way, because
the length increases the number of typos etc.

Better results can be achieved by applying a relative edit distance rdist � x � y � 	 1 �
edist � x 
 y �

max � x � length 
 y � length � as a similarity measure as introduced in section 3. The algorithm
introduced in section 5 can easily be adjusted to this relative distance. Figure 5(b) shows
the distribution of relative edit distances in the previously mentioned example relation.
Using the first global minimum around 0 � 8 as a threshold, and analyzing matches in this
area shows that it provides a good ratio of very few over- and under-identified tuples.
A successive adjustment of similarity predicates using information from analytical data
processing is also of interest for the creation of user-defined similarity predicates.



10

100

1000

10000

100000

0 2 4 6 8 10 12 14

F
re

qu
en

cy
 (

lo
ga

rit
hm

ic
)

Edit distance

(a) Absolute edit distance distribution

1

10

100

1000

10000

100000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
re

qu
en

cy
 (

lo
ga

rit
hm

ic
)

Relative Edit distance

(b) Relative edit distance distribution

Fig. 5. Edit distance distributions in an integrated and sampled data set

8 Conclusions

In this paper we presented database operators for finding related data and identifying
duplicates based on user-specific similarity criteria. The main application area of our
work is the integration of heterogeneous data where the likelihood of occurrence of data
objects representing related or the same real-world objects though containing discrepant
values is rather high. Intended as an extended grouping operation and by combining it
with aggregation functions for merging/reconciling groups of conflicting values our
grouping operator fits well into the relational algebra framework and the SQL query
processing model. In a similar way, an extended join operator takes similarity predicates
used for both operators into consideration. These operators can be utilized in ad-hoc
queries as part of more complex data integration and cleaning tasks.

Furthermore, we have shown that efficient implementations have to deal with spe-
cific index support depending on the applied similarity measure. For one of the most
useful measures for string similarity (particularly for shorter strings) we have presented
a trie-based implementation. The evaluation results illustrate the benefit of this approach
even for relatively large datasets. Though we focused in this paper primarily on the edit
distance measure, the algorithm for similarity grouping is able to exploit any kind of
index support.

A still open issue is the question how to find and specify appropriate similarity
criteria. In certain cases, basic similarity measures like the edit distance are probably
not sufficient. As described in Section 3, application-specific similarity measures im-
plementing domain heuristics (e.g. permutation of first name and last name) based on
basic edit distances is often a viable approach. However, choosing the right thresholds
and combinations of predicates during the design phase of an integrated system often
requires several trial-and-error cycles. This process can be supported by analytical pro-
cessing steps as shown in Section 7 and the corresponding tools. Such tools should
allow an interactive investigation of analytical results as well corresponding samples
from the data level, and are part of our information fusion workbench [4]. Providing
the similarity-based operators as query primitives instead of dedicated application tools
simplifies this and opens the opportunity for optimization.



References

1. D. Calvanese, G. de Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. A principled approach
to data integration and reconciliation in data warehousing. In Proceedings of the Interna-
tional Workshop on Design and Management of Data Warehouses (DMDW’99), Heidelberg,
Germany, 1999.

2. W. Cohen. Integration of heterogeneous databases without common domains using queries
based on textual similarity. In L. M. Haas and A. Tiwary, editors, SIGMOD 1998, Pro-
ceedings ACM SIGMOD International Conference on Management of Data, June 2-4, 1998,
Seattle, Washington, USA, pages 201–212. ACM Press, 1998.

3. D. Dey and S. Sarkar. A probabilistic relational model and algebra. ACM Transactions on
Database Systems, 21(3):339–369, September 1996.

4. Oliver Dunemann, Ingolf Geist, Roland Jesse, Kai-Uwe Sattler, and Andreas Stephanik. A
Database-Supported Workbench for Information Fusion: InFuse. In Christian S. Jensen,
Keith G. Jeffery, Jaroslav Pokorný, Simonas Saltenis, Elisa Bertino, Klemens Böhm, and
Matthias Jarke, editors, Advances in Database Technology - EDBT 2002, 8th International
Conference on Extending Database Technology, Prague, Czech Republic, March 25-27, Pro-
ceedings, volume 2287 of Lecture Notes in Computer Science, pages 756 – 758. Springer,
2002.

5. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin/Cummings,
Redwood City, CA, 2 edition, 1994.

6. N. Fuhr. Probabilistic datalog – A logic for powerful retrieval methods. In Proceedings of
the Eighteenth Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, Retrieval Logic, pages 282–290, 1995.

7. H. Galhardas, D. Florescu, D. Shasha, and E. Simon. AJAX: an extensible data cleaning
tool. In Weidong Chen, Jeffery Naughton, and Philip A. Bernstein, editors, Proceedings of
the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, Texas,
volume 29(2), pages 590–590, 2000.

8. G. Graefe. Query Evaluation Techniques For Large Databases. ACM Computing Surveys,
25(2):73–170, 1993.

9. L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivas-
tava. Approximate string joins in a database (almost) for free. In Proceedings of the 27th
International Conference on Very Large Data Bases(VLDB ’01), pages 491–500, Orlando,
September 2001. Morgan Kaufmann.

10. J. M. Hellerstein, M. Stonebraker, and R. Caccia. Independent, Open Enterprise Data Inte-
gration. IEEE Data Engineering Bulletin, 22(1):43–49, 1999.

11. M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases. In
Michael J. Carey and Donovan A. Schneider, editors, Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data, pages 127–138, San Jose, Califor-
nia, 22–25 May 1995.

12. W. Kent. The breakdown of the information model in multi-database systems. SIGMOD
Record, 20(4):10–15, December 1991.

13. Wen-Syan Li. Knowledge gathering and matching in heterogeneous databases. In AAAI
Spring Symposium on Information Gathering, 1995.

14. E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity identification in database in-
tegration. In International Conference on Data Engineering, pages 294–301, Los Alamitos,
Ca., USA, April 1993. IEEE Computer Society Press.

15. Sergio Luján-Mora and Manuel Palomar. Reducing Inconsistency in Integrating Data from
Different Sources. In M. Adiba, C. Collet, and B.P. Desai, editors, Proc. of Int. Database
Engineering and Applications Symposium (IDEAS 2001), pages 219–228, Grenoble, France,
2001. IEEE Computer Society.



16. A. E. Monge and C. P. Elkan. The field matching problem: Algorithms and applications. In
Evangelos Simoudis, Jia Wei Han, and Usama Fayyad, editors, Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), page 267.
AAAI Press, 1996.

17. A. E. Monge and C. P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proceedings of the Workshop on Research
Issues on Data Mining and Knowledge Discovery (DMKD’97), 1997.

18. Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing Surveys,
33(1):31–88, 2001.

19. E. Schallehn, K. Sattler, and G. Saake. Extensible grouping and aggregation for data rec-
onciliation. In Proc. 4th Int. Workshop on Engineering Federated Information Systems,
EFIS’01, Berlin, Germany, 2001.

20. H. Shang and T. H. Merrett. Tries for approximate string matching. IEEE Transactions on
Knowledge and Data Engineering, 8(4):540–547, 1996.

21. K. Shim, R. Srikant, and R. Agrawal. High-dimensional similarity joins. In Proceedings of
the 13th International Conference on Data Engineering (ICDE’97), pages 301–313, Wash-
ington - Brussels - Tokyo, April 1997. IEEE.

22. F. Tseng, A. Chen, and W. Yang. A probabilistic approach to query processing in hetero-
geneous database systems. In Proceedings of the 2nd International Workshop on Research
Issues on Data Engineering: Transaction and Query Processing, pages 176–183, 1992.

23. H. Wang and C. Zaniolo. Using sql to build new aggregates and extenders for object- re-
lational systems. In A. El Abbadi, M.L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel,
G. Schlageter, and K.-Y. Whang, editors, Proc. of 26th Int. Conf. on Very Large Data Bases
(VLDB’00), Cairo, Egypt, pages 166–175. Morgan Kaufmann, 2000.

24. T. W. Yan and H. Garcia-Molina. Duplicate removal in information dissemination. In Pro-
ceedings of the 21st International Conference on Very Large Data Bases (VLDB ’95), pages
66–77, San Francisco, Ca., USA, September 1995. Morgan Kaufmann Publishers, Inc.

25. G. Zhou, R. Hull, R. King, and J. Franchitti. Using object matching and materialization to
integrate heterogeneous databases. In Proc. of 3rd Intl. Conf. on Cooperative Information
Systems (CoopIS-95), Vienna, Austria, 1995.


