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Abstract

One approach to overcome heterogeneity as part of data integration in mediator systems is the usage
of meta data in form of a vocabulary or ontology in order to represent domain knowledge explicitly.
This requires to include this meta level during query formulation and processing. In this paper, we
address this problem in the context of a mediator which uses a concept-based integration model and an
extension of the XQuery language called CQuery. This mediator has been developed as part of a project
for integrating data about cultural assets. We describe the language extensions, their semantics as well
as the rewriting and evaluation steps. Furthermore, we discuss aspects of caching and keyword-based
search in support of an efficient query formulation and processing.



1 Introduction

Providing an integrated access to heterogeneous data sources from the Web is still a big challenge. Here,
several issues arise such as autonomy, heterogeneity as well as scalability and adaptability with regard to
a great number of – possibly changing – data sources. Suitable solutions range from simple meta search
engines over materialized approaches to mediator systems which answer queries on a global schema by
decomposing them, forwarding the sub-queries to the source systems and combining the results into a
global answer.

One can classify mediator systems roughly based on the kind of correspondence specification be-
tween the local schemas of the sources and the global mediator schema. Using a Global-as-View ap-
proach (GAV) the mediator schema is defined as a view on the local schema. In contrast, with the
Local-as-View (LAV) approach we start with a global schema – that could be derived from a domain or
reference model – and define the local schemas as views on it, i.e., a local schema contains only a subset
in terms of the schema elements as well as the extensions. Query processing (or more exactly query
rewriting) is simpler for the GAV approach, but the LAV simplifies adding or removing sources, because
only correspondences between the global and the particular local schema have to be considered.

In mediator systems of the first generation integration is achieved mainly on a structural level. Data
from the diverse sources are combined based on structural correspondences such as membership in
classes of the same structure or the existence of common attributes. This works well in more or less
homogeneous domains. In scenarios characterized by rather disjunct domains this approach leads to
a great number of global classes that again requires detailed domain knowledge in order to be able to
formulate the resulting more complex queries.

An alternative is the explicit modeling and usage of domain knowledge in form of semantic meta
data, i.e. a vocabulary, a taxonomy, a concept hierarchy, or even an ontology. Similar efforts are known
from the Semantic Web community, where a knowledge-based processing of Web documents is to be
achieved by adding a semantic layer containing meta data. First results of this work mainly include
models and languages for ontologies, e.g. RDF Schema (RDFS) and DAML+OIL, as well as the corre-
sponding technologies. Because of the strong relationships a combination of Semantic Web and mediator
approaches seems very promising. However, a special requirement from data integration is to define a
mapping from the ontology layer to the source data, i.e., to specify how a data source supports a certain
concept from the ontology both in a structural as well as a semantic way. This information is necessary
for query rewriting and decomposition and has to be provided as part of the registration of a source.

Based on this observation, in this paper we present the YACOB mediator that uses domain knowledge
in the form of concepts and their relationships for formulating and processing queries. This system has
been developed for providing integration and query facilities in databases on cultural assets that were
lost or stolen during World War II. The main contribution of our work is(i) the definition of a RDF-based
meta model combining the representation of concepts as terminological anchors for the integration with
information describing the mapping between the global concepts and the local schemas using a LAV
approach,(ii) the query language CQuery supporting queries both on concept as well as instance level,
and (iii) the presentation of operators and strategies for rewriting, decomposing and executing global
queries including caching and keyword-based search.

The remainder of this paper is organized as follows. In Section 2 we introduce the integration model
based on RDFS and XML. In Section 3 we present the query language by means of examples, describe
the operators and their semantics as well as the process of query evaluation. An important aspect of
a distributed query system for achieving good performance is the caching of query results. Here, the



concepts of the semantic layer provide a good anchor for managing semantic caches. Thus, we discuss
the realization of such a semantic cache in the context of the concept-based mediator in Section 4. In
order to provide interactive query facilities in a search engine like manner our approach supports a
keyword search, where a query is derived from a user-given set of keywords based on an index that maps
keywords to schema objects. This technique is described in 5. Section 6 gives an overview of the overall
architecture of the system and its implementation. After a discussion of related work in Section 7 we
conclude the paper and point out to future work.

2 A Concept-based Model for Data Integration

For representing data that have to be integrated as well as the associated semantic meta data two levels
have to be taken into account:(i) the actual data or instance level comprising the data managed by the
sources and(ii) the meta or concept level describing the semantics of the data and their relationships.

2.1 Data and Concept Model

As the data model we use in our work a simple semistructured model based on XML. That means,
data are represented in XML in the mediator as well as during exchange between mediator and the
wrappers/sources. Furthermore, we assume data sources exporting data in XML and are able to answer
simple XPath expressions. The necessary transformations from XPath to SQL or other query languages
are simplified by using only a subset of XPath, e.g. avoiding function calls. The exported query results
can be structured according to any DTD – the transformation into a global schema is performed by the
mediator.

The model for representing concepts is based on RDF Schema. The Resource Description Frame-
work (RDF) – developed by the W3C as a mechanism for creating and exchanging meta data for Web
documents – is a simple graph-based model, where nodes model resources or literals and edges represent
properties. Based on this, RDF Schema (RDFS) defines primitives for specifying vocabularies such as
classes or class relationships. Though, there is a principal similarity with traditional data models, RDFS
is characterized by some important features, e.g., properties are defined independently from classes and
are restricted in their association with certain classes only by specifying domain constraints.

Using modeling primitives likeClass, Propertyor subClassOfRDFS is suitable for developing basic
vocabularies or ontologies. An example from the considered application domain is shown in Fig. 1. A
concept in our mediator model corresponds to a class in RDFS, concept properties correspond to RDFS
properties. Relationships between concepts beyond the standard RDFS properties such assubClassOf
are also modeled as properties, where the domain and range are restricted to concepts.

In this way, the concept layer plays the role of the global mediator schema, but makes a more
advanced semantic modeling possible. For instance, beside schema information in form of classes or
concepts we can even represent instances in form of values. For this purpose, we introduce categories
as a special kind of a RDFS class which has – in contrast to a concept – no associated extension. A
category can be understood as a term represented in different sources by different values. Like concepts,
categories can be organized in hierarchies using thesubClassOfrelationship. An example of the usage
of categories is the property “portrays” of concept “fine arts” shown in Fig. 1. The domain of this
property is described by the category “motif”, for which additional sub-categories are defined. In this
way, information is explicitly represented that would be otherwise hidden in the data. For example,
in one source the categories from Fig. 1 (or a subset of them) could be represented by strings such as



“landscape” or “still life” (or in any other language) whereas in another source other coding schemes
could be used. But at the global level the user is faced only with the category terms.
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Figure 1: Concept Hierarchy

In summary, our model relies primary on the RDF Schema primitives (classes and properties) and
extends these by the notion of concept and category as specialization of classes.

We can formally define the concept and data model as follows. LetURI be the set of Uniform
Resource Identifiers,Namethe set of valid identifiers (names) andL the set of literals. We denote the
set of classes byT = URI × Name, comprising a unique URI and a class name. Furthermore, we can
distinguish classes into

• concepts (denoted byC ⊂ T ) as classes for which extensions are available in the data sources,

• categories (denoted asV ⊂ T ,V ∩ C = ∅), which represent abstract property values and are used
for semantic grouping of objects, but have no extensions.

With concepts we can associate propertiesP with P = Name× C × {T ∪ L}, consisting of an iden-
tifier, the concept to which the property is associated, as well as a class as instance domain or a literal.
Moreover, we introduce a specialization relationshipis a ⊆ T × T representing thesubClassOfre-
lationship where it holds for two conceptsc1, c2 ∈ C ⊂ T : If c2 is a c1 (c2 is derived fromc1)
then∀(p, c1, x) ∈ P : ∃(p, c2, x) ∈ P. In addition, we assume disjunct hierarchies for concepts and
categories.

The data model of our approach is defined following the semistructured model OEM [GMPQ+97].
Let beO = ID × Name× {L ∪ ID ∪ PID} the set of all objects, where(id, name, v) ∈ O consists
of a unique object identifierid, an element namenameand a valuev. Here,v can represent an atomic
value, an object identifier (representing an object reference), or a set of object identifiers. The extension
ext : C → O of a certain conceptc = (uri, name) comprises a set of instances with an element name
equal to the concept name and a set of identifiersv corresponding to the properties defined for the
concept:

ext(c) = {o = (id, elem, v) | elem= c.name∧ ∀(p, c, c′) ∈ P : ∃i ∈ v : i.elem= p}



Note, that this data model is used mainly internally and for exchanging data and queries between the
sources and the mediator. The global query formulation is based completely on the concept model.

2.2 Concept Mapping

An important part of the mediator model is the specification of the mapping to the local schemas of
the sources, i.e. the description how a source provides data for a given concept and how the structure
of the concept (the set of properties) is mapped to local properties. Here, we(i) describe concepts and
properties independently according to the RDFS paradigm, and(ii) follow the LAV approach, i.e., a
source schema is defined as a view on the global (concept) schema.

Based on this, both a concept and a property mapping description are needed, which are represented
by RDFS classes, too. An instance of the concept mapping class specifies, how the associated concept
is supported by the data source. Here, “supporting a concept” means a source provides a subset of the
extension of the given concept. In this context, we can distinguish two cases:

(a) the data source provides objects containing all properties defined by the global concept,

(b) the data source provides only partial information, i.e., the instances should be completed by trying
to retrieve the missing property values from other sources supporting the same concept but possibly
with other complementary properties.

For both cases the concept mapping classCM formally consists of the components source name, local
element name, and optionally a filtering predicate:CM = (Source, LName, FilterPredicate). Using the
source name, the source can be identified when instances of the associated concept are to be retrieved.
The local element name denotes the XML element used in the source for representing the instances of
this concept. In addition, the filtering predicate in the form of an XPath expression allows to further
restrict the instance set. This could be necessary if in a source several concepts are mapped to the same
extension (i.e., to the same XML element), but with a distinguishable property value (e.g.,type =
’Painting’ ).

The property mappingPM defines the mapping between the property of a concept and an XML
element or XML attribute of source data. It consists of the source name and an XPath addressing the
representing element:PM = (Source, PathToElement).

For a category we assume that it is represented in a data source only by a simple literal. Therefore,
a property defined with a category as domain may have in a given data source only the corresponding
literal value or the values corresponding to the sub-categories. Such a mapping is specified by a value
mappingVM consisting of the source name and the source-specific literal:VM = (Source, Literal).

Using these several mappings the elements of the concept schema are annotated. To each con-
cept supported by a given source, the appropriate concept mappings as well as the property and value
mappings are associated. Due to the usage of specialization relationships between concepts, it is not
necessary to annotate every concept. Instead mappings are given only for concepts which represent leafs
of the hierarchy with regard to the source (Fig. 2).

This example also shows, that a source has not to provide complete data in terms of the concept
definition. If one source does not support all elements referenced in a query, the mediator tries to
supplement this data using data from another source by applying an outer union operation. The potential
sources can be identified with the help of the property mapping information. If no appropriate source is
found, the missing data cannot be retrieved and the global object remains incomplete, i.e., the returned
XML element contains not all sub-elements as required by the concept definition.
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Figure 2: Mapping Information in the Concept Hierarchy

Using the mapping specifications for each source we are able to resolve description conflicts (nam-
ing conflicts of elements), structural conflicts as well as data conflicts. However, the latter is supported
only for categories because in this case a mapping between values is performed. The necessary trans-
formations are performed as part of the query rewriting using the mapping information and during the
processing of results by applying source-specific XSLT rules. These XSLT rules can be automatically
derived using the following rules.

(1) For a concept mapping to conceptc defining a local elementlelem , the following XSLT template
is generated:

<xsl:template match="lelem">
<c> <xsl:apply-templates /> </ c>

</xsl:template>

(2) For a property mapping to propertyp specifying a pathelem1/elem2/elem3 , a corresponding
XSLT template of the following form is derived:

<xsl:template match="elem1">
<p> <xsl:value-of select="elem2/elem3" /> </ p>

</xsl:template>

(3) For a propertyp with a domain consisting of the hierarchy of categoriesk1, k2, . . . , km with associ-
ated value mappingsVM1, . . . ,VMm specifying the literalsv1, . . . vm, the following XSLT template
for the property mapping is created:



<xsl:template match="elem1">
<p> <xsl:choose>

<xsl:when test="elem2/elem3 = ’ v1’">
<xsl:text> k1</xsl:text>

</xsl:when>
<xsl:when test="elem2/elem3 = ’ v2’">

<xsl:text> k2</xsl:text>
</xsl:when>
...

</xsl:choose> </ p>
</xsl:template>

During the registration of a source the mappings for the supported concepts, their properties and cate-
gories are specified by the administrator. Based on this, the source-specific XSLT rules can be derived
automatically.

3 The CQuery Language

The data integration model introduced in the previous section leads to the following two issues with
respect to planning and executing queries:

• Operations are required which are applicable both to concept level as well as to data level and
allow a transition between these levels.

• A global query has to be rewritten and decomposed using the mapping descriptions in a way that
allows to identify the sources providing data to the queried concepts and to process the sub-queries
autonomously by the appropriate source system.

In the following we first present the language by explaining some example queries and describe the
operators and the steps of query processing afterwards.

3.1 CQuery by Example

For formulating queries using this model the query language CQuery – a derivative of XQuery – is
provided. The main features of this language are essentially at semantic level, for the syntax the FLWR
notation from XQuery is used. A query in CQuery consists of the following components:(i) selection
of concepts satisfying a certain condition or by applying operations such as traversing relationships or
set operations,(ii) obtaining and filtering data as instances of the previously chosen concepts, and(iii)
combining and projecting the results. Thus, a typical query looks as follows:



Q1 : FOR $c IN concept[name=’painting’]
LET $e := extension($c)
WHERE$e/artist = ’van Gogh’
RETURN

<picture>
<title>$e/title</title>
<artist name>$e/artist</artist name>

</picture>

This query returns an XML document consisting ofpicture elements built from the title and artist
name of paintings created by Vincent van Gogh. The meanings of the clauses are as follows. In the
FORclause the concepts are chosen. The pseudo-elementconcept is interpreted as document tree
containing all defined concepts, where the concept properties are sub-elements of their concept. In this
way, the language mechanisms from XQuery can be used to query the concept level as well. Thus,
dedicated language extensions as proposed for example in the context of RDF query languages are
not necessary. Beside selections on concept properties the supported operations include among others
set operations likeUNION, EXCEPT, andINTERSECTbetween sets of concepts as well as traversing
concept relationships. Relationships are handled as elements, too. Therefore, the following expression

concept[name=’fine arts’]/!subClassOf

returns for the concept schema from Fig.1 the set of all concepts derived directly from the concept “fine
arts”. The prefix “!” denotes the inverse relationship tosubClassOf (not explicitly named here). In
contrast, the suffix “+” specifies the computation of the transitive closure regarding this relationship. For
example, the expression

concept[name=’fine arts’]/!subClassOf+

would return the set of all concepts directly or indirectly derived from “fine arts”. Because
!subClassOf+ is often used in queries for finding all concepts derived from a given concept, there is
the shorthand “* for this operation. This means that for the query containingconcept[name=’fine
arts’]/* not only the sources are chosen supporting exactly the concept “fine arts” but all sources
representing concepts derived from this.

With theLET clause the transition from the concept level to the instance level is specified. For this
purpose, the predefined functionextension() can be used, which returns the extension of a given
concept, i.e. the set of all instances of the supporting sources. Because theFORclause represents an
iteration over the concept set, the function is applied to each single concept using the concept variable.
The result set – a set of instances which is again bound to a variable – can be further filtered by the
condition specified as part of the optionalWHEREclause. Here, components of elements (i.e., sub-
elements in terms of XML) are addressed by path expressions, too. Thus,$e/artist in queryQ1

denotes the value of propertyartist of the object currently bound to variable$e . If in the FORclause
more than one concept is assigned to the variable, the union of the several extension sets determined by
applyingextension() is computed. We call this operation in the followingextensional union.

Whereas operations in theFORclause are applied only to global meta-data at the mediator, the
evaluation of theextension() function as well as of the filtering conditions in theWHEREclause
require access to the source systems. Thus, theextension() function initiates the query processing
in the source system – eventually combined with the filter condition as part of the source query. A join



operation can be formulated by declaring more than one variable for extension sets in theLET clause
and by specifying an appropriate condition in theWHEREpart:

Q2 : FOR $c1 IN concept[name=’sculpture’]/*,
$c2 IN concept[name=’collection’]

LET $e1 := extension($c1), $e2 := extension($c2)
WHERE$e1/exhibition = $e2/museum
RETURN

<sculpture>
<title>$c1/name</title>
<museum>$e2/name</museum>
<location>$e2/city</location>

</sculpture>

The different extensions can be obtained from the same or different concept variables. The first case
corresponds to a self join, the latter one represents an ordinary join. For example, the above query
returns a set of elements describing sculptures together with information about the location where they
are exhibited. Depending on the concept mapping, this information could be obtained from different
sources.

TheLET part of a query allows not only to obtain the extension of a concept. In addition, queries
on properties can be formulated by using the pseudo-elementproperty as a child node of a concept
referring to the set of all properties of the given concept. If the obtained properties are bound to a
variable, this variable can be used for instance selection.

Q3 : FOR $c IN concept[name=’painting’]/*
LET $e := extension($c), $p := $c/properties
WHERE$e/$p = ’flowers’

...

This corresponds to a disjunctive query including all properties. In this way, we support schema opera-
tions, i.e. operations on meta-data or more exactly on properties. Such operations are particularly useful
in query languages for heterogeneous databases in order to resolve structural conflicts.

In a similar manner one can refer to a category associated with a property. This is achieved in the
LET clause by assigning a path expression containing this property to a variable. Then, this variable
holds a set of categories and can be used in theWHEREclause instead of a concrete value:

Q4 : FOR $c IN concept[name=’painting’]/*
LET $e := extension($c),

$k := $c/portrays[name=’still life’]
WHERE$e/portrays = $k

...

In this query the set of categories for “still life” and the specializations of this is bound to the variable$k .
During query rewriting the occurrence of$k in theWHEREclause is substituted by the source-specific
value for “still life” or – in the case of more than one category – by a disjunctive condition consisting of
all translated category values.

Finally, theRETURNclause has the same meaning as in XQuery: it allows to restructure the query
result according a given XML document structure, where the result elements (i.e., the concepts and their
instances) are referenced by the variables.



3.2 Query Processing

The semantics of the operations of the CQuery language can be easily defined based on an extended
query algebra. Using the definitions of the concept and data model from Section 2 two kinds of operators
have to be considered following operators from the relational algebra. The operators for the concept level
include the selectionΣCond, the set operators∪, ∩, − and the path traversalΦP , which returns for the
concept of the setC all concepts referenced using the relationshipp:

Φp(C) = {c′ | ∃c ∈ C : (p, c, c′) ∈ P}

The operation for traversing the inverse relationship can be formulated as follows:

Φp(C) = {c′ | ∃c ∈ C : (p, c′, c) ∈ P}

Furthermore, we introduce the operationΦ+
p returning the transitive closure of a concept (or concept set

respectively) regarding a given relationshipp:

Φ+
p (C) = {c′ | ∃cs ∈ C : (p, cs, c

′) ∈ P ∨ ∃ci ∈ Φ+
p ({cs}) : (p, ci, c

′) ∈ P}

For the data level, the standard algebra operations selection (σ), projection (π) and Cartesian product
(×) are provided.

Now, a query formulated in CQuery can be translated into an algebra expression consisting of the
above introduced operators using the following rules:

1. The clauseFOR$c IN concept[ Cond] is translated into an expressionΦ+
is a

(ΣCond(C)),
whereis a means the inverse relationship forc2 is a c1.

2. Traversal operations likeconcept[ Cond]/ prop 1/.../ prop n are translated into
Φ+

is a
(Φpropn

(. . .Φprop1(ΣCond(C))).

3. Set expressions such asconcept[ Cond1] UNIONconcept[ Cond2] are translated into:

Φ+
is a

(ΣCond1(C)) ∪ Φ+
is a

(ΣCond2(C))

4. The expressionLET $e := extension($c) WHERECond is translated by employing the
expressionCExpr as the translation of the expression bound to the variable$c in the following
expression:

⊎
c∈CExpr

σCond(ext(c))

Here,
⊎

means an outer union. This operation permits to combine partially overlapping data
sources even with only a partial union compatibility. For this purpose, we assume that the at-
tributes common to all participating sources act as identifying keys. As the consequence, a tuple,
that occurs in every input relation with its key value, appears only one time in the result set (as a
combination of the individual source tuples). Otherwise the missing elements are omitted.

5. If more than one variable is declared in aLET clause for extensions and/or category and property
sets, these sets are combined by applying the Cartesian product.



6. The RETURNclause is translated into a projection expressionπ that may contain XML tags,
literals and path expression referring to attributes.

By applying these rules the following example query
Q5 : FOR $c IN concept[name=’painting’]/*

LET $e := extension($c)
WHERE$e/artist = ’van Gogh’
RETURN

<painting>
<title>$e/title</title>
<artist>$e/artist</artist>

</painting>

is translated into the following expression whereProj stands for the projection expression fromQ5:⊎
c∈Φ+

is a
(Σname=’painting’(C))

πProj(σartist=’van Gogh’(ext(c)))

Translating a query formulated in CQuery into the internal algebra representation is also the preparation
step for the query processing illustrated in Fig. 3. This algorithm processes basic query expressions
on concepts sets and their associated extensions. Hence, queries involving Cartesian products or joins
have to be decomposed in advance in order to process them using this algorithm. Furthermore, this step
includes simple algebraic optimizations such as push-down of selections as well as substituting accesses
to schema operations (as in queryQ3) by disjunctive conditions and substituting category variables by
the corresponding value set (see queryQ4).

The first step in the processing algorithm is the evaluation of the concept level operators. For each
of the selected concepts we try to answer the query expressionIExpr referring to the extensions of the
concepts by determining the relevant concept mappings and in this way the sources which have to be
queried. Next, we try to answer the sub-query for each source from the cache (see Section 4). If this fails,
the query is translated and sent to the source. However, due to possible overlapping between different
concepts of one source we have to eliminate redundant concepts. This is performed using the function
cmin(C, s), which returns for a given sources and a set of conceptsC the minimal subset of concepts
based on the following heuristics.

Elimination. Considering concept hierarchies as class hierarchies with extensional relationships we
could omit the query for obtaining the extension ofc2 if c2 is a c1 because ofext(c2) ⊆ ext(c1).
However, in our scenario concept hierarchies are not the result of schema integration and extensional
analysis. Hence, the above assumption does not hold in every case but only if both concepts are supported
by the same source and are mapped to the same class. This can be checked using the concept mapping
CM(c): c2 is a c1 ∧ CM(c1).LName = CM(c2).LName∧ CM(c1).Source = CM(c2).Source⇒
ext(c2) ⊆ ext(c1). In this case, we can eliminate the sub-query forc2.

Merging. Sub-queries on concepts from parallel branches of a concept hierarchy that refer to the
same source can be merged if they correspond to the same class, i.e., if it holdsCM(c1).LName =
CM(c2).LName. In this case the possibly specified filtering conditions from the concept mappings have
to be connected disjunctively.



Input :
query expression in the form of

⊎
c∈CExpr IExpr(c)

result setR := {}
compute concept setC := CExpr
forall c ∈ C do

/* derive source query */
determine all propertiesp1(i = 1 . . . n) and categorieskj(j = 1 . . .m) referenced inIExpr
forall CMs associated withc do

s :=CMs(c).Source
/* consider only non-redundant concepts */
if c ∈ cmin(C, s) then

/* look for the query in the cache→ result is denoted byRc */
Rc := cache-lookup(IExpr(c), CMs(c))
if Rc 6= {} then

/* found cache entry */
R := R

⊎
Rc

else
/* construct a query for each supporting source */
TranslateIExpr(c) according toCMs(c), PMs(pi), andVMs(kj)

into a source queryQ
processQ at sourceCMs(c).Source; result is denoted byRQ

R := R
⊎

RQ

fi
fi

od
od

Figure 3: Steps of Query Processing

In the next step the remaining sub-queries are translated into source queries on the basis of the
mappings. Here, the concept mapping provides the local element name, the property mappings provide
the associated attribute or child element names and the value mappings are used to map the categories to
source-specific values. So for example, a query expression of the formσPθv(ext(c)) is translated using
the mappingsCM(c) andPM(p) into the following XPath expression:

/〈CM(c).LName〉[〈PM(p).PathToElement〉 θ v]

As shown in this example, source queries are only simple selections on local extension that can be
answered even by non-DBMS based sources. Thus, more advanced operations like union or join are
computed only at the global mediator level. Delegating these operations to the source systems would
require to take into account the source capabilities as described e.g. in [RS97] but this is not considered
here.



fine arts

graphicspainting drawing

www.artcatalog.com
painting

www.lostart.de
art_object
type=’M’

artist=‘Vincent
van Gogh’

artist=‘Vincent
van Gogh’

......

......
......
......

......

......

Xindice
Cache

Figure 4: Overview of the YACOB caching approach

4 Caching of Query Results

The virtual integration of data sources described here implies extensive requirements regarding the effi-
ciency of query processing. This results mainly from the fact, that sources are assumed to be connected
via low bandwidth connections. Furthermore, the YACOB system was designed to be used in scenarios
with interactive query formulation and refinement supported by according user interfaces as described
later on in Section 5. Hence, two major concerns during the design of the system were to present query
results to the user as quickly as possible, and to minimize the amount of redundant and irrelevant queries
sent to the source systems. To address these issues a semantic caching strategy which is tightly coupled
with the overall concept-based approach was developed. Roughly sketched, in our approach partial re-
sults provided by sources are stored along with a partial source query in a local XML database, capable
of answering XPath queries for looking up cache entries or answering refined queries from the cache.

While caching in general is used to improve performance related to a number of communication and
I/O-problems, the main intention of this strategy is to support interactive query refinement. If applicable,
previous query results stored locally should be used either directly or to answer the query if additional
restrictions were specified. Otherwise, the source systems would have to be queried during each new
refinement iteration, resulting in a high number of redundant queries. Therefore, we consider the fol-
lowing typical aspects of query formulation.
Query restriction by removing queried concepts:this is for instance the case, if during query refinement
the focus moves down a specialization hierarchy or queried concepts are removed explicitly using the
EXCEPToperator on the set of queried concepts.
Query restriction by conjunctively adding predicates:to further reduce the size of a result set the selec-
tion condition can be narrowed by adding additional criteria.
Query expansion by adding queried concepts:by moving up a specialization hierarchy or explicitly
adding concepts for a join or union, the set of concepts to be queried grows.
Query expansion by disjunctively adding predicates:this is the case, if, in addition to a specified selec-
tion criterion, an alternative selection is added to the previous result.
The two scenarios of adding or removing concepts conform to the result of a modifiedFORclause.
These are addressed simply by providing a caching mechanism below the concept level as shown in
Fig. 4. Actually, there is a cache space for each concept mapping, i.e. for each concept provided by



a source, allowing additional result accuracy in case of connection problems. This way, during query
decomposition relevant cache spaces are determined automatically and the cache processing can be
moved to the level of answering the selection part according to theWHEREclause.

As outlined in Section 3.2 the selection consists only of logically combined predicates. Furthermore,
the expression is transformed to disjunctive normal form, so a cache entry consists of(i) a header de-
scribing the query in form of a set of predicates and some additional information for cache maintenance,
and(ii) the cached result already transformed according to the global DTD. An example cache entry is:

<entry date="11/22/2002" time="6:30:05">
<predicate>artist=Vincent van Gogh</predicate>
<predicate>technique=Watercolor</predicate>
<result>

<painting technique=’Watercolor’</painting>
<artist>Vincent van Gogh</artist>
<title>Drawbridge in Nieuw-Amsterdam</title>
<technique>Watercolor</technique>
...

</painting>
...

</result>
</entry>

Input :
concept mappingCMs(c)
query expressionIExpr(c)
result setR := {}

cache-lookup(IExpr(c), CMs(c))
DNF := disjunctive-normal-form(IExpr(c))
connect to cacheCC for concept mappingCMs(c)
forall conj∈ DNF do

create cache entry queryQCC from 2conj− {}
performQCC onCC; candidate set isRCC

if RCC 6= {} then
/* partial query can be answered from the cache */
evaluateconjoverRCC ; result isRconj

removeconj from IExpr(c)
R := R ∪Rconj

fi
od

Figure 5: Cache evaluation during query processing

According to this cache entry format the cache is evaluated as shown in the algorithm in Fig. 5. The
selection expression is transformed to disjunctive normal form, so we can consider the partial query a set



of conjunctively combined predicates. The predicates are transformed to a trimmed string representation
and used for looking up according cache entry candidates via XPath queries. Currently only predicate
equality for attribute selections of the formattribute=’value’ is considered, i.e. there is no check for se-
mantic containment on the predicate level. An example for the latter would beyear> 1970is contained
in year> 1956. The approach could be extended to support this, but for the current application scenario
and the focus on interactive query refinement the implemented algorithm is sufficient.

Using the set of predicates we can decide if the result of the partial query is in the cache or can be
answered from the cache. If the set is equal to a set of predicates described in a cache entry header,
the corresponding previous result is returned. If the new predicate set is a superset of the predicates
described in a cache entry, the cached result is a superset of the sought result and the query can be
answered from this cache entry. The lookup of cache entries works as follows: all possible non-empty
subset combinations are created and combined in a disjunctive XPath query, e.g. when trying to find
a van Gogh painting of the drawbridge from the cache entry example, the corresponding cache lookup
query is as follows:

/entry[count(predicate)=1 and
predicate=’artist=Vincent van Gogh’]/result/* |

/entry[count(predicate)=1 and
predicate=’title=Drawbridge in Nieuw-Amsterdam’]/result/* |

/entry[count(predicate)=2 and
predicate=’artist=Vincent van Gogh’ and
predicate=’title=Drawbridge in Nieuw-Amsterdam’]/result/*

This way it is guaranteed, that only cache entries suitable for answering the query are returned. In a
second step, the full input query is evaluated over the returned result from step one. This is necessary,
because additional predicates may be specified in the current query. As the partial query is answered
from the cache, the conjunct can be removed from the query expression for further processing. If the
result from step one was empty, the query has to be answered by the source. Otherwise, the result of
step two is combined with results of all partial queries and returned as the partial result for the current
source.

The cache entries are physically stored using Xindice, a native XML database capable of perform-
ing XPath queries over document collections. According to the previous descriptions a collection is
maintained for each concept mapping registered with the YACOB system. Every result processed by the
system is moved to the cache after applying the transformation and adding the cache entry header infor-
mation including the current timestamp. Entries are removed automatically when the difference between
the timestamp and the current time exceeds a fixed multiple of the average session time. This cleaning
task is implemented using XMLObjects, a server-side extensibility feature of the Xindice server.

5 User interface and Search Strategies

One application domain of our approach is the integration of different databases on cultural assets (“lost
art”). The users in this domain are mainly historians, lawyers or people looking for lost art. It is not
acceptable for them to write a CQuery statement to get the required information. Thus, a graphical user
interface has to be provided. Here, we can distinguish two main approaches of search interfaces:(i)
concept navigating and browsing and(ii) keyword-based search.



The first approach, browsing the concept model, allows the user to refine her search by navigating
in the concept and the category hierarchies. The system provides for each step the first results to give
the user a first impression of the possible results. As most operations are a refinement of the previous
query, the cache structures as described in Section 4 can be used extensively. The keyword-based search
is the second way of searching the integrated data. In this case the user provides a set of keywords
which is mapped to a CQuery by the system. In this paper we only describe the exact match case in the
keyword-based search. The inexact keyword-based search requires several extensions which are out of
the focus of this paper. Furthermore, it is possible to combine the keyword-based search and browsing
approach. Here, the user starts with one of the both approaches and then refines the results by using a
second approach. So, the advantages of both search strategies can be utilized.

5.1 Steps of the Keyword-Based Search

The problem of the keyword-based search is the formulation of an efficient CQuery statement. The user-
given keywords correspond to the meta level consisting of concepts and categories as well as to the data
level. This circumstance has to be reflected in the resulting CQuery query. A naive way to implement
the keyword-based search is the following CQuery statement:

Q6 : FOR $c IN concept[name=’Cultural Asset’]
LET $e := extension($c), $p := $c/properties
WHERE$e/$p = ’ keyword1 ’ OR $e/$p = ’ keyword2 ’ OR ...
RETURN

...

This approach has two major disadvantages. First, queryQ6 evaluates over all concepts, all proper-
ties and all sources denying the system optimization opportunities. Second, the query does not use the
meta level, but rather applies all keywords to the data level. Possible interesting facts cannot be found
by the query. Following, we propose a more efficient way of creating a CQuery statement from a set of
keywords by using a preprocessing step and a keyword index structure.

A keyword corresponds either to a concept name, a category name or a data value. Input of the
keyword-based search is a set of keywordsKW ⊆ NameC ∪ NameV ∪ DValueswith NameC ⊂ Name
the set of all names of concepts,NameV ⊂ Namethe set of all names of categories andDValuesthe
set of data values in the sources. Furthermore, we assume for the next discussion following rules:
NameC ∩ NameV = ∅, NameC ∩ DValues= ∅ andNameV ∩ DValues= ∅.

As keywords belong to different groups the first task of the preprocessing is the classification of the
keywords in the groups concept, category and data value. The membership to the first two groups can
be decided by using the global concept model and the meta level query capabilities of CQuery. These
classification steps correspond to theConceptFilter andCategoryFilter as depicted in Fig. 6.
The filter implementations are very efficient, because the model is stored on the global level in the
mediator. The result of theConceptFilter is a set of concepts. A set of〈property, category〉 pairs
is the result of theCategoryFilter . TheCategoryFilter further adds concepts to the concept
set, which are corresponding to the found properties.

After passing the both filters the keyword set contains henceforth only data values. These keywords
can be applied to all properties of the selected concepts, which is still too inefficient. We further improve
the query execution by using akeyword index, which is the third step illustrated in Fig. 6. The keyword
index is similar to an inverted list index structure, but a list of〈property, concept〉 pairs are assigned to
a keyword instead of documents. Now, the system can find for a data value the place where it is stored



logically in the concept model. The result of theDataValueFilter is a set of〈property, data value〉
pairs. The filter further adds the found concepts to the concept set.

Keyword set

ConceptFilter

CategoryFilter

Remaining keywords

CQuery

<Property,DataValue>
Pairs

Pairs
<Property,Category>

Concepts

DataValueFilter

User

ResultSet

Figure 6: Keyword-based search: components and process

The index is not built complete in advance, because of the data origins from different sources. During
the query processing the systems builds the index iteratively using the current query results. As the index
is complete, it is possible that keywords are not found. These keywords are assigned to all properties of
the already selected concepts. Unfortunately, the query statement can degenerate to the naive statement
described in the beginning.

Finally, the system creates a CQuery statement and executes it. The query comprises the union of
the most specialized concepts, i.e. all concepts that do not have a subclass specified in the concept set,
the computation of the extension as well as of the categories, and a selection in theWHEREclause. The
system presents the result as well as the selected concepts and categories to the user. Now, the user has
a starting point for a possible further research. The complete process is depicted in Fig. 6.

5.2 Structure and Update of the Keyword Index

To support the keyword-based search in the YACOB system, an entry of the keyword index has the
structure〈dv, p, c〉 with dv is a data value,p is a property of a conceptc in which dv occurs. Thus, the
position of a keyword is determined exactly on the global level. The index is implemented with help of
a relational database system. There are different ways of storing such an index in a relational database.
As the approach is similar to a inverted list we can use approaches of this area e.g. [MRYGM01].
Another approach is using index structures for keyword-based search in relational [ACD02, BHN+02,
HP02] or XML databases [FKM00]. For now, we assume that the index is implemented as one table
with the attributesdata value , property and concept . An index is created over the column
data value to allow efficient match and partial match query evaluation. Fig. 7 shows several example
entries.

As the data come from different heterogeneous, autonomous sources, the index is not built up in
advance. Rather, the index is created iteratively. Hereby, the index is updated periodically by using
information from the query cache. Thus, the query performance (speed and accuracy) is increasing by
using the system.



data value property concept

van Gogh artist drawing
van Gogh artist painting
van Gogh title books
. . . . . . . . .

Figure 7: Keyword index: Example entries

5.3 Keyword-Based Search Example

Summarizing the section, an example shall illustrate the different steps of the keyword-based search as
well as their results. Assume a user provides the keyword setkset = {painting, flowers, van Gogh},
the keywords will be processed as follows: First, theConceptFilter recognizes “painting” as
a concept name and adds the concept “painting” to the concept setC = {painting}. By apply-
ing the ConceptFilter the keyword “flowers” is identified as a category, which is attached to
the property “portrays”. Thus, a pair〈portrays, flowers〉 is appended to the property-category set
PV = {〈portrays, flowers〉}. Furthermore, the system adds the concept “fine arts” to the concept set:
C = {painting, fine arts}, because the property “portrays” is connected to the concept “fine arts”. Sub-
sequently, theDataValueFilter finds for keyword “van Gogh” the index entries as shown in Fig. 7
and adds to the property-keyword set following pairs:PK = {〈title, van Gogh〉, 〈artist, van Gogh〉}.
As property “title” is attached to concept “book” the concept set comprises the entriesC =
{painting, drawing, fine arts, book}. Finally, the system creates from the setsC, PV and PK the
CQuery statementQ7. Only the most specialized concepts are used for query composition. As “paint-
ing” is more specialized than “fine arts”, concept “fine arts” is removed from the concept set. The result
set of the query comprises all paintings by “van Gogh” as well as all books with “van Gogh” as title.

Q7 : FOR $c IN concept[name=’painting’] UNION
concept[name=’drawing’] UNION concept[name=’books’]
LET $e := extension($c), $k := $c/portrays[name=’flowers’]
WHERE$e/artist = ’van Gogh’ OR $e/portrays = $k OR

$e/title = ’van Gogh’
RETURN

<artist>$e/artist</artist>
<title>$e/title</title>

The keyword-based search is currently under development and is still to be evaluated for query speed
and accuracy. Furthermore, we plan to include the keyword-based search into the query processor to
allow a domain independent usage.

6 Architecture and Implementation

The YACOB mediator system has been implemented in Java using several available standard technolo-
gies. The XML data are processed with the help of JAXP (Java API for XML Processing) including
XML parsing and XSLT transformation. Accessing the source systems or the wrapper respectively is
implemented using Web Services. For managing and manipulating the RDFS based concept model we
use Jena – the Java API for RDF. This package provides an RDF parser, an access interface for RDF
data, a mechanism for storing RDF data in a relational database as well as the RDF query language



RDQL. The cache is implemented using the XML database system Xindice, the user interface consists
of several JSP pages.

Web Service Client

Data Access

Query Execution

Parser

Rewriter

Query Interface

Xindice

XSLT
Processor RDQL

Jena API

Query planning component

Concept management component

Access component

Transformation
component

Query execution
component

RDF-DB

Cache-DB

Web Service Web Service Web Service

SOAP/HTTP

Figure 8: Architecture of the Mediator System

In Fig. 8 the overall architecture is shown. The main components of the system are as follows. The
concept management component, which is based on the Jena API, manages the concepts, their proper-
ties and relationships as well as the information about the mapping to the source systems. Actually, this
component provides access to the RDF graph representing the concepts and mappings which is built
from a set of RDF files or database tables. Thequery planning componentconsists of the CQuery parser
and the modules for query rewriting, decomposition and translation. It implements the rewriting steps as
well the optimization heuristics described in Section 3.2. Thequery execution componentimplements
the query operators and controls the query execution. One of the main tasks of this module is to merge
the partial results from the sources by implementing the extensional union operator. In order to benefit
from the parallelism of multiple source queries each sub-query below the extensional union operator is
executed in a separate thread. Thetransformation componentconsisting primarily of the XSLT proces-
sor provided by JAXP is responsible for transforming the result data retrieved from the sources into a
structure according to the global schema. Thedata access componentprocesses XPath queries from the
execution component by forwarding them to the source systems via a Web Service or by answering them
using the mediator cache.

A special feature of the system is the tight coupling between query planning and execution. Because
we are able to identify the relevant sources and to translate the (sub-)queries only after the concept set
and the associated mappings are determined, first theFORpart of a query has to be evaluated. The
appropriate operators are implemented as part of the query execution component and access the RDF
data using the Jena API and the RDQL query language. Here, RDQL is used to implement concept-level
related plan operators, e.g. selecting concepts, traversing relationships and obtaining mappings for a



given concept. However, due to limitations of the current RDQL implementation, some plan operators
are implemented by directly accessing and navigating the RDF graph, such as the transitive closure
operator. The result of this step – a set of concepts - is returned to the query planner component for
determining the mapping information and based on this for decomposing and translating the sub-queries.
The final plan in the form of a directed graph of algebra operators is forwarded to the execution engine
that invokes the services of the data access component.

XML data that are returned as result of a source query are first transformed using the source-specific
XSLT rules into the global schema defined by the concept schema. The transformed data are then stored
in the cache and the corresponding mappings are updated. Simultaneously, the result data are further
processed by the global query operators according to the plan.

The access to the source systems or eventually required wrappers is implemented using Web Ser-
vices. This means, each participating source system – or at least the associated wrapper – has to support
a simple query service processing an XPath expression and returning an XML document. At the me-
diator this is implemented using the Java API for XML Messaging (JAXM) that allows to create and
process SOAP messages.

7 Related Work

The work related to our approach has been done mainly in the areas of information integration / mediator
systems and as part of the efforts towards the Semantic Web.

Over the last years, systems based on the mediator-wrapper-architecture proposed by Wiederhold
[Wie92] have been accepted as a viable approach for integrating heterogeneous semistructured data
sources in the Web. The most prominent approaches are TSIMMIS and Information Manifold. TSIM-
MIS [GMPQ+97] is based on the semistructured data model OEM and uses the logic-based language
MSL for defining global views and formulating queries. In contrast to this Global-as-View approach,
Information Manifold [LRO96] follows a Local-as-View approach by defining the local schemas based
on a given global schema structure and content (i.e. the partition of the global relation). MIX [BGL+99]
– one of the successors of TSIMMIS – is an XML-based mediator, i.e. it uses XML for representing
instance and schema information and supports the query and view definition language XMAS which is
based on ideas from XML-QL and MSL.

In all these systems data integration is mainly achieved on a structural level. In contrast, approaches
of the semantic or ontology-based integration – such as our YACOB mediator – represent the domain
knowledge explicitly using semantic relationships or application-specific constraints and exploit this
information for query formulation and processing.

Another example of such a system is KIND [LGM01], where domain knowledge is represented
by so-called domain maps. A domain map is specified in the generic conceptual model GCM, that is
based on a subset of F-logics. It defines a set of classes (called concepts) as well as their relationships
modeled as binary relations. A new source is registered by associating the objects to the concepts of
the domain maps. Based on the registered source data one can define integrating views using a rule-
based mechanism and following the Global-as-View principle. In contrast to this, the YACOB mediator
supports a LAV approach and therefore allows to specify correspondences between the concept level and
a sources independently from other sources.

The semantic integration system SIMS [ACHK93] is based on the knowledge representation lan-
guage Loom. In this language a hierarchical terminological knowledge base representing the domain
model is specified. This model is used to describe the contents of the sources independently from each



other primary by specifyingis-a relationships between local and global concepts. In this way, a Local-
as-View approach is realized. Compared with SIMS the YACOB mediator does not require an explicit
modeling of source data. Instead they are associated with the concepts of the domain model using
mapping information. Furthermore, due to the usage of XML technologies we can natively integrate
XML/Web sources without wrapping them into knowledge bases.

The Context mediator presented in [GBMS99] also uses a domain model. However, in this case it
comprises a set of primitive and semantic types. Instances of semantic types may have different values
in different contexts, i.e. there can exist different assumptions in the sources about the interpretation of
the values. To each source context axioms can be associated, which specify the conversion of the local
values into the global domain model and can be used for query transformation purposes. The category
classes of the YACOB concept model are closely related to the semantic types from the Context mediator.
However, the axioms proposed there are replaced in YACOB by simple value mappings. Furthermore,
the usage of semantic types in the Context mediator addresses mainly the problem of attribute value
conflicts and not the problem of overcoming semantic heterogeneity as in our approach.

A system closely related to our approach is the XML mediator STYX [ABFS02], which also follows
the LAV principle and uses an ontology as integration model. Here, sources are described by XPath
expressions. The query language is similar to OQL with concepts corresponding to classes. The only
concept-level operation is the traversal of relationships. In contrast to this, our language supports more
powerful operations such as transitive closure and schema-level operations. These operations permit not
only to obtain properties of a given concept at runtime, but also to “compute” the set of concepts for
which data have to be retrieved from sources.

In recent years there have been several works on semantic caching, particularly in the context of
mediator systems. Here, caching is performed at data level by storing the query results together with
the queries instead of pages at the physical level [DFJ+96]. This technique is employed for example in
data integration scenarios [ASPS96] and in the World Wide Web [LC01]. In our approach we focus on
a seamless integration of semantic integration model and caching strategy.

The main concern of the efforts towards the Semantic Web is to improve the automated processing
of Web information by adding meta information describing the content, i.e. supporting interoperability
on a semantic level. In this context, ontologies representing a source for an exact specification of shared
concepts play a key role. Thus, most of the work is dedicated to ontology languages, e.g. DAML+OIL
[Hor02]. RDFS as used in our approach can be seen as a basic form of such an ontology language.
Particularly for RDF and RDFS several query languages were proposed, which consider special char-
acteristics of RDF descriptions in contrast to simple XML documents. This is addressed for example
by operations for accessing schema information, considering type hierarchies and constraints on classes
and properties. The most prominent examples of such languages are RQL [KCPA01], Squish, or RDQL
from the Jena toolkit that is used in our approach. A detailed survey on these languages is given in
[MKA +02]. However, RDF query languages focus only on the meta level and therefore can be only one
part of a concept-based query system as described in Section 6. Example usages of ontologies are among
others portals [MSS+02] and semantic search engines [DEFS99]. These kinds of systems are based on
annotations of the source data, e.g. by embedding meta data in the Web documents. With our approach
presented here, we try to employ these mechanisms for the virtual data integration in mediator systems.



8 Conclusion

Representing domain knowledge in terms of concepts and their relationships as semantic meta data for
mediators in conjunction with the Local-as-View approach can simplify the integration of new sources
as well as the query formulation. Based on this idea we have presented in this paper a query system
implementing a concept-based XML query language. Choosing RDF Schema as integration model, we
are able to use existing powerful tools for modeling and data exchange, e.g. Protegé as an ontology editor
and the Jena API for manipulating and querying RDF data. We have described in detail the process of
query rewriting and execution and discussed issues related to caching of data driven by the concept
model.

The application domain addressed by our work – integrating Internet databases containing informa-
tion about cultural assets such aswww.lostart.de– has turned out as a suitable scenario for semantic
integration. We were able not only to model application concepts and relationships in a way simplifying
the specification of mappings as well as the query formulation, but the concept model can be exploited
to guide the user through the hierarchy of concepts in order to formulate initial queries and refine them.
For this purpose a graphical Web interface has been developed addressing such a concept-driven combi-
nation of browsing and retrieval. Finally, the system is not restricted to this domain but can be applied
to all scenarios where a common set of concepts and relationships representing a semantic “anchor” can
be identified.
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