Semantic Caching in Ontology-based Mediator Systems

Marcel Karnstedt Kai-Uwe Sattler Ingolf Geist Hagendpfner
marcel@karnstedt.com {kudgeisthoepfnet @iti.cs.uni-magdeburg.de
University of Halle-Wittenberg University of Magdeburg

06099 Halle/Saale, Germany P.O. Box 4120, 39016 Magdeburg, Germany

Abstract: The integration of heterogenous web sources is still a big challenge. One
approach to deal with integration problems is the usage of domain knowledge in form
of vocabularies or ontologies during the integration (mapping of source data) as well
as during query processing. However, such an ontology-based mediator system still
have to overcome performance issues because of high communication costs to the
local sources. Therefore, a global cache can reduce the response time significantly.
In this work we describe the semantic cache of the ontology-based mediator system
YAcoB. In this approach the cache entries are organizeseyantic regionand the

cache itself is tightly coupled with the ontology on the concept level. Furthermore, the
cache-based query processing is shown as well as the advantages of the global concept
schema in the creation of complementary queries.

1 Introduction

Many autonomous, heterogeneous data sources exists in the Web on various topics. Pro-
viding an integrated view to the data of such sources is still big challenge. In this scenario
several problems arise because of autonomy and heterogeneity of the sources as well as
scalability and adaptability with regard to a great number of — possibly changing — data
sources. Approaches to overcome these issues are for instance metasearch engines, ma-
terialized approaches and mediator systems, which answer queries on a global schema
by decomposing them, forwarding the sub-queries to the source systems and combining
the results to a global answer. First generation mediators achieve integration mainly on

a structural level, i.e. data from different sources are combined based on structural cor-
respondences, e.g. the existence of common classes and attributes. Newer approaches of
mediators use semantic information, such as vocabularies, concepts hierarchies or ontolo-
gies to integrate different sources. In this paper, we use Alme¥ mediator system which

uses domain knowledge modeled as concepts as well as their properties and relationships.
The system supports the mapping of the data from the local sources to a global concept
schema. The semantic information are not only used to overcome the problems resulting
from heterogeneity and autonomy of the different sources but also during query processing
and optimization.

However, response times and scalability are still problems because of high communication
costs to the local sources. One approach to reduce the response times and improve the scal-

ability of the system is the introduction ofachewhich holds results of previous queries.
Thus, queries can be answered (partially) from the cache saving communication costs.
As page or tuple based cache organizations are not useful in distributed, heterogeneous
environments, the XCoB mediator supports semantic cachd.e., the cache entries are
identified by queries that generated them. This approach promises to be particularly useful
because of the typical behavior of the user during the search: starting with a first, relatively
inexact query the users want to get an overview of the contained objects. Subsequently,
the user iteratively refines the query by adding conjuncts or disjuncts to the original query.
Therefore, it is very likely that a cache contains a (partial) data set to answer the refined
query.

The contribution of this paper is the description of the caching component ofateg’
mediator. We discuss different possibilities of the organization of cache according to the
ontology model as well as the retrieval of matching cache entries based on a modified
guery containment determination. Furthermore, the paper shows the generation of com-
plementary queries using the global concept model as well as the efficient inclusion of the
cache into the query processing.

The remainder of the paper is structured as following: Section 2 gives a brief overview
of the YacoB mediator system and its data model and query processing. In Section 3 the
structure of the cache as well as replacement strategies and cache management with help
of semantic regions is described. The query processing based on the cache is discussed
in Section 4. After a comparison with the related work in Section 5 we conclude the
paper with some preliminary performance results and give an outlook to our future work

in Section 6.

2 The YAcoB Mediator System

The YacoB mediator is a system that uses explicitly modeled domain knowledge for in-
tegrating heterogeneous data from the Web. Domain knowledge is represented in terms of
concepts, properties and relationships. Here, concepts act as terminological anchors for the
integration beyond structural aspects. One of the scenarios whe@g¥s applicable and

for which it was originally developed is the (virtual) integrated access to Web databases on
cultural assets that where lost or stolen during World War II. Examples of such databases —
which are in fact integrated by our system — anew.lostart.de, www.herkomstgezocht.nl

and www.restitution-art.cz.

The overall architecture of the system is shown in Fig. 1. The sources are connected
via wrappers which process simple XPath query (e.g., by translating them according the
proprietary query interface of the source) and return the result as an XML document of an
arbitrary DTD.

The mediator accesses the wrappers using services from the access component which for-
wards XPath queries via SOAP to the wrappers. The wrappers work as Web services and
therefore can be placed at the mediator’s site, at the source’s site, or at a third place. An-
other part of the access component is the semantic cache which stores results of queries

User Interface
(Browsing, Querying)

)

Query planning component

Query execution

component Parser Concept management

component

Rewriter || | / RDF-DB
Jena API

RDQL
Query Execution 1

L) [

[2
H indi > Data Access [, XSLT
Xindice X ¢] Processor

Cache-DB)

(Inly

I

Web Service Client

/ | Transformation
Access component /SQAPQHTTP\‘ component

Web Service ‘ ‘ Web Service ‘ ‘ Web Service ‘

- -

Figure 1: Architecture of the AcoB mediator

|

b

in a local database and in this way allow to use it for answering subsequent queries. This
part of the system is subject of this paper and described in the following sections. Fur-
ther components are the concept management component providing services for storing
and retrieving metadata (concepts as well as their mapping) in terms of a RDF graph,
the query planning and execution component which processes global queries as well as
the transformation component responsible for transforming result data retrieved from the
sources according the global schema. Architecture and implementation of this system are
described in [SGHSO03]. Thus, we omit further details.

Exploiting domain knowledge in a data integration system requires ways for modeling this
knowledge and for relating concepts to source data. For this purpose, we use a two-level
model in our approach: thastance levetomprises the data managed by the sources and

is represented using XML, thmetadata or concept levelescribes the semantics of the
data and is based on RDF Schema (RDFS). Here, we provide

concepts which are classes in the sense of RDFS and for which extensions (set of
instances) are available in the sources,

properties (attributes) of concepts,

relationships which are modeled as properties, too,
e as well as categories which represent abstract property values used for semantic
grouping of objects.

These primitives are used for annotating local schemas,i.e., mappings between the global
concept level and the local schema are specified in a Local-as-View manner [SGHSO03].

In this way, a source supports a certain concept, if it provides a subset of the extension
(either with all properties or only with a subset). For each supporting concept, a source
mapping specified the local element and an optional filter restricting the instance set. Such
a mapping is used both for rewriting queries as well as transforming source data in the
transformation component.

Inthe YacoB mediator queries are formulate in CQuery — an extension of XQuery. CQuery
provides additional operators applicable to the concept level such as selecting concepts,
traversing relationships, computing the transitive closure etc. as well as for obtaining the
extension of a concept. Concept-level operators are processed always at the global medi-
ator level, whereas instance-level operators (filter, join, set operations) can be performed
both in the mediator as well as by the source. For a detailed description of CQuery we
refer again to [SGHS03, SGS03]. For the remainder of this paper, it is only important to
know that a global CQuery is rewritten and decomposed into several source queries in the
form of XPath expressions which can be delegated to the sources via the wrappers.

Because we are aware that for the average user of our application domain (historians,
lawyers etc.) CQuery is much too complex, we hide the query language behind a graphical
Web user interface combining browsing and structured querying. The browsing approach
implements a navigation along the relationships (eu$Class) and properties defined in

the concept level. The user can pick concepts and categories in order to refine the search.
In each step the defined properties are presented as input fields allowing to specify search
values for exact and fuzzy matching.

From the discussion of the architecture as well as the user interface the necessity of a cache
should be obviously:

e First, accessing sources over the Web and encapsulating sources using wrappers
(i.e. translating queries and extracting data from HTML pages) result in poor per-
formance compared to processing queries in a local DBMS.

e Second, a user interface paradigm involving browsing allows to refine queries. That
means, the user caestrict a query by removing queried concepts or by conjunc-
tively adding predicates and he/she @panda query by adding concepts or by
disjunctively adding predicates. In the first case, the restricted query could be com-
pletely answered from the cache (assuming the result of the initial query was already
added to the cache). In the latter case, at least portions of the query can be answered
from the cache and quickly presented to the user, but additional complementary
queries have to executed retrieving the remaining data from the sources.

Based on these observations, we will present in the following our caching approach that
uses concepts of the domain model as anchor points for cache items and exploits — to a
certain degree — domain knowledge for determining complementary queries.

3 Cache Management

The cache is designed to store result data, which is received as XML documents, and the
corresponding queries, which are the semantic description of those results. If a new query
arrives it has to be matched against the cached queries and possibly a (partial) result has
to be extracted from the cache’s physical storage (see Section 4).

In order to realize the assumed behavior a simple and effective way of storing XML data
persistently and fail-safe is needed. One way of storing is the usage of a native XML
database solution which is Apache’sNoICE in this work. The open source database
XINDICE stores XML documents into containers called collections. These collections are
organized hierarchically, comparable to the organization of folders in a file system. The
cache is placed below the ontology level, which means the cached entries are collected
regarding to the queried concepts. All entries corresponding to a concept are stored in
a collection named after that concept’'s name. The actual data is stored as it is received
from the sources in a sub-collection “results”, the describing data, namely the calculated
“ranges” (see Section 4), the query string decomposed to the single sub-goals and a ref-
erence to the corresponding result document, are stored in another sub-collection called
“entries” (Fig. 2(a)). During query matching the XML encoded entries are read from the
database and the match type for the currently handled query is determined. If an entry
matches, a part of or the whole result document is added to the global result data. If only
a part of the cached result is needed, i.e. if the two queries overlap in some way, the part
corresponding to the processed query has to be extracted. Here another advantage of using
a native XML database becomes apparentii{CE supports XPath as its query language.

In order to retrieve the required data we simply have to execute the current query against
the data of the entry.

An important decision is the level of caching: we can store query results either at concept
level or at source level. The difference is the form of the queries and corresponding re-
sult documents. Caching at concept level means caching queries formulated at the global
schema. The queries will be transformed according to the local source schemas after pro-
cessing them in the cache. The retrieved result documents stored to the cache are already
transformed back to the global schema, too.

Caching at source level is placed below of the transformation component. There are sep-
arate entries for each source, because the stored queries and results are formulated in the
specific schema of a source. An evident advantage of the source level cache is the finer
granularity of the cached items, e.g. enabling the detection of temporarily offline sources
by the cache manager. The main disadvantages — which are the benefits of using concept
level caching — are the increased management overhead because of the rising amount of
entries and a loss of performance at cache hit. Caching at concept level does not require
any transformations at cache hit: the result is returned immediately. Additionally, a query
matching making use of the global ontology, including a smart way of building a comple-
mentary query, is supported.

Fig. 2(b) shows a part of the global ontology together with an associated cache entry. This
entry is created by executing the following query and storing the result in the cache:

/IGraphics[Artist="van Gogh’ and Motif="People’]

Drawings

Paintings ‘ Graphics

‘ Xindice cache

Paintings Drawings Grap‘hics collection
PN 7/ N 7 AN

entries results

entries results

entries results (sub-)collection
subgoals n

Artist="van Gogh"
Motif="People"”
ranges

D

= ID
data.xml

data.xml

result reference

p
result reference

timestamp

Limcsmm¥

(a) Cache entry (b) Cache structure

Figure 2: Structure of the semantic cache

Using a storage strategy as described above, the cached data is grouped together into se-
mantically related sets callesgmantic regionsEvery cache entry represents one semantic
region, where the sub-goals of the predicate are conjunctive expressions. Disjunctive parts
of a query get an own entry. The containment of a query is decided between the cached
entries and every single conjunction of the disjunctive normal form of the query pred-
icate. The decision algorithm is explained in detail in Section 4. The regions have to
be disjoint, so each cached item is associated with exactly one semantic region. This
is useful for getting a maximum of cached data when processing a query, in contrast
other works let the regions overlap and avoid data redundancy using reference counters
([LC98, LC99, LCO1, KB96]). There arise certain problems and open questions if the re-
gions have to be disjoint and are forbidden to overlap. Different strategies are possible if

a processed query overlaps with a cached query, more exactly their result sets are overlap-
ping. In this case, the part of the result data already stored in the cache is extracted and a
corresponding complementary query is sent to the sources. The data received as result of
this query and the data found in cache form a large semantic region. Now, it have to be
decided whether keeping this region or splitting it or coalescing the separate parts in some
way. Because putting all data in one region will result in bad granularity and lead to stor-
age usage problems, the regions are stored separately. There are still some remaining ways
of how to split/coalesce the single parts, all effecting the query answering mechanism and
possible replacement strategies.

In our approach the data for the complementary query forms a new semantic region and is
inserted into the cache (inclusive the query representing the semantic description). Here,
the semantic region holding the cached part of the result data is unchanged. Another possi-
ble way is to collect cached data and send the original query instead of the complementary
query to the sources. The last approach is useful in the case, that matching all cached en-
tries to a processed query results in a complementary query which causes multiple source

gueries or which is simply not answerable at all, e.g. due to unsupported operations such
as “<>". Details of building a complementary query and related issues are described in
Section 4. In order to keep the semantic regions disjunct, it is important to store only that
part in the cache which corresponds to the complementary query created before.

Both ways guarantee that the semantic regions do not overlap, which is one of the formu-
lated constraints to the cache. Collecting the data in such disjoint regions allows a simple
replacement strategy: replacement on region level, i.e. if a region has to be replaced, its
complete represented data is deleted from the physical storage. This replacement strategy
requires the following cache characteristics: At first, the cached regions may not be too
large. On the one hand, replacing large regions means deleting a big part of the cached data
and results into inefficient storage usage. On the other hand, a large amount of relatively
small semantic regions leads to bad performance of the query processing. Small regions
may enable a replacement based on a much finer granularity, but the cost of query process-
ing will rise, because many regions have to be considered. Additionally, complementary
gueries will become very complex and last but not least because small regions mean long
guery strings that have to be combined when creating the complementary query.

Currently, our implemented replacement strategy is very simple. Timestamps referring to
the date of collection and last reference are kept enabling a replacement strategy based on
the age and referencing frequency of a cached entry. Entries are removed from the cache
together with the corresponding result data, if either its cache holding time expires or if
an entry has to be replaced in order to make room for a new entry. Other conceivable
strategies could make use of some kind of semantic distance (like inJfi¥6]) or other

locality aspects. The timestamp strategy is sufficient for thedB mediator system
because the main concern is to support an efficient interactive query refinement by the
cache. (Dis-)advantages of other strategies have to be the subject of future work.

4 Cache-based Query Answering

Cache lookup is an integral part of the query processing approach used imdwsY
mediator. Thus, we will sketch in the following first the overall process before describing
the cache lookup procedure.

In general, a query in CQuery consists of two kind of expressions: a concept level expres-
sion CExpr for computing a set of concepts, e.g. by specifying certain concepts, apply
filter, traversal or set operations and an instance level expreHsSigm(c) consisting of
operators such as selection which are applied to the extension of each comoept

puted withCExpr. The results of the evaluation tExpr(c) for eachc are combined by a
union operator, which we denote extensional urtipriThus, we can formulate a query as

follows: . cexpr IEXPI(c). For example, in the following query:

FOR $c IN concept[name="Paintings’]
LET $e := extension($c)
WHERESe/artist = 'van Gogh’
RETURN<picture>

<title>$eftitle</title>
<artist _name>3$e/artist</artist _name>
</picture>

CExprcorresponds to thEORclause andExpr corresponds to th&/HERElause.

If a query contains additional instance level operators involving more than one extension
(e.g. ajoin) these are applied afterwards but are not considered here because they are not
affected by the caching approach.

Based on this, a query is processed as follows. The first step is the evaluation of the concept
level expression. For each of the selected concept we try to answer the instance level
expression by first translating it into an XPath query and applying this to the extension.
Basically, this means to send the XPath query to the source system. However, using the
cache we can try to answer the query from the cache. For this purpose, the fuactien

lookup returns a (possibly partial) result set satisfying the query condition, i.e., if necessary
additional filter operations are applied to the stored cache entries, as well as a (possibly
empty) complementary XPath query. In case of an non-empty complementary query or if
no cache entry was found, the XPath query is further processed by translating it according
to the concept mappinGM(c) and send this translated query to the corresponding source
s. Finally, the results of callingache-lookup and/orprocess-source-query are combined.

Input:
query expression in the form &f
result set® := {}

ceCExprIEXpr(C)

1 compute concept sét := CExpr

2 forall c € C'do

3 [* translate query into XPath */

4 q :=toXPath(IExpr(c))

5 /* ook for the queryg in the cache— result is denoted byR.,
6 g is returned as complementary query fpt/
7 R. := cache-lookup(q,q)

8 if R. # {} then

9 /* found cache entry */

10 R:=RWR.

11 q:=7q

12 fi

13 if ¢ # emptythen

14 qs :=translate-for-source(q, CM(c))

15 R, :=process-source-query(qs,)

16 R:=RWR;s

17 fi

18 od

Figure 3: Steps of Query Processing

Note that in this context complementary queries are derived at two points:

match type situation cached part of complementary
@,0) result data query
exact data to) andC identical C's data none
containing C containing@ Q on(C's data none
contained C contained i) C’s data QAN-C
overlapping data toC and(@ overlaps @ on(C’s data QN-C
disjoint C’s data is no part of result data none Q

Table 1: Possible match types between processed queand cached entrg’

e First, because a global query is decomposed into a set of single concept related
queries, complementary queries are derived implicitly. This means, if one wants to
retrieve in query; the extensiorext(c) of a concept with two sub-concepts; and
co Where it holdsext(c) = ext(c;) U ext(c2) andext(cy) is already stored in the
cache, two querieg, (for ext(c;)) andg, (for ext(cq)) have to be processed. How-
ever, because we can answerfrom the cache, only the complementary quesy
needs to be executed (i.g;, =), which is achieved by iterating over all concepts
of the setC' (line 2).

e Secondly, if the cache holds only a subsetxif ¢,) restricted by a certain predicate
p we have to determing; with —p during the cache lookup.

Because the first issue is handled as part of the query decomposition, we focus in the
following only on cache lookup.

We will use the example started in Section 3 to picture this step. Let us assume, we are in
a very early (almost starting) state of the cache, where the query

/IGraphics[Artist="van Gogh’ and Motif="People’]

is the only stored query referencing the resultditga.xml . Now, the new query has to
be processed:

/IGraphics[(Artist="van Gogh’ or Artist="Monet’) and Date="ca 1600’]

During the cache lookup every conjunction found in the disjunctive normal form of the
processed query is matched against each cache entry in no special order. As mentioned
in Section 3 the semantic regions do not overlap. Thus, independent from the order of
processing cache entries, all available parts of the result can be found in cache. In other
words, if an entry contains a part of the queried data no other one will contain this data,
e.g. if an exact match to the query exists, there will be no other containing match and the
exact match will be detected independent of any entries observed before. There are five
possible match types that may occur which are summarized in Thl. 1.

The match types are listed top down in the order of their quality. Obviously, the exact
match is the best one, because the query can be answered simply by returning the all data
of the entry. If no exact match can be found, a containing match would be the next best.

In this case, a superset of the needed data is cached and can be extracted by applying the
processed quer§) to the cached documents. The cases of contained and disjoint match
type require to process a complementary query. Only a portion of the required data is
stored and the complementary query retrieves the remaining part from the source.

Considering our example the disjunctive normal form of the new query is:

/IGraphics[(Artist="van Gogh’ and Date="ca 1600’)
or (Artist="Monet’ and Date='ca 1600’)]

The two parts in brackets are the conjunctions we have to handle separately during the
cache lookup.

The algorithm in Fig. 4 displays the procedure of cache lookup in pseudo code.

The match type between the processed and the cached query is determined by calling
the procedurenatch-type (line 10). This procedure implements a solution to the query
containment problem and is discussed later in this section.

Running over all cached entries we only have to match the query remaining from the
step before instead of having to match the original query again each time. This reflects a
part of the result data already been found. This data cannot occur in the semantic regions
described by other entries and is not needed to retrieved from the sources. In cases of exact
and containing matches there will no query remain, because all of the data can be found
in the cache and therefore the cache lookup is finished (lines 13 to 18). In all other cases,
we still have to match against the remaining entries. If we encounter a disjoint match,
the currently checked conjunction has to be matched against the next entry (line 12). In
contrast, if a part of the result data is found, only the complementary query is to process
further on. In order to avoid checks of conjunctions created during the generation of the
complementary query, we first collect them separately (lines 21 and 25) and add them to
the set of later checked conjunctions (line 29). The query remaining after checking all
(possibly new created) conjunctions against all entries is buijt ({iine 32). Here, the
operation '+’ denotes a concatenation of the existing qgeapd all conjunctions ilC'C'

by a logical OR. If all entries belonging to the queried concept are checked, a possibly
remaining query have to be used to fetch data which could not be found in the cache. The
procedure returns a set of all collected references to parts of the result stored in cache as
well as the complementary query (34). This query is sent to the sources and — in parallel —
the cached data are extracted from physical storage.

In the simple example introduced above only one cache entry is created which we have to
check for a match. Here, we get an overlapping match between the cached query and the
first of the two conjunctions. Thus, the complementary query looks as follows:

/IGraphics[Artist="van Gogh’ and Date='ca 1600’ and Motif != 'People’]

This expression is added to the global complementary query, because no further entry is
left that we could check and therefore, we cannot find any further parts of the result data in
cache. Comparing the second query conjunction we receive a disjoint match, because the
guery predicates together are unsatisfiable in the attrfutigt . After checking against

all existing entries this conjunction becomes part of the complementary query unchanged.
The final complementary query is:

10

Input:
Querygq

Output:
result setR := {}
complementary query :="

1 ¢’ = disjunctive-normal-form(q);

2 E = get-cache-entries (get-concept(q));

5 forall conjunctionConjof ¢’ do

6 CC ={Conj}; [* current conjunctions (still to check) */
7 forall cache entryC' € E do

8 NC :=0; [* new conjunctions (to check) */
9 forall conjunctionsConj € CC do

10 M := match-type(Conyj, C);

11 switch (M) do

12 casedisjoint’: break;

13 case’exact’: R:=RUC — Data;

14 CC:=CC\ {Conj};

15 break;

16 case€’containing: R := R U Conj(C — Data);
17 CC:=CC\ {Conj};

18 break;

19 case'contained’: R:=RUC — Data;

20 CC:=CC\ {Conj};

21 NC :=NC U{(Conjf A=C)};
22 break;

23 case'overlapping: R :=RU Conj'(C — Data);
24 CC:=CC\ {Conf};

25 NC :=NC U{(Conj A -C)};
26 break;

27 od

28 od

29 CC:=CCUNC,

30 if CC = {} then break;

31 od

32 if CC # {}theng:=g+ CC,

33 od
34 return R, q;

Figure 4: Procedureache-lookup

/IGraphics[(Artist="van Gogh’ and Date="ca 1600’ and Motif != 'People’)
or (Artist="Monet’ and Date='ca 1600’)]

The cached part of the result data is extracted from the cache database by applying
/IGraphics[Artist="van Gogh’ and Date='ca 1600’]

to the result documemata.xml , which is done using the XPath query service provided
by XINDICE.

11

Match Type Determination. In order to determine the match type between processed
and cached query the problem of query containment has to be solved, symbolized in the
pseudo code by calling methadatch-type. We can restrict the general problem to a
containment on query predicates. In thecvs mediator all predicates are in a special
form: they are sets of sub-goals combined by logical OR and/or AND. The sub-goals are
only simple attribute/constant expressions, limitedXd ¢, where X is an attributec

is an constant anfl € {=,#,~=}. We do not have to forbid numerical constants and
the corresponding operations (it is easy to adapt the implemented containment algorithm
to numerical domains), but in fact there are currently only attributes defined on string
domains in M\coB. The algorithm is based on solutions to the problems of satisfiability
and implication. The NP-hardness of the general containment problem is not given here
because of the limitation that only constants may appear on the right side of an expression.
In all solutions to the problem found in literature the NP-hardness results from allowing
the!= operator together with comparisons between attributes defined on integer domains.
See [GSW96] for a good comparison.

The basic idea is to parse the query and to apply a range for every identified sub-goal. For
each attribute these ranges contain the values the attribute may contain. When determining
the containment between two queries it is done using the ranges created before.

A special treatment is required for CQuery’s text similarity operater’ which is mapped

to appropriate similarity operators of the source query interfaces suigle asor contains

In order to decide if a cached query matches the current query, we have to detect such
similarities between attribute values without knowing about how actual semantics of the
similarity operation in the source system. For solving this problem, we have chosen a
pragmatic approach: if a query uses the=" operator the result will include all similar
objects, e.g. queryingrtist ~='Gogh’ will return objects with Artist="v.

Gogh’, Artist="van Gogh, V., Artist="v. Gogh, V’ etc. If later a

new query filters an attribute value similar to the element stored in cache (in the given
example for instancArtist ~='van Gogh’') the cached results can be used.

We have implemented the handling of the similarity operator based on substrings. As-
suming two queries having only one condition in their predicates, one an attAlwité

A~= z and the other on the same attribute with= 3. Now, if the stringz is contained

in y as a substring, the cache entryfe= x contains all data data belongingAe-= y.
Otherwise, if the result foA~= y is cached and the query /8 ~= 2 we encounter a
contained match.

Complementary Query Construction. The construction of the complementary query

in cases of contained and overlapping match types has to be examined in a detailed way.
The objective is to create a new query which queries only the data not already found in
cache. If the processed queryiand the query of the cached entry(ighe new query is

g N —C'. This query is obtained by negating each sub-ggalf C' and combining it with
queryq by a logical AND. This results inta parts, where: is the number of sub-goals in

C, all OR-combined. So, the generated query will extract the data belonging to the result
of ¢ not found inC and it is already in disjunctive normal form. In general, some ofithe
constructed conjunctions in will be unsatisfiable. The following example illustrates this:

12

e cached queryl/Graphics[Artist="van Gogh’ and Motif="People’]
e new query///Graphics[Artist="'van Gogh’ and Date='ca 1600’]

e complementary query:

/IGraphics[(Artist="van Gogh’ and Date="ca 1600’
and Artist'="van Gogh’) or (Artist="van Gogh’
and Date='ca 1600’ and Motifl="People’)]

e pruned to satisfiable parts:

/IGraphics[Artist="van Gogh’ and Date='ca 1600’
and Motifl="People’]

The implemented satisfiability algorithm is used to detect and delete these parts of the
complementary query.

The more entries we find overlapping to the processed query, the more complex the com-
plementary query will become. Each of the cached entries will expand the query by some
sub-goals. At the end, the resulting query could be too complex that an efficient process-
ing by the sources is not possible or that they cannot be answered at all. Thus, we need
some heuristics to decide whether the constructed complementary query is too complex to
process it. If so, the original query should be sent to the sources instead accepting a higher
network load and the need for duplicate elimination. However, the cache still supports a
fast creation and delivering of an answer set to the user. Such heuristics could be based
on query capability descriptions of the sources, but this is currently not supported by our
system.

5 Related Work

The entries in a semantic cache are organized by semantic regions. Therefore, the selection
of relevant cache entries for answering a query is based on the problems of query contain-
ment and equivalence. There are several publications which focus on different aspects of
guery containment, such as completeness, satisfiability as well as complexity. Surveys of
these approaches can be found for instance in [GSW96, Hal01].

Caching data in general and semantic caching in particular are common approaches for
reducing response times and transmission costs in (heterogeneous) distributed information
systems. These works comprise classical client-server database3 [KB96], het-
erogeneous multi-database environments [GG97, GG99], Web databases [LC98, LC01] as
well as mobile information systems [LLS99, RDOO].

The idea ofsemantic regionsvas introduced by Dar et al. [[B*96]. Semantic regions

are defined dynamically based on the processed queries which are restricted on selection
conditions on single relations. Constraint formulas describing the regions are conjunctive
representations of the used selection predicates. Thereby, the regions are disjoint.

13

The semantic query cache (SQC) approach for mediator systems over structured sources
is presented in [GG97, GG99]. The authors discuss most aspects of semantic caching:
determining when answers are in cache, finding answers in cache, semantic overlapping
and semantic independence and semantic remainder in a theoretical manner. Our approach
also reflects most addressed aspects, but deals with semistructured data.

Keller and Basu describe in [KB96] an approach for semantic caching that examines and

maintains the contents of the cache. Therefore, the predicate description of executed
gueries are stored on the client as well as on the server. Queries can include selections,
projections and joins over one ore more relations but results have to comprise all keys that
have been referenced in the query.

Semantic caching in Web mediator systems is proposed in [LC98, LC01]. Most ideas in
this approach are based on [@F 96]. However, the authors also introduce a technique
that allows the generation of cache hits by using of additional semantic background in-
formation. In contrast to our approach, the cache is not located in the mediator access
component but in the wrappers. As discussed in the previous sections a tight coupling to
the global ontology structure was chosen in threc¥B system.

In mobile information systems semantic caches are typically used for bridging the gap be-
tween the portability of mobile devices and the availability of information. The LDD cache
[RDOO] is optimized in order to cache location depended information, but in fact, uses also
techniques which are common for semantic caches. Results are cached on the mobile de-
vices and are indexed with meta information which are generated from the queries. But in
this approach the index is only a table which references a logical page which is similar to
semantic regions.

6 Discussion and Conclusions

Semantic caching is a viable approach for improving response times and reducing com-
munication costs in a Web integration system. In this paper, we have presented a caching
approach which we developed as part of oac®B mediator system. A special feature of

this approach is the tight connection to the ontology level — the cache is organized along
the concepts. Furthermore, the modeled domain knowledge is exploited for obtaining
complementary queries required for processing queries which can only partially answered
from cache.

For evaluation purposes, we ran some preliminary results in our real-world stinying

that response times for queries which can be answered from the cache are reduced by a fac-
tor of 4 to 6. However, the results depend strongly on the query mix, i.e. the user behavior,
as well as on the source characteristics (e.g. response time and query capabilities), so we
omit details here. Currently, we evaluate the caching approach using different strategies
for replacement and determining complementary queries in a simulated environment.

In future research, we plan to exploit more information from the concept level in order to

Ihttp://arod.cs.uni-magdeburg.de:8080/Yacob/index.html

14

reduce the effort for complementary queries.

References

[DF6J"96]

[GG97]

[GG99]

[GSW96]

[Halo1]

[KB96]

[LC98]

[LC99]

[LCO1]

[LLS99]

[RDOO]

[SGHSO03]

[SGS03]

S. Dar, M. J. Franklin, Bor Jonsson, D. Srivastava, and M. Tan. Semantic Data Caching
and Replacement. INLDB’96, Proc. of 22th Int. Conf. on Very Large Data Bases
pages 330-341, Mumbai (Bombay), India, September 3—6 1996. Morgan Kaufmann.

P. Godfrey and J. Gryz. Semantic Query Caching for Heterogeneous Databases. In
Intelligent Access to Heterogeneous Information, Proc. of the 4th Workshop KRDB-97,
Athens, Greecevolume 8 of CEUR Workshop Proceedingsages 6.1-6.6, August 30
1997.

P. Godfrey and J. Gryz. Answering Queries by Semantic CacheBatabase and
Expert Systems Applications, 10th Int. Conf., DEXA '99, Florence, Italy, Prolume
1677 ofLNCS pages 485 — 498. Springer, August 30 - September 3 1999.

S. Guo, W. Sun, and M. A. Weiss. On Satisfiability, Equivalence, and Implication
Problems Involving Conjunctive Queries in Database SysteTKDE, 8(4):604—616,
August 1996.

A. Y. Halevy. Answering Queries using Views: A SurveyL DB Journal: Very Large
Data Bases10(4):270-294, December 2001.

A. M. Keller and J. Basu. A Predicate-based Caching Scheme for Client-Server
Database Architectured/LDB Journal: Very Large Data Base§(1):35-47, January
1996.

D. Lee and W. W. Chu. Conjunctive Point Predicate-based Semantic Caching for Wrap-
pers in Web Databases. GIKM'98 Workshop on Web Information and Data Manage-
ment (WIDM’98), Washington, DC, USNovember 6 1998.

D. Lee and W. W. Chu. Semantic Caching via Query Matching for Web Sources. In
Proc. of the 1999 ACM CIKM Int. Conf. on Information and Knowledge Management,
Kansas City, Missouri, US4ages 77-85. ACM, November 2—6 1999.

D. Lee and W. W. Chu. Towards Intelligent Semantic Caching for Web Soulcemal
of Intelligent Information Systems7(1):23-45, November 2001.

K. C. K. Lee, H. V. Leong, and A. Si. Semantic Query Caching in a Mobile Environ-
ment.ACM SIGMOBILE Mobile Computing and Communications ReV#$@):28—-36,
April 1999.

Q. Ren and M. Dunham. Using Semantic Caching to Manage Location Dependent Data
in Mobile Computing. InProc. of the 6th Annual Int. Conf. on Mobile Computing and
Networking (MOBICOM-0Q)pages 210-242, New York, August 6-11 2000. ACM.

K. Sattler, I. Geist, R. Habrecht, and E. Schallehn. Konzeptbasierte Anfrageverar-
beitung in Mediatorsystemen. Rroc. BTW’03 - Datenbanksystenie Business, Tech-
nologie und Web, Leipzig, 2003, GI-Edition, Lecture Notes in Informgtemges 78-97,
2003.

K. Sattler, I. Geist, and E. Schallehn. Concept-based Querying in Mediator Systems.
Technical Report 2, Dept. of Computer Science, University of Magdeburg, 2003.

15

