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Abstract— With the ubiquity of service-driven applica-
tions, the challenging concern remains on keeping their
respective software components dynamicallyupdatedand
fully consistentas service functionalities and composition
behaviours change. Features Interaction tackles this prob-
lem though only at design-time and in centralized systems
and thus do not scale up to service-driven systems, which
are by essence volatile, distributed and compositional. To
soundly and dynamically adapting features in such envi-
ronments, we propose a specification/validation framework
based on a component-based Petri nets variant endowed
with reflection capabilities and a true concurrent rewrite
logic-based semantics. We particularly demonstrate how
this framework allows specifying updating and composing
features in a runtime and true-concurrentway, with the
ability of visual animation and symbolic validation and
verification.

Keywords— Features and services, High-level Petri
nets, rewrite logic, dynamic evolution, specification and
validation

I. I NTRODUCTION

The pervasiveness of the internet coupled by the stan-
dardization of plethora of Web-services languages (e.g.
BPEL, WSDL, WSCI)[1] are promoting service-oriented
computing (SOC) as the future software development
paradigm. Main characteristics of this paradigm include
the abstraction from concrete services implementation
(using services interfaces), reactivity and full distribu-
tion, rapid and unanticipated service requirements evo-
lution and dynamic composition of services.

With the inability of such XML-based languages in
delivering such challenging promises on their own, both
academia and industry agree on the need of leveraging
this technology to cope with early phases of requirements

specification validation and verification. To keep in pace
with market volatility and unanticipated requirements
evolution of service functionalities orfeatures, design-
ers are thus facing challenging conceptual problems to
develop dynamic and consistent evolving service-driven
systems. In banking systems, for instance, new packages
of different advanced functionalities (e.g. withdrawals,
loan/mortgage packages) are increasingly offered mostly
on-the-fly (and online) to attract more new customers and
reward those already in contract.

Features Interaction (FI) has been recently coined as
a new research field in software-engineering for tackling
these problems at different levels, with special emphasis
on the conceptual level [13]. The last conference on FI
[21] surveys most of these recent advances. Nevertheless,
due to the mentioned complexity and volatility of the
emerging service-driven systems, existing approaches
remain far from tackling features interaction in such
volatile distributed and compositional environments, and
thus suffering from:

• The expressiveness of adopted specification frame-
works, in terms of advanced structuring mecha-
nisms (e.g. inheritance, aggregation, composition
and modularity). Indeed, most of proposals are
based on temporal and process languages [21],
known for their limited structuring.

• The capabilities of exhibitingconcurrentand dis-
tributed behaviour—as premises for service-driven
applications. In this sense,diagrammaticalspecifi-
cations with graphical animation and formal reason-
ing capabilities seem very crucial.

• The intrinsic ability of dynamically adapting or
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adding new system features to stay competitive,
adapt quickly to market changes, satisfy very de-
manding customers, and keep in pace with the
application / technology requirements evolution.

Besides that, new emerging formalisms to SOC (e.g.
temporal-based [24], [20], rule-based ones [12], Petri-
nets based [16], [28], [9]) are still far from addressing
features specification, interaction and evolution, and are
thus mostly focussing stable application features like the
structure and some restricted behaviors in static manner.

The present paper aims at contributing to overcome
some of these severe shortcomings, by proposing first
milestones towards new approach to features interaction
that intrinsically captures the above crucial issues and
thus seems very appropriate for specifying evolving and
interacting features in adaptive service-driven applica-
tions. The approach is based on a variant of component-
based Petri nets endowed with reflection capabilities
for dynamic evolution and true-concurrent rewrite logic-
based semantics for rapid prototyping via smooth shift
between the base- and the meta-level. This conceptual
model, referred to as CO-NETS [3], [4], has been be-
fore mainly applied to evolving concurrent information
systems.

We propose thus to rigorously specifying and vali-
dating different service functionalities or features be-
ing it simple or complex (by combining different ba-
sic features into strategies to reflect realistic behav-
iours). On the other hand, with the reflection capabil-
ities, such features can be dynamically manipulated (i.e.
added/removed/updated) without stoping non-concerned
features or decreasing the degree of distribution of the
whole running application.

The rest of this paper is organized as follows. The
next section presents the informal running example using
UML diagrams. In the third section, we demonstrate how
to specify, compose and validate features using the CO-
NETS framework and its rewrite logic semantics. In the
fourth section, we address the problem of how features
may be dynamically manipulated using a meta-level
constructions over CO-NETS component specifications.
We conclude this paper by some remarks and outlying
our future work. With the endeavor to attract a wide-
audience, we kept the paper presentation at a sufficient
intuitive level, while pointing hints to formal concepts

when required.

II. T HE MULTI -LIFT SYSTEM: INFORMAL

DESCRIPTION

To illustrate our approach to features specifica-
tion/validation, dynamic evolution and interaction in
complex adaptive distributed service-driven applications,
we adopt throughout this paper a simplified version of
a multi-lift system. We mention that this application has
been intensively adopted in features interaction research
[23], [13], [21], though only at design-time and using
just one lift.

In contrast to existing proposals, that directly build
on formal descriptions, we first present an informal de-
scription based on semi-formal diagrammatical UML [7]
”profiled” class-diagrams. We should point out that other
diagrams such as sequence diagrams and particularly
state-charts could complement this structural description,
but as we are adopting CO-NETS for behavioural con-
cerns they are not required.

Attributes

Features

Call(Lift)

Goto(Lift, Floor)

Weight : Real+

<<service>>
User of Lift

Attributes

Features

<<service>>
Lift

State−Lift : [Idle, Up, Down]

Door : [Open, Closed]

Current−Floor : [1,2,...F_max]

Current_Weight : Real+

Called_F(Lift, Floor)

ToGo_F(Lift, Floor, Direction)

Fig. 1. The Lift and User services as profile UML Classes

As depicted in Figure 1, each lift is structurally char-
acterized by the following attributes:Identity (as name
or number), for uniquely identifying each lift;Current
floor on which a given lift may be on at a given time. We
denote it byCur Floor; Lift stateexpressing whether
the lift is idle, going up or going down (we denote
such state byState-Lift). To keep track of directions
while serving intermediate floors, we add the state value
”Stop”, which can ”suffixes” the other state values. For
instance, ”Up.Stop” implies that the lift is going up
and is currently stopping at an intermediate floor;Door
state(shortly Door), that could be either open (Open)
or closed (Closed); andCurrent weight(shortlyWg) is
in kg for instance.
The service operations or features acting on such at-
tributes are the following:
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• The lift may be called from the outside (by a user)
at any time. We denote this service functionality
as Called(LiftId, Floor). As depicted in
Figure 1, the user initiates this functionality through
a call operation we denote byCall(LiftId).

• Being inside a lift, users can trigger the lift to
travel to a specific floor. We denote this lift ser-
vice functionality by ToGo(LiftId, Floor,

Direction). This triggering operation from the
user ”service” is denoted byGoTo(LiftId,
Floor) at the lift service side.

• Besides these observed functionalities, internal op-
erations include: the opening/closing of the lift
(through programmable sensors) and the update of
its weight in consequence.

III. F EATURESSPECIFICATION IN CO-NETS

We first present how any application structural aspects
are specified using CO-NETS, and apply them to the
running example. We then present system behavioural
specification using CO-NETS.

A. Specification of structural aspects inCO-NETS

A service signature defines the structure of service
states and the form of (received/invoked) messages
which have to be accepted by such component states.
We regard service states as algebraic terms —precisely
as tuples— and messages as operations sent or received
by services. More precisely, CO-NETS service signatures
are specified as follows.

• States are algebraic tuples of the form〈Id |at1 :

vl1, ..., atk : vlk , bs1 : vl ′1, ..., bsk ′ : vl ′k ′〉

Id is an observed identity taking its values from an
appropriate abstract data type (ADT);at1, .., atk are
the internal (i.e. hidden from the outside) attribute
identifiers with values respectivelyvl1, .., vlk ; and
The observed part of a state is identified by
bs1, ..., bsk ′ , with associate values asvl ′1, ..vl ′k ′ .

• We distinguish between imported / exported and
internal messages. Observed messages permit inter-
acting different services using observed attributes,
while internal messages allow computation within
components.

• Further, to exhibit intra-concurrency, we propose to
split/recombine the above state at need. This process
is axiomatized by an inference rule (see [3]) taking

the form of an equation :〈Id |attrs1, attrs2〉 =

〈Id |attrs1〉〈Id |attrs2〉. In this equation the abbre-
viation attr i corresponds to a state partat i1 :

vl i1, ..., at ik : vl ik , while a multiset union
operation (see later).

We specify such service structures in a formal way
using OBJ- and MAUDE-like notations [10], [19]. The
corresponding OBJ-specification of this general service
signature is depicted in the appendix.

1) Specification of the lift-service interface structure:
To apply this CO-NETS structural specifications to the
informal description of the multi-lift system, we first
require some abstract data types.
Multi-lift Data signatures. The different abstract data
sorts we require for the services signature are the fol-
lowing. To capture different floor levels, we use the sort
Floors whose elements are natural constants (0,1, 2,
.., k). To express the states the lift may be in, we use
the sortStateF whose elements are constants, namely
idle or Up, Dw or Stop.The doors state is captured by
a data sortDoor, with two values:op for opened and
cl for closed. We use a positive real constantWmx, to
define the maximal weight allowed by each lift.

The corresponding data specification following the
adopted OBJ-like notations is given below under the
nameLift-data. Using this data level and the above
informal UML-based description, the service signature
corresponding to the lift can then be described. In this
signature, with each service operation we associated a
”message” sort and message operation. Please note that
all the declared variables will be subsequently used in
the corresponding nets.

obj Lift-Data is
protecting Real+ nat .
sort Door StateF.
op 0, 1, 2,.., k : → Floors.
op idle, Up, Dw, Stop : → StateF.
op . : StateF "Stop" → StateF.
op op, cl : → Door.
op idle, Up, Dw : → StateF.
op Wmx : → Real+ .

endo.

service Lift is
extending Service-State .
protecting Lift-Data .
sort Id.Lift < OId .
sort TOGO CALLED LIFT .
(* the Lift service state declaration *)
op 〈 |Cur F : ,St : ,Dr : ,Wg : 〉: Id.Lift

Floors StateF DoorSt Real+ → LIFT .
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(* Features declaration *)
op ToGo F : Id.Lift Floors StateF → GOTO .
op Called F : Id.Lift Floors → CALLED .

(* Variable to use in the corresponding net *)
vars L : Id.Lift .
vars S, D : StateF .
vars W, W’ : Real+ .
vars K, K1, K2, K’ : Floors .

endsrv.

B. Specification of features behaviour inCO-NETS

From a given service signature we incrementally con-
struct its corresponding behaviour by associating it a
CO-NET, as follows. The net Places are constructed by
associating with each message generator one ‘message’
place. Such places thus hold message instances acting
on service states. With each state sort we also associate
one ‘state’ place. Such places hold current service states.
The net transitions, which may include conditions, reflect
the intended effect of each message on service states. To
distinguish between local messages and external ones,
we draw the later with bold lines.

We mention on the passage, that similar other high-
level Petri nets variants also integrate structured (objects-
)data and behavior. They include, among others, [22],
[11], [14], [6], [5] and [25]. Nevetheless, to the best of
our knowledge no variant have been applied to features
specification, let alone feature dynamic evolution and
composition as we present in this paper. Further, a com-
parative studies of CO-NETS capabilities with respect to
these similar proposals have been investigated in [3].

1) Specification of the lift-service interface behaviour:
By applying these simple rules to the informal descrip-
tion of the case study, Figure 2 depicts the corresponding
user-multi-lifts CO-NET-based observed and concurrent
behaviour (i.e. triggered by the users).

This CO-NET-driven behavior is thus incrementally
constructed by first associating with the state sortLift

a place containing the different lifts states. Second, with
the two message sortsTOGO andCALLED we associated
two corresponding places. The corresponding behaviour
is captured in terms of transitions associated with these
messages. For instance, the transitionsTskipgo and
Tskipcal permit to skip (i.e. consume) any called/goto
messages from/to the same floor where the lift car is
stationing. This transition allows also to delete already
served called/goto orders (performed by other transi-

tions). The transitionTcalled corresponds to the case
where a called order (from the outside lift) is directly
served; That is, a called order is served when at that
moment no goto order (from inside the lift) exists. For
this purpose, the symbol∼ reflects the inhibitor arc from
the placeGOTO. The transitionTgoint corresponds to
the existence of intermediate requested goto orders (from
inside) while performing the transitionTgofar. That
is, besides the tokenToGo F (L,K1,S ) there should
be another tokenToGo F (L, less(K ,K1),−) in the
placeTOGO. The transitionTcallint is probably the
most complex one as it corresponds to the case where
intermediate calls are being requested from outside while
performing the transitionTgofar (i.e. at least a mes-
sage token asToGo F (L,K1,S ) from the placeTOGO
exists1). The lift will serves such intermediate stops,
but with still the direction (S = Up or Dw ) as prefix
(keeping track of the final destination). As several inter-
mediate calls may be simultaneously requested, we must
serve thenearestone first, that we denote by a function
less(K ,K1) we assume defined at the data-level. For
instance, when goingUp, less(K ,K1) first tests whether
K + 1 is requested, if not it then testsK + 2 and so on
till K1 − 1. The transitionTgoint corresponds to the
existence of intermediate requested GoTo orders (from
inside) after performing the transitionTgofar. That
is, besides the tokenToGo F (L,K1,S ) there should
be other tokens asToGo F (L, less(K ,K1),−) in the
place TOGO. Finally, the transitionTgonxt concerns
the two following cases of a goto message. First, it
concerns performing a non-next goto message (i.e.S =

D = (Up∨Dw)) after serving all intermediate requested
floors (usingTgointr andTcallint) if any. Second,
it concerns performing a ToGo for a next floor (i.e.
K1 = K + 1 ∨ K1 = K − 1) if any. Withe the aim to

have a complete specification, we also specified intended
internal behaviour of this multi-lift case study as depicted
in Figure 3. This behaviour reflects the opening and
closing of doors, where the lift car should be either
in an idle or (intermediate) stop state. Second, while
the door is open, users can go-in and go-out which
means the weight may change. The transitionTstop

1Used here as read-arc withS be eitherUp or Dw .
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.   .     .     .

LIFT

 

Tcalled

Tgofar

Tcallint

.   .   .  .

.   .   .  .
ToGo_F(k, 1, Up)

ToGo_F(l,5, −−)

Tskipgo

Tskipcal

Tgoint

.   .   .  .

Called_F(lk, 10)
.   .   .  .

Called_F(l1,5)

CALLED

Tgonext

.   .   .  .

GoTo(l1,5)

GoTo(l1,5)

.   .   .  .

Call(l)

Call(l1)

TOGO
T

go
to

The multi−lift Co−Nets observed specification
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us1

USER
GOTOCALL

The observed user specification

〈lf1|Cur F : 4, St : idle, Dr : Op, Wg : 125〉

〈lfj |Cur F : 9, St : Up, Dr : Cl, Wg : 40〉

ToGo F(L, K , −)

True

〈L|Cur F : K〉

Called F(L, K) True

〈L|Cur F : K〉

∼ToGo F(L, −, −)

〈L|Cur F : K , St : S, Dr : cl〉
Called F(L, K1)
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ToGo F(L, K1, S) ToGo F(L, less(K1, K), −)

〈L|Cur F : K , St : S, Dr : cl〉
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,
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ToGo F(L, K1, S)
〈L|Cur F : K , St : D, Dr : cl〉

〈L|Cur F : K1, St : S.Stop, Dr : cl〉

((D = S = Up) ∨ (D = S = Up)) ∨ (K1 = K + 1 ∨ K1 = K − 1)

ToGo F(L, K1, −)
〈L|Cur F : K , St : idle, Dr : cl〉

〈
L
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r

F
:
K

,
S
t

:
D

w
,
D

r
:
c
l〉

〈
L
|C

u
r

F
:
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,
S
t

:
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p
,
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r
:
c
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Goto F(L, K1, Up)

Goto F(L, K1, Dw)

(K1 > K + 1) (K1 < K − 1)

Fig. 2. The Multi-Lift-User Components observed specification

allows the lift to stop at intermediate floors, which
allows the possibility of performingTgo-io, Topen
and Tclose. After that the lift continues its way by
performing the transitionTcont. We should note that
detection of reaching any floor is governed by suitable
sensors (component) we are simply omitted here for sake
of simplicity.

C. Features validation withCO-NETS semantics

One of the main advantage of the CO-NETS approach
is its operational semantics expressed in rewrite logic
[18], where each transition is governed by a correspond-
ing rewrite rule interpreted in a suitable instantiation of
this logic we referred to as CO-NETS rewrite theory.
The main ideas of this interpretation can be sketched
as follows. To bind each place markingmt with its
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Tcont

.   .    .   .

INTER−LIFT

The internal multi−lift Co−Nets specification

Tstop

Tgo−io

Tclose

Topen

〈lf1|Cur F : 7, St : idle, Dr : Op, Wg : 453〉

〈L|St : S, Dr : cl〉

True

〈L|St : S.Stop, Dr : cl〉

〈L|St : S.Stop, Dr : cl〉

True

〈L|St : S, Dr : cl〉

〈L|St : S1, Dr : op, Wt : W 〉

(W ′ ≤ Wmx) ∧ (S1 = idle∨ = S.Stop)

〈L|St : S1, Dr : op, Wt : W ′〉

〈L|St : S1, Dr : cl〉

(S1 = idle∨ = S.Stop)

〈L|St : S1, Dr : op〉

〈L|St : S1, Dr : op〉

(S1 = idle ∨ S1 = S.Stop)

〈
L
|S

t
:
S
1
,
D

r
:
c
l〉

Fig. 3. The Internal Multi-lift Specification

corresponding placep we capture them as a pair(p,mt).
Different tokens withinmt are gathered using a multiset
union operator we denote by. To represent CO-NETS

states as multisets over different the pairs(pi ,mt i), we
introduce another multiset generated by a union operator
we denote by⊗. That is, a CO-NETS state is described
as a multiset of the form:(p1,mt1)⊗ (p1,mt2)⊗ .... To
exhibit a maximum of concurrency, we allow distributing
⊗ over . That is, ifmt1 andmt2 are two marking parts
in a given placep as(p,mt1 mt2), then we can always
split it to (p,mt1) ⊗ (p,mt2). To exhibit intra-state
concurrency, we permit the splitting and recombining of
such state tuple at a need.

Figure 4 presents a general pattern for CO-NETS intra-
component transitions. It expresses that when messages
enter in contact with some (attributes of) states, under
eventual constraints on such messages and attributes,
the resulting is the consumption of such messages, the
creation of new messages and the change of states.

Following the above guidelines, the rewrite rule cor-
responding to this general transition pattern, takes the
following form:

Tintra: (obj , k

i=1

〈Id i |attrs i〉)
p

⊗
k=1

(Mes ik ,ms ik )

⇒ (obj , t

k=1

〈Id sk
|attrs ′sk

〉 r

k=1

〈Id ik |attrs ik 〉)
r
⊗

k=1

(Meshk
,mshk

) if Condition.

Example: By applying these guidelines for generating
CO-NETS transition rewrite rules to the lift component
depicted in Figure 2, the rewriting rules of some selected
transitions (due to space limitation) is given below:
Tskipgo: (TOGO ,ToGo F (L,K , ))⊗

. . . . . Condition

The intra−component transition pattern 

  
. .

. .

obj Tintra
〈Idi |atri1

: vali1
, ...〉

k

i=1
〈Idi |attrsi 〉

st
i=s1

〈Idi |attrs
′
i 〉

ir
i=i1

〈Idi |attrsi 〉

Mesi1 Mesip

Mesh1 Meshr

msi1

msip

msh1
mshr

Fig. 4. A General pattern for transitions

(Lift , 〈L|Cur F : K 〉) ⇒ (Lift , 〈L|Cur F : K 〉)

Tskipcal: (CALLED ,Called F (L,K ))⊗

(Lift , 〈L|Cur F : K 〉) ⇒ (Lift , 〈L|Cur F : K 〉)

Tgoint: (TOGO ,ToGo F (L,K1,S )

ToGo F (L, less(K ,K1),−))⊗

(Lift , 〈L|Cur F : K ,St : S ,Dr : cl〉)

⇒ ((TOGO ,ToGo F (L,K1,S ))⊗

(Lift , 〈L|Cur F : less(K ,K1),St : S .Stop,Dr : cl〉)

if (S = Up∨ = Dw)

Tgonext: (TOGO ,ToGo F (L,K1,D))⊗

(Lift , 〈L|Cur F : K ,St : S ,Dr : cl〉)

⇒ (Lift , 〈L|Cur F : K1,St : S .Stop,Dr : cl〉)

if (D = S = Up∨ = Dw) ∨ ((K1 = K ± 1))

These transition rewrite rules governing the behaviour
of lift C O-NETS component can be concurrently applied
to a given (initial) state marking. As we mentioned
such state marking is to be described as a multiset of
the form:⊗

i
(pi ,M (pi)). Where M (pi) is the current

marking of the placepi . The corresponding inference
rules of this CO-NETS rewrite theory and illustration on
how to concurrently applied them can be found more in
detail in [3].

D. Features Composition using Strategies inCO-NETS

In the previous section we presented how deriving
rewrite rules governing different service features and
how applying them to a given initial configuration.
However, like all Petri nets variants we let undefined
the order in which different transitions (rules) have to
be fired (i.e transitions are randomly fireable). Although
such undefined control may enhances parallelism and
true concurrency, we stress its inappropriateness for
features interaction. That is, we argue that imposing
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carefully chosen control strategies for firing transitions
represents a crucial step towards decreasing undesirable
interactions of service features, and also allows detecting
and validating large cases of conflicting interactions
(before completing such detection with some property-
checking).

Considering our case study with the above rewrite
rules, for instance, we have to impose that after fir-
ing the transitionTgofar, the transitionsTcallint
and Tgoint have to be repeatedly and concurrently
attempted before trying the transitionTgonxt. Other-
wise, if we directly fireTgonxt after Tgofar then
all intermediate call or goto (from inside and outside)
will be skipped, and thus the whole lift functioning
become compromised. The same is for the transitions
Tskipcal and Tskipgo which have to fired at the
right time with high priority otherwise they will be
interpreted as an effective call or goto (i.e. the lift travel
back each time to serve such fictive calls and goto’s!).

The approach we are proposing is inspired by two
existing related proposals for controlling rules in rewrite
logic. The first method detailed in [26], [27] puts
forward a so-called message algebras inspired from
process algebras operators. It adopts thus operators like
sequence (denoted as usual by ”;”), choice (”+”),
parallelism (” |”), etc, on messages appearing in
the left-hand sides of rewrite rules. To capture the
intended meaning of message expressions based on such
operators, the approach restricts rules to at most one
message in the left-hand side (called ”simple” MAUDE).
The control itself is enforced through adequate inference
rules, taking the rules and the current configuration (i.e
the running program as multiset of messages and objects
instances). The second approach [8] permits dropping
the restriction about the form of rules, and is based on
the intrinsic reflection capabilities of rewrite logic [17].
That is, to enforce a rewriting strategy using the above
operators, this reflection-based approach first transforms
all concerned rules to their meta-representation and then
apply algebras-like meta-rules system to enforce any
given strategy and then reflect it at the usual base-level.

Towards controlling CO-NETS transitions firing, we
strive for benefiting as much from these two proposals
while considering the specificities of CO-NETS transi-
tions rewrite rules. More precisely, we aim to keep the

simplicity of the proposed message algebras but apply it
instead on transition rules (using their names as ”labels”)
as in [8] yet without using the complexity of reflection.

We propose thus a ”Transitions Algebra” in-
stead of the above message algebra. We give below the
corresponding inference rules for the choice (’+’) and
the sequence (’;’) operators; the other could operators
such as parallelism, loop, ect are to be captured in
the same manner that we skipping as simple exercise!.
As each CO-NETS transition is usually triggered by
at least one message instance, the associated inference
rule consists in ensuring the existence of a matching
of this transition rule (via a substitution) in the current
CO-NETS-state while enforcing the meaning of each
operator.

obj TRANSITIONS Algebra is
protecting CO-NETS-State .
op + ; ; ; | || : T labels T labels → T labels

vars m1,m2, sm1, sm2 : Msg .
vars S l , S r , S l1 , S l2 , S r1 , S r2 , Sh : CO-NETS-State
vars p1 , p2 : Places
vars Trl1 , Trl2 : Transitions Rules
Trl1 + Trl2 ⇔ (p1, sm1) ⊗ (p2, sm2) ⊗ S l ⇒ S r

with
Trl1 : (p1,m1) ⊗ L1 ⇒ R1

Trl2 : (p2,m2) ⊗ L2 ⇒ R2

∃ σ1, σ2 : X → T s(pi ) s.t.

(sm1 = σ1(m1) ∧ σ1(L1) ∈ S l ∧ (p1, sm1) ⊗ S l ⇒ S r ) ∨

(sm2 = σ2(m2) ∧ σ2(L2) ∈ S l ∧ (p2, sm2) ⊗ S l ⇒ S r )

Trl1 ; Trl2 ⇔ (p1, sm1) ⊗ (p2, sm2) ⊗ S l1 ⊗ S l2 ⇒ S r1 ⊗ S r2

with
Trl1 : (p1,m1) ⊗ L1 ⇒ R1

Trl2 : (p2,m2) ⊗ L2 ⇒ R2

∃ σ1, σ2 : X → T s(pi ) s.t.

(sm1 = σ1(m1) ∧ σ1(L1) ∈ S l1 ∧ σ1(R1) ∈ S r1 ⊗ Sh ∧

(p1, sm1) ⊗ S l1 ⇒ S r1 ⊗ Sh) ∧

(sm2 = σ2(m2) ∧ σ2(L2) ∈ S l2 ⊗ Sh ∧ σ2(R2) ∈ S r2 ∧

(p2, sm2) ⊗ S l2 ⊗ Sh ⇒ S r2)

endo.

Informally speaking, the choice strategy (’+’) allows
applying an eligible transition (i.e. with a matching to
a part of the CO-NETS-marking or state) among at least
two transition rules (in our caseTrl1 andTrl2). For the
sequence strategy (’;’) a two transition rules have to be
sequentially applied, that is, after applying the first rule,a
part of the resulting CO-NETS-markingTrl1 (represented
by the sub-stateSh ) has to rewritten while applying the
second transition rule.
Application to the multi-lift system. One possible
logical strategy consists of repeating the following:
(1) eliminate any redundant request from outside and
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inside, that is, first each time perform the transitions
Tskipgo and Tskipcal; (2) check for the farthest
requested floor from inside, that is, try performing the
transitionTgofar. When all requested floors are just
next ones (i.e. Up or Down) perform the transition
Tgonxt ; (3) serve any (intermediate) requested floors
(both from inside and outside) while travelling to the
farthest floor selected from 2. That is, perform the
transitionsTintcall andTgoint; and (4) serve this
final destination by performing the transitionTgonxt.
With the above notations, this strategy corresponds to
the following algebra:

[(Tskipgo ‖ Tskipcall) ; ((Tgofar ;

(Tintgo ‖ Tintcall) ; Tnxtgo) + (Tnxtgo))]∗

The notation[...]∗ perform this process repeatedly yet
with the interference of any local behaviour (i.e. the
application of local transitions at anytime and at need).

IV. FEATURESRUNTIME EVOLUTION IN CO-NETS

As we emphasized, existing FI approaches lackrun-
time manipulation of features, which prevents adjusting
such features to avoid undesirable interactions and/or
to timely respond to requirements features change. In
this section, first we present how to incrementally ex-
tend the CO-NETS framework with a Petri nets meta-
level, where service functionalities can be dynamically
adapted to requirements change and thus circumvent the
just mentioned shortcomings in FI. We then apply this
”evolving” CO-NETS to the running example.

A. A Petri nets-based Meta-level forCO-NETS

The main ideas for building a meta-level from a
given CO-NETS component, we detailed in [4], may be
intuitively summarized in the following:

1) Meta-data for transition dynamics: As any re-
flection technique, the first step consists in rep-
resenting base-level entities as (meta-)data. For
the CO-NETS case, we should recall that each
transition is composed of: (1) an identifier or label,
(2) input inscriptions with their respective places
(as multiset), (3) output inscriptions with their
respective output places (as multiset), and (4) the
transition condition. So it is intuitive to represent
such transition dynamics as atuple of the form:

〈transition id:version |

(input-)multiset, (output-)multiset,

condition 〉

With respect to the intra-component transition pat-
tern proposed in Figure 4, such tuple takes the
following precise form:

〈Trl : i | (obj , IC obj )
ip
⊗

k=i1

(Mesk , IC k ),

(obj ,CT obj )
j q

⊗
k=j1

(Mesk ,CT k ),Cond .〉

2) Dynamically manipulating such tuples: To dy-
namically manipulating such transitions behav-
iour as tokens, we first propose to conceive a
(meta-)placeto gather their instantiated forms (i.e.
with concrete places, inscriptions and conditions)
as (meta-)tokens. Besides that, we propose three
places with corresponding transitions to permit
adding, removing or updating any transition be-
haviour as token. We denote such places with
Add-Bh, Chg-Bh andDel-bh as the places for
holding messages for adding/updating and deleting
such meta-tokens with three respective transitions
TADD, TCHG and TDEL for effectively adding,
modifying or deleting explicit (meta-)tokens.

3) Relating the two levels with read-arcs:As next
step in this reflection reasoning is to allow, on
the one hand,reifying (bringing up) any CO-NETS

components transitions behaviour (from the base-
level) to this meta-level to manipulate it, and on
the other hand dynamicallyreflecting (bringing
down) any transition behaviour-as-meta-tokens to
a normal CO-NETS transition. With the aim to
keep the base-level of the CO-NETS components
specification unchanged, we propose just to add
read-arcs from the meta-place to some transitions
subject to change and evolution. For such subject-
to-change transitions, we also propose to enrich
their input/output inscriptions and conditions with
corresponding variables through a disjunction op-
erator (we denote by∨) as shown in the right-hand
side of the lower part of Figure 5. These variables
with associated (input/output) places are accord-
ingly put into a transition tuple as inscription for
the read-arc relating the meta-place to such non-
instantiated transition.

4) Propagating meta-tokens to transitions behav-
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iour: The propagation or the reflection consists
in selecting from the meta-place a given meta-
token—which we refer to as anon-instantiated
and non-existing transition at the base level—and
transformingit to a usual (instantiated) transition
rule which can be used as and with the other tran-
sition rules. Given such a non-instantiated meta-
rewrite rule, we can thendynamically selectany
particular tuple as a behaviour from the meta-place
and derive a usual transition rule.
The general form of rewrite rules for non-
instantiated transitions is as such:

tnis : |[
k
⊗
i=1

(pi , IC i)]|‖r (Pmeta , 〈t : i |[
k
⊗
i=1

(pi , IC i)]|

, |[
l
⊗
j=1

(q j ,CT i)]|,TC i〉) ⇒ [
l
⊗
j=1

(q j ,CT i)]| if TC i

Note the operator‖r separating the read-arc in-
scription from the other inscriptions allows explic-
itly distinguishing between the input/output arcs
and this read-arc inscriptions.
Given such a non-instantiated meta-rewrite rule,
we can then select any particular tuple from the
meta-place and derive a usual rule. This process is
captured by the following inference rule.
With the existence of the following substitutions:
∃σi ∈ [T s(pi)] , ..,∃σj ∈ [T s(q j )] ,∃σ ∈ [T bool ]

The following usual rewrite rule as the new (kth
behaviour for the transitiont(−) is obtained.
〈tnis : k |[

k

⊗
i=1

(pi ,σi(IC i))]|,|[
l

⊗
j=1

(q j ,σj (CT i))]|,σ(TC i)〉∈M (Pmeta)

t(k) : |[
k

⊗
i=1

(pi ,σi(IC i))]| ⇒ [
l

⊗
j=1

(q j ,σj (CT i))]| if σ(TC i)

B. Dynamically manipulating the multi-lift features

With respect to the multi-lift CO-NETS components
we proposed in previous sections, different lift features
can now be dynamically manipulated in an incremental
way, namely runtime addition of new features without
resorting to stopping the running specification, the dele-
tion of existing features, and finally the modification, that
is, the update of some outdated features.

As specific illustration of such dynamic adaptivity of
different features, we restrict ourselves to the following
cases:

• Stationary floors: We would like to introduce
a feature that allows for some particular lifts to
travel to a ’stationary’ floor when there is no call

inside or from outside. However, we would like at
the same time to let this stationary floor variable,
for instance, depending on rush hours. This of
course cannot be specified using a fixed transition,
rather it should be considered as a token that can
be dynamically updated whenever necessary. For
the simple case, where the stationary floor is to be
the underground (floor zero(0)), such a meta-token
takes the form:
〈Reset : 1|(TOGO ,∼ ToGo F (L,−,−)) ⊗

(CALLED ,∼ Called F (L,−,−)) ⊗ (Lift , 〈L|Cur F :

K ,Dr : cl ,Wg : 0〉), (Lift , 〈L|Cur F : 0,Dr :

cl ,Wg : 0〉), (K 6= 0) ∧ (L ∈ List(Lifts)〉

• Avoid unnecessary travel: In our original CO-
NETS specification we allowed canceling any
request from (inside or outside) a same floor
(see transitions Tskipgo and Tskipcal).
Nevertheless, to completely protect the lift from
(kids abuse!) unnecessary travel, we have to
consider the case of requesting (from inside) for
floors without being in the lift car (i.e. theweight
in zero(0)). To do so, we have to consider the
transition Tskipgo as an evolving one, and
introduce its new behaviour as a meta-token. This
behaviour takes the following form:
〈Tskipgo : 1|(TOGO ,ToGo F (L,K1,−)) ⊗

(Lift , 〈L|Cur F : K ,Wg : W 〉), (Lift , 〈L|Cur F :

K ,Wg : W 〉), ((K1 = K ) ∨ (W = 0))〉

• Serving ”onboard” first: When a given lift is
nearly full, that is its weight is for instance more
that 2/3 of theWmax, and is traveling far (more than
next floor), it is more practical to skip intermediate
calls from outside. This means that the firing of
the transitionTcallint has now to be subject
to this weight condition change. The corresponding
transition tuple (as new version) takes thus the form:
〈Tcallint : 1|(CALLED ,Called F (L, less(K ,K1)))

(TOGO ,ToGo F (L,K1,S ))⊗

(Lift , 〈L|Cur F : K ,St : S ,Wg :

W 〉), (TOGO ,ToGo F (L,K1,S ))⊗(Lift , 〈L|Cur F :

less(K ,K1),St : S .Stop,Wg : W 〉), ((S =

Up) ∨ (S = Dw)) ∧ (W < 2/3Wmx )〉

All these features are illustrated in Figure 6 with
IC var , CT var and TC var as appropriate variables for
capturing adaptive input inscriptions, output inscriptions



ID-125 FEATURES INTERACTION IN ADAPTIVE SERVICE ENVIRONEMENT ID-125

.   .   .    .

.  .  . .

.  .  . .
Chg−Bh(T,..)

Del−Bh(T,..)
.  .  . .

Add−Bh(T,..)

.   .    .   .

obj

Pattern of Run−time Modified  transitions

The Petri nets−based Meta−Level Gouverning Runtime Manipulation of  Co−Nets Behaviour

Pattern of rigid transitions

True

True

True True

Meta−Place

DEL_BhV

ADD_BhV

CHG_BhV

. .

. .

t t(i)

. .

. .

Conditions on attribute values
      and message parameters

〈Idi |atri1
: vali1

, ...〉

k

i=1
〈Idi |attrsi 〉

k

i=1
〈Idi |attrs

′
i 〉

Mesi1 Mesi1
MesipMesip

Mesh1
Mesh1Meshr

Meshr

msi1 msip

msh1 mshr

msi1 ∨ IC v
i1

msip ∨ IC v
ip

msh1
∨ CTv

h1
mshr

∨ CTv
hr

k

i=1
〈Idi |attrsi 〉 ∨ ICobj

k

i=1
〈Idi |attrs

′
i 〉 ∨ CTobj

Add Bh(t, ⊗
i
(Pv

i , IC v
i ), ⊗

j
(Qv

j , CTv
j ), TC v )

TMd

TAd1 TAd2

TDl

〈tk : n1|(obj ,
s
〈Id1|attrsis 〉) ⊗
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〉) ⊗
l

(Meshl
, meshl

), TCk 〉

〈t : k|−, −, −〉

∼〈t : k|−, −, −〉

〈t : k + 1| ⊗
i

(Pv
i , ICv

i ), ⊗
j
(Qv

j , CTv
j ), TCv

j )〉

〈t : 1| ⊗
i

(Pv
i , ICv

i ), ⊗
j
(Qv

j , CTv
j ), TCv

j )〉

Del Bh(t, i)

〈t : i| , , 〉
Chg Bh(t, i, ⊗

j
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′v
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h
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′v
h

, CT
′v
h

), TC
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i
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i , ICv
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r
(Qv

r , CTv
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〈t : i| ⊗
j

(P
′v
j , IC

′v
j ), ⊗

h
(Q

′v
h

, CT
′v
h

), TC
′v 〉

〈t : i|(obj , ICv
obj

)
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⊗

i=i1

(Mesi , ICv
i ), (obj , CTv

obj
)

hr
⊗

j=h1

(Mesj , CTv
j ), TCv 〉

Fig. 5. The general pattern for handling dynamic behaviour in CO-NETS

and conditions respectively. Note that we are concen-
trating only on evolving transitions, with all other un-
changed transitions (from Figure 2) being skipped.

V. CONCLUSIONS

We addressed the challenging yet very practical prob-
lems of formally specifying animating, validating, com-
posing and dynamically evolving interacting features
in distributed dynamic service-driven environment. The
proposed approach is based on a tailored integration
of component concepts with high-level Petri nets en-
dowed with an adaptive meta-level and interpreted in
true-concurrency rewrite logic. The approach has been
illustrated using a variant of a multi-lift system with
an informal description using a profiled UML class-
diagrams.

We are developing a tool supporting the proposed

framework and this feature-oriented approach. Further
for properties verification purpose, we are recapitulating
from previous work on relating the semantics of this
framework namely rewrite logic with Lamport’s tempo-
ral logic of actions TLA [15], [2]. Such verification phase
is crucial for logically detecting different inconsistencies
and unwished interactions of different features.
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APPENDIX

Templates for service states and signatures

obj Service-State is
sort AId .
subsort OId < Value .
subsort Attr < Attrs .
subsort Id Attrs < object .
subsort Local attrs External attrs < Id Attrs .
protecting Value OId AId .
op : : AId Value → Attribute .
op , : Attr Attr → Attrs [ass. com. nil] .
op 〈 | 〉 : OId Attrs → Id Attrs .

endo.

obj Template-Signature is
protecting service-state, s-atr1,...,s-atrn,

s-arg11,1,.., s-argl1,l1,
...,s-argi1,1,...,s-argi1,i1 ...

subsort Mesl1, Mesl2,..,Mesll < Local Messs .
subsort Mese1, Mese2,..,Mesee < Export Messs .
subsort Mesi1, Mesi2,..,Mesii < Import Messs .
subsort local-attrs obs-attrs < Id-attrs .
(* local attributes *)

op 〈 | at1 : , .., atk : 〉 : OId s-atr1 ...
s-atrk → Local-Attrs.

(* observed attributes *)
op 〈 | bs1 : ,.., bsk′ : 〉 : OId s-atbs1 ...

s-atbsk′ → obs-Attrs.
(* local messages*)

op msl1: OId ...s-argl1,1...s-argl1,l1

→ Mesl1 . ...
(* export messages*)

op mse1: OId ...OId ...s-arge1,1 ...s-arge1,e1

→ Mese1 . ...
(* import messages*)

op msi1:OId ...OId ...s-argi1,1 ...s-argi1,i1

→ Mesip . ...
endo.


