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Abstract: Advances in networking over heterogenous infrastructures are boosting market globalization and

thereby forcing most software-intensive information systems to be fully distributed, cooperating

and evolving to stay competitive. The emerging composed behaviour in such interacting compo-

nents evolve dynamically/rapidly and unpredictably as market laws and users/application require-

ments change on-the-fly both at the coarse- type and fine-grained instance levels.

Despite significant proposals for promoting interactions and adaptivity using mainly architectural

techniques (e.g. components and connectors), rigorously specifying / validating / verifying and

dynamically adapting complex communicating information systems both at type and instance

levels still remains challenging. In this contribution, we present a component-based Petri nets

governed by a true-concurrent rewriting-logic based semantics for specifying and validating inter-

acting distributed information systems. For runtime adaptivity, we enhance this proposal with

(ECA-business) rules Petri nets-driven behavioral connectors, and demonstrate how to dynami-

cally weaving them on running components to reflect any emerging behavior.

1 INTRODUCTION

Advances in networking over heterogenous infras-

tructures are forcing most software-intensive systems to

be fully distributed, cooperating and evolving in fac-

ing the fierce struggle to stay competitive. This situa-

tion is more acute for contemporary information systems

where market globalization and volatility are pressing

business laws, policies (makers) and users requirements

to adapt/evolve on-the-fly, unpredictably and rapidly.

These facts have been urging organizations to shift from

their traditional integrated form with centralized con-

trol to loosely-coupled networked applications owned and

managed by diverse business partners. Dynamic busi-

ness links with different organizations have thus to be

dynamically set up and managed to satisfy customers,

with on-the-fly inter-organizational collaboration and

eventually outsourcing of activities to external service

providers.

With the huge difficulties of directly and satisfac-

tory implementing such complex communicating systems

even with the availability of advanced networked infras-

tructures and standards (e.g. Web-Services and Service-

oriented computing), more research efforts are nowadays

devoted to foundational early phases of specification, val-

idation and verification. Additionally, the tedious chal-

lenges of adaptivity must be tackled at these requirement

early phases; otherwise any initial certified specification

becomes rapidly outdated and useless, where afterwards

the standing-alone programmers will be on charge of un-

controlled/unwished/untractable maintenance.

Architectural techniques over component-orientation

belong to the mostly investigated and appropriate

software-engineering conceptual means to address the

adaptivity through their first-class explicit connectors

(Cheng and Garlan, 2001; Szyperski, 1998) and their

reconfigurations. Nevertheless, due to the growing

complexity and volatility of such complex interacting

software-intensive systems, it seems we are still far from a

satisfactory architectural-based proposal. Indeed, exist-

ing proposals either focus on the coarse-grained compo-

nent level (adding/removing/replacing components) and

ignoring the component instance level (changing func-

tionalities and behavior) or vice-versa. As will be demon-



strated in this paper both levels are vital for expressing

dynamic change and evolution.

With respect to information systems, the authors are

not aware of any approach that handles dynamic adap-

tivity by respecting cross-organizational business rules

(Wan-Kadir and Loucopoulos, 2003) at the architec-

tural level at both the type and instance levels. Busi-

ness rules are the main driving force for reshaping inter-

organizations goals, policies and functioning/regulations

and are therefore rapidly evolving to enhance the com-

petitiveness. Nevertheless, even with respect to cutting

edge service-oriented architectures and (web-) informa-

tion system services, business rules-driven proposals are

starting to emerge as leading conceptual means to cap-

ture change and adaptivity at domain level (G.Meredith

and S.Bjorg, 2003; Charfi and Mezini, 2004; Cibran and

Verheecke, 2005; Rosenberg and Dustdar, 2005).

This paper puts forwards a (business-) rule-based

architectural approach for specifying / validating and

dynamically adapting complex gross-organizational in-

formation systems. Methodologically, given a (UML-

based) semi-formal description of the applications, we

first propose a formal specification based on a variant of

component-based Petri nets, we introduced in (Aoumeur

and Saake, 2002). In this so-called Co-nets framework,

IS components are conceived as a hierarchy of modu-

lar classes we explicit observed interfaces. Secondly, for

validating such components, a true-concurrent rewriting

logic-based is proposed for governing different transitions

behavior. So, besides distributed graphical animations,

formal deduction proofs are derived for consistency and

verification purposes.

Besides these specification / validation and verifica-

tion capabilities, we propose in this paper the concept

of rule-driven architectural connector behavior. Such ar-

chitectural connectors have to reflect different ubiquitous

cross-organizational and thus inter-component domain

business rules. As we separately and explicitly specify

such connectors, we are able to dynamically weaving the

right interconnections when required to reflect the en-

forcement of new/modified policies, laws and other re-

quirements. Crucial to point out is that the proposed

dynamic weaving is non-intrusive, that is, we do not

delve inside component functionalities or change/adapt

any existing component internal behavior. Only ob-

served component properties using explicit interfaces are

required.

The rest of the paper is organized as follows. In the

second section we review the main Co-nets features and

illustrate them with a simplified banking system. The

third section introduce the concept of (business) rule-

based architectural connectors at a semi-formal level.

The fourth main section focuses on the modeling of such

connectors within Co-nets and how they are dynami-

cally woven on interacting components. This paper is

closed by some remarks and insights about future exten-

sions. We should note that the paper’s presentation is

kept at an informal level with some hints when required

to the formal counterpart.

2 Co-nets components : Overview with

illustrations

First we recall some structural aspects of the Co-

nets approach by presenting how conceiving Co-nets

component signatures. These structural aspects are then

extended by behavioral features leading to Co-nets

components. The construction of components as hierar-

chy of classes through simple inheritance is also sketched.

The derivation of complex interacting Co-nets com-

ponents using inter-component cooperation is then ad-

dressed. In the last subsection, we give how correspond-

ing rewriting rules governing each component behaviour

or their interaction is derived.

2.1 Co-nets component signatures

A component signature defines the structure of object

states and operations to be accepted by such states. The

Co-nets signature that we proposing can be informally

described as follows:

Object states are algebraic terms of the form:

〈Id|l1 : v1, ..lk : vk, f1(Id), .., fl(Id), s1 : v′
1
, .., st : v′t〉

− Id represents an observed object identity taking its

values from an appropriate abstract data type we de-

note OId.

− l1, .., lk are considered to be local (i.e. hidden from the

outside) attribute identifiers with respective current

values v1, .., vk.

− f1(Id), .., fl(Id) are attribute identifiers as ‘functions’

representing hidden values which cannot be observed

even at the component level itself. Such attributes

are therefore defined in a co-algebraic way (Hensel

et al., 1998).

− The observed part of an object state is identified by

the set of attributes s1, ..., st; their associated current

values are denoted by v′
1
, .., v′t.

− All attribute identifiers (local or observed) are defined

as appropriate subsorts of a generic sort denoted AId,

and their respective values are ranged over by the sort

V alue (with OId < V alue to allow object valued

attributes).

• For exhibiting intra-object concurrency and separat-

ing at any time local attributes from observed ones,

we introduce a simple deduction rule we call ‘object-

state splitting / merging’ rule that permits to split

(resp. recombine) the object state as required.



• We also make an explicit distinction between internal

messages and external as imported / exported mes-

sages.

With respect to this perception each template signature

is henceforth endowed with an explicit interface com-

posed of observed attributes and messages, and that we

subsequently refer to as (basic) component signature.

2.1.1 The account and customer component

signatures

We assume having accounts and customers that we nat-

urally regarded as two separate yet interacting compo-

nents. For instance, for the account component signa-

ture, each (current) account is composed of: a balance

(shortly bal) as observed, and a minimal limit (lmt), a

boolean value (Red) valuated to true when the balance

goes below the minimal limit as local, its hidden PIN

as observed function, account holder observed identity

(Hd), and a list of pairs ‘[money, date]’ (Hs) for recording

performed (debit or credit) operations on an account. As

observed messages are the debit (Deb), credit (Crd) and

transfer (Trs) of money between two accounts, while as

local message we allow the minimal limit attribute to be

changed using (Chglm).

In the same spirit the corresponding Customer com-

ponent algebraic signature is detailed in the appendix.

obj Account-data is
protecting Real+ Date Nat Bool .

subsort Money < Real+ .

subsort History < List-History.

op [] : → History .

op [ , ] : Money Date → History .

op . : History List-History → List-History.

endo.

obj account is
extending object-state .

protecting Account-data .

sorts Acnt .

subsort Id.Acnt < OId .

subsort DEB CRD TRS < Obs Msg.

subsort ChgL < Loc Msg.

subsort loc Acnt obs Acnt < Acnt < object .

(* attributes as functions*)

op Pin : Id.Acnt → string .

(* Local attributes *)

op 〈 | Bal : , Lmt : , Hs : 〉 : Id.Acnt

Money Money History → loc Acnt.

(* observed attributes *)

op 〈 | Hd : 〉 : Id.Acnt OId → obs Emp .

(* Local messages *)

op Chgl : Id.Acnt Money → ChgLm .

(* observed messages *)

op Deb : Id.Acnt Money Date → DEB.

op Crd : Id.Acnt Money Date → CRD.

op Trs : Id.Acnt Id.Acnt Money Date → TRS.

vars B, L, W, D : Money ; C : Id.Acnt .

endo.�

The declared variables will be used in the corresponding

Co-nets component specifications as will be detailed

here after.

2.2 Co-nets component specification

On the basis of a given component signature, we define

the notion of component specification as a Co-net in

the following straightforward way.

• Co-nets places are precisely defined by associating

with each message declaration or method one (mes-

sage) place, that is, such messages places contain as-

sociated message instances sent or received by ob-

jects but not yet performed. Also, with each object

sort a (object) place is associated, that is, an object

place contains current object states with respective

attribute values. We note that places corresponding

to external messages are drawn with bold circles.

• Co-nets transitions reflect the effect of messages

on object states they are addressed to. Conditions

may be associated to them restricting their appli-

cation. Moreover, we distinguish between local and

external transitions. Local transitions reflect object

states change in a given component, whereas external

ones capture the interaction between different com-

ponents.

For building components as a hierarchy of classes with

explicit interfaces, our conceptualization of simple inher-

itance, for instance, may be sketched as follows:

• The signature of a given subclass is constructed in the

same spirit as for (super-classes) Co-nets signatures,

but regarding it as an extension or enrichment of the

superclass signature.

• The corresponding net of the subclass is similarly

constructed by associating with each message a cor-

responding (message-)place and an (object-)place for

gathering the object-states composed of the proper

attributes in this subclass. In the same way tran-

sitions are associated with these messages following

their informal meaning, but with the possibility that

superclass object-places may be participating as in-

put or output arcs.

Other high-level Petri nets variants include (Reisig,

1991), (H. Ehrig and Ribeiro, 1994), (Jensen, 1992),

(Biberstein et al., 1997), (Valk, 2001) (among others).

Application to the account and customer compo-

nents. The associated Co-nets account component is

depicted in the left-hand side of Figure 1. This com-

ponent is composed of current accounts as a superclass

and saving accounts as a subclass (where the interest

could be increased through Tinc and money be moved

from a saving account to a current account using Tmvt).



The right-side of this figure represents the customer com-

ponent. As described above, in this net in addition to

the object place ACNT that contains all account instances

three message places namely ChgL, DEB and CRD have

been conceived. The effect of each message is captured

by an appropriate transition that takes into account just

the relevant attributes. For instance, as reflected by the

transition Tchg for changing the minimal limit of an ac-

count, the message Chgl(Id,Nlm) enters into contact just

with the Lmt attribute of this account, identified here by

Id. Important to point out is that for different transi-

tions (i.e. Tdeb, Tcrd, Ttrs), we have opted for very

elementary (and stable) behaviour, so that complex be-

haviour could be derived rather as contracts between the

holders and their accounts or between different accounts

for a given account holder. For instance, the debit con-

sists here just in decreasing the balance by the amount

(i.e. without checking whether there is sufficient money,

or the minimal limit is reached, or updating the history

in consequence, etc).

2.3 Co-nets components interaction

By taking benefit of explicit interfaces (i.e. observed

attributes and import / export messages) in each com-

ponent, we present in this subsection how complex coop-

erative information systems may be composed of several

truly distributed and independent yet cooperating Co-

nets components.

As depicted in Figure 2, the general schema

of ’external’ transitions may be expressed as fol-

lows. Just relevant external parts of component states

namely ⊕
i
〈Id1i

|bss1i
〉, . . .⊕

j
〈Idpj

|bsspj
〉 from components

Cp1, ..., Cpp, enter into contacts with external (i.e. de-

clared as imported or exported) messages to which they

are sent, namely msi1 , .., msir
from such components.

Under eventual conditions on attributes values and pa-

rameters messages, this result in the following: (1)

the messages msi1 , .., msir
being consumed; (2) states

of some external parts of objects participating in the

communication being changed; and (3) new external

messages (that may involve deletion/creation ones) be-

ing sent to objects at different components, namely

msh1 , .., mshr
.

.  .   .  . .  .   .  .
Condition

.  .

. .

. .

t〈Idk|bsk1
: vk1

, ...〉 〈Idl|bsl1
: vl1

, ...〉

Bs(obj1)
Bs(objp)

Mesoi1
Mesoiq

Mesoh1
Mesohr

msi1
msiq

msh1 mshr

⊕
i
〈Id1i

|bss1i
〉

⊕
j
〈Idpj

|bsspj
〉

⊕
i
〈Id1i

| bss′1i
〉 ⊕

j
〈Idpj

|bss′pj
〉

Figure 2: The Inter-component interaction pattern

Application to the running example. In Figure 3

the interaction of the two components is described using

exclusively their observed features. We note here that

besides those explicitly defined as observed features, at-

tributes as functions are also observed, but their con-

tents cannot be accessed either at local or at this in-

teraction level. This concerns in particular the Pin at-

tribute as function. Here are some comments on this

observed interaction behaviour. The transition Twrd,

for instance, captures the sending of a withdraw order

from the customer, namely C-Deb(C,A,M), that have

to be received by the withdraw message in the con-

cerned account (i.e. the account of this customer as ac-

count hold). This means that we have to select from

the observed account attribute through the read-arc the

inscription:〈A|Hd : C〉.

2.4 Animating and Validating Co-nets

Specifications

One of the most advantage of the Co-nets approach

is its operational semantics expressed in rewriting logic;

moreover, by introducing the state splitting / recombin-

ing axiom there is a natural exhibition of intra-object

concurrency. More precisely, each transition is governed

by a corresponding rewrite rule interpreted in rewrite

logic (Meseguer, 1992) (or more precisely an instantia-

tion of this logic we refer to as Co-nets rewrite the-

ory. The main ideas consist in: (1) associating with each

marking mt its corresponding place p as a pair (p, mt);

(2) introducing a new multiset generated by a union op-

erator we denote by ⊗ for reflecting Co-nets states as

multisets over different pairs (pi, mti), , that is, a Co-

nets state is described as (p1, mt1)⊗ (p1, mt2)⊗ ...; (3)

allowing the distributivity of ⊗ over ⊕ for exhibiting a

maximal of concurrency, that is, if mt1 and mt2 are two

marking multisets then we always have: (p, mt1⊕mt2) =

(p, mt1) ⊗ (p, mt2); (4) enabling object states’ splitting

and recombining at a need for exhibiting intra-object

concurrency.

Application to the account component. By apply-

ing the afore-described general form of rewrite rules, it

is not difficult to generate the transition rules associated

with the Co-nets specification of the banking example.

The rewrite rules associated with the debit and credit

messages (i.e. transitions Tdeb, Tcrd), for instance, take

the form:

Tdeb :(DEB, Deb(C, W )) ⊗ (ACNT, 〈C|Bal : B〉) ⇒
(ACNT, 〈C|Bal : B − W 〉)

Tcrd :(CRD, Crd(C, D)) ⊗ (ACNT, 〈C|Bal : B〉) ⇒
(ACNT, 〈C|Bal : B + D〉)
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〈c1|Cust : elan, Adr : Bonn, ...〉

Figure 1: A Simplified Banking specification within Co-nets

3 ECA-rule based Architectural

Connectors

Architectural connectors must generally endowed

with: (1) roles expressing functional requirements from

candidate components to interact; and (2) glues for ex-

pressing the behavior governing such inter-component

interaction. As we are targeting complex information

systems are main domain application, instead of just ex-

changing and ordering messages at this interaction level

we propose a more knowledge-intensive behavioral inter-

action patterns expressed in terms of business rules. For

such cross-organisations business rules, we propose the

most adopted form which the Event-Conditions-Actions

(ECA) paradigm. More precisely the general pattern, we

decide to follow for expressing inter-component interac-

tions is as follows:

ECA-behavioral glue <glue-Identity>
interface participants <list-of-participants>
invariant <possible interaction constraints to respect>
constants/attributes/operations

<extra-required elements for the interaction>

interaction rules: <Rule-Name>
at-trigger <(set-of-)events>

under <conditions>

reacting <set-of-actions>

Important in this behavior-driven components inter-

action is above all the name of the entities participating

in such coordination. Secondly, when required we have to

specify invariants and constraints to be observed during

the interaction. Thirdly, besides exchanged messages,

statefull data and events between participants, to express

complex interaction patterns we can define and use lo-

cal to the glues properties such as constants, attributes

and operations. For a given architectural connector glue,

The ECA-based interaction rule itself starts by describ-

ing the event(s) triggering the interaction, then which

conditions have to be fulfilled and finally what are the

cooperative actions are to be performed.

This behavioral rule requires of course from different

participating entities explicit interfaces including differ-

ent events, messages and other properties (such as con-

stants, variables ,etc). When needed, we explicitly spec-

ify such interfaces before giving this glue.

3.1 ECA behavioral glues : Illustration

To stay competitive banking systems are offering differ-

ent incitive packages for their customers, ranging from

simple agreed-on contracts (e.g. different formulas for

withdrawing / transferring moneys) to highly sophisti-

cated complex offers (i.e. staged housing loans, mort-

gages, etc.) depending on their profiles, trust, experi-

ences, etc.

Let us illustrate simple cases of customer-bank agree-

ments using our running example, through two customer-

tailored variants of withdrawals. The usual case for any

ordinary customer is to check what is called standard
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Figure 3: The Customer account Co-nets components interaction

withdrawal, where the customer has to be the owner

of a corresponding account and the withdrawal amount

should not go beyond the current balance. Adopting

our behavioral glue notations, this agreement could ex-

pressed as follows. In this interaction, the participants

are interfaces from the customer and the account com-

ponent business entities. The account interface have to

display the balance attribute as hidden function (no cur-

rent amount is seen) and the operation debit. At the

customer interface, we have to identify the withdrawal

triggering event and the ownership invariant (these ob-

vious interfaces as just skipped here).

ECA-behavioral glue Std-Withdraw

participants Acnt: Account; Cust: Customer

invariants Cust.own(Acnt) = True

interaction rule : Standard

at-trigger Cust.withdraw(M)

under (Acnt.bal() ≥ M)

acting Acnt.Debit(M)

end Std-withdraw

A more flexible withdrawal for moderately previleged

customers is to endow them with a credit those amount

depends on profile and trust. Customers enjoying such

agreements can now withdraw amounts going beyond the

current balance. The modelling of such flexible agreed-on

withdrawal takes the following slightly modified behav-

ioral glue.

ECA-behavioral glue VIP-Withdraw

participants Acnt: Account; Cust: Customer

attribute Cust.credit : Money

invariants Cust.own(Acnt) = True

interaction rule : VIP

at-trigger Cust.withdraw(M)

under (Acnt.bal() +Cust.credit ≥ M)

acting Acnt.Debit(M)

end VIP-withdraw

4 Modelling ECA Behavioral

Connectors as extended Co-nets

With Co-nets capabilities in capturing statefull

components behavior, we present in the following how

ECA-driven architectural connectors enhance these po-

tentials towards more dynamic adaptivity and evolution.

Following the same intuitive guidelines for constructing

Co-nets components from informal component-based

applications, the modelling steps for integrating such ar-

chitectural connectors into already specified Co-nets

components could sketched in the following. First, we

have derive from a given ECA-based architectural con-

nector description, a more precise corresponding compo-

nent signature specification by algebraically specifying

different properties (attributes, messages, events, etc.).

Secondly, by gathering different connector attributes and

participants into states, we then associate such each state

type a corresponding place and with each messages and

operations also a place. This results in the skeleton of

the Petri net for such architectural connectors. Finally,

we have to inject the rules into such skeleton by assigning

conditions to transition conditions, events as input arc-

inscriptions and actions as output ones. In a more detail,

these translating steps could be explained as follows:

1. Define architectural connector structure algebraically

using the Co-nets component signature pattern.

That is, first, gather all component participants in-

terface identities with possible other attributes into

a glue state type-as-tuple.

2. Specify all involved messages, events, constants and
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Figure 4: The general Co-nets inter-contracts class pattern and inter-component transitions

invariants in a given architectural connector using a

precise algebraic setting.

3. Associate with each state type a given ”glue-state”

place, and with each local messages and events a

given place.

4. The transitions for architectural connectors have to

be constructed for reflecting the different ECA-rules.

The general pattern for such interacting transitions is

to be conceived following now the new general pattern

we depict in Figure 4. This pattern expresses the

idea of dynamically weaving exogenous behavior of

interacting components. Thats is:

• Involved component interfaces in a given ECA ar-

chitectural behavior are captured using observed

state parts (places) from such Co-nets compo-

nents and imported/exported messages (places).

• These interface elements (e.g. observed states and

messages) enter into contact to reflect the ECA-

rule in question.

• To allow renaming and refinement while weaving

such architectural behavior, we add in the interac-

tion transition new boxes for eventual term assign-

ments.

• To semantically govern such assignments, we en-

hance transition rewrite rules using matching con-

ditions as proposed for the computational logical

language Elan (van den Brand et al., 2002), that

is interpreted by conditional rewriting in rewriting

logic (Borovansky et al., 2002). Rules in rewriting

logic with matching conditions take the following

form

[l] : l −→ r where p1 := c1 . . . pn := cn

Where in the assignment pi := ci, pi and ci are

terms of the same sort. For rewriting a term t

with such a rule first as usual a subterm t|p has

to match l through a substitution σi, and then the

matching pi := ci has to be checked. This checking

returns to compute ciσi (and then a normal form

for it if any) and verify that there is a matching of

ciσi with pi (we denote by µ). This matching µ is

then composed with σi for rewriting the term t at

position p, that is, t′ = t[p← σiµ(r)]

Taking this semantics into account, the rewrite rule

we associate with each inter-component transitions gen-

eral pattern depicted in Figure 4 takes the form:

Tcontr: (Bs(class1),
l

⊕
j=1

〈Idj |bssj〉) ⊗

(Bs(classp),
m

⊕
k=1

〈Idk|bssj〉)⊗(CONTR,
l

⊕
r=1

〈Idk|cntrr〉)⊗

(Msoik, mslk) · · · ⊗ (Msoip, mslp) ⊗ (Mctir , mstir ) · · · ⊗

(Mctis , mstis) ⇒ (Bs(class1),
l

⊕
j=1

〈Idj|bss
′
j〉) ⊗

(Bs(classp),
m

⊕
k=1

〈Idk|bss
′
j〉)⊗(CONTR,

l

⊕
r=1

〈Idk|cntr′r〉)⊗

(Msor , mslr ) · · · ⊗ (Msok
, msrk

)
if Condition
where msir := msjk

. . . att ipp := att opq .

4.1 Illustration using the running

example.

We approach the two already conceived architectural

within the Co-nets framework following the above

steps. That is, as shown below first their algebraic signa-

tures are derived—the ECA-rule themselves are skipped

and replaced by just informal text as they are to be spec-

ified through the architectural Petri net afterwards.

obj Std-Withdrawal .

extending object-state .

using Id.Acnt Id.Cust .



subsort StdGlue < object .

(* StdGlue state *)

op 〈 | Acnt : , Cust : 〉 : Id.StdGlue

Id.Acnt Id.Custm→ StdGlue.

vars Z : Money ; H : Id.Cust .

vars A : Id.Acnt, C: Id.Cust, Gl : Id.StdGlue .

endContract.�

obj VIP-Withdraw .

extending object-state .

using Id.Acnt Id.Cust .

subsort VIPglue < object .

(* VIPGlue state *)

op CST VIP : → Nat

op 〈 | Acnt : , Cust : , Crd( ) : 〉 : Id.VIPGlue

Id.Acnt Id.Custm Real → VIPGlue.

vars Z : Money ; H : Id.Custm .

vars A : Id.Acnt, C: Id.Cust, Ct : Id.VIPGlue .

eq CST VIP = Nat Value

endContract.�

To have a case where the assignment is to be applied,

we are adding a new very abstract architectural connec-

tor1, which through appropriate assignments may play

the role of either Standard or VIP withdrawal. We de-

note by inhibitor this architectural connector, which

posses two attributes big and small and an operation

to restrict the application of such connector through a

dynamic assignments of these two attributes to involved

component properties.

obj inhibitor .

extending object-state .

sort RESTR

Subsort Id.Inhib < OId

subsort Inhib < object .

(* observed imported attributes)

op 〈 | big : , small : 〉 : Id.Inhib

integer integer → INHIB.

(* observed messages)

restrict : Id.Inhib → RESTR

endobj.�

By assigning the balance to the abstract variable

big, the withdrawn amount M to the variable small, we

can straightforwardly emulate the standard architectural

connector as depicted in Figure 5. In this figure, the in-

teraction is no more direct between the two customer and

the account components, but instead dynamically regu-

lated through architectural connectors. Depending on

the specific agreements of the bank with its customers, a

withdrawal could be performed differently (for our sim-

ple case either standard or VIP).

1With such abstract connector we can go beyond ECA
business rules and IS and specify any distributed embedded
systems.

5 CONCLUSIONS

For reliably developing complex concurrent and dy-

namically evolving information systems, we extended

component-based Petri nets with ECA-compliant be-

havioral architectural connectors. We shown how to

incrementally incorporate different state-full connectors

those behaviors being extracted from externalized cross-

organizational business rules. Both graphical animations

and concurrent symbolic computations using soundly en-

riched rewriting logic are possible for validating the con-

ceived evolving conceptual model.

This first step towards enhancing component-based

formalisms with dynamic inter-component explicit and

state-full interactions in true-concurrent distributed en-

vironments has to be further worked out for result-

ing in a complete methodology with adequate software

tools supporting it. The enrichment of the integration

with Co-nets meta-reflection capabilities we proposed

in (Aoumeur and Saake, 2004) could be very beneficial

to achieve a reactive self-adaptivity over such evolving

architectural connectors. Another promising direction is

to enhance the analysis capabilities of this extended Co-

nets by adapting the technique proposed in (Aoumeur

et al., 2000).
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APPENDIX

For the customer component, local attributes are the

address, age and the monthly income (resp. Adr, Age

and M incom), and as observed attributes we consider

the custumer name (Name). As a local message we have

the changing of address, and as observed messages we

assume that all account operations have to be initiated

by the customer, namely C-Deb, C-Crd and C-Trs.

obj Customer is
extending object-state .
sorts Custom .
subsort Id.Custm < OId .
subsort C-DEB C-CRD C-TRS < Obs Msg.
subsort ChGA < Loc Msg.



subsort loc Cust obs Cust < Custm < object .
(* Local attributes *)

op 〈 | Adr : , Age : , M Incom : 〉 : Id.Acnt
Address Age Real→ loc Cust.

(* observed attributes *)
op 〈 | Name : 〉 : Id.Cust String → Obs Cust .

(* Local messages *)
op ChgA : Id.Cust Address → ChGA .

(* observed messages *)
op C-Deb : Id.Cust Id.Acnt Money Date → C-DEB.
op C-Crd : Id.Cust Id.Acnt Money Date → C-CRD.
op C-Trs : Id.Cust Id.Acnt Money Date → C-TRS.

vars B, L, W, D : Money .
vars C : Id.Acnt .

endo.�


