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Abstract. Recent studies have suggested the techniques of aspect-orien-
ted and feature-oriented programming be combined to overcome their in-
dividual shortcomings. While previous work mainly argues on the basis
of conceptual considerations and micro examples, in this paper, we eval-
uate the key ideas quantitatively by means of a non-trivial case study,
a product line for overlay networks. Specifically, we pick out aspectual

mixin layers as a representative approach that unifies AOP and FOP
and show how our results apply to other approaches that integrate as-
pects and features. Although we have many results to report, we reveal
and discuss several issues that remain open. Furthermore, we present a
set of guidelines to assist programmers in how and when to use aspect-
oriented and feature-oriented techniques for implementing product lines
in a stepwise and generative manner.

1 Introduction

Two advanced programming paradigms are gaining attention in the overlapping
fields of program generation, product lines, and stepwise development (SWD).
Feature-oriented programming (FOP) [1] aims at large-scale compositional pro-
gramming and feature modularity in product lines. Aspect-oriented programming
(AOP) [2] focuses on crosscutting modularity in complex software.

In several studies it has turned out that both paradigms, despite their advan-
tages, bear several shortcomings [3–6]. It has been recognized that the weakness
of one maps roughly to the strength of the other. Hence, both paradigms are not
competitive and can profit from each other [6]. Recent studies have suggested
that both paradigms be combined to exploit their synergetic potential [3, 4, 7, 6].

However, prior work has not gone past conjectures. Although there are nu-
merous plausible reasons on the benefits of combining AOP and FOP (e.g.,
improvement in modularity), there is no empirical evidence to support these
conjectures. An obvious question is if their symbiosis contributes more than it
impairs. That is, are there real world applications that demand the synergetic
effects of merging FOP and AOP?

In this paper, we contribute a thorough, practical application, evaluation,
and discussion of the key ideas by means of a non-trivial case study. To be
able to make precise statements, we limit our considerations to the domain of
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software product lines developed in a generative and stepwise manner [1, 8]. As a
concrete application, we choose a product line for peer-to-peer overlay networks
(P2P-PL). This product line was developed to experiment with novel overlay
mechanisms and algorithms. These experiments demand for a high degree of
customizability, reusability, and evolvability.

In order to compare our findings with prior work, our investigations draw on a
conceptual evaluation framework that analyzes and compares AOP and FOP [6].
Furthermore, we pick out aspectual mixin layers (AMLs) as a concrete approach
that realizes an architectural integration of AOP and FOP [6]. AMLs support
collaboration-based design, mixin composition, aspect weaving, and refinement
of aspects to decompose and structure software along its features. AMLs are not
specific to a particular interpretation or implementation of FOP and AOP. After
our analysis, we discuss how to generalize our results to alternative approaches.

Our study addresses the following issues: When and how does a programmer
use and combine the provided mechanisms of AMLs? Do the individual imple-
mentation techniques used in AMLs collaborate well together? Was our usage of
AMLs in our case study subjective? It boils down to the question when to use
traditional object-oriented mechanisms (e.g., mixins) and when aspect-oriented
techniques to implement features. To demonstrate that our decisions in P2P-PL
were not driven by personal preferences, we collected several statistics about the
application and properties of AMLs, and in doing so revealed some deeper and
fundamental open issues. We contribute a discussion of these issues that may
help to improve future symbiotic approaches that combine FOP and AOP.

Recapitulating the results of our case study, we extract a set of guidelines
for programmers to assist in when and how to use aspect-oriented and feature-
oriented mechanisms for stepwise and generative product line development. In
this paper we make the following contributions:
– an evaluation of a non-trivial case study that yields empirical evidences for

the successful integration of aspects and features.
– a set of guidelines of using AOP and FOP in product lines for improving

feature modularity, and
– a discussion of open issues.

2 Background

This section reviews FOP and AOP as well as the key results of their conceptual
evaluation. Furthermore, we describe aspectual mixin layers that integrate FOP
and AOP techniques.

2.1 Feature-Oriented Programming

FOP studies the modularity of features in product lines, where a feature is an
increment in program functionality [1]. Feature modules realize features at design
and implementation levels. The idea of FOP is to synthesize software (individual
programs) by composing feature modules. Typically, features modules refine the



content of other features modules in an incremental fashion. Hence, the term
refinement refers to the set of changes a feature applies to others. Stepwise
refinement leads to conceptually layered software designs. For simplicity, we use
the terms feature and feature module synonymously.

Mixin layers are one concrete approach to implement features [9, 1]. The basic
idea is that features are seldomly implemented by single classes (or aspects).
Often, a whole set of collaborating classes defines a feature. Classes play different
roles in different collaborations [10]. FOP aims at abstracting and explicitly
representing such collaborations. Hence, it stands in the long line of prior work on
object-oriented design and role modeling [11]. A mixin layer is a static component
encapsulating fragments of several different classes (roles) so that all fragments
are composed consistently. Figure 1 depicts a stack of three mixin layers (L1−L3)
in top down order. The mixin layers crosscut multiple classes (CA −CC). White
boxes represent mixins; gray boxes denote the enclosing feature modules; filled
arrows refers to mixin-based inheritance for composing mixins [12].
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Fig. 2. Two aspects extend three
classes.

2.2 Aspect-Oriented Programming

AOP aims at separating and modularizing crosscutting concerns [2]. Using object-
oriented mechanisms the implementation of crosscutting concerns results in tan-
gled and scattered code [2, 8]. The idea behind AOP is to implement crosscutting
concerns as aspects whereas the core (non-crosscutting) features are implemented
as components. Using pointcuts and advice, an aspect weaver glues aspects and
components at predefined join points together. Pointcuts specify sets of join
points of aspects and components, whereas advice defines which code is applied
to (or executed at) these points. Typically, aspects introduce new members to
classes and extend existing methods dynamically. By means of an aspect a pro-
grammer is able to refine a program coherently at multiple join points. Figure 2
shows two aspects (A1, A2) that extend three classes at multiple join points
(dashed arrows denote aspect weaving).



2.3 Conceptual Evaluation Framework

We review a subset of our evaluation framework that was presented originally
in [6].

Homogeneous vs. heterogeneous crosscuts. Homogeneous crosscuts refine mul-
tiple join points by adding one coherent piece of functionality. Heterogeneous
crosscuts refine multiple join points with multiple pieces of functionality [13].
Implementing features spans several collaborating classes. Typically, a feature
introduces a set of classes and methods that refines a complementary set of
classes and methods in the base program. Hence, they are well qualified to im-
plement heterogeneous crosscuts.

In contrast to features, aspects perform well in refining a set of parent en-
tities using one coherent advice, thus, modularizing a homogeneous crosscut.
By using aspects for homogeneous crosscuts, programmers avoid accidental code
replication. Although, both approaches are able to implement the crosscuts of
the other, they cannot do so elegantly [3, 6]. Consider a synchronization feature,
which is a homogeneous crosscut. Using a mixin layer one refines a whole set of
target methods with an appropriate set of refining methods that replicate the
same synchronization code for all wrapped methods.

Conversely, an aspect may implement a collaboration of classes by applying
a set of introductions. It has been argued that not expressing the collaboration
explicitly decreases the program comprehensibility [14, 3, 15, 6]. This is because
the programmer cannot recognize the original structure of the base program
within subsequent refinement. A further argument is that aspects lack of scal-
ability with respect to large-scale features: Suppose a collaboration consists of
plenty of roles, e.g., a data management feature. Merging all participating roles
(storage structures, file access, indexes, transaction management, etc.) in one or
more aspects3 would flatten the inherent object-oriented structure of the feature,
obscure the intension of the programmer, and the resulting program would be
hard to understand [14, 3].

Static vs. dynamic crosscutting. Features and aspects may extend the structure
of a base program statically (static crosscutting), i.e. by injecting new members.
Additionally, feature modules are able to encapsulate and introduce new classes.
While aspects are not able to introduce independent classes, they provide the
means to alter inheritance hierarchies, e.g., by introducing new interfaces to
existing classes.

With dynamic crosscutting we refer to the ability of an implementation tech-
nique to apply a refinement dependently on the runtime control flow. By using
feature modules one has only the limited abilities of method overriding to in-
tercept method executions. Aspects provide a more sophisticated set to refine a
base program based upon its execution, e.g. mechanisms for tracing the dynamic
control flow.

3 In Section 5, we address the issue of implementing each individual role as aspect.



2.4 Symbiosis of Aspects and Features

Comparing aspects and features, it turned out that in their current incarnation
they are intended for solving problems at different levels of abstraction [3, 4, 6].
Whereas aspects in its current form act on the level of classes and objects (object-
oriented architectures) in order to modularize crosscutting concerns, features act
on a higher level of abstraction. A feature decomposes an object-oriented archi-
tecture to encapsulate those classes and their collaborations with other classes
that contribute to its functionality. From an architectural point of view intro-
ducing aspects into an object-oriented architecture demands as next logical step
for features that decompose the resulting aspect-oriented architecture. Figure 3
shows at left-hand side an aspect-oriented architecture and at the right-hand
side features that decompose and structure this architecture. With this decom-
position, a feature encapsulates fragments of classes and aspects that collaborate
together to implement a feature. Note that the original aspect was split into two
pieces. In Section 2.6, we address this issue in more depth.

decomposition

inheritanceaspectclass refinement association weaving

Fig. 3. Feature-driven decomposition of aspect-oriented architectures (features are de-
picted light-gray).

2.5 Aspectual Mixin Layers

Aspectual mixin layers (AMLs) is an approach to implement the architectural
integration of AOP and FOP. AMLs extend the notion of mixin layers by encap-
sulating besides mixins also aspects (see Fig. 4). That is, an AML encapsulates
those roles of collaborating classes and aspects that contribute to a feature.
An AML may refine a base program in two ways: (1) by using common mixin-
composition or (2) by using aspect-oriented mechanisms, in particular pointcuts
and advice. Probably the most important contribution of AMLs is that program-
mers may choose the appropriate technique – mixins or aspects – that fits a given
problem best. Moreover, they can apply a collaboration of both and decide to
what extent one technique is used.

2.6 Aspect Refinement

Aspect refinement (AR) is the incarnation of SWD in AOP [16]. Although the
notion of AR does not depend on AMLs, it profits from the integration of aspects
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Fig. 4. Aspectual mixin layers.

into features, and therewith into layered architectures. Having this, it is natural
to refine aspects in subsequent features, too. This allows for reusing, refining, and
evolving aspect implementations – true to the motto of SWD. Refining aspects
means adding new members and extending existing members of these aspects. To
support AR at language level, the notion of mixin-based aspect inheritance has
been proposed. It adopts ideas of mixins for composing aspects [16]. In order
to uniformly refine all structural elements of aspects, the notions of pointcut
refinement, named advice, and advice refinement have been introduced – all
based on mixin capabilities. Figure 5 depicts an aspect included in an AML that
is subsequently refined in order to advise an extended set of join points. Note
that the refinement to the aspect is part of an AML as well. AR allows every
piece of an aspect to be reused, refined, and evolved [16, 6].

aspect, mixin

inheritance

mixin−based inheritance

association

weaving class, mixin

Fig. 5. Aspect refinement.

In context of AMLs, refinements to aspects are encapsulated by subsequently
applied AMLs. In other words, decomposing an aspect into a base aspect and
several refinements means decomposing the enclosing AML into several pieces
that are themselves AMLs, and that encapsulate the corresponding refinements
to the base aspect (see Fig. 6). Notably, feature decomposition does not result
always in a set of fully-fledged features, but merely in modules that implement
only a subset of a desired feature functionality [17, 18].
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Fig. 6. Decomposing aspects by decomposing AMLs.

3 Case Study

3.1 A Product Line for Peer-to-Peer Overlay Networks

As case study we use a product line for peer-to-peer overlay networks (P2P-
PL) [19–21]. Besides the basic functionality as routing and data management,
P2P-PL supports several advanced features, e.g. query evaluation optimiza-
tion [20], swarm-like meta-data propagation [19], incentive mechanisms to counter
free riding [22]. Numerous experiments concerning those features demanded for
deriving plenty of different configurations to make statements about their spe-
cific effects, their variants, and combinations. The implementation of P2P-PL
was almost complete when we began our evaluating study. At this point, we iden-
tified several design and implementation problems caused by code scattering and
tangling.

P2P-PL has a very fine-grained architecture. It follows the principle of evolv-
ing a design by starting from a minimal base and applying incrementally minimal
refinements to implement design decisions [23]. In its current state, it consists
of 113 features, categorized into several sub-domains, e.g. hashing, or overlay
topology.

We implemented the features mainly using the AHEAD tool suite (ATS) [1].
The ATS supports FOP for Java. To integrate aspects into feature modules, we
used several tools, first of all ARJ 4, an extended AspectJ compiler that supports
AR [16].

We used AMLs and AR to improve the modularity of P2P-PL in order to
avoid the mentioned problems of code scattering and tangling. Furthermore,
we aimed at customizability and code reuse. This study gives insight into the
practical applicability and the benefits of AMLs and AR applied to a real world
scenario. In the following section, we describe when and how we used AMLs and
AR to implement new and to refactor existing features. For sake of simplicity,
we pick out three representative features. Afterwards, we summarize our overall
experiences.

3.2 Aspectual Mixin Layers in P2P-PL

We implemented 14 of the 113 features of P2P-PL as AMLs (12%); the remaining
99 features were implemented as traditional mixin layers. These numbers are

4 http://wwwiti.cs.uni-magdeburg.de/iti db/arj/



not arbitrary but influenced by the features to implement (see Sec. 3.4). Table 1
summarizes information about the AMLs. Before we quantitatively examine the
properties of the AMLs, we explain two concrete examples.

aspect description

responding sends replies automatically

forwarding forwards messages to adjacent peers

message handler base aspect for message handling

pooling stores and reuses open connections

serialization prepares objects for serialization

illegal parameters discovers illegal system states

toString introduces toString methods

log/debug mix of logging and debugging

dissemination piggyback meta-data propagation

feedback generates feedback by observing peers

query listener waits for query response messages

command line command line access

caching caches peer contact data

statistics calculates runtime statistics

Table 1. Aspectual mixin layers used in P2P-PL.

Feedback generator. A feedback generator is part of an incentive mechanism
for penalizing free riders – peers that profit of the P2P network but do not
contribute adequately [22]. The generator observes the message traffic to keep
track which messages have been responded. Depending on if an answer came in
time, it creates positive or negative feedback. That is stored and used by other
mechanisms to judge about the cooperativeness of peers.

MessageSender

Feedback
Generator

Feedback Feedback
Repository

QueryLog
Feedback

Peer

Peer

Handler
Feedback

QueryListener

Generator

Fig. 7. Feedback generator AML.

The implementation of the generator crosscuts the message sending and re-
ceiving features. Although it is heterogeneous, it relies on dynamic context in-
formation (e.g., it uses cflow). As Figure 7 shows, the feedback generator AML



contains an aspect (dark-gray) and introduces four new classes for feedback man-
agement. Additionally, it refines the peer abstraction (by mixin composition) so
that each peer owns a log for outgoing queries and a repository for feedback
objects.

Figure 8 lists an excerpt from the above mentioned aspect. The first advice
refines the message sending mechanism by registering outgoing messages in a
query log (Lines 2-6). In order to not affect multiple send methods, it uses
pointcuts that match the dynamic control flow (Lines 3-6). The second advice
intercepts the execution of a query listener task for creating feedback (Lines 7-8).

1 aspect FeedbackGenerator { ...
2 after(MessageSender sender , Message msg , PeerId id) :
3 target(sender) && args(msg , id) &&
4 call (* MessageSender.send(Message , PeerId)) &&
5 cflow(execution(* Forwarding.forward (..))) &&
6 i f (msg instanceof QueryRequestMessage) { ... }
7 after(QueryListener listener) : target(listener) &&
8 execution(void QueryListener.run()) { ... }
9 }

Fig. 8. Feedback generator aspect (excerpt).

Figure 9 lists the refinement to the peer class implemented as mixin. It adds
a feedback repository (Line 2) and a query log (Line 3). Moreover, it refines
the constructor by registering a feedback handler in the peer’s message handling
mechanism (Lines 4-7). For simplicity, we omit presenting the remaining code
for feedback management and for other message types.

1 refines class Peer {
2 FeedbackRepository fr = new FeedbackRepository ();
3 QueryLog ql = new QueryLog ();
4 refines Peer() {
5 FeedbackHandler fh = new FeedbackHandler(this );
6 this.getMessageHandler (). subscribe(fh);
7 }
8 }

Fig. 9. Feedback management refinement of the peer class.

In summary, within the feedback generator, AML four classes implement
the basic feedback management; an aspect intercepts the message transfer; and
a mixin refines the peer abstraction by capabilities for feedback management.
On one hand, omitting AOP mechanisms would result in code tangling and
scattering since the retrieval of dynamic context information crosscuts other
features, e.g. clients of the message forwarding mechanism. On the other hand,



we found that implementing this feature as one standalone aspect would not
reflect the structure of the P2P framework including the feedback management.
All would be merged within one aspect and not explicitly represented for program
comprehension and for subsequent refinement.

Instead, our AML encapsulates all contributing elements coherently as a
collaboration that reflects the intuitive structure of the P2P framework we had
in mind during its design.

Connection pooling. Connection pooling is a mechanism for reusing open connec-
tions to save time and resources for frequently establishing and shutting down
connections. To integrate connection pooling into P2P-PL, we implemented a
corresponding AML. Figure 10 shows that the AML consists of an aspect and
a pool class. The aspect intercepts all calls that create and close connections.5

The pool stores open connections.

Connection
Pooling

Pool

Peer

Pooling

Connection

Fig. 10. Connection pooling AML.

Figure 11 lists the pooling aspect; it owns a pool for storing references to con-
nections (Line 2). The pointcuts close (Lines 3-4) and open (Lines 5-6) match
the join points that are associated to shutting down and opening connections.
Named advice6 putPool (Lines 7-9) intercepts the shutdown process of connec-
tions and instead stores them in the pool. Named advice getPool (Lines 10-13)
recovers open connections (if available) and passes them to clients that request a
new connection. This crosscut is heterogeneous because it advises creating con-
nections (Lines 7-9) differently than closing connections and (Lines 10-13); but
it is also homogeneous because each of both advice advise a whole set of join
points that are related, e.g., all client-side calls to close (Lines 7-9). We extend
this set in the next paragraph.

Implementing this feature only by using mixins would result in redundant
code. This is because for each method that is associated with opening and clos-
ing connections we would have to implement a distinct method extension. Fur-
thermore, we implemented the pool not as a nested class within the aspect to
emphasize that it is regular part of the P2P-PL. We consider it as part of the
collaboration of artifacts that implement the feature. Subsequent refinements
may extend and modify it.

5 Note that this is not ideally visualized because the calls are intercepted at client /
caller side.

6 Named advice assigns a name to advice for enabling subsequent refinement [16].



1 aspect Pooling {
2 static Pool pool = new Pool ();
3 pointcut close(Connection con) :
4 call (void Connection.close ()) && target(con);
5 pointcut open(SocketAddr sa) :
6 call (Connection Peer.connect (..)) && args(sa);
7 Object around putPool(Connection con) : close(con) {
8 pool.put(con); return null;
9 }

10 Connection around getPool(SocketAddr sa) :open(sa) {
11 i f (pool.empty(sa)) return proceed(sa);
12 return (Connection)pool.get(sa);
13 }
14 }

Fig. 11. Connection pooling aspect (excerpt).

3.3 Aspect Refinement in P2P-PL

In summary, we applied the notion of AR to 8 of our 14 AMLs. That is, we
decomposed each of the 8 aspects into several pieces (each aspect into a base
aspect and several refinements). We encapsulated each refinement to an aspect
in a separate AML. The resulting AMLs were not counted to the overall number
of AMLs (14) because we did not consider them as fully-fledged features but as
subsets that contribute to a larger feature (cf. Sec. 2.6). Again, we explain two
concrete examples in detail; later on we summarize our quantitative results.

Serialization. The serialization feature is very simple. It consists only of one
aspect. We chose this example because it is an homogeneous crosscut and it
illustrates the benefits of AR. The aspect introduces a new interface to a set
of classes that objects are interchanged via stream and network connections.
These classes, e.g. data items, keys, contacts, etc., do not declare this interface
because they are supposed to be reusable in other contexts, which do not rely
on serialization.7

Figure 12 depicts the serialization aspect of an arbitrary configuration. It
simply enumerates a list of declare parent statements for introducing the interface
Serializable to a set of target classes.8

The list of declared parents depends on the current configuration of P2P-
PL. Hence, the serialization aspect depends highly on the feature selection. For
example, if we decide to remove the feedback generator, we would get an error
because the class Feedback would not be part of P2P-PL, but the serialization
aspect refers to it.

Such multiple feature dependencies are an appropriate use case for AR; we
apply AR in order to break open the aspect into smaller pieces – refinements –

7 Some derived overlay networks do not operate on top of a physical networks, but
virtually inside a computer.

8 AspectJ is not able to encapsulate this homogeneous crosscut completely because
the code piece ”implements Serializable” is redundant. Other AOP languages such
as AspectC++ [24] and LogicAJ [25] provide more sophisticated means.



1 aspect Serialization {
2 declare parents : Message implements Serializable;
3 declare parents : PeerId implements Serializable;
4 declare parents : Contact implements Serializable;
5 declare parents : Key implements Serializable;
6 declare parents : DataItem implements Serializable;
7 declare parents : Feedback implements Serializable;
8 ...
9 }

Fig. 12. Serialization aspect (excerpt).

to resolve interactions between the serialization feature and others. This allows
us to select only those pieces that refine selected features.

Figure 13 lists the refactored serialization aspect and its factored out re-
finements (merged in one listing). How fine-grained such refactoring has to be
depends on the desired flexibility for composing different variants. In P2P-PL,
we split the compound serialization aspect in 16 pieces.

1 aspect Serialization {
2 declare parents : Message implements Serializable;
3 }
4 refines aspect Serialization {
5 declare parents : PeerId implements Serializable;
6 }
7 refines aspect Serialization {
8 declare parents : Contact implements Serializable;
9 }

10 refines aspect Serialization {
11 declare parents : Feedback implements Serializable;
12 } ...

Fig. 13. Refactored serialization aspect (excerpt).

Connection pooling. Based on our experiences with overlay networks, we recog-
nized several useful and genuine refinements to the connection pooling aspect.
For the sake of simplicity, we limit our focus to the essential parts of three
refinements and we abstract over implementation details.

Figure 14 depicts the three refinements (merged in one listing). The first
(Lines 1-4) refines the pointcut open to match also connection requests not
addressed to Peer, in our example addressed to a different network component
TCP. The notion of pointcut refinement decouples the aspect from a fixed parent
aspect and therefore increases the flexibility to combine this refinement with
other refinements (see [16]).

The second refinement is more sophisticated (Lines 5-12). It refines both ad-
vice (putPool, getPool) with synchronization code to guarantee thread safety.
Since the pooling activities are implemented via named advice, this refinement



1 refines aspect Pooling {
2 pointcut open(SocketAddr sock) : super.open(sock) ||
3 execution(* TCP.getConnection (..));
4 }
5 refines aspect Pooling {
6 boolean putPool(Connection con) {
7 synchronized(pool) { return super.putPool(con); }
8 }
9 Connection getPool(SocketAddress adr) {

10 synchronized(pool) { return super.getPool(adr); }
11 }
12 }
13 refines aspect Pooling {
14 boolean putPool(Connection con) {
15 boolean res = true;
16 i f (TCP.calcAverageThroughput(con) > MIN_TP)
17 res = super.putPool(con);
18 return res;
19 }
20 }

Fig. 14. Encapsulating design decisions using AR.

can simply extend them (via advice refinement) with synchronization code. As
one can see, when refining named advice they are treated similarly to conven-
tional methods (see [16]).

The third refinement (Lines 13-20) selects only those connections for pooling
that satisfy specific network properties, i.e., the data throughput. It extends the
putPool advice by code for analyzing the network traffic.

These example refinements show how the effect of different design decisions
can be encapsulated in order to configure different pooling variants, depending
on the application context. These examples show the usefulness of our proposed
mechanisms, pointcut refinement, named advice, and advice refinement. Note
that the connection pooling aspect and its refinements differ from the serializa-
tion aspect. While here we used AR for encapsulating different design decisions,
with the serialization aspect, we used AR for resolving feature dependencies.

3.4 Quantitative Analysis

The examples have shown that we found several situations where AMLs and AR
have proved useful (12% of features were implemented by AMLs). However, this
does not prove that we applied AMLs and AR in an appropriate way. Therefore,
we analyze when and how we applied them. It is interesting to know to what
extent we employed AOP and FOP. Since the conceptual evaluation framework
suggests for what kind of feature what mechanism is most beneficial (Sec. 2.3),
we are able to compare our experimental results with these suggestions. In the
Sections 3.4-3.4, we present the facts extracted from our analysis and in Sec-
tion 3.5, we interpret and discuss them in more depth.

Statistics on Used AOP and FOP Mechanisms. We collected the following
statistics: (1) number of used implementation mechanisms, (2) LOC associated
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with these mechanisms, and (3) LOC associated with introductions (static cross-
cutting) and extending and advising methods (dynamic crosscutting).

Number of classes, mixins, and aspects. P2P-PL consists of 127 classes. These
classes were introduced incrementally in several development steps. Furthermore,
we implemented 130 subsequent class refinements as mixins, and we used 14
aspects for modularizing crosscutting features, as we will explain later. The
main point is that we used mainly classes and mixins for implementing features
rather than aspects, which were used only to a minor degree – about 5% of the
overall number of mechanisms for constructing features (Fig. 15).

LOC associated with classes, mixins, and aspects. The overall code base of P2P-
PL consists of 6426 LOC. Thereof, 3056 LOC are associated with classes, 2964
LOC with mixins, and 406 LOC with aspects. These statistics are in line with the
above given numbers on the ratio of implementation mechanism usage. Aspect
code sums up to only 6% and mixin code to 46% of the overall code base (Fig. 16).



LOC associated with extensions and introductions. 1488 LOC of all implemented
mixins and aspects are associated to extending existing methods (dynamic cross-
cutting). Thereof, 374 LOC are associated with AspectJ advice and 1114 with
method extensions via mixins. The remaining 4938 LOC are associated with
introductions of new functionality (static crosscutting). These statistics demon-
strate that introducing new structures in P2P-PL was the dominant activ-
ity (77%), rather than extending and advising existing methods (Fig. 17).

Statistics on Aspectual Mixin Layers. As Table 1 shows, we used 14 AMLs
within P2P-PL. A question that arises is, was the use of AMLs subjective or
even arbitrary? Did we employ AMLs as opposed to traditional mixin layers in
the right situations? In order to explain that our implementation decisions were
not driven by personal preferences, we collected statistics about the properties
and application of AMLs.

Number and properties of aspects. To get deeper insight in why and for what
we used aspects within AMLs, we analyzed their structure and purpose: we
implemented 6 aspects that modularize homogeneous crosscuts (that refine a set
of targets coherently with the same code piece), 6 aspects that employ dynamic
crosscutting (that access dynamic context information, e.g., cflow), 2 aspects
that alter inheritance relationships (that introduce interfaces), and 3 aspects that
implement purely heterogeneous crosscuts (Fig. 18).9 As explained in Section 2,
most of these uses (82%) exploit the advanced capabilities of aspects. Simply
applying mixins would result in redundant, scattered, and tangled workarounds,
as explained before. Only three aspects implement collaborations that could also
be implemented by a set of mixins. Section 4 explains why in these particular
cases aspects were appropriate anyways.

Number of feature-related classes. To explore if aspects are used stand-alone or
with other classes and mixins in concert, we determined the number of classes
and aspects per AML. On average, an AML introduces one aspect and 2 to 3
additional classes – up to 11 new classes per AML. This shows that our AMLs
encapsulate collaborations of aspects, classes, and mixins.

Statistics on Aspect Refinement. As we have demonstrated, AR is useful for
decomposing and refining aspects. Although AR is not limited to AMLs, the layer
structure imposed by AMLs facilitates handling aspects and their refinements.
We have applied the notion of AR to 8 of 14 AMLs within P2P-PL. Result for
each decomposed AML is a set of aspect refinements encapsulated in several
separate AMLs. Table 2 gives information about the decomposed AMLs and
explains briefly for what reasons we used AR.

9 Note that some aspects were counted for more than one category, e.g., homogeneous
and dynamic.



aspect # pieces description

serialization 16 serialization support for several classes

responding 5 introduces a separate refinement for each type of message

toString 14 introduces toString methods to several classes

log/debug 18 logging and debugging depending on other features

pooling 4 connection pooling, e.g. synchronization, network parameters

dissemination 12 meta-data propagation, e.g. diss. strategy, time stamps

feedback 6 generates feedback, e.g. feedback types, storing

caching 7 caches contact data, e.g. caching strategy,

Table 2. Overall use of aspect refinement.

Feature dependencies. Within P2P-PL, we used AR for resolving feature depen-
dencies (cf. Sec. 3.3). Besides the mentioned serialization aspect, we identified 3
further aspects that have only one single purpose but affect plenty of other fea-
tures (rows 3-5 in Table 2). To decouple them from a fixed set of base features,
we decomposed them into pieces, encapsulated in distinct AMLs.

Multiple design decisions. Another use case of AR is to encapsulate the effects of
several design decisions that are associated with an aspect (cf. Sec. 3.3). Thereby,
we break off the otherwise hard-wired functionality to be able to trace design
decisions in code and to improve configurability. Within P2P-PL, we decomposed
4 of such aspects (last four aspects in Table 2).

Average decomposition degree. On average, we decomposed the considered as-
pects in a base aspect and 9 refinements. Table 2 shows in how many pieces the
individual aspects were decomposed. Surely, we applied the notion of AR only
to those aspects that seemed promising. Nevertheless, over 1/2 of all aspects
shaped up as good candidates for decomposition via AR.

3.5 Summary

Our case study shows that AMLs and AR are applicable to a real software
project. Aspects integrated into traditional features helped to modularize cross-
cutting features. Moreover, it demonstrates that aspects and mixins work to-
gether in concert.

Specifically, we could improve the feature modularity in 12% of all features
by using AOP mechanisms. In this way, we avoided code scattering that would
otherwise affect lots of other feature modules. However, our study showed that
aspects were associated only to 6% of the code base. This is simply because featu-
res whose implementation demands for AOP mechanisms occur not as frequently
as features that come in form of collaborations that are super-imposed.

Additionally, we refactored 8 AMLs using AR. On average, each aspect within
the considered AMLs was decomposed into 10 pieces encapsulated by 10 separate



AMLs. While this increased the number of AML considerably, it allowed us (1)
to resolve dependencies of 4 AMLs to other features, and (2) to encapsulate and
separate several design decisions that were otherwise hard-wired, in case of 4
aspects.

Reviewing these results, we perceive traditional collaborations as skeletons
of product lines. This does not imply a specific implementation mechanism, but
we were able to implement 94% of the P2P-PL code base using collaborations
of classes and mixins, which we consider standard object-oriented techniques.
Aspects are not as frequently used as collaborations. This observation is in line
with the original purpose of aspects to implement specific crosscutting concerns.
Furthermore, the study demontrated that aspects and mixins collaborate well
together in P2P-PL.

AR is a logical next step when integrating aspects into layered designs as in
SWD. The study demonstrated the usefulness of AR and revealed guidelines to
discover, design, and refine aspects in a stepwise manner.

4 Perspective

In this section we put the results of our case study into perspective.

4.1 Lessons Learned: A Guideline for Programmers

Mixins and aspects – when to use what? One central question for programmers
is when to use mixins and when to use aspects? What we have learned of our
case study is that a wide range of problems can be solved by using object-
oriented mechanisms and mixins (FOP). Specifically, we used mixins for ex-
pressing and refining collaborations of classes. Collaborations are heterogeneous
crosscuts with respect to a base program. Each added feature reflects a subset of
the structure of the base program and adds new and refines existing structural
elements. A significant body of prior work advocates this view [10, 3, 4, 1, 9, 11,
14, 15].

Using aspects standalone for implementing collaboration-based designs, as
proposed in [26, 27], would not reflect the natural structure of the program (that
the programmer had in mind during the design) within subsequent refinements
(implemented by single aspects). For example, the peer abstraction of P2P-PL
plays different roles in different collaborations, e.g., with the network driver
and with the data management. Encapsulating these different roles and their
collaborations in single aspects would hinder the programmer to recognize and
understand the inherent object-oriented structure and the meaning of these fea-
tures. Especially, if a collaboration embraces plenty of roles and we merge them
all into one (or more) standalone aspect(s), the resulting code would be hard to
read and to understand. The structure of P2P-PL would be hidden and inter-
mixed in the flattened aspect code. This information loss would reduce program
comprehensibility and maintainability.



Nevertheless, aspects are a very useful modularization mechanism. In our
study we have learned that they help in those situations where traditional object-
oriented techniques and mixins fail. We found that (1) aspects reduce replicated
code when implementing homogeneous crosscuts, (2) they help to modularly im-
plement otherwise inelegant workaround for expressing advanced dynamic cross-
cutting, and (3) they support the subsequent altering of inheritance relation-
ships. Aspects perform better in these respects than traditional object-oriented
approaches because they provide several advanced language-level constructs that
capture the programmers intension more precisely and intuitively.

Using mixins standalone for implementing homogeneous crosscuts, would re-
sult in a lot of replicated code since for each target point a distinct refining
method has to be introduced, each with replicated code. Moreover, mixins do
not support advanced mechanisms for dynamic crosscutting, such as cflow.

Borderline cases. While we understand the above considerations as guideline
for programmers that helps in most situations to decide between aspects and
mixins, we also discovered few situations where this decision is not obvious.

We realized that some homogeneous crosscuts alternatively could be mod-
ularized by introducing an abstract base class that encapsulates this common
behavior. While this works, for example, for all messages or message handlers, it
does not work for classes that are completely unrelated, as in the case of a logging
feature. It is up to the programmer to decide if the target classes are syntacti-
cally and semantically close enough to be grouped via an abstract super-class or
an interface.

Although, our study has shown that a traditional collaboration-based design
ala FOP works well for the most features, we found at least one heterogeneous
feature where it is not clear if it would not be more intuitive to implement
it via an aspect. This feature introduces toString methods to a set of classes
(cf. Tab. 1). Naturally, each of these methods is differently implemented. Thus,
the feature is a heterogeneous crosscut. However, in this particular case it seems
more intuitive to group all toString methods in one aspect. We believe this is
caused by the partly homogeneous nature of this crosscut, i.e., introducing a set
of methods for the same purpose to different classes.

4.2 Open Issues

Granularity and scalability. On average, in P2P-PL each feature is implemented
by 56 LOC. Thus, our features are very fine-grained. Although, we are not aware
of principle metrics that tell programmers what feature granularity is appropri-
ate, this fine-grained approach might not scale to larger software projects. One
way to address this issue would be to implement coarse-grained features. While
this overcomes the problem of limited scalability, it decreases the potential sce-
narios a feature can be reused with [28]. Remarkably, not aware of this fact
when implementing P2P-PL, we chose intuitively an approach in between. We
organized the set of 113 feature into a tree structure of subsystems. A top level



we related each feature to one of 4 subsystems that themselves have 12 subsys-
tems: P2P networks, data storage, distributed hash tables, content addressable
networks. All these subsystems have counterparts in the domain model of P2P
systems. Those subsystems can be understood as large-scale compound features.
Such hierarchical approach might be a trade-off between fine-grained customiz-
ability and scalability.

Code tangling. Our feedback generator used several times the message subsys-
tem for accessing information about incoming and outgoing messages. We imple-
mented this collaboration via direct method calls from the feedback generator
to the message subsystem. Moreover, the feedback generator uses a logging sub-
system to log its current state. This could also be implemented via method calls.
Interesting is that most programmers would probably agree that collaborating
with the message subsystem is not undesirable code tangling, but invoking a
log instance is considered as code tangling. However, in this particular case it
might be easy to decide but in other situations it might be unclear. So what is
the general rule for considering a uses-relationship as tangling or as meaningful
collaboration? Although we do not have a satisfactory answer, we refer to the
law of demeter of concerns (LoDC) [29]. Informally, it says that a concern should
only know about concerns that contribute to its functionality. Mapped to our
problem it is evident that the message subsystem is necessary for the implemen-
tation of the feedback generator, whereas the logging feature does not contribute
anything. In other words, programmers may use the LoDC for deciding when to
use aspects and when collaborations of mixins and classes.

4.3 Generalization to Other Approaches

Our study used AMLs to implement features that demand special crosscutting
functionality. Now we want to illustrate if and how our experiences can be applied
to related approaches that combine AOP and FOP. Prominent representatives
are caesar [30, 3], aspectual collaborations [4], and object teams [7].

All of the considered approaches abstract collaborations of classes explicitly
at language level and enrich these abstractions by different AOP mechanisms
like AMLs. Since all principally support collaboration-based designs, they all
are capable of implementing those features of P2P-PL that do not contain as-
pects (99 features). What differs from AMLs is their usage of AOP mechanisms.
While AMLs integrate aspects into collaborations of software artifacts, others
treat collaborations as aspect instances themselves. For example, caesar’s aspect
components encapsulate sets of nested classes (roles) and pointcuts and advice.

Historically, all of the considered approaches focus on on-demand remodular-
ization and a posteriori integration of structurally differing components. While
object teams and aspectual collaborations do not explicitly support pointcuts
and advice for supporting homogeneous crosscuts, caesar provides a rich set,
similar to AspectJ. Thus, caesar is also capable of implementing the 14 AMLs
of P2P-PL analogously to our study.



However, none of the considered approaches support AR, but there is no
reason why this notion could not be integrated. In summary, we believe that
this study tells us more about AOP and FOP in general than about specific
implementation approaches.

5 Related Work

We limit the discussion of related work to the evaluation and combination of
AOP and FOP. Work related to AMLs and AR is discussed elsewhere [6, 16].

Evaluation of AOP. Recent studies have applied and evaluated AOP by its
application to real world software projects. We review a representative subset.

Colyer and Clement refactored an application server using aspects. Specifi-
cally, they factored 3 homogeneous and 1 heterogeneous crosscutting concerns.
While the number of aspects is marginal, the size of the case study is impres-
sively high (millions of LOC). Although they draw positive conclusions, they
admit (but do not explore) a strong relationship to FOP. Our study has demon-
strated the useful integration of both worlds.

Zhang and Jacobsen refactored several CORBA ORBs [31]. Using code met-
rics, they demonstrated that program complexity could be reduced. They pro-
pose an incremental process of refactoring which they call horizontal decompo-
sition. Liu et al. have pointed to the close relationship to FOP layering [17].
Our study has confirmed former arguments that for implementing features, as-
pects are too small units of modularization for implementing a broad variety of
features [3, 4, 6].

Coady and Kiczales undertook a retroactive study of aspect evolution in the
code of the FreeBSD operating system (200-400 KLOC) [32]. They factored 4
concerns and evolved them in three steps; inherent properties of concerns were
not explained in detail. Our study has shown that AR can help to evolve aspects
over several development steps.

Lohmann et al. examined the applicability of AOP to embedded infrastruc-
ture software [33]. They have shown that AOP mechanisms, carefully used, do
not impose a significant overhead. For their study they factored 3 concerns of
a commercial embedded operating system; 2 concerns were homogeneous and 1
heterogeneous. Furthermore, they have shown that aspects are useful for encap-
sulating design decisions, which is also confirmed by our study.

Evaluation of FOP. A significant body of research supports the success of FOP
to implement large-scale applications, e.g. for the domain of databases [34–36],
network software [36], avionics [37], and command-and-control simulators [38],
to mention a few. The AHEAD tool suite is the largest example with about
80-200 KLOC [1]. However, none of these studies make quantitative statements
about the properties of the implemented features, neither they evaluate the used
implementation mechanisms with respect to the structures of the concerns. We



have the impression the features they consider were mainly traditional collabo-
rations that were heterogeneous crosscuts, which is in line with our findings in
P2P-PL.

Lopez-Herrejon et al. explore the ability of AOP to implement product lines
in a FOP and SWD fashion [39]. They demonstrate how collaborations are trans-
lated automatically to aspects. They do not address in what situations which
implementation technique is most appropriate nor how the generated aspects
affect program comprehensibility.

We are not aware of further published studies that take both, AOP and FOP,
into account.

Combining AOP and FOP. Several studies suggest to exploit the synergetic
potential of aspects, roles, and collaborations, e.g. caesar [30, 3], adaptive plug-
and-play components [40], pluggable composite adapters [41], aspectual collabo-
rations [4], and object teams [7]. Since these approaches were highly influenced
by one another, we compare our approach to their general concepts. We choose
caesar as a representative because it unifies the most essential ideas and it has
grown to the most matured approach.

Caesar supports componentization of aspects by encapsulating virtual classes
as well as pointcuts and advice in collaborations, so called aspect components.
Aspect components can be composed via their collaboration interfaces and mixin
composition in a stepwise manner. Besides this, they can be refined using point-
cuts in order to implement crosscutting integration.

With the mentioned approaches it is not possible to refine embedded point-
cuts and advice. They do not uniformly support SWD at language level. Further-
more, their collaborations (aspect components) are first-class and their composi-
tion is done within source code. There is no separation of the source code artifacts
and their association to development steps. Our experience with P2P-PL was
that even this separation facilitates the composition, reuse, and customization.

Collaborations and super-imposition. Steimann argues that expressing collabo-
rations using object-oriented techniques facilitates a better program understand-
ing than using aspects [14]. He builds his arguments on a long line of work on
object-oriented and conceptual modeling [11]. However, he does not distinguish
between homogeneous and heterogeneous crosscuts nor between static and dy-
namic crosscutting.

Bosh demonstrates how super-imposing collaborations outperforms other
component integration techniques such as wrapping and aggregation [15]. Al-
though, he does not explicitly take AOP into account he favors collaborations
for implementing features.

Our study has shown that for most features in P2P-PL the arguments of
Steimann and Bosh are valid. Nevertheless, in certain situations traditional
object-oriented techniques fail and AOP mechanism perform better.

Roles and aspects. Pulvermüller et al. propose to implement collaborations as
single aspects that inject the participating roles into the base program by using



introductions and advice [26]. In our study we made the observation that ex-
plicitly representing collaborations by traditional object-oriented techniques and
mixins facilitates program comprehensibility. Moreover, favoring their approach
would lead at the end to a base program with empty classes that are extended
by several aspects that inject structure and behavior. This would destroy the
object-oriented structure of the program and would hinder the programmer to
understand the structure and behavior of the overall program as well as its
individual features.

Some authors suggest to use aspects for implementing individual roles [27,
42]. In our context this would mean to replace each mixin within a feature by one
or more aspects. We and others [14, 3] argue that replacing traditional object-
oriented techniques that suffice (e.g. inheritance) is questionable. Instead, we
favor to use aspects only when traditional techniques fail.

6 Conclusion

Recent studies have analyzed the strengths and shortcomings of AOP and FOP.
In order to combine their advantages several studies proposed to integration of
AOP and FOP concepts in different ways. But the arguments put forward by
these studies are based mainly on conceptual considerations and simple exam-
ples.

In this paper we applied these ideas to a case study and evaluated the key
concepts in a quantitative manner. For our study, we picked out one concrete
approach for the symbiotic use of AOP and FOP and applied it to a real world
application, a product line for overlay networks. Our study showed that combin-
ing AOP and FOP improved the modularity, reusability, and customizability of
P2P-PL. Moreover, it turned out that although aspects were not the dominant
modularization mechanism (6%), they enhanced the crosscutting modularity of
feature modules and reduced thereby redundant code. Our study supports the
hypothesis that collaborations of classes and mixins form the skeleton of a prod-
uct line and aspects are used for certain crosscutting features. In this line, the
study demonstrated the consensus of conceptual arguments and empirical find-
ings. Furthermore, we pointed to several open issues whose clarification may
sensiblize and improve further work. Finally, we gave a set of guidelines that as-
sist the programmer in chosing and a using the right implementation mechanisms
for the right problems.
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