
Handling Optional Features in Software Product Lines

Thomas Leich, Sven Apel, Marko Rosenmueller, Gunter Saake
Department of Computer Science, Otto-von-Guericke-University

Magdeburg, 39106, Germany

Abstract
Software product lines have a long tradition and will gain mo-

mentum in future. Feature Oriented Programming (FOP) is a

design methodology and implementation technique to build prod-

uct lines based on features. Features interact with others in many

ways. In this paper we focus on structural interactions of features

and especially on handling optional features. We present our first

ideas dealing with a problem in this context (a.k.a. feature op-

tionality problem).

1 Overview
Software product lines are subject of ongoing research. FOP
is a design methodology and implementation technique to
build product lines [2]. The idea of the FOP model is to
decompose software into separate modular units (features)
and to compose stacks of features to derive a concrete pro-
gram. When adding new programs to a product line, exist-
ing features of other programs can be reused. This is also
known as step-wise refinement. The benefit is maintainable,
comprehensible software that can be easily reused, config-
ured and extended [2].

C
A

C
B

C
C

L
1

L
2

L
3

Figure 1: Stack of mixin layers.

Mixin Layers. Mixin layers are one appropriate tech-
nique to implement features in the sense of FOP [2, 8]. The
basic idea is that features are often implemented by a col-
laboration of class fragments. A mixin layer is a static com-
ponent, encapsulating fragments of several different classes
(mixins) so that all fragments are composed consistently.
Figure 1 depicts a stack of three mixin layers (L1 - L3) in
top down order. The mixin layers crosscut multiple classes
(CA - CC). The rounded boxes represent the mixins. Mixins
that belong together constitute a complete class are called
refinement chain.

FeatureC++. FeatureC++ 1 is a C++ language ex-
tension to implement mixin layers. In FeatureC++, mixin
layers are represented by file system directories. Therefore,
they have no programmatic representation. Those mixins
found inside the directories are assigned to be members of
the enclosing mixin layers. Figure 2 depicts a class and two
refinements (implemented as mixins). Refinements are de-
clared by the refines keyword (Lines 10,17). Usually, they
introduce new attributes and methods or extend methods

1http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

of their parent classes (e.g. Line 10-27). To access the ex-
tended method the super keyword is used (Lines 20,23,26).

2 Feature Optionality Problem
To explain our ideas to solve the feature optionality prob-
lem we use a FOP model of a stack product line (adopted
from [7]). Figure 2 shows a modified version of this stack.
The base feature base implements basic stack operations
such as push(),top(), and pop(). The concat feature ex-
tents the stack with functionality for combining two stacks.
The concat method adds this functionality (Line 11).

1 //Layer . ./ Stack/BaseStack/BaseStack . fcc
2 class stackOfChar { // the base feature
3 String s;
4 void empty () {s = ""; }
5 void push (char a) {s = a + s;}
6 void pop() {s = s.substring (1);}
7 char top() {return s.charAt (0);}
8 };
9 //Layer . ./ Stack/Concat/Concat . fcc

10 refines class stackOfChar { // the concat feature
11 void concat(stackOfChar& other) {
12 while (! other.empty ()) {
13 push(other.top ());
14 other.pop ();}}
15 };
16 //Layer . ./ Stack/Log/Log. fcc
17 refines class stackOfChar { // the log feature
18 void concat(stackOfChar& o) {
19 cout << "concat 2 stacks" << endl;
20 super:: concat(o);}
21 void push(char a) {
22 cout << "push: " << a << endl;
23 super::push(a);}
24 void pop() {
25 cout << "pop: " << top() << endl;
26 super::pop ();}
27 };

Figure 2: Refinements.
The feature log adds logging support to the stack prod-

uct line. Doing so, the basic stack operations (push(),
pop(), concat()) are refined. This is the common way to
implement refinements in a FOP style. But, however, in cer-
tain situation this leads to a problem: If we want to derive
a stack with logging support and without the concat fea-
ture, we get an error during the compilation process. If the
concat feature is removed the log feature tries to extent a
non-existing feature. This may happen because the concat

feature is an optional feature. This problem is also called
the feature optionality problem caused in feature-oriented
designs [7].

Prehofer proposes lifters to solve this problem in FOP [7].
Lifters encapsulate feature dependencies and decouple fea-
tures. The idea is to separate those parts of a feature that
depend on other features (in lifters) from those that are in-
dependent. Doing so, a feature is split into several abstract

(sub) features. The goal is that dependent and independent
features are separated into different concerns [7, 4].

However, this approach has its limitations: It is a main
goal of FOP to encapsulate user intuitive requirements into
features, and moreover in a one-to-one pattern [3]. Using
lifters enforces the programmer to introduce additional ab-
stract features. Thus, the one-to-one mapping is broken.
Furthermore, this prevents feature cohesion. Cohesion is
the property of a feature to encapsulate all implementation
units that contribute to the feature in one module [5]. Fea-
ture cohesion is important to implement and handle large-
scale building blocks. The explicit mapping of requirements
onto implemented features ensures a long-life, maintainable
system [9]. Features in FOP have a high degree of cohe-
sion, but this introduces the feature optionality problem.
Using the lifter to cope with the feature optionality prob-
lem breaks this cohesion through separating interaction and
basic concerns into different units.

3 Our First Approach

This section presents our first solution to overcome the fea-
ture optionality problem without depending on lifters. Our
main goal is to reach a high tolerance against optionals fea-
ture in FOP style product lines. Our approach is based on
ideas of Aspect-Oriented Programming (AOP). AOP tackles
the feature optionality problem as follows: By expressing
join points in pointcuts the programmer is able to define
wildcards that are robust against changes of features and
their compositions. Using languages like Caesar [6] or Fea-
tureC++ [1] that combine FOP and AOP the programmer
can decide which functionality is implemented by using as-
pects or mixins. In this way he can select the adequate tech-
nique to implement a feature hierarchy that is tolerant and
reliable against changes and optional features. This allows
for a coherent encapsulation, but the separation of this op-
tional functionality into aspects and mixins look still like a
hack. Therefore, our approach tries to improve mixins and
mixin-based inheritance themselves to cope with optional
features. So the programmer does not need aspects. That
does not mean that we generally want to program with-
out aspects. We argue that aspects have a lot of strengths
to implement product lines [1], but regarding the feature
optionality problem we tailored solutions.

Our approach introduces well known AOP concepts into
mixins. Mixin may declare their methods with the key-
words before, after and around. This emphasizes that
these method refinements are optional. This means that if
there is no method to refine, these refinements are ignored.
Furthermore, this extension makes the idea of adding re-
finements before, after, and around a join point (a call to a
method) more explicit that the common FOP way (by using
the super keyword inside the refined method body). An al-
ternate would be the introduction of an optional keyword
that states that a refinement is optional.

In our approach (using before, after, and around) the
pointcut is implicitly defined by the signature of the refined
method. Figure 3 shows the log feature implementation
using our new extension. Now, the concat() method is op-
tional by using the before keyword (Line 3). Moreover,
the keyword also describes when the functionality of the
refinement has to be processed (in an AOP style). The
super keyword (Lines 7,10) is still used for refinements of

1 //Layer . ./ Stack/Log/Log. fcc
2 refines class stackOfChar {
3 void concat(stackOfChar& other) : before () {
4 cout << "concating 2 stacks" << endl;}
5 void push(char a) before () {
6 cout << "push: " << a << endl;
7 super::push(a);}
8 void pop() {
9 cout << "pop: " << top() << endl;

10 super::pop ();}
11 };

Figure 3: Optional Method Refinement.

mandatory features. This distinction between mandatory
and optional features allows us to find design failures sta-
tically during the composition of features. An alternative
solution uses the around keyword (see Fig. 4).

1
2 void concat(stackOfChar& other) : around () {
3 cout << "begin concating 2 stacks" << endl;
4 proceed(other);
5 cout << "end concat" << endl;}
6

Figure 4: Optional Method Refinement using around.
Up to now we only investigated single classes. Optional

features may also introduce new classes that are refined by
subsequent features. To be independent from these features
as well we introduce the optional keyword to the definition
of class refinements. Thus features can add an optional class
refinement by using refines optional class. We have
limited the access to these optional classes only to those
classes that contribute to the enclosing mixin layer and to
those methods that are optional.

4 Further Directions
Feature interactions are not limited to only two features. It
is also natural that different combinations of two or more
optional features may interact in different ways. Therefore,
we intend to improve our current solution. Currently, we
investigate multi mixins [1] to deal with this problem.

References
[1] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. FeatureC++:

On the Symbiosis of Feature-Oriented and Aspect-Oriented Pro-
gramming. In GPCE’05, 2005.

[2] D. Batory, J. N. Sarvela, and Axel Rauschmayer. Scaling Step-
Wise Refinement. IEEE Transactions on Software Engineering,
30(6), 2004.

[3] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[4] J. Liu, D. Batory, and S. Nedunuri. Modelling Interactions in
Feature Oriented Software Design. In ICFI’05. 1997.

[5] R. Lopez-Herrejon, D. Batory, and W. Cook. Evaluating support
for features in advanced modularization technlogies. In ECOOP
’05, 2005.

[6] M. Mezini and K. Ostermann. Variability Management with
Feature-Oriented Programming and Aspects. In Proceedings of
the 12th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, 2004.

[7] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In ECOOP’97, 1997.

[8] Y. Smaragdakis and D. Batory. Mixin Layers: An
Object-Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM TOSEM, 2002.

[9] P. Sochos, I. Philippow, and M. Riebisch. Feature-Oriented De-
velopment of Software Product Lines: Mapping Feature Mod-
els to the Architecture. In Object-Oriented and Internet-Based
Technologies. 2004.

