

RAM-SE’05 – ECOOP’05 Workshop on
Reflection, AOP, and Meta-Data for Software Evolution
(Proceedings)

Glasgow, 25th of July 2005

Edited by

Walter Cazzola - Università degli Studi di Milano, Italy
Shigeru Chiba - Tokyo Institute of Technology, Japan
Gunter Saake - Otto-von-Guericke-Universität Magdeburg, Germany
Tom Tourwé - CWI in Amsterdam, The Netherlands

Foreword

Software evolution and adaptation is a research area, as also the name states, in
continuous evolution, that offers stimulating challenges for both academic and
industrial researchers. The evolution of software systems, to face unexpected
situations or just for improving their features, relies on software engineering
techniques and methodologies. Nowadays a similar approach is not applicable
in all situations e.g., for evolving nonstopping systems or systems whose code is
not available.

Reflection and aspect-oriented programming are young disciplines that are
steadily attracting attention within the community of object-oriented researchers
and practitioners. The properties of transparency, separation of concerns, and ex-
tensibility supported by reflection and aspect-oriented programming have largely
been accepted as useful for software development and design. Reflective fea-
tures have been included in successful software development technologies such
as the Java language and the .NET framework. Reflection has proved to be
useful in some of the most challenging areas of software engineering, including
Component-Based Software Development (CBSD), as demonstrated by exten-
sive use of the reflective concept of introspection in the Enterprise JavaBeans
component technology.

Features of reflection such as transparency, separation of concerns, and ex-
tensibility seem to be perfect tools to aid the dynamic evolution of running
systems. They provide the basic mechanisms for adapting (i.e., evolving) a sys-
tem without directly altering the existing system. Aspect-oriented programming
can simplify code instrumentation providing a few mechanisms, such as the join
point model, that permit of evincing some points (join points) in the code or in
the computation that can be modified by weaving new functionality (aspects)
on them in a second time. Meta-data represent the glue between the system to
be adapted and how this has to be adapted; the techniques that rely on meta-
data can be used to inspect the system and to dig out the necessary data for
designing the heuristic that the reflective and aspect-oriented mechanisms use
for managing the evolution.

It is our belief that current trends in ongoing research in reflection, aspect-
oriented programming and software evolution clearly indicate that an inter-
disciplinary approach would be of utmost relevance for both. Therefore, we felt
the necessity of investigating the benefits that the use of these techniques on the
evolution of object-oriented software systems could bring. In particular we were
and we continue to be interested in determining how these techniques can be
integrated together with more traditional approaches to evolve a system and in
discovering the benefits we get from their use.

i

Software engineering may benefit from a cross-fertilization with reflection and
aspect-oriented programming in several ways. Reflective features such as trans-
parency, separation of concerns, and extensibility are likely to be of increasing
relevance in the modern software engineering scenario, where the trend is towards
systems that exhibit sophisticated functional and non-functional requirements;
that are built from independently developed and evolved COTS (commercial
off-the-shelf) components; that support plug-and-play, end-user directed recon-
figurability; that make extensive use of networking and internetworking; that
can be automatically upgraded through the Internet; that are open; and so
on. Several of these issues bring forth the need for a system to manage itself
to some extent, to inspect components’ interfaces dynamically, to augment its
application-specific functionality with additional properties, and so on. From a
pragmatic point of view, several reflective and aspect-oriented techniques and
technologies lend themselves to be employed in addressing these issues. On a
more conceptual level, several key reflective and aspect-oriented principles could
play an interesting role as general software design and evolution principles. Even
more fundamentally, reflection and aspect-oriented programming may provide a
cleaner conceptual framework than that underlying the rather ‘ad-hoc’ solutions
embedded in most commercial platforms and technologies, including CBSD tech-
nologies, system management technologies, and so on. The transparent nature
of reflection makes it well suited to address problems such as evolution of legacy
systems, customizable software, product families, and more. The scope of appli-
cation of reflective and aspect-oriented concepts in software evolution conceptu-
ally spans activities related to all the phases of software life-cycle, from analysis
and architectural design to development, reuse, maintenance, and, therefore also
evolution.

The overall goal of this workshop – as well as of its previous edition – was that
of supporting circulation of ideas between these disciplines. Several interactions
were expected to take place between reflection, aspect-oriented programming
and meta-data for the software evolution, some of which we cannot even foresee.
Both the application of reflective or aspect-oriented techniques and concepts to
software evolution are likely to support improvement and deeper understanding
of these areas. This workshop has represented a good meeting-point for people
working in the software evolution area, and an occasion to present reflective,
aspect-oriented, and meta-data based solutions to evolutionary problems, and
new ideas straddling these areas, to provide a discussion forum, and to allow new
collaboration projects to be established. The workshop is a full day meeting. One
part of the workshop will be devoted to presentation of papers, and another to
panels and to the exchange of ideas among participants.

In this second edition of the workshop, we had an interesting keynote by
Oscar Nierstrasz on the revival of the dynamic languages. This keynote was an
interesting experiment that has raised several issues and lively discussion among
the workshop attendees. To the interested reader, more on this keynote can be
read in the paper:

ii

– Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse, Markus
Gälli and Roel Wuyts. On the Revival of Dynamic Languages. In the Pro-
ceedings of Software Composition 2005. Lecture Notes in Computer Science
3628, pages 1-13. 2005.

This volume gathers together all the position papers accepted for presentation
at the second edition of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’05), held in Glasgow on the 25th of July, during
the ECOOP’05 conference. We have received many interesting submission and
due to time restrictions and to quality insurance we had to choice few of them,
the papers that, in our opinion, are more or less evidently interrelated to feed
up a more lively discussion during the workshop. Now, few months after the
workshop, we can state that we achieved our goal, presentations were interesting
and the subsequent panels grew up lively and rich of ideas and proposals. We are
sure that in the next months we will see many papers by the workshop attendees
and fruit of such a lively discussions.

The success of the workshop is mainly due to the people that have attended
it and to their effort to participate to the discussions. The following is the list
of the attendees in alphabetical order.

Apel, Sven Jędrzejek, Czesław Rank, Stephen
Bencomo, Nelly Le Botlan, Didier Rashid, Awais
Chitchyan, Ruzanna Leich, Thomas Reinsch, Michael
Coady, Yvonne Mohd Ali, Noorazean Staijen, Tom
Cointe, Pierre Mosconi, Marco Südholt, Mario
Ebraert, Peter Nierstrasz, Oscar Vandewoude, Yves
Gibbs, Celina Ostermann, Klaus Watanabe, Takuo
Havinga, Wilke Pini, Sonia Weston, Nathan
Hutchins, DeLesley

A special thank is for the three chairmen (Yvonne Coady, Oscar Nierstrasz,
and Takuo Watanabe) that governed the panels at the end of each session.

We have also to thank the Department of Informatics and Communication
of the University of Milan, the Department of Mathematical and Computing
Sciences of the Tokyo institute of Technology and the Institute für Technische
und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magde-
burg for their various supports.

October 2005 W. Cazzola, S. Chiba, G. Saake and T. Tourwé
RAM-SE’05 Organizers

iii

iv

Contents

Mechanisms for Supporting Software Evolution

Combining Feature-Oriented and Aspect-Oriented Programming to Support Software
Evolution. 3
Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake
(Otto von Guericke University Magdeburg, Germany).

Modular Aspect Verification for Safer Aspect-Based Evolution. 17
Nathan Weston, François Taiani, and Awais Rashid
(Computing Department, Lancaster University, UK).

Towards Reusable Heterogeneous Data-Centric Disentangled Parts. 29
Michael Reinsch and Takuo Watanabe (Tokyo Institute of Technology, Japan).

Technological Limits for Software Evolution

Pitfalls in Unanticipated Dynamic Software Evolution. 41
Peter Ebraert, Theo D’Hondt (Vrije Universiteit Brussel, Belgium),
Yves Vandewoude and Yolande Berbers (KULeuven, Belgium).

Architectural Reflection for Software Evolution. 51
Stephen Rank (University of Lincoln, UK).

The Role of Design Information in Software Evolution. 59
Walter Cazzola (DICo, University of Milan, Italy),
Sonia Pini and Massimo Ancona (DISI, University of Genova, Italy).

Tools and Middleware for Software Evolution

Towards a Meta-Modelling Approach to Configurable Middleware. 73
Nelly Bencomo, Gordon Blair, Geoff Coulson
(Computing Department, Lancaster University, UK),
Thaı́s Batista (Universidade Federal do Rio Grande do Norte, Brazil).

v

MADAPT:
Managed Aspects for Dynamic Adaptation based on Profiling Techniques. 83
Robin Liu, Celina Gibbs, and Yvonne Coady
(Department of Computer Science, University of Victoria, Canada).

A Biologist’s View of Software Evolution. 95
DeLesley Hutchins (University of Edinburgh, Scotland).

vi

Mechanisms for Supporting Software Evolution
Chairman: Oscar Nierstrasz, Universität Bern, Switzerland

1

apel
Rechteck

2

apel
Rechteck

Combining Feature-Oriented and
Aspect-Oriented Programming to Support

Software Evolution

Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake

Department of Computer Science
University of Magdeburg, Germany

email: {apel,leich,rosenmue,saake}@iti.cs.uni-magdeburg.de

Abstract. Starting from the advantages of using Feature-Oriented Pro-
gramming (FOP) and program families to support software evolution,
this paper discusses the drawbacks of current FOP techniques. In partic-
ular we address the insufficient crosscutting modularity that complicates
software evolution. To overcome this tension we propose the integration
of concepts of Aspect-Oriented Programming (AOP) into existing FOP
solutions. As study object we utilize FeatureC++, a proprietary ex-
tension to C++ that supports FOP. After a short introduction to basic
language features of FeatureC++, we summarize the problems regard-
ing the crosscutting modularity. In doing so, we point to the strengths
of AOP that can help. Thereupon, we introduce three approaches that
combine FOP and AOP concepts: Multi Mixins, Aspectual Mixins, and
Aspectual Mixin Layers. Furthermore, we discuss their benefits for soft-
ware evolution.

1 Introduction

Nowadays software is subject to frequent changes in order to react to altering
and evolving requirements. The process of continuous adaptation, extension, and
customization is known as software evolution. This article focuses on the evolu-
tion of the design and the implementation base. The idealized goal of software
engineers is to reuse as much as possible code from previous development stages
to build a new version of the software. To achieve this, software must be de-
signed reusable, extensible, and customizable. A heavily discussed approach to
implement software with such virtues to support software evolution are program
families [18]. Program families group programs with similar functionalities in
families. The key idea is to arrange the design and implementation as a lay-
ered stack of functionalities. Different programs consist of different layers. Thus,
implemented layers can be reused in multiple programs. A fine-grained layered
architecture leads to reusable, extensible, and customizable software [18]. Rep-
resentative studies in the domains of databases [4], middleware [1], avionics [3],
and network protocols [4] show that Feature-Oriented Programming (FOP) [5]

3

apel
Rechteck

apel
Rechteck

and Mixin Layers [21] are appropriate to implement such layered, step-wise re-
fined architectures. However, FOP1 yields some problems in expressing features
and evolving software:

1. FOP lacks adequate crosscutting modularity. During the evolution, software
have to be adapted to fit unanticipated requirements and circumstances.
This results in modifications and extensions that crosscut many existing
implementation units in numerous ways [13].

2. Currently FOP is still an academic concept that is not widely accepted in the
industry. We argue that is because of the focus on Java that is not acceptable
in many domains, e.g. operating systems, databases, middleware, realtime
embedded systems, etc. Even these domains demand for appropriate support
of software evolution. Currently, C++-based solutions are too complex and
hard to use [21, 19]. Moreover, an adequate tool support is missing.

Consequently, our contribution is to solve both problems, supporting cross-
cutting modularity and using C++ as base language. We have developed Fea-
tureC++2, an extension to C++ that supports FOP [2]. This article focuses
primarily on the first problem and presents our investigations in solving the prob-
lem of insufficient crosscutting modularity. FeatureC++ serves as study object
and representative FOP language. A detailed introduction to FeatureC++ is
given in [2]. Our approach to improve the crosscutting modularity is to com-
bine traditional FOP concepts with concepts of Aspect-Oriented Programming
(AOP) [13]. AOP focuses on the separation and modularization of crosscutting
concerns and is therefore best qualified to improve FOP. We have elaborated
three ways to integrate AOP concepts into FOP: Multi Mixins, Aspectual Mix-
ins, Aspectual Mixin Layers. This article introduces and compares them, as well
as discusses their pros and cons with regard to software evolution.

The remaining article is structured as follows: Section 2 gives some back-
ground information about FOP and AOP. Section 3 introduces the basic lan-
guage concepts of FeatureC++. Thereupon, Section 4 reviews the problems
of FOP in modularizing crosscutting concerns. In this regard, we point to the
advantages of AOP to solve these problems. Section 5 introduces our three ap-
proaches to combine AOP and FOP, and discusses theirs pros and cons. After-
wards, Section 6 reviews a selection of related work. Finally, Section 7 gives a
conclusion.

2 Background

Pioneer work on software modularity was made by Dijkstra [11] and Parnas [18].
They have proposed the principle of separation of concerns. The idea is to sepa-
rate each concern of a software system in a separate modular unit. They argue
1 In the remaining article we presume that Mixin Layers are used to implement feature-

oriented programs.
2 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

4

that this lead to maintainable, comprehensible software, which can be easily
reused, customized, and evolved.

AOP was introduced by Kiczales et al. [13]. The aim of AOP is to separate
crosscutting concerns. Common object-oriented methods fail in this context [13,
10]. The idea behind AOP is to implement so called orthogonal features as
Aspects. This prevents the known phenomena of code tangling and scattering.
The core features are implemented as components, as with common design and
implementation methods. Using join point specifications (pointcuts), an aspect
weaver brings aspects and components together. Due to the ability to implement
unanticipated features in a modular way AOP is an important technique to
ease software evolution [12]. AspectJ 3 and AspectC++4 are prominent AOP
extensions to Java and C++.

FOP studies feature modularity in program families [5]. The idea of FOP is
to build software by composing features. Features are basic building blocks that
satisfy intuitive user-formulated requirements on the software system. Features
refine other features incrementally. This step-wise refinement leads to a lay-
ered stack of features. Mixin Layers are one appropriate technique to implement
features and layered designs [21]. The basic idea is that features are often im-
plemented by a collaboration of class fragments (a.k.a. roles). A Mixin Layer is
a static component encapsulating fragments of several different classes (Mixins)
so that all fragments are composed consistently. Advantages are the high degree
of modularity and the easy composition [21]. AHEAD is an architectural model
for FOP and a basis for large-scale compositional programming [5]. It extends
the concept of FOP to all software artifacts, e.g. UML diagrams, documentation,
etc. It makes a broad consistent software evolution possible. The AHEAD Tool
Suite (ATS)5, including the Jak language, implements AHEAD for Java.

3 Overview of FeatureC++

This section gives a short overview of FeatureC++. For a more detailed in-
troduction we refer to [2].

3.1 Introduction to Basic Concepts

In order to implement FeatureC++, we have adopted the basic concepts of
the ATS: Features are implemented by Mixin Layers. A Mixin Layer consists
of a set of collaborating Mixins (which implement class fragments). Figure 1
depicts a stack of three Mixin Layers (1− 3) in top down order. The Mixin Lay-
ers crosscut multiple classes (A− C). The rounded boxes represent the Mixins.
These Mixins that belong to and constitute together a complete class are called
refinement chain. Solid lines represent refinement relationships and connect re-
finement chains (Fig. 1). Roots of a refinement chain are called constants; All
3 http://eclipse.org/aspectj/
4 http://www.aspectc.org/
5 http://www.cs.utexas.edu/users/schwartz/Hello.html

5

class A class B class C

layer 1

layer 2

layer 3

Fig. 1. Stack of Mixin Layers.

other Mixins are called refinements. A Mixin A that is refined by Mixin B is
called parent Mixin or parent class of Mixin B. Consequently, Mixin B is the
child class or child Mixin of A. Similarly, we speak of parent and child Mixin
Layers. In FeatureC++ Mixin Layers are represented by file system directo-
ries. Therefore, FeatureC++ represents them not explicitly (this follows the
principle of AHEAD). Those Mixins, found inside the directories are assigned to
be the members of the enclosing Mixin Layer.

3.2 Syntax of Basic Language Features

FeatureC++ adopts the syntax of the Jak language [5]. The following para-
graphs introduce the most important language features by example, a buffer that
serializes and stores objects.

Constants and Refinements. Each constant and refinement is implemented as
a Mixin inside exactly one source file. Each constant is the root of a chain of
refinements (see Fig. 2).

1 class Buffer {
2 char *buf;
3 void put(char *s) { /∗ . . . ∗/ }
4 };

Fig. 2. Defining a basic buffer.

1 refines class Buffer {
2 int length;
3 int getLength () { /∗ . . . ∗/ }
4 };

Fig. 3. Adding a length attribute and an access method.

6

1 refines class Buffer {
2 void put(char *s) {
3 i f (strlen(s) + getLength () < MAX_LEN)
4 super::put(s);
5 }
6 };

Fig. 4. Limiting the buffer length.

Refinements refine constants as well as other refinements. They are declared
by the keyword refines (see Fig. 3). Usually, they introduce new members at-
tributes and methods (Lines 2-3).

Extending Methods. Refinements can extend6 methods of their parent classes
(see Fig. 4). To access the extended method the super keyword is used (Line 4).
Super refers to the type of the parent Mixin. It has a similar semantic to the Java
super keyword and is related to the proceed keyword of AspectJ and AspectC++.

Further Language Features. Due to the space limitations, we omit a discussion
of the below listed language feature of FeatureC++. A detailed introduction
can be found in [2].

– FeatureC++ supports multiple inheritance, templates for generic pro-
gramming, accessing overloaded methods from extern, as well as refinements
of static methods, structs, and destructors.

– FeatureC++ solves several problems regarding class hierarchy extensions
that are caused by the divergence of variations and extensions.

– FeatureC++ solves the constructor problem that occurs in incremental
designs and results in unnecessary constructor redefinitions (cf. [20]).

4 Problems of FOP and how AOP could help

This section reviews problems of FOP regarding crosscutting modularity and
software evolution. The purpose of FOP is to implement program families. Com-
monly, their design and implementation is well planned. FOP yields promising
results in this respect (see [4, 3, 6, 7]). However, problems occur in implement-
ing unanticipated features: We argue that the frequently needed, unanticipated
modifications and extensions of evolving software cause code tangling and code
scattering. Mostly these new features are crosscutting concerns, and FOP is not
able to modularize them all appropriately (as we will see soon). From this point
of view we perceive the solution to the problem of insufficient crosscutting mod-
ularity as an improvement for software evolvability. The following paragraphs
introduce the key problems and point to strengths of AOP in these respects.
The discussion of the problems extends [17, 2].
6 With ’extend’ we refer to overriding and to call the overridden method.

7

Homogeneous vs. Heterogeneous Crosscuts. Homogeneous crosscutting concerns
are distributed over several join points but apply every time the same code,
e.g. logging; Heterogeneous crosscuts apply varying code, e.g. authentication [8].
Common AOP languages focus on homogeneous concerns whereas FOP lan-
guages deal with heterogeneous concerns. Indeed, both language paradigms can
deal with both types of concerns but often this results in complicated code,
code redundancy, and inelegant workarounds. However, both are important for
software evolution. Consequently, our objective is to enhance FOP with the op-
portunity to handle homogeneous concerns in an adequate way.

Static vs. Dynamic Crosscutting. Both FOP and AOP deal with dynamic cross-
cutting7. Dynamic crosscutting affects the runtime behavior and depends on the
control flow. Static crosscutting affects the static structure of a base feature.
We argue, however, that the way AOP deals with dynamic crosscutting, namely
by using pointcut expressions and advices, is more expressive. Feature binding
specifications as ”bind feature A to all calls to method m that are in the control
flow of method c and only if expression e is true” are difficult to express in FOP
languages. With regard to software evolution, we argue the more complex a soft-
ware becomes (as this is the case of evolving software) the more the programmer
needs to specify such complex feature bindings.

Hierarchy-Conforming Refinements. Using FOP, feature refinements depend on
the structure of parent features. Usually, a feature refines a set of classes and
extends methods. For each implementation unit we want to refine, we have to in-
troduce a new unit. In fact, the programmer is forced to express new features in
terms of structural elements of the existing features. This becomes problematic
if new features are implemented at a different abstraction level. AOP is able to
implement non-hierarchy-conforming refinements by using wildcards in pointcut
expressions [17]. The problem of a raising abstraction level is serious to evolv-
ing software because at the beginning of building software the abstraction of
subsequent development phases cannot be foreseen. If the programmer is forced
to express new features using abstractions of former features the code becomes
unnecessary complicated, bloated, and difficult to understand.

We clarify this by an example (adopted from [17]). As basic feature we con-
sider a stock information broker. This feature should be refined by a pricing
feature. Whereas the broker is expressed in terms of stock information, requests,
brokers, clients and database connections, the pricing feature is expressed us-
ing the intuitive product-consumer-pattern. FOP is not able to change the ab-
straction level accordingly. Instead, AOP is able to implement non-hierarchy-
conforming refinements by using wildcards in pointcut expressions [17].

Excessive Method Extensions. The problem of excessive method extensions oc-
curs (1) if a feature crosscuts a large fraction of existing implementation units
and (2) if it is a homogeneous concern. For instance, if a feature wants to add

7 Note that dynamic crosscutting is not dynamic weaving.

8

multi-threading support, it has to extend lots of methods, and adds synchroniza-
tion code. This code is in almost all methods the same and therefore redundant,
e.g. setting lock variables. AOP deals with this problem by using wildcards in
pointcut expressions to specify a set of target methods (join points). This pre-
vents code redundancies and eases software evolution.

Method Interface Extensions. The problem of method interface extensions fre-
quently occurs in incremental designs. As an extended interface we understand
an extended argument list. This problem occurs if refinements require additional
parameters, e.g. an additional session id or a reference to a locking variable. In-
deed, using some workaround this problem could be avoided. But AOP with its
pointcut mechanism is much more elegant [17].

Unpredictable Aspect Composition. This problem regards AOP languages only.
Nevertheless it is of importance because we want to integrate AOP mechanisms
into FOP. The problem of current AOP languages is that the binding of as-
pects is independent of the current development stage. That means an aspect
may affect subsequent integrated features. This can lead to unpredicted effects,
e.g. an aspect is unintentionally bound to new features. In [15] an alternative
composition mechanism is proposed. They argue that with regard to software
(program family) evolution, features should only affect features of prior devel-
opment stages. Current AOP languages, e.g. AspectJ and AspectC++, do not
follow this principle. This decreases aspect reuse and complicates incremental
design. Consequently, our approaches satisfy this principle.

5 Enhancing FOP with AOP concepts

This section presents our first results in integrating AOP concepts into FOP in
order to support software evolution. The presented approaches show that there
are numerous ways to implement that symbiosis.

5.1 Multi Mixins

Our first idea to prevent a programmer from excessive method extensions, hierar-
chy-conforming refinements, and to support homogeneous crosscuts were Multi
Mixins. The key idea, instead of refining one Mixin by another one Mixin only,
is to refine a whole set of parent Mixins. Such sets are specified by wildcards
(’%’) adopted from AspectC++. Both Multi Mixins, depicted in Figure 5, use
wildcards to specify the Mixins and methods they refine. The first refines all
classes that start with ”Buffer” (Line 1). The second refines all methods of Buffer
that start with ”put” (Line 3-5). The meaning of the first type of refinement is
straight forward: The wildcard Buffer% has the same effect as one creates a set of
new refinements for each found Mixin that matches the pattern (Buffer%). This
type of Multi Mixin eases the implementation of static homogeneous features in
FOP.

9

1 refines class Buffer% { /∗ . . . ∗/ };
2
3 refines class Buffer {
4 void put %(...) { /∗ . . . ∗/ }
5 };

Fig. 5. Two Multi Mixins that refine sets of Mixins and methods.

The second type of Multi Mixins, which refines methods, eases the expression
of dynamic homogeneous features. Similar to pointcuts and advices in AOP
languages, one code fragment can be assigned to multiple methods. However,
with Multi Mixins it is not possible to implement execution or cflow pointcuts.

5.2 Aspectual Mixin Layers

The idea behind Aspectual Mixin Layers is to embed aspects into Mixin Layers.
Each Mixin Layer contains a set of Mixins and a set of aspects. Hence, Mixins
implement heterogeneous and hierarchy-conforming crosscutting, whereas as-
pects express homogeneous and non-hierarchy-conforming crosscutting. In other
words, Mixins refine other Mixins and depend, therefore, on the structure of the
parent layer. These refinements follow the static structure of the parent features
and encapsulate heterogeneous crosscuts. Aspects refine a set of parent Mix-
ins by intercepting method calls and executions as well as attribute accesses.
Therefore, aspects encapsulate homogeneous and non-hierarchy-conforming re-
finements. Furthermore, they support advanced dynamic crosscutting.

Figure 6 shows a stack of Mixin Layers that implement some buffer function-
ality, in particular, a basic buffer with iterator, a separated allocator, synchro-
nization, and logging support.

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole LogAspect

Buffer

Log

Sync

Base

Alloc

Fig. 6. Implementing a logging feature using Aspectual Mixin Layers.

Whereas the first three features are implemented as common Mixin Layers,
the Logging feature is implemented as an Aspectual Mixin Layer. It consists
of a logging aspect and a logging console. The logging console prints out the
logging stream and is implemented using a common Mixin. The logging aspect
captures a set of methods that will be refined with logging code (dashed arrows).

10

Buffer Iterator Allocator Lock

Allocator

Buffer Iterator

LogConsole

LogConsole

LogAspect

LogAspect

Buffer

ExtLog

Log

Sync

Base

Alloc

Fig. 7. Refining an Aspectual Mixin Layer.

1 refines aspect LogAspect {
2 void print () {
3 changeFormat ();
4 super:: print ();
5 }
6 pointcut log() = call ("% %::get()") || super::log();
7 };

Fig. 8. An aspect embedded into a Mixin Layer.

This refinement is homogeneous, non-hierarchy-conforming, and depends on the
runtime control flow (dynamic crosscutting). Moreover, the use of wildcards
prevents the programmer of excessive method extensions. Without Aspectual
Mixin Layers the programmer has to extend all target methods manually.

A further highlight of Aspectual Mixin Layers is that aspects can refine other
aspects. Figure 7 shows an Aspectual Mixin Layer that refines the logging aspect
by additional join points to extend the set of intercepted methods. Additionally,
the logging console is refined by additional functionality, e.g. a modified output
format.

Aspects can refine the methods of parents aspect as well as the parent point-
cuts. This allows to easily reuse and extend of existing join point specifications
(as in the logging example). Note that refining/extending aspects is conceptually
different than applying aspects themselves. Whereas the former case results in a
transformation of the aspect code before applying them to the target program,
the latter case applies the aspects in two steps which leads to two independent
aspect instances.

To express aspects in Aspectual Mixin Layers we adopt the syntax of As-
pectC++. Figure 8 depicts an aspect refinement that extends a logging feature
including a logging aspect. It overrides a parent method in order to adjust the
output format (Line 2-5) and refines a parent pointcut to extend the set of target
join points (Line 6). Both is done using the super keyword.

11

1 refines class Buffer {
2 int length () { /∗ . . . ∗/ }
3 pointcut log() = call ("% Buffer ::%(...)");
4 };

Fig. 9. Combining Mixins and AOP elements.

5.3 Aspectual Mixins

The idea of Aspectual Mixins is to apply AOP language concepts directly to
Mixins. In this approach, Mixins refine other Mixins as with common Fea-
tureC++ but also define pointcuts and advices (see Fig. 9). In other words,
Aspectual Mixins are similar to Aspectual Mixin Layers but integrate pointcuts
and advices directly into its Mixin definition. In the following, we discuss only
the important differences:

The set of pointcuts, advices, and aspect-specific attributes and methods is
called aspectual subset of the overall Mixin. This mixture of AOP concepts and
Mixins reveals some interesting issues: Using Aspectual Mixins the instantia-
tion of aspects is triggered by the overall Mixin instances. Regarding the above
presented example, the buffer Mixin (Fig. 9, Lines 1-4) and its aspectual sub-
set (Line 3) are instantiated as many times as the buffer. This corresponds to the
perObject qualifier of AspectJ. However, in many cases only one aspect instance
is needed. To overcome this problem, we think of introducing a perObject and
perClass qualifier to distinguish these cases. This introduces a second problem:
If an aspect, part of an Aspectual Mixin, uses non-static members of the overall
Mixin it depends on the Mixin instance. In this case, it is forbidden to use the
perClass qualifier. FeatureC++ must guarantee that perClass Aspectual Mix-
ins, especially their aspectual subset, only access static members of the overall
Mixin instance. In case of perObject Aspectual Mixins this is not necessary.

5.4 Discussion

All three approaches provide solutions for problems of FOP with crosscutting
modularity discussed in Section 4:

– support homogeneous and heterogeneous crosscuts (1)
– extended dynamic crosscutting (pointcuts, etc.) (2)
– non-hierarchy-conforming refinements (3)
– prevent excessive method extensions (4)
– handling method interface extensions (5)

Table 1 summarizes the improvements to FOP with respect to the above pre-
sented problems.

12

approach (1) (2) (3) (4) (5)

Multi Mixins
√

–
√ √

(
√

)

Aspectual Mixin Layers
√ √ √ √ √

Aspectual Mixins
√ √ √ √ √

Table 1. Evaluation of approaches.

5.5 Bounding Quantification.

A further highlight of all three AOP extensions is a specific bounding mechanism
that supports a better incremental design and that prevents unpredictable aspect
composition (cf. Sec. 4). This mechanism bounds aspects and their effects on the
target program. To implement this bounding mechanism the user-declared join
point specifications must be restructured: Type names in wildcards are trans-
lated in order to match only these types that are declared by the current and
the parent layers. Each wildcard expression that contains a type name is trans-
lated into a set of new expressions that refer to all type names of the parent
classes. Figure 10 shows a synchronization aspect that is part of an Aspectual
Mixin Layer. It has two parent layers (Base, Log) and several child layers. Using
this novel bounding mechanism, FeatureC++ transforms the aspect and the
pointcut as depicted in Figure 11. This transformation works similar for Aspec-
tual Mixins. In case of Multi Mixins we have to add a mechanism for combining
wildcard expression logically.

1 aspect SyncAspect {
2 pointcut sync() : call ("% Buffer ::put (...)");
3 };

Fig. 10. A synchronization aspect with a simple pointcut expression.

1 aspect SyncAspect_Sync {
2 pointcut sync() : call ("% Buffer_Sync ::put (...)")
3 || call ("% Buffer_Log ::put (...)")
4 || call ("% Buffer_Base ::put (...)");
5 };

Fig. 11. Bounding quantification by transforming pointcuts.

Finally, we want to emphasize that all three approaches are not specific to
FeatureC++. All concepts can be applied to other AOP/FOP languages.

13

6 Related Work

Several approaches aim to combine AOP and FOP. Mezini et al. argue that
using AOP as well as FOP standalone lacks feature modularity [17]. They pro-
pose Caesar as combined approach. Similar to FeatureC++, Caesar supports
dynamic crosscutting using pointcuts. Instead of FeatureC++, the focus of
Caesar is on aspect reuse and on-demand remodularization. Aspectual Collab-
orations proposed by Lieberherr et al. [14] encapsulate aspects into modules,
with expected and provided interfaces. The rationales behind this approach are
similar to Caesar. Colyer et al. propose the principle of dependency alignment : a
set of guidelines for structuring features in modules and aspects with regard to
program families [9]. They distinguish between orthogonal and weak-orthogonal
features/concerns. Loughran et al. support the evolution of program families
with Framed Aspects [16]. They combine the advantages of frames and AOP, to
serve unanticipated requirements.

7 Conclusion

In this paper we argued that common FOP techniques are important for soft-
ware evolution and appropriate for implementing program families. However, we
discussed the drawbacks regarding crosscutting modularity and the missing sup-
port of C++. We stated that the shortcomings in the crosscutting modularity
cause problems in implementing unanticipated features. Often, these features
are wide-spread crosscutting concerns. The discussed problems of FOP in these
regards complicate the evolution of software. Consequently, we have presented
our approach: FeatureC++ supports FOP in C++ and solves several prob-
lems regarding the lacking crosscutting modularity by adopting AOP concepts.
In this paper, we have focused on solutions to these problems to ease evolv-
ability of software. We have summarized the problems of FOP, advantages of
AOP in these respects, and presented three approaches to solve these problems:
Multi Mixins, Aspectual Mixins and Aspectual Mixin Layers. Whereas, the first
two approaches are only of conceptual nature, we have implemented the third
approach and enhanced FeatureC++ with the ability to express Aspectual
Mixin Layers. A first prototype can be found at the FeatureC++ web site8.
In ongoing work we will apply all three approaches to real-world case studies.

References

1. S. Apel and K. Böhm. Towards the Development of Ubiquitous Middleware Prod-
uct Lines. In Proceedings of the ASE Workshop on Software Engineering and
Middleware (SEM), volume 3437 of Lecture Notes on Computer Science. Springer,
2005.

8 http://wwwiti.cs.uni-magdeburg.de/iti db/fcc/

14

2. S. Apel et al. FeatureC++: Feature-Oriented and Aspect-Oriented Programming
in C++. Technical report, Deptartment of Computer Science, Otto-von-Guericke
University, Magdeburg, Germany, 2005.

3. D. Batory et al. Creating Reference Architectures: An Example from Avionics. In
Proceedings of the Symposium on Software Reusability (SSR), 1995.

4. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 1(4), 1992.

5. D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement.
IEEE Transactions on Software Engineering (TSE), 30(6), 2004.

6. D. Batory and J. Thomas. P2: A Lightweight DBMS Generator. Journal of
Intelligent Information Systems, 9(2), 1997.

7. R. Cardone et al. Using Mixins to Build Flexible Widgets. In Proceedings of
the International Conference on Aspect-Oriented Software Development (AOSD),
2002.

8. A. Colyer and A. Clement. Large-Scale AOSD for Middleware. In Proceedings of
the International Conference on Aspect-Oriented Software Development (AOSD),
2004.

9. A. Colyer, A. Rashid, and G. Blair. On the Separation of Concerns in Program
Families. Technical Report COMP-001-2004, Computing Department, Lancaster
University, 2004.

10. K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, 2000.

11. E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.
12. R. Filman et al. Aspect-Oriented Software Development. Addison Wesley, 2004.
13. G. Kiczales et al. Aspect-Oriented Programming. In Proceedings of the European

Conference on Object-Oriented Programming (ECOOP), 1997.
14. K. Lieberherr, D. H. Lorenz, and J. Ovlinger. Aspectual Collaborations: Combining

Modules and Aspects. The Computer Journal, 46(5), 2003.
15. R. E. Lopez-Herrejon and D. Batory. Improving Incremental Development in As-

pectJ by Bounding Quantification. In Software Engineering Properties and Lan-
guages for Aspect Technologies, 2005.

16. N. Loughran et al. Supporting Product Line Evolution with Framed Aspects. In
Proceedings of the AOSD Workshop on Aspects, Components, and Patterns for
Infrastructure Software (ACP4IS), 2004.

17. M. Mezini and K. Ostermann. Variability Management with Feature-Oriented
Programming and Aspects. ACM SIGSOFT Foundations of Software Engineering
(FSE), 2004.

18. D. L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE
Transactions on Software Engineering (TSE), SE-5(2), 1979.

19. V. Singhal and D. Batory. P++: A Language for Large-Scale Reusable Software
Components. In Proceedings of the Workshop on Software Reuse, 1993.

20. Y. Smaragdakis and D. Batory. Mixin-Based Programming in C++. In Proceed-
ings of the International Conference on Generative and Component-Based Software
Engineering (GCSE), 2000.

21. Y. Smaragdakis and D. Batory. Mixin Layers: An Object-Oriented Implementation
Technique for Refinements and Collaboration-Based Designs. ACM Transactions
on Software Engineering and Methodology (TOSEM), 11(2), 2002.

15

16

Modular Aspe
t Veri�
ation for SaferAspe
t-Based EvolutionNathan Weston, Fran
ois Taiani, Awais RashidComputing Department, InfoLab21, Lan
aster University, UK.fwestonn,f.taiani,marashg�
omp.lan
s.a
.ukAbstra
t. A long-term resear
h goal for Aspe
t-Oriented Programmingis the modular veri�
ation of aspe
ts su
h that safe evolution and reuseis fa
ilitated. However, one of the fundamental problems with verify-ing aspe
t-oriented programs is the inability to determine the e�e
t ofthe weaving pro
ess on the
ontrol
ow of the program, and thus onthe state of the system and subsequently the properties that hold orare introdu
ed. We propose a novel approa
h to modular veri�
ation ofaspe
t-oriented systems using aspe
t tagging and Data Flow analysis ofControl Flow Graphs.1 Introdu
tionThe in
reasing adoption of Aspe
t Oriented Programming (AOP) has
onsider-ably improved the evolvability of
ross-
utting
on
erns (monitoring, se
urity,repli
ation, distribution) in
omplex software platforms.The power of AOP essentially lies in its ability to impa
t a very large
odebase at run-time with only one aspe
t. Be
ause of this power, however, it
anbe extremely diÆ
ult to predi
t the e�e
t of an aspe
t on a base program, aparti
ularly
riti
al issue when AOP is to be used for software evolution. How
an we be sure that an aspe
t a
hieves what it is meant to? How
an we provethat it does not violate properties of the base program that must be preserved?How
an we verify that it does not interfere with properties other aspe
ts aretrying to introdu
e?The evolution of
ross-
utting
on
erns would bene�t enormously from well-developed formal te
hniques to answer these questions. Ideally su
h te
hniquesshould provide a framework with whi
h to
he
k AO programs at an early stage,in order to reuse and adapt aspe
ts in a way whi
h is formally veri�able.Veri�
ation te
hniques are being developed for AO systems, but they stilllag far behind what as been a
hieved for the stati
 analysis of pro
edural andobje
t-oriented programs. Our intuition is that, with the proper abstra
tions,existing aspe
t-free approa
hes (intra- and inter-pro
edural analysis, points-toanalysis, abstra
t interpretation)
an be spe
i�
ally adapted to AO programs tomeet their parti
ular requirements. In this paper we dis
uss the properties su
han \aspe
t aware" veri�
ation approa
h should have to be suitable for programevolution (Se
tion 2). Current work is presented in Se
tion 3. We then present
17

apel
Rechteck

how the ideal
ould be realised in the parti
ular
ase of data
ow analysis usinga te
hnique we have termed \aspe
t tagging" (Se
tion 4). Se
tion 5
on
ludesthe paper.2 Problem StatementAny AO program
onsisting of a base P and a woven aspe
t a
an be representedby an equivalent standalone \aspe
t-free" programQ, on whi
h traditional stati
analysis
an be performed. This approa
h, however, su�ers from a number ofde�
ien
ies that make it unattra
tive for aspe
t based software evolution. Firstly,it is very diÆ
ult to tra
e results obtained on Q ba
k to the original aspe
t-oriented program P + a. Se
ondly, no general statement on the properties of a
an be made, ex
ept in
onjun
tion with a spe
i�
 base program. This requiresthe whole analysis to be repeated for ea
h base program on whi
h a is applied.This limitation puts parti
ular
onstraints on any evolution pro
ess based onprogram families. Thirdly, in de
oupling the analysis from the AO stru
ture ofthe original
ode, su
h an approa
h e�e
tively bars any optimisation based onthe AO nature of the program.To
ir
umvent those de�
ien
ies we think that an aspe
t-aware veri�
ationapproa
h should have the following desirable
hara
teristi
s:Modularity We feel that the na��ve approa
h outlined above (performing anal-ysis on the woven byte
ode, thus determining whether P +a = Q in terms ofthe properties that need to be maintained) negle
ts one of the key featuresof AOP - that is a modular framework, and thus requires modular analy-sis te
hniques. The
riteria of modularity
an be further broken into twosub-
riteria:Comprehensibility The results we obtain using the analysis should beable to be ba
k-tra
ked to the original program stru
ture - that is, un-derstandable using the terms of the en
apsulation whi
h the originalprogram stru
ture a�orded. In real terms, this means that we will beable to see how the aspe
t itself has a�e
ted the properties of the systemas a whole, not just how the system behaves.Reuse The results should be en
apsulated in the same dimension as theaspe
t - that is, if the aspe
t is used with a di�erent base program, theresults should be able to be (at least partially) reused. This is a strongerproperty than
omprehensibility.EÆ
ien
y/S
alability The usefulness of formal methods for
he
king of safetyproperties is proportional to the eÆ
ien
y with whi
h they
an be applied.Therefore, any analysis we
an perform must have the ability to be appliedwithin a reasonable time-frame, de�ned partially by the
ost of failure of thesystem - that is, how safety-
riti
al it is. The analysis must also be s
alable -an analysis whi
h is only appli
able to trivial programs is fairly pointless. Wewould expe
t su
h an ideal analysis to s
ale to large industry-grade programswith multiple intera
ting aspe
ts, as well as dynami
 approa
hes.
18

Portability A desirable property of the analysis is the ability to be adapted todi�erent languages, approa
hes and ar
hite
tures, to maximise its usefulness.One of the major
hallenges fa
ing formal methods with AOP is determininga proper abstra
tion of the
ode su
h that program veri�
ation whi
h ful�ls the
riteria above
an be performed. This abstra
tion needs to be both
orre
t - thatis, en
ompass all the exe
utions of the system that make sense or that we wantto
he
k - and feasible - that is, not
ontaining so many possible states that statespa
e explosion o

urs and
he
king be
omes unreasonable or useless.This task be
omes parti
ularly hard in the presen
e of AOP's dynami
 fea-tures, su
h that it
an be
ome infeasibly expensive to determine the exe
utionof a AO system before run-time. For example, dynami
 aspe
ts
ould be wovenat run-time; the behaviour of
ompile-time woven aspe
ts
ould be a�e
ted bydynami
 parameters; or dynami
 joinpoints su
h as Aspe
tJ's
flow
ould beused. An extreme total abstra
tion
ould then be that every potential aspe
tadvi
e is applied at every potential joinpoint. This would
learly produ
e anabsurd and useless abstra
tion, whi
h would most likely be unable to positivelydetermine any properties of the system.Clearly, what is required is an abstra
tion of the system whi
h is a

urateenough to be sound - that is, proving something is true (or not) of the abstra
tionmeans that it is true (or not) of the a
tual system - yet useful enough to be as
omplete as we need - that is, able to give a de�nite answer to a proposition.If the abstra
tion is sound but not
omplete, we allow answers of \maybe" forevery question we ask of the system, whi
h is te
hni
ally
orre
t but not veryhelpful1. On the other hand, we would not want a system whi
h gave us a de�niteanswer for the abstra
tion whi
h was not
orre
t for the a
tual system. Thus,our abstra
tion must be
orre
t, at least for the properties we want to
he
k,and sound for the analysis we wish to perform.We also require that our abstra
tion be modular - that is, that it retainsthe program stru
ture of the a
tual system. We say this be
ause we want theresults of our analysis to be reused along with the aspe
t - re
alling our example,we want our programmer to be able to get the aspe
t from the library and useveri�
ation te
hniques to determine that it will, indeed, work with his system.For this to work, it would be immensely helpful to have some result alreadypresent in the system in order to redu
e
omputation time and e�ort.Hen
e, we require a partial abstra
tion of the system, whi
h provides uswith an estimated set of potential exe
utions whi
h is as
lose as possible to thetrue set. Determining this abstra
tion is a matter of applying e�e
tive programanalysis te
hniques -
orre
t data-
ow analysis
ombined with
onstraint-basedanalysis - to enable abstra
t interpretation [14, 7℄. As we will show in Se
tion 4,these te
hniques do not s
ale well to AO systems and require adaptation.1 Similarly, abstra
tions are often only sound for a parti
ular
lass of answers - forexample, if the abstra
tion answers \yes" for an analysis, we know the answer is \yes"for the original system; but if it answers \no" we
annot be sure. This strongly a�e
tsour
hoi
e of abstra
tion.
19

3 Current WorkThere have been several notable e�orts in the �eld of applying program analysiste
hniques to AOP. While all these e�orts take slightly di�erent approa
hes, theend goal is broadly similar - modular veri�
ation of aspe
ts. The ideal goal isa
omplete proof that states that for every possible base system on whi
h anaspe
t
an be woven, and for every possible weaving within that system, theaspe
t will always:1. Maintain desired properties of the base system su
h that the augmented(woven) system has the same properties as the original2. Introdu
e its own properties to the augmented system
orre
tly3. Maintain desired properties that other aspe
ts introdu
eThis goal is still a long way o� for program analysis and, as su
h, mostapproa
hes seek to restri
t the problem in some way.We will divide dis
ussion in this area into two se
tions - stati

ode analysiste
hniques and other approa
hes.3.1 Stati
 AnalysisRe
ent stati
 analysis te
hniques have related
losely to the
ategorisation ofaspe
ts. An early attempt at this was suggested by Katz and Gil [11℄, in whi
hthree broad
ategories were proposed:Spe
tative. These are simply monitoring aspe
ts whose fun
tion is to re
ordthe a
tions of the base system without a�e
ting them whatsoever.Regulative. These aspe
ts do not
hange the a
tions or basi
 fun
tionalityof the underlying system, but are often used to determine
ontrol
ow inthe system - an example being a
ontra
t enfor
ement aspe
t whi
h de
ideswhether a method is
alled based on pre-
onditions.Invasive. These aspe
ts a
tively
hange the fun
tionality or state of the under-lying system in various ways. In powerful AOP systems, aspe
ts
an modifythe values of both
lass and instan
e attributes or introdu
e their own,
allmethods before and after the advised joinpoint or even skip the joinpoint
ode
ompletely (as is the
ase in an Aspe
tJ advi
e with no pro
eed()statement).Two other works also propose a
lassi�
ation system. Clifton and Leavens [5℄suggest observers/spe
tators and assistants - similar to spe
tative and invasiveaspe
ts - and propose an extension to aspe
t languages by whi
h the base obje
tin
ludes expli
it referen
es to the aspe
ts whi
h observe or assist it, enablinga more modular reasoning. Similarly, Rinard et al [16℄ propose a �ner-grained
ategorisation
oupled with a more powerful analysis to automati
ally
lassifyintera
tion between advi
es and methods. Their work adapts an existing obje
toriented analysis to aspe
t oriented programs.
20

Work from Sereni and de Moor [17℄ proposes a redu
ed point
ut model basedon regular expressions and use a meet-over-all-paths analysis whi
h produ
es anoptimised way of joinpoint mat
hing. Although the primary goal of this work isoptimisation, they a
knowledge that the work
ould be used to determine aspe
tintera
tion - that is, when two or more di�erent pie
es of advi
e may be exe
utedat the same joinpoint.3.2 Other Approa
hesTwo other approa
hes [19, 21℄ en
apsulate model
he
king assertions (using Ban-dera [6℄ and Jpf [15℄ respe
tively) within aspe
ts, thus a
hieving some level ofmodularity. However, the a
tual
he
king then o

urs on the augmented (woven)system, whi
h prevents (partial) veri�
ation results to be atta
hed to aspe
ts forreuse on other base programs.Krishnamurthi et al. [13℄ attempt a more modular model
he
king [10℄ te
h-nique whereby the �nal �nite-state ma
hine (FSM) of the woven system is
on-stru
ted from the
ode before the aspe
ts are woven - that is, an estimation ofthe �nal behaviour of the system is
reated. This uses a sophisti
ated ba
kward
ow analysis to determine the lo
ation of joinpoints and inserts
alls to the FSMof the advi
e whi
h would apply at the point. However, this approa
h only worksfor aspe
ts whi
h are guaranteed to return the system to the state in whi
h theadvi
e was
alled - in the terminology of [19℄, spe
tative aspe
ts - whi
h turnout to be a remarkably small subset of possible aspe
ts. This te
hnique
an alsoonly determine whether properties of the original base system are not violated,not whether the aspe
t introdu
es its own properties properly or a�e
ts thebehaviour of other aspe
ts.Finally, there has been some work on formally identifying and resolving
on-
i
t or intera
tion between aspe
ts. Sihman and Katz [18℄ develop a
al
ulusfor their superimposition system [20℄ whi
h de�nes a general methodology for
al
ulating how superimpositions are
omposed together before they are appliedto the underlying system based on their spe
i�
ations. However, this has yet tobe implemented in a
on
rete AOP language.Similarly, Douen
e et al [8, 9℄ develop an abstra
t formal semanti
s for aspe
tswhi
h in
ludes rules for
omposition based on pre
eden
e. They demonstrate howde�ning
omposition with an order results in di�erent behaviour whi
h
an beformally spe
i�ed and hen
e provides a possible basis for analysis. They alsopropose rules for the dete
tion of intera
tion. Again, this provides a very strongsemanti
 base, but as yet is unimplemented.The analysis system proposed by Rinard et al [16℄ has potential for dete
tinginterferen
e between aspe
ts. In general, stati
 analysis te
hniques su
h as pro-gram sli
ing [2, 3℄ have appli
ation in this �eld, although so far this has re
eivedlittle exploration.In summary, the range of formal program analysis te
hniques
urrently underdevelopment for AOP systems is widening, re
e
ting the in
reasing
on�den
e
21

in both AOSD and formal methods. However, in the early years of the AOparadigm, program analysis te
hniques are generally at an early level, tend tobe appli
ation-dependent at least in their implementation, or redu
e the problemsomewhat by
onsidering a subset of AOP features.In parti
ular,
ow analysis te
hniques that are so far developed rely on repre-senting the aspe
t-oriented program in su
h a way that existing (obje
t-oriented)data and
ontrol
ow analysis
an be applied. This ne
essarily means that, atthe
ow analysis level, we end up treating the base program and aspe
ts as a
ombined, woven, obje
t-oriented system. Even when the program is representedin a graph with the distin
tion between base and aspe
t emphasised, as in [23,24℄, the analysis then o

urs on the
omplete program. This means that modularanalysis of the aspe
t's behaviour independently of a base is restri
ted. It is thisrestri
tion that we aim to address in our work, in the development of a modularaspe
t-oriented data and
ontrol
ow analysis.4 Data Flow Analysis of Aspe
t-Oriented Programs4.1 Summary of Proposed Approa
hOur approa
h
an be summarised as follows:1. Obtain the byte
ode of base and aspe
t;2. Classify the aspe
t with respe
t to the base;3. Create abstra
t
ontrol-
ow graphs of both base and aspe
t;4. Tag the CFG of the aspe
t;5. Create a graph transformation of the base using the CFG of the aspe
t;6. Use the resulting model to
reate an abstra
tion of the augmented systemusing data-
ow analysis.To implement this approa
h two main te
hni
al goals must be a
hieved:Tagging The �rst goal is the ability to reason about an aspe
t and a base su
hthat they remain distin
t in our analysis. We a
hieve this by the pro
ess inwhi
h we
onstru
t the augmented CFG - that is, the CFG whi
h representspossible exe
utions of a woven base program and aspe
t - by tagging thenodes of the aspe
t advi
e and using these tags in the
ontrol
ow analysiswe perform.Data Flow Analysis (DFA) The se
ond goal is the data-
ow analysis of theaugmented CFG. The realisation of the �rst goal ensures that this analysis ismodular, as the e�e
ts of the aspe
t
an be
learly seen and ba
ktra
ked tothe original stru
ture via the tags we have introdu
ed. The transformation ofthe CFG enables us to map existing te
hniques to aspe
t-oriented programs.An initial diÆ
ulty is �nding the lo
ation of joinpoints at whi
h the aspe
tadvi
e might be applied in our system at pre-weave time. Di�erent AOP modelsuse a variety of point
ut des
riptors(PCDs) at whi
h advi
e
an applied, some of
22

whi
h are more diÆ
ult to stati
ally determine than others. At this stage we usea simple PCD model based on pattern-mat
hing of method signatures, with theaim of extending the model as the approa
h is developed, perhaps using abstra
tinterpretation[7℄ for
ontrol-
ow based PCDs.From this, we extra
t
ontrol
ow graphs from the byte
ode of the baseprogram and the aspe
t (extra
ted from the Aspe
tJ
ompiler[1℄). We then tagea
h node of the aspe
t's CFG to show us that it is part of the aspe
t and notthe base. This is represented in Fig. 1 by means of a dashed box. When theCFGs are
omposed to form a model of the augmented system, the tags aremaintained and give us the basis for a modular reasoning framework.We then
onstru
t an augmented CFG by adding transitions from the join-points to the aspe
t's CFG, using an extension of the
urrently available Sootmethods for doing so. This is
omparable to existing te
hniques used for inter-pro
edural analysis, and so we transform the CFG in su
h a way that thesetraditional approa
hes
an be used. One diÆ
ulty in the CFG transformation isthe problem of aspe
t point
uts whi
h have formal parameters that need to bebound. We envisage this being equivalent to inserting a de
ision node based onthe predi
ates of the joinpoint with a \method
all" to the advi
e node if thepredi
ates evaluate to true.2For example, for simple advi
es, we
an simply add a transition from ea
hnode
orresponding to a point
ut at whi
h the aspe
t applies to the beginningof the CFG of the aspe
t's advi
e, and a similar return transition, depending onwhat kind of advi
e is being applied (see Fig. 1 for an example).

Fig. 1. The result of weaving a logging aspe
t on a base program
onsisting of anadvised while loopAfter this, we are left with an abstra
t augmented CFG on whi
h we
anperform data
ow analysis.2 At this stage we only
onsider homogeneous aspe
ts, i.e. aspe
ts
onsisting of oneadvi
e relating to one
on
ern. Heterogeneous aspe
ts will be
onsidered later in thedevelopment of our approa
h.

23

Here we use the
lassi�
ation of an aspe
t[16, 5, 20, 12℄ to determine whatanalysis to perform. For example, if the aspe
t is spe
tative[20℄ (that is, does nota�e
t the state of the base system - e.g. a logging aspe
t), we do not need to
he
kfor violation of properties in the base system at all, redu
ing the intensivenessof the analysis. The ability to
ut out stages of the analysis also enables us toredu
e the level of abstra
tion we need to perform, meaning that we have ahigher probability of obtaining meaningful results.4.2 Adapting a Simple AnalysisTo illustrate this, we show how we would attempt to adapt a simple data-
owanalysis to a program in the presen
e of aspe
ts. Live variables analysis is a
lassi
al data-
ow analysis whi
h aims to determine whether there exists, at aprogram point p, a path from the exit of p to a use of a variable su
h that thereare no points on the path whi
h rede�nes the variable [14℄. That is to say, itaims to
ompute, for a given program point p, whi
h of the variables
urrentlyde�ned at p
an still have an impa
t on remaining exe
ution of the program (i.e.are still "alive").It is a ba
kward
ow analysis, and uses two
ow sets genLV , the set ofvariables whi
h appear in a blo
k; and killLV , the set of variables whi
h are killed(that is, rede�ned) in a blo
k. The two
ow fun
tions LVexit(l) and LVentry(l)then
al
ulate whi
h variables are live at, respe
tively, the exit and entry of aprogram blo
k labelled l. They are de�ned thus:LVexit(l) = �; if l 2 final(S?)SfLVentry(l0) j (l0; l) 2 flowR(S?)g otherwiseLVentry(l) = (LVexit(l)nkillLV (Bl)) [genLV (Bl)whereBl 2 blo
ks(S?)where S? is the program we are analysing; (l0; l) 2 flowR(S?) means thatthe program
ows forwards from l to l0 and thus ba
kwards from l0 to l; andBl is the program blo
k in S? whi
h has the label l. Intuitively, then, the set ofequations says that, at the exit to a blo
k, the set of live variables is exa
tly theset of live variables at the entry of the blo
k following it; and at the entry to ablo
k, the set of live variables is the set of live variables at the exit, minus thosevariables that have been killed (i.e. rede�ned) in the blo
k, plus those variablesthat have been used in the blo
k.This analysis works well for simple programming languages without fun
tionsor pro
edures, that is, intrapro
edural analysis whi
h only operates within asingle
ontrol
ow. Interpro
edural analysis [14℄ - that is, analysis whi
h takesinto a

ount
ontrol being passed to other pro
edures, fun
tions and advi
es -introdu
es
on
epts su
h as
all and return labelling and parameter passing forpro
edural languages, and there has been signi�
ant work on adapting this forobje
t-oriented languages already, e.g. [4℄. Further adaptation to more
omplex
24

languages requires signi�
antly more sophisti
ated te
hniques for determining
ontrol
ow, parameter passing and dynami
 features of the language.To adapt this analysis to be a) appli
able to aspe
t-oriented languages andb) modular, we introdu
e the notion of tagged
ow sets. The idea is that ween
apsulate the data-
ow information whi
h is provided by the aspe
t in separate
ow sets su
h that we
an perform intrapro
edural analysis on the aspe
t
ode,while retaining the ability to perform interpro
edural analysis on the wholeprogram. In other words, we
an see how the whole program's properties area�e
ted by the introdu
tion of an aspe
t by
onsidering the whole program.However, we
an also see how an aspe
t would a�e
t a
ertain base programgiven
ertain values for the binding of its abstra
t entities. We
an then use thisinformation to begin to extrapolate how the aspe
t would behave given
ertain
lasses of values - for example, whether a �eld is bound to a positive or a negativenumber - and thus
reate abstra
tions of how the aspe
t will a�e
t a system,and thus
reate partial results whi
h
an be reused.We introdu
e a set advi
es, whi
h is the advi
es � whi
h apply at a
ertainjoin point3 (JP?) in the program S?. The advi
es appli
able at a
ertain blo
k(program point) are given by the fun
tion:advi
es : Blo
ks? ! P(Adv � JP?)where advi
es(b 2 Blo
ks?) =\f(�; j) 2 Adv � JP?j b mat
hes jgWith this framework, we
an reformulate the
lassi
al live variables analysiswith tagged
ow sets genALV and killALV for an aspe
t A whi
h introdu
es abefore() advi
e � (this would be slightly di�erent for di�erent kinds of advi
e).LVexit remains the same (as flowR will in
lude the aspe
t statements as well asthe base
ode), but LVentry now has two forms:LVentry(l 2 advi
es(S?)) = (LVexit(l)nkillALV (Bl)) [genALV (Bl) (1)LVentry(l =2 advi
es) = ((LVexit(l)nkillLV (Bl)) [genLV (Bl))\(SfLVentry(l0) j l0 2 advi
es(l)g) (2)So we now have two equations for
omputing live variables - one for whenwere dealing with a blo
k of
ode thats in some aspe
t advi
e (equation (1)),and one when it isnt (equation (2)). When we are dealing with advi
e
ode, wehave the same equation as previously, ex
ept using the tagged
ow sets. Whenthe
ode is in the base system, we
ompute the same as before, but we have toadd in the information from the advi
e - so we also work out whi
h variableshave been killed from the advi
es whi
h apply at that program point.Intuitively, then, we formulate the live variables analysis based, not onlyon the pro
eeding statements in the base program, but also in the statements3 Here we assume stati
 joinpoints. For dynami
 joinpoints, we would have to
onsiderthe various joinpoint shadows - that is, the stati

ode points at whi
h dynami
aspe
ts
ould apply.
25

ontained within the
ode of the aspe
ts whi
h apply at the program pointin question. Thus, we retain the en
apsulation required, while still having theability to evaluate the whole program as a single entity.We plan to extend the Soot framework[22℄ to implement our approa
h. Oneof the bene�ts of this sophisti
ated optimisation framework is the ability totransform Java byte
ode into an intermediate representation
alled Jimple, onwhi
h inspe
tion and analysis
an be performed.4.3 Future WorkThe modular veri�
ation, as des
ribed above, of a
on
rete aspe
t stati
allywoven in a
on
rete base system is an appre
iably diÆ
ult task whi
h we hopeour approa
h goes some way to resolve. However, the veri�
ation of generi
aspe
ts and bases is more diÆ
ult still - given an aspe
t with a abstra
t advi
eand an unde�ned joinpoint,
an properties be veri�ed? Conversely,
an
on
reteaspe
t be subje
t to formal analysis even without a
on
rete base on whi
h toweave?We envisage that our approa
h
an be used to fa
ilitate more modular rea-soning about the e�e
t of generi
 aspe
ts on an arbitrary base program, a futuregoal for our approa
h. Given the Soot framework's ability to generate
lass�lesfrom s
rat
h, we may be able to produ
e a skeleton base program (or dummyprogram[19℄) on whi
h the weaving of a
on
rete aspe
t
an be
he
ked. Again,we hope to able to use the
ategorisation of the aspe
t to restri
t the set of pos-sible programs and/or program exe
utions on whi
h the weaving of the aspe
tmakes sense, to redu
e the resour
e intensiveness of this approa
h.Espe
ially, we envisage an appli
ation in the extremely diÆ
ult dis
iplineof verifying dynami
 AOP systems - that is, systems on whi
h aspe
ts
an bewoven,
hanged or removed while the program is running. Being able to produ
epartial results about the weaving of an aspe
t before it is due to be weavedwould be a signi�
ant step forward in the goal of e�e
tive and veri�able reuseand evolution of dynami
 Aspe
t-Oriented Programs.5 Con
lusionWe have presented a novel approa
h to the veri�
ation of aspe
ts based on
ontrol
ow analysis, using tagging to keep the base and the aspe
t distin
t inour analysis su
h that the results
an be ba
ktra
ked to the original programstru
ture. We envisage that bringing stru
tural knowledge to the
omplex a
tionof
ow analysis will enable mu
h more eÆ
ient stati
 reasoning of aspe
t-orientedprograms, and we hope to be able to map existing
ow analysis te
hniques toanalysis of su
h programs. We have shown possible extensions in the �elds ofverifying abstra
t aspe
ts on abitrary base systems and verifying dynami
 AOPsystems.

26

Referen
es1. Aspe
tJ. Home page of the aspe
tj proje
t. http://e
lipse.org/aspe
tj.2. Davide Balzarotti and Mattia Monga. Using program sli
ing to analyze aspe
t-oriented
omposition. In In Pro
eedings of Foundations of Aspe
t-Oriented Lan-guages Workshop 2004, 2004.3. Davide Balzarotti and Mattia Monga. Sli
ing aspe
tj woven
ode. In In Pro
eedingson Foundations of Aspe
t-Oriented Languages Workshop 2004, 2005.4. Ramkrishna Chatterjee. Modular Data-Flow Analysis of Stati
ally Typed Obje
t-Oriented Programming Languages. PhD thesis, Graduate S
hool, New Brunswi
kRutgers, The State University of New Jersey, 2000.5. Curtis Clifton and Gary T. Leavens. Observers and assistants: A proposal formodular aspe
t-oriented reasoning. Te
hni
al Report 02-04a, Iowa State Univer-sity, Department of Computer S
ien
e, April 2002.6. James C. Corbett, Matthew B. Dwyer, John Hat
li�, Shawm Lauba
h, Corina S.Pasareanu, Robby, and Hongjun Zheng. Bandera: Extra
ting �nite-state modelsfrom java sour
e
ode. In Pro
eedings of the 2000 International Conferen
e onSoftware Engineering, 2000.7. Patri
k Cousot. Abstra
t interpretation. Te
hni
al report, LIENS, 1996.8. Remi Douen
e, Pas
al Fradet, and Mario Sudholt. Dete
tion and resolution ofaspe
t intera
tions. In Pro
eedings of the ACM SIGPLAN/SIGSOFT Conferen
eon Generative Programming and Component Engineering, 2002.9. Remi Douen
e, Pas
al Fradet, and Mario Sudholt. Composition, reuse and intera
-tion analysis of stateful aspe
ts. In Pro
eedings of the 3rd International Conferen
eon Aspe
t-Oriented Software Development, 2004.10. Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Che
king.The MIT Press, 1999.11. Shmuel Katz and Joseph Gil. Aspe
ts and superimpositions. In Pro
eedings ofthe Workshop on Obje
t-Oriented Te
hnology, pages 308{309, London, UK, 1999.Springer-Verlag.12. Jorg Kienzle, Yang Yu, and Jie Xiong. On
omposition and reuse of aspe
ts.In Pro
eedings of the 3rd International Conferen
e on Aspe
t-Oriented SoftwareEngineering, 2004.13. Shiram Krishnamurthi, Kathi Fisher, and Mi
hael Greenberg. Verifying aspe
tadvi
e modularly. In Pro
eedings of the ACM SIGSOFT, 2004.14. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Prin
iples of ProgramAnalysis. Springer, 2nd edition, 2005.15. Java PathFinder. Home page of the jpf proje
t.http://javapath�nder.sour
eforge.net.16. Martin Rinard, Alexandru Sal
ianu, and Suhabe Bugrara. A
lassi�
ation systemand analysis for aspe
t-oriented programs. In Pro
eedings of the 12th InternationalSymposium on Foundations of Software Engineering, 2004.17. Damien Sereni and Oege de Moor. Stati
 analysis of aspe
ts. In Pro
eedings of the2nd International Conferen
e on Aspe
t-Oriented Software Development, 2003.18. Mar
elo Sihman and Shmuel Katz. A
al
ulus of superimpositions for distributedsystems. In Pro
eedings of the 1st International Conferen
e on Aspe
t-OrientedSoftware Engineering, 2002.19. Mar
elo Sihman and Shmuel Katz. Model
he
king appli
ations of aspe
ts andsuperimpositions. In Pro
eedings of the 2003 Workshop on Foundations of Aspe
t-Oriented Languages, 2003.
27

20. Mar
elo Sihman and Shmuel Katz. Superimpositions and aspe
t-oriented program-ming. The British Computer So
iety Computer Journal, 46(5), 2003.21. Naoyasu Ubayashi and Tetsuo Tamai. Aspe
t-oriented programming with model
he
king. In Pro
eedings of the 1st International Conferen
e on Aspe
t-OrientedSoftware Development, 2002.22. Raja Vall�ee-Rai, Laurie Hendren, Vijay Sundaresan, Patri
k Lam, Etienne Gagnon,and Phong Co. Soot - a java optimization framework. In Pro
eedings of CASCON1999, pages 125{135, 1999.23. Jianjun Zhao. Sli
ing aspe
t-oriented software. In IWPC '02: Pro
eedings of the10th International Workshop on Program Comprehension, page 251, Washington,DC, USA, 2002. IEEE Computer So
iety.24. Jianjun Zhao and Martin Rinard. System dependen
e graph
onstru
tion foraspe
t-oriented programs. Te
hni
al Report MIT-LCS-TR-891, Massa
husetts In-stitute of Te
hnology, 2003.

28

Towards Reusable Heterogeneous Data-Centric
Disentangled Parts

Michael Reinsch and Takuo Watanabe

Department of Computer Science,
Graduate School of Information Science and Technology,

Tokyo Institute of Technology,
2-12-1 Oookayama, Meguro-ku, Tokyo 152-8552, Japan,

mr@uue.org and takuo@acm.org

Abstract. This paper presents our ongoing research towards a safe system
evolution. Our approach is based on data-centric, object-oriented systems.
It is our hope that such architectures will be helpful in integrating large,
loosely coupled systems, as suggested by ubiquitous computing. Within
those systems we utilise (i) multi-dimensional separation of concerns,
(ii) explicit, language-independent type declarations in the form of an
ontology and (iii) component technology. This results in parts, a construct
which allows a developer to group methods according to their different
concerns. Those methods are then “attached” to the ontology on which
they operate. This combined approach makes it possible to cope with
a growing code base, safely reuse structure and code supporting a safe
system evolution.
Keywords: object-orientation, data-centric architecture, reuse, ontology,
separation of concerns, software evolution, components

1 Introduction

System integration still provides a great challenge. When looking at today’s
applications and electronic devices, the amount of integration is still very low.
Seen from the perspective of ubiquitous computing [1], system integration in
heterogeneous environments is probably one of the key aspects.

In our ongoing effort to research ways to build software that easily inte-
grates with other software, we identified that data-centric architectures could
be helpful. However there are some problems regarding code reuse, safe com-
bination and safe evolution which arise easily within those architectures. Safe
combination and safe evolution of systems need even more attention when
taking ubiquitous computing into account, as this implies a large, integrated,
loosely coupled system, whose components are changed independently from
each other.

1.1 Data-Centric Architecture

A data-centric architecture should help ease system integration by shifting the
system architect’s perspective: Data becomes the most important part of the

29

apel
Rechteck

system, with the functionality grouped around the data, providing the user
with different tools to manipulate this data. Thus it becomes important to share
this data between all tools.

We see this in contrast to the traditional, application-centric architecture,
in which full-blown applications come with a large, but more or less fixed set
of functionality and lock the data in their own and sometimes proprietary file
formats.

The tools in a data-centric architecture on the other hand can be small and
can concentrate on one specific function. Through loosely coupled cooperation
between those tools, a large, flexible and integrated software system should be
achievable.

As an example for such a system consider a personal information manager.
Following the above description, such a system would consist of several tools,
e.g. an address book, a task manager, an email client, a calendar and so on.
All those tools would share their data, e.g. the calendar could show all related
tasks, emails, contact information. The whole system would be loosely coupled,
tools could be added, removed and replaced by different versions or variants.
The data could also be replicated on different devices which provide different
tools. Projected further in an ubiquitous computing environment, one ends up
with several loosely coupled devices, all sharing and contributing to the same
distributed data base.

To implement such a data-centric software system, an object-orientated ap-
proach seems to be adequate. This allows the creation of a model which is
closely related to the real world and it also allows to utilise abstraction, infor-
mation hiding and reuse. In addition, component technology can provide the
techniques to realise safe deployment and safe reuse of components through
contracts, and it can help to achieve a more loosely coupled system [2].

However, a naive implementation will most likely lead into problems, caused
by system evolution. The rest of this section is devoted to discuss such problems.

1.2 Object-Orientation, Information Hiding and Reusability

For this discussion it is first necessary to examine the ways an object-oriented
system can be designed. Our main objective is to create a high quality, simple
to understand and maintainable software system whose object-oriented code
makes use of information hiding and can be reused.

In order to follow the principle of information hiding, it is necessary to not
expose the internal structure of an object to external entities. Unfortunately this
is often done, e.g. by utilising reputedly safe getter and setter methods [3], and
is likely to cause problems when changes to the internal structure are required.
For example, picture a change which introduces a new field to a class. This new
field could influence the computation of other values throughout the whole
system.

But on the other hand, without the possibility to access the internal structure
of a class from the outside, this class likely ends up as an example of the anti-

30

pattern “The Blob” [4], because it has to provide all functionality which requires
access to its internal structure.

Thus a solution which can allow for code growth without an impact on
information hiding is desirable.

A viable compromise for this dilemma seems to be provided by structural
design patterns. They make use of several objects and the internal structure of
an object is opened only to a small number of objects. This however increases
the complexity of the solution and most likely also the complexity of the whole
system, since other design patterns such as abstract factories then probably
need to be applied as well. Thus, in using structural design patterns we trade
information hiding with an increase in complexity.

While this seems to solve the problem for one static software system (assum-
ing the number of classes with access to the internal structure of an object is low
and well documented), changes to the internal structure of an object can still
cause problems when considering reuse in several independent applications.
Those changes need to be tracked and each application needs to be explicitly
checked by a developer because there is no formal description stating the de-
pendency to the internal structure of an object. Within this context getter and
setter methods might be regarded as even worse as they might obfuscate the
fact that the internal structure of an object is accessed.

1.3 Dependencies, Information Hiding and Reusability

Regarding dependencies, a similar discussion to the one above is required. The
main question is once again, where code should be placed which introduces
a new dependency to another class. Again there are two choices: Either it is
placed within the class itself or in a helper class by e.g. applying a matching
design pattern like dependency injection. Moving this code into a helper class
normally comes with advantages but also increases complexity.

Additionally, another conceptional problem cannot be solved that way: If
two different versions of a class are required within the same application and
the execution environment does not support versioning, the classes are likely
to clash and consequently cause the application to malfunction.

1.4 Summary

From the discussion above it is obvious that object-orientation by itself does not
provide a good solution for the described problems. It is necessary to explicitly
add extra structure to cope with the growth of code. And this still leaves the
questions concerning system integrity unanswered in the cases when code is
reused or parts of a system are changed.

An approach which addresses the problems concerning complexity, reuse
and information hiding as discussed above, and in addition allows to detect
changes within the internal structure could thus simplify development and
allow safer reuse, safer system composition and safer system evolution.

31

Legend

ConceptDatatypeRelationDomainConceptRange

http://udip.uue.org/types/company http://udip.uue.org/types/person

Company

Name

xsd:string Person

Lastname

xsd:string

WorksFor Forename

Fig. 1. Very simple ontology describing the concepts Person and Company and
their relations

2 Concepts

In this section we present the concepts on which our approach is based. Gen-
erally speaking, we combine multi-dimensional separation of concerns with
techniques known from component systems and add an explicit and language-
independent type declaration in form of an ontology. In the following subsec-
tions we discuss this in more detail, and in section 3 we then present a possible
implementation which also serves as an example for the points discussed here.

2.1 Ontology

In order to encourage a data-centric architecture, we explicitly model the data
structure of a software system using a language-independent ontology. A very
simple ontology describing the concepts Person and Company and their relations
is provided in Figure 1 as an example. The system’s data itself can then be stored
within that ontology. This achieves language-independence for data as well,
and allows reflection and reasoning over the stored data. From the meta-data
contained in the ontology, code for different programming languages can be
generated. All this then allows us to integrate code which is based on the same
ontology, albeit possibly written in different programming languages.

In addition, it is also possible to store the declarations of the deployed parts
(see next subsection for the term “parts”) in the ontology. Therefore we added
an additional complete meta-type system within the ontology which uses the
terminology common in object-orientation and which fits our needs better than
the one used by the ontology language itself.

The goal was to create a complete self-describing system. Hence it is possible
to reflect, for example, about the current deployment status and change system

32

Regroup

Class Person

String toXML()

String toVCard()

String: Forename
String: Lastname

Class Person

String: Forename
String: Lastname

String: Name

Class Company

String toXML()

String: Name

Class Company

Part VCardExport

String toVCard() on Person

Part XMLExport

String toXML() on Person
String toXML() on Company

Fig. 2. Regrouping of methods in parts according to their concern

properties at run time. Using this mechanism, dynamic system adaptation could
be implemented.

2.2 Parts

To cope with dependencies, information hiding, reuse and a growing code base,
we introduce parts. Parts mainly serve to allow multi-dimensional separation
of concerns [5], but in another way they also serve as small components as they
explicitly define their dependencies, contractually specify their interface, and
form the unit of composition and deployment [2].

To realise this, a part defines which other parts and concepts from the ontol-
ogy it requires. It also provides a list of methods which are to be “attached” to
the ontology. This list of methods also forms the exported interface of that part.

For example, a part which provides the functionality to export the content
of a Person-object in the VCard-format might be defined like this:
Part: VCardExport
Expects: The ontology in Figure 1
Exports: String toVCard() on Person
Required Parts: None

The implementation (see section 3 for an example) of this method, which
is also provided by the part, has access to the internal structure of the object it
is attached to. To be more precise: It has access to the internal structure of the
object as it is defined in the Expects-statement. It cannot access any additional
internal fields which might exist because a different part requires them. So
the Expects-statement declares both, the requirements and the restrictions for a
part. In addition, the implementation of a method can only execute the methods
defined in its part or in one of the required parts, on those objects it can access.

Hence in comparison to typical object-orientated design, parts allow to re-
group methods according to the concern they belong to, leading to a multi-
dimensional separation of concerns. In the example illustrated in Figure 2, the
methods of the classes Person and Company are regrouped in two parts, one for
VCard-export and one for XML-export. This effectively separates the method

33

declarations and implementations from the class definition. Through this sepa-
ration, only the field declarations remain in the class definition which can thus
be replaced with the corresponding concept from the ontology. To ensure the
safety of this separation, the requirements are explicitly specified by the part’s
Expects-statement and thus can be contractually assured.

2.3 Summary and Implications

With this approach all methods are now associated with a class and a part.
The parts are used to group those methods together which belong to the same
concern. Parts thus help to remove all unwanted methods from the view of
other parts. They also define a namespace within the class to avoid clashes of
method names. In addition, the implementation of a method is no longer done
within the class but within the part.

This separation of class and method using parts has several advantages. First,
it prevents a class from becoming large and hard to maintain. The code for a part
also only needs to be deployed when it is required. Second, the implementation
for parts can be written in different programming languages, as the authority
defining the structure and types (i.e. the ontology) is language neutral. Third,
the code for a part can also be executed on a remote host, allowing e.g. the small
or GUI related parts to reside on a thin client whereas the parts doing heavy
data processing could reside on a server. Forth, by explicitly defining the data
structure a part expects, changes to the internal structure can be detected at
deployment time and incompatible parts can be rejected.

When taking changes into consideration which might be required to a soft-
ware system, we can divide them into the following categories and discuss the
possible impact on the system for each category:

1. Changes to the code (i.e. within a part):
We assume here that the same cases as for other object-oriented systems
apply: A change can be either internal and thus not require any additional
changes, or change the signature of the method and thus all code calling the
method needs to be adapted. This can be detected at deployment time.

2. Changes to the data structure (i.e. to the ontology):
This kind of change requires all parts which attach methods to the changed
concept to be checked against the change. This is required to ensure system
integrity and might trigger changes to the code. In other object-oriented
systems this check is also required but not enforced. We are planning in
researching ways to relax or automate this check.

3. Changes to the middleware:
Changes within this category can trigger everything, from no further changes,
to changes to every part, and changes to the ontology. So special care needs
to be taken for those changes.

4. Changes to the programming language, operating system or hardware:
In the worst case the middleware and all parts required to run in the changed
environment need to be ported. The ontology can be reused.

34

3 Early Prototype

To further test this approach we implemented a prototype in Java 5. We chose
Java to show that a simple translation to an object-oriented language is possible.
The prototype also states that (i) each part should be compilable on its own
without a special compiler, and (ii) the strong typing of Java should be kept and
no casts should be required to access methods or attributes.

The ontology used by this prototype is stored in OWL [6]. This makes it
easier to create and read the ontology because tools and libraries to process
OWL are available.

The prototype mainly consists of a code generator. First, for every part
interfaces like the following one are generated:

public interface VCardExport {
String toVCard();

}

Then for each concept in the ontology a class is generated:

public abstract class Person extends Subject {
public final VCardExport cVCardExport

= new VCardExport() {...}
protected final String getForename() {...}

...

The ontology’s relations are translated into attributes (e.g. getForename) of
those classes. Every class to which methods are attached, gets additional final
attributes whose types are one of the parts’ interfaces (e.g. cVCardExport). The
generated code within the class dispatches all calls to a core object which holds
all attributes as well as all registered part implementations.

An implementation for the part VCardExport could then look like this:

public class PersonVCardImpl
extends Person implements VCardExport {

public String toVCard() {
StringBuffer res = new StringBuffer();
res.append("BEGIN:VCARD\nVERSION:3.0\n");
res.append("N:").append(getForename());

...

To be able to call this method, some part must define that it uses the concept
Person and the part VCardExport. Then an object within the part can obtain a
reference to a Person-object and call the method like this:

String vcard = myPerson.cVCardExport.toVCard();

With this we have shown that an easy translation to an object-oriented
language is possible.

4 Related Work

In this section a discussion about related work is presented. We first introduce
the related work briefly and then discuss the similarities and differences.

35

4.1 Subject-Oriented and Hyperspace Programming

The main concept behind hyperspace programming (being by itself a more
generalised form of subject-oriented programming [7]) is the multi-dimensional
separation of concerns [8]. Therefore it is quite similar to our approach, and
in fact we borrowed several ideas from their approach. But there are some
differences:

We bring in techniques from component systems which allow us to define
clear dependencies. Through the dependencies between our parts, it is possible
to build a layered system. Thus we do not require the parts to be complete ap-
plications on their own. We instead see our parts as being quite small, capturing
what perhaps could also be called mini-concerns, and to be reused by other
parts.

Composition rules are considered to be an important part of hyperspace
programming. In our approach on the other hand, the types used by the parts
are standardised through the ontology, eliminating the need to create mappings
between classes and attributes. Though in a later stage, we might reintroduce
some kind of composition rules in the form of mappings between different
ontologies.

Through the meta-data present in our approach, it is also safe to compose
the system at run-time, eliminating the need of a special compiler. Additionally,
this meta-data can also be exploited in other ways as discussed earlier.

4.2 Aspect-Oriented Programming

In aspect-oriented programming (AOP) the main focus lies on cross-cutting
aspects which it tries to consolidate [9]. Thus there are similarities to our ap-
proach which also allows us to group cross-cutting concerns together. But both
approaches are different in the same way that hyperspace programming is also
different from AOP: In AOP the aspects are weaved into a core implementation.
With our approach, a core implementation does not exist, but only different
concerns. Additionally, the granularity is different: AOP allows us to weave
code into methods, whereas our approach allows adding methods to classes.

4.3 Code Generation from Ontologies

Several code generators exist which generate code based on an ontology, where
the most similar approaches try to translate as much of the semantics of an on-
tology language to a programming language, e.g. [10,11,12,13]. All approaches
so far expose the internal structure of the ontology, e.g. by utilising getter and
setter methods in object oriented languages. Adding new code to the generated
code is possible, e.g. by extending the generated class if the code generator
itself does not respect developer supplied code. But to our knowledge, no other
approach similar to the one presented in this paper exists yet.

36

5 Concluding Remarks

We presented a combination of multi-dimensional separation of concerns with
techniques known from component systems and an explicit and language-
independent type declaration in form of an ontology. Through the separation of
methods from their classes (which are defined by the ontology’s concepts) and
by regrouping those methods in parts we gain extra flexibility, can cope with the
growth of the code base and reuse those parts. In addition, existing parts can be
easily extended by adding new parts, or replaced by newer versions. Through
explicitly stated dependencies between parts and the definition of the required
type structure for a part, we achieve a safe method to combine several parts to
a larger system: Incompatibilities can be detected and handled at the time of
deployment. Finally, the usage of a language-independent ontology to define
the types of the system helps in reuse of not only code but also the structure of
a system.

6 Future Work

In this paper we presented a snapshot of our ongoing research in the area of
software evolution. Hence this work is not complete, much remains to be done:

First, our existing prototype needs to be further improved and extended,
and automatic object persistency as well as object versioning has to be added.
Then we plan on implementing a larger set of integrated, yet loosely coupled
tools, demonstrating software evolution. With this code base we then hope to
be able to further examine safe composition and re-composition at run-time.
Based on those results, automatic system adaptation could be studied. We also
plan on exploring new ways on how to further profit from the rich meta-data
present in our approach, for instance to implement an automated deployment
and undeployment (garbage collection) mechanism for our parts. Finally, the
step into an ubiquitous environment could be done, by utilising automated
object replication and distributed parts, while taking care of data and system
security.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American (1991) Online
available at http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

2. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addi-
son Wesley (1998)

3. Holub, A.: Why getter and setter methods are evil. JavaWorld (2003)
4. Brown, W.J., Malveau, R.C., McCormick, H.W., Mowbray, T.J.: AntiPatterns: Refac-

toring Software, Architectures, and Projects in Crisis. Wiley (1998)
5. Tarr, P., Ossher, H., Harrison, W., Sutton, S.M.: N Degrees of Separation: Multi-

Dimensional Separation of Concerns. In: Proceedings of the 1999 International Con-
ference on Software Engineering. (1999) 107–119

37

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html

6. Web-Ontology Working Group: OWL Web Ontology Language, Overview. Online
available at http://www.w3.org/TR/owl-features/ (2004)

7. Harrison, W., Ossher, H.: Subject-Oriented Programming: A Critique of Pure Objects.
In: Proceedings of the eighth annual conference on Object-oriented programming
systems, languages, and applications (OOPSLA ’93). (1993) 411–428

8. Ossher, H., Tarr, P.: 10. In: Software Architectures and Component Technology:
Multi-dimensional Separation of Concerns and the Hyperspace Approach. Kluwer
Academic Publishers (2002)

9. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.M., Ir-
win, J.: Aspect-Oriented Programming. In: Proceedings of the European Conference
on Object-Oriented Programming (ECOOP). (1997)

10. Eberhart, A.: Automatic Generation of Java/SQL Based Inference Engines from
RDF Schema and RuleML. In: Proceedings of the First International Semantic Web
Conference on the Semantic Web (ISWC), London, UK, Springer-Verlag (2002) 102–
116

11. JSave Extension for Protégé. Online available at http://protege.stanford.edu/
plugins/jsave/ (2005)

12. Beangenerator for Protégé. Online available at http://acklin.nl/page.php?id=34
(2005)

13. Kalyanpur, A., Pastor, D., Battle, S., Padget, J.: Automatic Mapping of OWL Ontolo-
gies into Java. In: Proceedings of Sixteenth International Conference on Software
Engineering and Knowledge Engineering (SEKE). (2004)

38

http://www.w3.org/TR/owl-features/
http://protege.stanford.edu/plugins/jsave/
http://protege.stanford.edu/plugins/jsave/
http://acklin.nl/page.php?id=34

Technological Limits for Software Evolution
Chairman: Yvonne Coady, University of Victoria, Canada

39

apel
Rechteck

40

apel
Rechteck

Pitfalls in unanticipated dynamic software

evolution

Peter Ebraert1⋆, Yves Vandewoude2∗, Theo D’Hondt1 and Yolande Berbers2

1 Programming Technology Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050
Brussel, Belgium

2 KULeuven Department of Computer Science, Celestijnenlaan 200A, B-3001
Leuven, Belgium

Abstract. The authors of this paper have all developed a framework
that allows runtime adaptation of software systems. Based on our ex-
periences, we wish to summarize common pitfalls concerning dynamic
software evolution. Systems for dynamic adaptation typically follow a
certain process which is used as a starting point in this paper. The prob-
lems that occur in the different steps of this evolution process are given
and a suggestion is made on how these problems can be tackled. The
reader will notice that the solution to most of the pitfalls lies in the use
of reflection, meta-data and meta-object protocols. We conclude that re-
flection or meta-object protocol manipulations are indispensable in the
process of dynamic software evolution and that better language support
is needed.

1 Problem Statement

Lehman [1] defines software evolution as the collection of all programming activ-
ities intended to generate a new version from an older and operational version.
The problem of software evolution occurs after the initial delivery of the soft-
ware and typically deals with bugfixes and the addition, change or removal of
functionality to the system. Different sources estimate that evolution is respon-
sible for 50% [2] to 90% [3] of the total cost of software. The following quote by
Keith Bennet [4] perfectly describes the real difficulty of software evolution: its
unanticipated nature. “The fundamental problem, supported by 40 years of hard

experience, is that many changes actually required are those that the original

designers cannot even conceive of.”

In most of the cases, software evolution is performed on systems that are shut
down. However, there are some systems that can not be shut down because of
some specific reasons (such as safety or financial aspects). Well known examples
are web services, telecommunication switches, banking systems, airport traffic
control systems or military systems. Adapting such systems without halting them
is a challenging operation that encompasses many different problems. Those
problems are tackled in the field of dynamic software evolution.

⋆ Authors funded by a doctoral scholarship of the “Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT Vlaanderen)”

41

apel
Rechteck

The following section starts with an overview of all difficulties that come
with the dynamicity of dynamic software evolution. Afterwards, it presents a
commonly accepted process that can be followed in order to cope with those
difficulties. Section 3 lists all the pitfalls that rise if one wants to follow the
process stated in section 2. In sections 4 and 5 we conclude that, in order to
resolve the pitfalls, both reflection and meta-data are indispensable and that
they can only be offered by languages with a fully reflective meta-object protocol.

2 Unanticipated dynamic software evolution

In his PhD report, Oriol states three main reasons that make unanticipated
dynamic software evolution such a hard undertaking: coping with active threads,
state transfer and uncertainty. In this section we first explain those three issues
and then then see how the most commonly accepted process for dynamic software
evolution handles those issues. Step by step, we discuss all the phases of this
process.

In an object oriented program, the execution state is typically represented
by the state of all the living objects (housed by instance variables), and the
state of the runtime stack. Changing an object oriented program while it is
active, means that parts of the objects may be modified during their execution
(a typical dynamic evolution mechanism). This could lead to inconsistent states
(states from which the program cannot finnish correctly). This is why active

threads must be taken care of, before a change is actually performed on a running
system.

Inconsistencies might also occur when a certain change requires us to replace
existing entities by new entities. When an old entity is replaced by a new one, we
must incorporate the state of the old entity into the new entity, for not ending
in an inconsistent state. The process of porting the state from an old entity to
a new one, is called state transfer.

The last reason in the uncertainty of applying a change to a running system.
As we are applying a change to a running system, we do not have a test-phase, in
which we verify that changing the program results in unwanted behavior. Below,
we enumerate 6 steps that overcome the three above mentioned issues. This is
why those steps form the typical process of dynamic software evolution.

1. Offline activities. Before a dynamic update is deployed, it must first be
implemented. Offline activities start by locating all structures or entities that
are affected by the changes. This problem is often referred to as dependency

finding. The new code is then implemented according to the renewed spec-
ifications of the system. In most cases, the design and source code of the
old version are present, since it is likely that new versions are implemented
by the owner of the old version. If this is not the case, an attempt must be
made to recover these from the software artefacts that are available (such
as the running system) using reengineering techniques. Finally, the correct
behaviour of the new version must be verified using either formal proofs or

42

extensive testing. In some cases, the deployment of the new version itself is
also tested by deploying it on a duplicate copy of the running system.

2. Addition of new code to the running system. The complexity of intro-

ducing new code into the running system strongly depends on the program-
ming language and environment used. It is easy for languages as SmallTalk
or CLOS, harder for statically typed languages as Java or C# (since code
can not easily be reloaded), and very hard for languages that are compiled
to native code such as C or Assembly.

3. Deactivation of affected entities. Dynamic adaptation of an active sys-
tem entity can result in inconsistencies that may lead the application to an
erroneous state. Program consistency can be preserved by deactivating all
entities or structures within the application that are affected by the change.

4. Transformation of affected entities. This phase consists of the actual
transformation from the old version to the new version and is composed of
transforming behavior and porting state. In class based languages, behav-
ior is captured in method definitions and in the inheritance hierarchy. As
such, behavior transformations boil down to class based modifications. The
most difficult part of this phase however, is the transformation of runtime
state that is contained in variables throughout the system to preserve state

consistency.
5. Online verification of new code. Once the transformation has completed,

we wish to verify a number of conditions to guarantuee its correctness. This
is achieved by evaluating a number of conditions and invariants on the new
code version. If these checks fail, a rollback mechanism must make sure that
the previous state is restored.

6. (Re)activation of the halted entities. The last step consists of reacti-
vating all the entities that were deactivated earlier in the process.

Relating to the issues identified by oriol, steps 3 and 6 are present to cope with
active threads, step 4 deals with state transfer and the tests in steps 1 and 5
are present to lower incertainty. In the next section, we discuss common pitfalls
that occur in this process and suggest possible solutions.

3 Pitfalls

3.1 Dependency finding and reengineering

In order to implement a new version of a software system, it is crucial to obtain
its architecture and design if not already present. This information is required
for the identification of all the entities that have some relation with the evolving
part of the software. In addition, we need it for providing new source code that
will fit in the existing system.

Recovering the design of an application has to be done by using both static
and dynamic information. Static information describes the structure of the soft-
ware as it is written in the source code, while dynamic information describes
what is really happening at runtime. It can be perfectly possible that structural

43

information shows that two classes are just a bit related, as there is only one
method call from one class to the other. However, it is possible that dynamic
information shows that the same call occurs continuously when running the ap-
plication, making the two classes very related. This explains why both dynamic
and static analysis result in more realistic design recovery.

Static information can be obtained by looking at the application’s imple-
mentation. Practically this can be done in two different ways; by looking at the
source code or by using introspection (= reflective capabilities of observing the
application).

Dynamic information can be gathered by monitoring the behavior of the
running application. This is typically done by using a layered approach. Imple-
mentations of this approach include the adaptation of the metaobject protocol in
such a way that all baselevel executions are intercepted and monitored. Another
implementation consists of the instrumentation of base-level entities with calls
to a monitor by means of intercession (= reflective capabilities of modifying the
application).

3.2 Introduction of new code.

Whereas safely introducing new code to a running system is a non-trivial accom-
plishment by itself for languages such as C or assembly [5, 6], modern languages
such as Java, Smalltalk or C# allow a programmer to add new code in a safe
and extremely convenient manner.

However, the ability to add new code to a running system is by itself not suf-
ficient for dynamic adaptation. Unanticipated software evolution almost always
includes modifications to existing code. Although this is not a problem for purely
dynamically typed languages such as Smalltalk, it is a much harder problem for
statically typed languages such as Java or C# (for a extensive discussion on the
influence of a programming language and its type system on runtime evolution
we refer to [7]). For statically typed languages, unloading or modifying code
which is already loaded is prohibited due to safety restrictions that are enforced
by the language model. For instance, Java ensures that all methods or fields
that are used also exist. Such a guarantee can not be given if class definitions
can change at runtime unless extensive and frequent runtime type checks are
added which would degrade runtime performance significantly. This is a sacrifice
designers of statically typed languages are not prepared to make.

In Java, the problem is partially circumvented using the classloader mecha-
nism. Since classes loaded by different classloaders are considered to be distinct
types, the classloader architecture also allows different versions of a class to be
used simultaneously. Such techniques are used by component runtime environ-
ments to (un)load different components independently. While this approach is
sufficient for loading modified code into the system, it causes some important
problems related to dynamic adaptation: an object of version n + 1 can not be
assigned to a variable of version n. This problem is called the version barrier
[8], and is especially relevant for state transfer between different versions of an

44

application. As we will see in the section 3.4, reflection and meta-data will play
a vital role in solving these problems.

3.3 Program consistency and deactivation.

It is clear that for a dynamic update to succeed, arbitrary changes to the software
can not be allowed. For example, online software replacement may not be feasible
if the new version of the program is an entirely different program. It is vital
that a runtime change preserves program consistency. An informal definition
of a consistent application state is a state from which the program continues
execution in a correct manner rather than progressing towards an error state.
An application can be seen as moving from one consistent state to the next.
Since state is distributed throughout the system, different state structures can
be temporarily inconsistent with oneanother. It is vital that the application is in a
consistent state before runtime modifications are performed. Kramer and Magee
introduced the concept of quiescence in [9]. While their work was originally in the
field of distributed systems consisting of a set of distinct nodes, it can be applied
to dynamic adaptations of object-oriented or component-oriented applications
as well.

In order to ensure that no communication or method calls are active during
the modification of a certain entity, the entity must be deactivated. Any deac-
tivated entity will queue all incoming transaction request and postpone their
execution until the entity is reactivated. Different implementations are possible
to achieve this goal. In [10], a wrapper based approach is used. A wrapper is
added to each system entity that adds additional functionality for activation or
deactivation. Futures are returned to the caller as a return value. These futures
will be resolved when the entity is reactivated. Messages to futures result in fu-
tures themselves. This chain of futures continues until a side-effect occurs, after
which the application is halted until the entities are reactivated. In [11], commu-
nication between components is asynchronous and realised by sending messages
through connectors that are capable of queuing messages until the component
is reactivated. Since there are no return values, the concept of futures is not
required.

In the end, the implementation of a deactivation scheme strongly depends on
reflection: communication is reified into messages that can be queued until fur-
ther notice. The advantage of reflection is that it allows the addition deactivation
logic without modifying the components themselves.

3.4 State transfer and consistency.

Although deactivation is essential for dynamic software adaptation, it is not
sufficient by itself. True dynamic evolution requires that the state from the pre-
vious version is imported in the new version of the software. The assumption
of quiescence ensures that all state is contained in the instance variables of the

45

different objects that make up the application or component (assuming an ob-
ject oriented paradigm). Two possible approaches exist to achieve state transfer
between different versions:

Indirect: The old version exports its state in some abstract form which is
later interpreted by the new version. In some cases, the exported state can
be written to disk.

Direct: The new version directly interprets the state from the old version.

Although the first version seems more convenient at first, it has some major
disadvantages. First of all, in order for the exported state to be in an abstract

form, a generally accepted ontology must exist so that all parties can agree on
the semantics of this abstract state. Such an ontology only exists for certain
domains, severely limiting the practical approach of this technique. In addition,
this requires that each entity implements a state export function, even if it may
never be used. This lays a huge additional burdon on the programmer. The
second technique does not suffer from these restrictions. State is extracted using
either getters/setters, or, more likely, using reflection.

For statically typed languages, the presence of different application domains
or classloaders (see section 3.2) further complicates the adaptation, since com-
munication between different versions is strictly limited to known common types
(eliminating the ability to extract state using getter-methods and increasing the
dependency on reflection). The presence of such an architecture also results in a
cascading effect of changes, which eliminates the possibility of preserving large
(unchanged) portions of the application or component. Indeed, a type A which
has not changed by itself, but that contains a reference to a changed type B will
not be able to use the new version of B due to the version barrier. Transforming
objects of A to refer to the new version of B causes a cascading effect, since all
types referring to A would require changes as well. A solution to this problem
was proposed in [8], in which Sato and Chiba introduce Negligent Classload-
ers, which relax the version barrier under certain circomstances. An alternative
technique would be to change the classloader of unmodified types from the old
version to the classloader of the new version, allowing them to be integrated
in the object tree of the new version. Both solutions require virtual machine
adaptations.

It is unlikely that a generic solution can be developped without strongly
depending on both reflection and meta-data. Regardless of how the actual state
transition logic is generated, transferring state between different versions requires
information which is not always present in the sources of the different versions,
and therefore would need to be added using meta-data. Both the extraction
of the state from the old version, and its insertion in the new version require
reflective operations (the adaptation is unanticipated and its likely that the
running version does not have the required extraction functionality).

46

3.5 Verification and rollback.

Deepak Gupta has proven [12] that full automatic verification of the correctness
of an update is computationally undecideable. Therefore, the designer of the
update must include a number of checks with the new version. These checks can
either be executed before the transition, verifying that certain unwanted states
are not present, or after, to insure that the update was indeed succesfull. An
example of the a pre-condition that is commonly used for dynamic adaptations
is ensuring that a component is not involved in a transaction [13, 9]. As long
as the precondition is not satisfied, the update is delayed. After the update,
additional sanity checks can be executed on new version before it is reactivated.
Postconditions are also commonly used to verify the result of dynamic aspect
weaving (for example, in [14] the authors verify their aspect compositions using
postconditions). Reflective mechanisms are necessary, not only to extract these
conditions from the new version, but also to evaluate them. Indeed, it is likely
that these conditions will use state from the new version that can not be accessed
without reflection.

If one of the tests fails, a rollback is required to restore the original system.
Following the process that was described in section 2, the rollback will only have
to be applied on deactivated entities. This is achieved by maintaining of a copy
of the original entities that are to be restored during rollback. This copy can be
retrieved using introspection and restored using intercession.

4 Need for language support

As we have seen above, reflection and meta-object protocol manipulations are
indispensable for allowing dynamic software evolution. Our findings and other
peoples findings (at RAM-SE 2005) clearly indicate that more language support
is needed for easing dynamic software evolution. Current mainstream languages
(like C, C++, Java and C#) are not sufficient as their abilities towards reflection
and meta-protocol manipulations are too limited: mainly because of two reasons.

The first problem is the class-loading principle which loads classes in the
memory of the virtual machine at the time of their first useage. The problem
with classloading is that after a class is loaded into memory, no more changes
are allowed to these classes since object instances may already exist 3. Therefore,
changes made to the class after it has been loaded are not propagated at runtime.
This can be overcome by modifying the virtual machine [15–18] or changing
the classloader mechanism [8]. Although some of these techniques are indeed
capable of alleviating current limitations of languages such as Java and C#, these
modifications also changes the semantics of the original language and therefore
break compatibility with the mainstream version of the language.

The second problem lies in the expressiveness of the languages. In order to
apply meta-object manipulations of certain concepts of a program, we need those

3 Java Hotswap does allow some changes, but these changes are extremely limited in
scope.

47

concepts to be fully reified. Languages such as C, C++, C# and Java have a lot
of concepts which are not yet reified (for instance the method lookup). Because
of that, those concepts cannot be inspected or changed. As an alternative, we
propose languages with a full reflective meta-object protocol (with all concepts
fully reified). While full reflection might impose a runtime overhead, those lan-
guages offer more capabilities for meta-object manipulations and reflection, and
thus for dynamic software evolution. Examples of such languages are Smalltalk
and CLOS.

5 Conclusion

We start this paper by giving an overview of common difficulties that come with
dynamic software evolution. In particular these are related to state transfer,
active threads and uncertainty. A typical process of dynamic software evolution
is then presented that copes with these difficulties. However, in this process a
number of pitfalls show up. An explanation is given for each of these pitfalls and
a conceptual solution is suggested. Our conclusions confirm that both reflection
and meta-object protocol manipulations are indispensable in the field of dynamic
software maintenance. Taking into account the mainstream languages (Java, C,
C++ and C#), we claim that those languages are not well suited for dynamic
evolution as they have intrinsic problems that hinder it. We therefor suggest to
use languages like CLOS and Smalltalk.

References

1. Lehman, M., Ramil, J.: Towards a theory of software evolution - and its practical
impact. Invited Lecture, Proc. Intl. Symp. on Principles of Software Evolution
(2000) 2–11

2. Lientz, B., Swanson, E.: Software Maintenance Management: A Study of the Main-
tenance of Computer Application Software in 487 Data Processing Organizations.
Addison-Wesley (1980)

3. Erlikh, L.: Leveraging legacy system dollars for e-business. IEEE IT Pro (2000)
17–23

4. Bennet, K.H., Rajlich, V.: Software maintenance and evolution: A roadmap. Future
of Software Engineering. (2000)

5. Segal, M.E., Frieder, O.: On-the-fly program modification: Systems for a dynamic
updating. IEEE Software 10 (1993) 53–65

6. Hicks, M.: Dynamic Software Updating. PhD thesis, Department of Computer
and Information Science, University of Pennsylvania (2001)

7. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Influence of type systems
on dynamic software evolution. Technical Report CW410, KULeuven, Belgium
(2005)

8. Sato, Y., Chiba, S.: Negligent class loaders for software evolution. In Cazzola, W.,
Chiba, S., Saake, G., eds.: ECOOP’2004 Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’04), Oslo, Norway, Fakultät für Informatik,
Universität Magdeburg (2004)

48

9. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering 16 (1990) 1293–1306

10. Ebraert, P., Mens, T., D’Hondt, T.: Enabling dynamic software evolution through
automatic refactorings. In: Proceedings of the Workshop on Software Evolution
Transformations (SET2004), Delft, Netherlands (2004)

11. Vandewoude, Y., Rigole, P., Urting, D., Berbers, Y.: Draco : An adaptive runtime
environment for components. Technical Report CW372, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2003)

12. Gupta, D.: On-line Software Version Change. PhD thesis, Department of Computer
Science and Engineering, Indian Institute of Technology, Kanpur (1994)

13. Janssens, N., Michiels, S., Mahieu, T., Verbaeten, P.: Towards Hot-Swappable
System Software: The DIPS/CuPS Component Framework. In: Proceedings of the
Seventh International Workshop on Component-Oriented Programming, Malaga,
Spain (2002)

14. Klaeren, H., Pulvermüller, E., Rashid, A., Speck, A.: Aspect composition apply-
ing the design by contract principle. In: Proceedings of the Second International
Symposium on Generative and Component-Based Software Engineering, Erfurt,
Germany (2000) 57–69

15. Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.: Runtime support for
type-safe dynamic java classes. In: Proceedings of the 14th European Conference
on Object-Oriented Programming. (2000)

16. Andersson, J., Ritzau, T.: Dynamic code update in Jdrum. In: Workshop on
Software Engineering for Wearable and Pervasive Computing, Limerick, Ireland
(2000)

17. Andersson, J., Comstedt, M., Ritzau, T.: Run-Time support for dynamic Java Ar-
chitectures. In: ECOOP’98 Workshop on Object-Oriented Software Architectures,
Brussels, Belgium (1998)

18. Ritzau, T., Andersson, J.: Dynamic deployment of java applications. In: Java for
Embedded Systems, London, United Kingdom (2000)

49

50

Architectural Reflection for Software Evolution

Stephen Rank

Department of Computing and Informatics,
University of Lincoln.
srank@lincoln.ac.uk

Abstract. Software evolution is expensive. Lehman identifies several
problems associated with it: Continuous adaptation, increasing complex-
ity, continuing growth, and declining quality. This paper proposes that a
reflective software engineering environment will address these problems
by employing languages and techniques from the software architecture
community.

Creating a software system will involve manipulating a collection of
views, including low-level code views and high-level architectural views
which will be tied together using reflection. This coupling will allow
the development environment to automatically identify inconsistencies
between the views, and support software engineers in managing archi-
tectures during evolution.

This paper proposes a research programme which will result in a software
engineering environment which addresses problems of software evolution
and the maintenance of consistency between architectural views of a
software system.

1 Introduction

Software evolution is expensive, with costs variously estimated as constituting
50–70% of the total lifecycle costs of software [1]. This paper proposes a soft-
ware engineering environment which will enable software engineers to produce
software that is easier and cheaper to evolve as its requirements change. The en-
vironment will use reflection to maintain a consistent set of views of a software
system at several levels of abstraction, up to and including the architectural
level.

The proposed environment will ensure that software engineers always have
up-to-date knowledge of the architecture and design of a software system, en-
abling them to make informed decisions during its evolution, and to avoid some
of the problems associated with degradation of structure during evolution. Archi-
tectural constraints, both within and across views, will be automatically mon-
itored, using design critics [15] to inform software engineers of inconsistencies
and potential problems with a software system.

51

apel
Rechteck

2 Problems

There are several problems associated with the evolution of software. This paper
proposes a software engineering environment which is designed to address five
of these problems, selected from Lehman’s laws of software evolution [2]:

Continuous Adaptation “E-type systems1 must be continually adapted else
they become progressively less satisfactory”

Increasing Complexity “As an E-type system evolves its complexity increases
unless work is done to maintain or reduce it”

Continuing Growth “The functional content of E-type systems must be con-
tinually increased to maintain user satisfaction over their lifetime”

Declining Quality “The quality of E-type systems will appear to be declining
unless they are rigorously maintained and adapted to operational environ-
ment changes.”

This paper takes the position that loss of knowledge about architectural
structure is a cause of several of these problems: knowledge is dispersed through-
out the documentation, code, configuration management tools, build tools, and
often only maintained tacitly by developers. Section 3 identifies the architectural
principles used in this paper, and section 4 introduces reflection as used in this
work.

Because knowledge of and constraints upon software architecture are not
always made explicit by developers, these structures tend to degrade as software
evolves. As the structure is not known, there are extra comprehension costs
in maintenance. Worse, if the documentation is wrong/out of date, work can
proceed on incorrect assumptions about the current and desired structure and
content of the software system.

This paper proposes that a software engineering environment which makes
use of reflection can be used to:

– Automatically maintain the consistency of our documentation with respect
to the various different “views” of a system;

– Make the architecture of a system visible and manipulable at run-time;

– Allow intervention at a higher level than the source;

– Manage and maintain safety properties and other desirable features;

– Allow automatic analysis of architectural properties of software systems.

A programme of research, leading to a software system which can support
the above activities is proposed in section 5, and further work is identified in
section 6.

1 Software systems that are Embedded in a real-world environment, as contrasted
to P-type software which solves approximations of real-world problems with well-
defined input, such as weather forecasting, and S-type software, which is formally
and completely specified as a function from its input to its output.

52

3 Software Architecture

Software architecture is the study of the structure of software systems, including
inter-component relationships [3, 4]. One of the first definitions of architecture,
still widely-used, is “Software Architecture = {Elements, Form, Rationale}” [5].
Interactions are considered first-class entities [6]. Architectural description lan-
guages model both components and connectors.

There are many important structures in a software system. Kruchten sug-
gested a “4+1” view model, in which four structural views are bound together
with a fifth “scenarios” view [7]:

Logical The object-oriented decomposition, commonly modelled using class di-
agrams.

Process Models “non-functional” requirements (eg, performance, availability).
Often modelled using collaboration or interaction diagrams.

Development Modular decomposition, modelled with component diagrams.
Physical The mapping of the software to the hardware; usually modelled with

deployment diagrams.
Scenarios The “+1” view; a set of scenarios used to motivate the development

and assist in the verification of the system.

Documentation of architecture is a key issue: “The essence of the activity is
writing down—and keeping current—the results of architectural decisions” [8].
Maintaining a correct and up-to-date architectural model assists with the prob-
lems identified in Lehman’s laws of Continuing Growth and Declining Quality
(described in section 2). Additionally, knowledge and control of the architecture
of a software system is required to support the multi-level feedback nature of
evolutionary processes.

4 Reflection, Architecture, and Evolution

Software reflection has been used in many ways to support software evolution [9–
12]. This work has usually focused on enabling evolution to take place on a
particular system at a design level, rather than on using reflection to ensure
consistency between multiple levels of view. It is possible to use reflective oper-
ations to map simple architectural changes down to the implementation [9, 13],
allowing modifications to the system to be carried out a relatively high level.

Information obtained by reflection tends to be limited to structural and low-
level behavioural information. There is a lot of architectural information gener-
ated by software engineers during the production and modification of a system.
Kruchten’s views [7] can be considered to be bound together by reflection:

Logical Available as a result of reflection or introspection on source code (or
intermediate representations such as Java bytecode), as it most closely cor-
responds to the source of the system.

Process Partially available from reflection and static analysis of code, but often
only made explicit in requirements or specification documents.

53

Development Partially available from reflection or even SCM data.
Physical Partially related to the process view, and available in some cases from

deployment descriptors.
Scenarios Not available from the code (except in very specialised cases).

Reflection can be used to bind these views together, ensuring the correspon-
dences between them are maintained, and allowing changes made in one view to
be automatically reflected in the others.

Reflective modelling of the architecture of software systems can support run-
time software evolution. We can support multiple views in ways that make them
consistent.

In order to accomplish the goal of knowing the architecture of a system at
run-time, the following are required [14]:

Monitoring The ability to to see the architecture at run-time
Interpretation Making sense of the data from monitoring, looking for ‘prob-

lems’ (in any sense of the word)
Resolution Fixing problems: manually, semi-automatically, or automatically.

Determining where problems are and what to do about them.
Adaptation The ability to make changes to the architecture of the system.

5 Proposal

This section proposes a software development environment which, using reflec-
tion, automatically maintains consistency between a collection of views of a
software system. A programme of research and development leading to such an
environment is proposed, and potential benefits are discussed.

5.1 A New Kind of Development Environment

It is proposed that a software development and analysis environment will be cre-
ated. This environment will use reflection to support architectural (and other)
approaches to software evolution. Reflection will be used to ensure that different
views of the system are synchronised (and to enable highlighting of incompati-
bilities between these views).

Figure 1 shows the “Lingua Franca” approach: one single representation, with
several views (a code view, a use-case view, an architectural view, etc) available
by applying different ‘lenses’ to the central representation of the system. By
creating appropriate ‘lenses’, other kinds of views can be created, such as a
configuration management or deployment views.

Figure 2 shows the converse case: a specialist language for each view. Boxes
in the diagram represent views, while arrows indicate that two views have a
correspondence relationship. In this case, there is a specialist language for each
kind of view, and correspondences between views are maintained pairwise.

The most obvious problem with the specialist language approach is the pro-
liferation of languages, and the problem of maintaining consistency between the

54

System Description

Design view
Architectural view

Physical viewCode view

Design lens Architectural lens

Physical lensCode lens

Fig. 1. Lingua Franca Approach

Interaction View

Use Case ViewClass View

Deployment View

Code View

Fig. 2. Specialist Language Approach

views. With the ‘lingua franca’ approach, these problems are avoided. The most
serious problem here is to create a suitable representation that is rich enough to
record all information necessary for each potential view.

There are several potential approaches to building such an environment, in-
cluding the following:

– Adapt current IDE technology (eg, Emacs, Eclipse). These are mainly code-
level tools, with higher-level modelling considered as an extra facility.

– Adapt current design tools (such as ArgoUML). There is some level of trace-
ability between the design (usually in a language such as UML) and the
code, and support for multiple views (such as UML’s different diagrams).
ArgoUML also includes design critics [15], which go some way towards the
analyses that are proposed here.

– Adapt current architectural tools (such as the Software Architect’s Assis-
tant). These have an architectural focus, with (currently) few code-level fea-
tures.

– Start from scratch. This approach leads to an exact match of the system to
our requirements, but is slow and inefficient in terms of development effort.

Modelling the architecture explicitly, with proper traceability from higher
level constructs to the code will support evolution. Software will be constructed

55

using the appropriate techniques for each kind of entity, and the development en-
vironment will manage traceability and identify inconsistencies between different
artefacts. The environment will enable software engineers to:

Manage change better because we can interconnections and dependencies
are visible;

Discover inconsistencies within and between views automatically in some
cases;

Know that our views are correct as they will be automatically extracted
from the actual system.

This will reduce costs because: ‘comprehension’ tasks will produce correct infor-
mation by definition; some kinds of ‘unsafe’ changes will be warned against or
disallowed; high-level reuse will be supported by high-level knowledge; structure
will be made explicit and thus degrading changes will become more obvious.

In order to develop a suitable development environment, the following steps
are proposed:

– Develop reflective modelling of each view of a system;

– Allow a software engineer to change each view and have the actual system
automatically updated;

– Check and enforce consistency within views;

– Check and enforce consistency between views;

– Support automatic architectural analysis within views;

– Support automatic architectural analysis across views;

– Allow the modelling of patterns and architectural styles in each view;

– Allow the modelling of patterns and styles across views.

To support dynamic replacement of components (eg, upgrading a compo-
nent), it is necessary to support the transfer of state between the old and the
new version. This is possible in a semi-automatic fashion [16]. Enforcing consis-
tency requires the use of a suitable logic for describing constraints and evaluating
models against them. Support for automatic modelling of patterns and the en-
forcement of consistency across views will require extensions to this logic to
provide suitable mechanism for describing patterns in terms of the architectural
features they demand.

6 Further Work

There are several potential problems with the kind of development environment
proposed in this paper. In this section, some of them are identified and discussed,
and potential means of addressing them are identified.

A system which dynamically supports software evolution must itself be ca-
pable of evolving. If it is to remain useful, it must be capable of supported
features not considered at the time of its first development [17]. In this example,

56

it may become necessary to develop additional views, or to allow new kinds of
constraints between views.

Some, especially in the extreme programming and agile methods communi-
ties, take the view that documentation (such as the architectural views proposed
here) are superfluous and should be disposed of (for example: “There’s this big
assumption that diagrams, use cases and the like must be kept in synch with
the code, and if they aren’t they become completely useless. XP says to write
them if you need them and then throw them away.”2). This is (at least partly)
due to the perceived effort involved with maintaining multiple views of the same
system, the costs associated with inconsistencies, and the perception that the
documentation is of little use anyway. Removing some sources of inconsistency
will lessen the desire to discard documentation. Extreme programmers often
take the view that the code and test cases together form the documentation,
and resist any attempts to create other types of documentation (seen as “the
tradeoff to get less functionality and more paper” [18]). On the other hand, there
is much research and industrial effort expended in program comprehension and
other reverse engineering tasks. This effort would be mitigated by the automatic
generation and maintenance of the views proposed in this paper.

In order to carry this work forward, it is essential that a rigorous evalua-
tion technique is devised, and objectively applied to the software and methods
developed.

7 Conclusions

Software evolution is a hard problem, which is expensive to tackle. In this pa-
per, a programme of research leading to a software engineering environment has
been proposed. This environment will tackle some of the problems of software
evolution identified by Lehman [2]. Using software reflection, multiple consistent
views of the same system will be maintained, and problems will be identified (in
some cases automatically). Reflection provides a means to maintain architectural
models which are timely, correct, useful, and consistent.

The main problems to be tackled immediately are the creation of a suit-
able representation for software systems, definition of the properties which will
be analysed, and creation of the mechanisms for ensuring consistency between
multiple views.

References

1. Nosek, J.T., Palvia, P.: Software maintenance management: Changes in the last
decade. Journal of Software Maintenance: Research and Practice 2(3) (1990) 157–
174

2. Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.: Metrics and
laws of software evolution—The nineties view. In El Eman, K., Madhavji, N.H.,

2 http://c2.com/cgi/wiki?CritiqueOfUseCases

57

eds.: Elements of Software Process Assessment and Improvement, Albuquerque,
New Mexico, IEEE CS Press (1997) 20–32

3. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline. Prentice Hall (1996)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. S.E.I.
Series in Software Engineering. Addison-Wesley (1998)

5. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4) (1992) 40–52

6. Shaw, M.: Procedure calls are the assembly language of software interconnection:
Connectors deserve first class status. Technical Report CMU/SEI-94-TR-2, Soft-
ware Engineering Institute, Carnegie Mellon University (1993) Presented at the
Workshop of Software Design, 1994. Published in the proceedings: LNCS 1994.

7. Kruchten, P.: Architectural blueprints—The “4+1” view model of software archi-
tecture. IEEE Software 12(6) (1995) 42–50

8. Clements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R.: Documenting
Software Architectures: Views and Beyond. Addison Wesley (2002)

9. Cazzola, W., Savigni, A., Sosio, A., Tisato, F.: Architectural reflection: Bridging
the gap between a running system and its specification. In: Proceedings of the Sec-
ond Euromicro Conference on Software Maintenance and Reengineering, Florence,
Italy (1998)

10. Masuhara, H., Yonezawa, A.: A reflective approach to support software evolution.
In: Proceedings of International Workshop on the Principles of Software Evolution.
(1998) 135–139

11. Dowling, J., Cahill, V.: Dynamic software evolution and the k-component model.
In: Proceedings of the OOPSLA 2001 Workshop on Software Evolution. (2001)

12. Cazzola, W., Pini, S., Ancona, M.: Evolving pointcut definition to get software evo-
lution. In: Proceedings of RAM-SE’04, the ECOOP’2004 Workshop on Reflection,
AOP and Meta-Data for Software Evolution, Oslo, Norway (2004) 83–88

13. Rank, S.: A Reflective Architecture to Support Dynamic Software Evolution. PhD
thesis, University of Durham (2002)

14. Garlan, D., Schmerl, B.: Using architectural models at runtime: Research chal-
lenges. In: Proceedings of the European Workshop on Software Architectures, St
Andrews (2004)

15. Robbins, J.E., Redmiles, D.F.: Software architecture critics in the Argo design
environment. Knowledge-Based Systems 5(1) (1998) 47–60

16. Vandewoude, Y., Berbers, Y.: Component state mapping for runtime evolution.
In: Proceedings of the 2005 International Conference on Programming Languages
and Compilers, Las Vegas, Nevada, USA (2005) 230–236

17. Bennett, K., Rajlich, V.: Software maintenance and evolution. In: The Future of
Software Engineering, ACM Press (2000) 75–87

18. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000)

58

The Role of Design Information
in Software Evolution

Walter Cazzola1, Sonia Pini2, and Massimo Ancona2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Università degli Studi di Genova, Italy
{pini|ancona}@disi.unige.it

Abstract. Software modeling has received a lot a of attention in the last decade
and now is an important support for the design process.
Actually, the design process is very important to the usability and understand-
ability of the system, for example functional requirements present a complete de-
scription of how the system will function from the user’s perspective, while non-
functional requirements dictate properties and impose constraints on the project
or system.
The design models and implementation code must be strictly connected, i.e. we
must have correlation and consistency between the two previous views, and this
correlation must exist during all the software cycle. Often, the early stages of
development, the specifications and the design of the system, are ignored once the
code has been developed. This practice cause a lot of problems, in particular when
the system must evolve. Nowadays, to maintain a software is a difficult task, since
there is a high coupling degree between the software itself and its environment.
Often, changes in the environment cause changes in the software, in other words,
the system must evolve itself to follow the evolution of its environment.
Typically, a design is created initially, but as the code gets written and modified,
the design is not updated to reflect such changes.
This paper describes and discusses how the design information can be used to
drive the software evolution and consequently to maintain consistency among
design and code.

1 Introduction

In the last few years, methodologies to automate part of the or the whole software life
cycle have been widely studied in software system development. These methodologies
can be used to create and/or maintain software, i.e. they are applicable to all the phases
of the software life cycle.

Evolution and maintenance are phenomena more present in the software develop-
ment area, since an intrinsic property of software in real world environment is its need to
evolve. The laws of software evolution [11] said ’a program that is used in a real-world
environment must change, or became progressively less useful in that environment’.

59

apel
Rechteck

When a program evolves, it becomes more complex and automatic techniques to sup-
port these phenomena are fundamental to improve the management of unanticipated
software evolution and the software efficiency.

The design process is very important to the usability and understandability of the
system, for example functional requirements present a complete description of how the
system will function from the user’s perspective, while non-functional requirements
dictate properties and impose constraints on the project or system. At the beginning
design view and implementation view are consistent since one is derived and developed
form the other, and we must preserve the correlation between the two view, and this
correlation must exist for all the software life-cycle. But often, during the evolution and
maintenance phase a discrepancy between the two view can occur, because the initial
stages of development (the system specifications and the design) are ignored once the
code has been developed. The main problem is the fact that models are shown like only
an intermediate step in the software development life-cycle. This practice causes several
problems when the system must evolve, because the evolution of only one view of the
system causes a gap between them, that could create confusion, misunderstanding and
mistakes.

The term gap has been stated by Rumbaugh [17], ’too often, there is still a gap
between concept and execution’ as a problem area in his retrospective review of O-O
methodology. In the past developers have tried different ways to link design to imple-
mentation, and to tackle this gap problem. One of the noted effort in this endeavor is
by looking at the gap from program viewpoint, describing the mapping from O-O pro-
gramming languages properties to their corresponding UML concepts.

To most people software is the code that is the and result of the software devel-
opment process. When a company starts developing a new product, it typically uses a
clean forward engineering scheme and goes (iteratively or not) through requirements
analysis, high-level design, design and implementation phases. This development pro-
cess changes when a first implementation is finished. From then on, the implementation
receives more and more attention. This restricted view of software is one of the main
causes of the many problems associated with software development and its evolution.
For example, a kind of evolution could require to add new functionality not available in
the earlier version of the system. When the change is not applied also to the design view,
it is hard for the manager, programmer and customer to have the opportunity to plan fu-
ture directions, goals, schedule and the necessary budget, since the design view could
not provide an immediate and understandable global view of the system consistent with
the code. Moreover, it also hinders the integration of new functionality.

This problem, where implementation and design evolve in different directions be-
cause they are no explicitly related, is also know as drift/erosion. It is well-known that
uncontrolled change to software can lead to increasing evolution cost caused by deteri-
orating structure and compromised system quality [10]. For complex systems, the need
to carefully manage system evolution is a critical task. Wide integrated software system
must continuously change to satisfy the evolving requirements. Adapting such software
can be very difficult, because of the software size and complexity and variety of users
with conflicting requirements. When there is a gap between the views it become diffi-
cult or impossible to know all the necessary changes to apply, therefore the evolution

60

Narrow St.: Road Upper St.: Road

Left St.: Road Church St.: Road Right St.: Road

Main St.: RoadLower St.: Road

TL2: Traffic Light

TL4: Traffic Light

TL1: Traffic Light

TL3: Traffic Light

has has

has

has

asssyncid

link−id

link−id

link−id

link−idlink−id

link−id

link−id link−id
link−id

asssyncid

(a) Standard layout

TL4: Traffic LightTL3: Traffic Light

Narrow St.: Road Upper St.: Road

Left St.: Road Right St.: Road

Main St.: RoadLower St.: Road

has

link−id

link−id

link−idlink−id

link−id

asssyncid

link−id

link−id

has

(b) Modified layout

Fig. 1. Object diagrams: a) object diagram for UTCS before the evolution b) modified
object diagram after the evolution.

cannot be planned in-the-large. To simplify the evolution process, it is necessary to have
a global view of the system to apply all the evolutionary steps.

In our point of view, the global view may be well represented by the design infor-
mation, because it is usually graphic, and more intuitive and understandable than the
code.

The paper describes and discusses how the design information can be used to drive
the software evolution and consequently to preserve the consistency among design and
code views.

2 System Evolution through Design Information

With the help of an example, we describe how the design information, in our case
UML [2] specifications, can be used to evolve a software system.

The Urban Traffic Control System (UCTS) is a typical example of system subject to
unpredictable evolution, since the requirements can dynamically change and the system
should adapt itself, as soon as possible, to such changes. Unanticipated software evolu-
tion is not something for which one can prepare during the design of a software system.
Examples of unanticipated and hard to plan problems may be: road maintenance, traffic
lights disruptions, car crashes, traffic jam and so on.

In the design phase, software engineers produce a lot of diagrams to identify do-
main concepts, to describe the business processes, and the physical structure of the
environment, and so on.

The design information we consider can be divided in two categories: system struc-
ture and behavior.

– Structural Design Information is an explicit description of the structure of the sys-
tem.

– Behavioral Design Information describe the computations and the communications
carried out by the application objects, e.g. we consider object behavior, collabora-
tion between objects, state of the object, and so on.

61

Structure and behavior of the system are modeled by class/object diagrams, sequence
or collaboration diagrams and state diagrams.

The UTCS for our simple city, can be described by the object diagram showed in
Fig. 1a, that defines the interconnections among roads and crossroads and a statechart
that express the dependencies among traffic lights.

These diagrams well describe the system structure and behavior and its evolution
should pass through these data to be well planned and integrated with the existing code.

We suppose that the system evolves because of a car accident that temporarily
blocks the traffic flow in Church Street. To face a similar event forces several small
changes in the whole city structure and, consequently, to the traffic flow. Several streets
must be followed in a different direction to allow cars of reaching every place in the
city. Traffic lights governing the traffic in and out of the blocked street must be turned
off.

All the changes required must be applied both in design and implementation view
to maintain the consistency between the views of the system.

The evolved system, as well as the original system, can be or better should be mod-
eled by using, for example, UML diagrams. If this is the context of the evolution, then
the original diagrams can determine the code to be adapted, the evolved diagrams spec-
ify how the code has to be adapted, and moreover the difference between such diagrams
before and after the evolution represent the evolution itself.

Applying evolution at high level of abstraction, like at UML level has the advantage
that software designers don’t have to worry about the syntax of all possible program-
ming language, and have a global view of the system. And as Blaha et al. [1] had said
“Models allow a developer to focus on the essential aspects of an application and defer
details”.

The Fig. 1b show how the object model changes after this event. By comparing the
diagrams in Fig. 1 it is possible to understand how the UCTS is configured after the
evolution.

When the models are evolved it is necessary to map this evolution into the imple-
mentation code. To realize this issues, in our opinion, we must have got the design
information available not only at design time, but also at compile and run time, to ob-
tain this result our idea is to maintain this design information inside the system and
to link every component of the UML diagrams to the respective portion of code using
meta-data facility.

In this way, using the two object diagrams, before and after the evolution, and the
meta-data inside the code it is possible to propagate the evolution to the code.

With the increased interest in evolution and maintenance, UML vendors seek ways
to support software developers in applying maintenance. The problem with such tools is
that the UML meta-model is inadequate to maintain the consistency between the model
and the code while one of them gets evolved [15].

In the past developers have tried different ways to link design to implementation,
and to tackle this problem, to date, no existing, general purpose methodology for this
issue. We propose an infrastructure to dynamic adapt software system, called RAMSES
[4]. Our project involves a reflective middleware whose aim consists of consistently
evolving software systems, both design information and implementation code, against

62

run-time changes. This middleware provides the ability to change the system at run-time
without stopping it, by using its design information. Many important applications must
run continuously and without interruption. This is especially true of mission critical
applications, such as telephone traffic control system, and air traffic control system.
Our goal is to show that dynamic software evolution can be achieved in a practical
manner that is flexible, efficient, robust, and easy to use.

RAMSES (Reflective and Adaptive Middleware for Software Evolution of Systems)
performs two phases to carry out our dynamic self-adaptation. In the first phase, the
RAMSES’s meta-level extracts the design information as XMI (XML Meta-data Inter-
change [13]) schema from the base application and it reifies them in the meta-level to
constitute the meta-data. Whereas, in the second phase, RAMSES’s meta-level plans the
dynamic adaptation of the base-level system, get the run-time events, evolves the meta-
data against the detected event, checks the consistency, and finally reflects the modified
data to the base-level.

In this paper, we treat only the role of the design information in software evolution.

3 Defining Meta-Data

In our opinion, a simple way for maintaining consistency is that design information are
linked with the source code. To synchronize design and implementation, our proposal
consists of using a mechanism that permits to express design as a set of meta-data over
the implementation. To back our idea we have this definition: Software design is an
abstraction of implementation. This definition is consistent with descriptions of design
that can be found in software engineering literature [7], and moreover this definition
said that design is explicitly related to the implementation. To express design infor-
mation into the code of the system as meta-data, it is necessary to analyze what is a
meta-data and how it can be used.

Meta-data literally data about data, or also information about information is a term
used in several communities in different ways.

We can say that meta-data are structured information that describes, explains, lo-
cates or otherwise makes it easier to retrieve, use, or manage an information resource.

There are three main type of meta-data:

– Descriptive meta-data describes a resource for purposes such as discovery and
identification, e.g., documentation.

– Structural meta-data indicates how compound objects are put together, e.g.,. they
are used to describe the structure, layout and contents of an artifact.

– Administrative meta-data provides information to help manage an artifact, e.g.,
version control, location information, acquisition information.

An important reason to create descriptive meta-data is to facilitate the discovery of rele-
vant information by describing an artifact with meta-data simplify its understandability
by a program, promoting the interoperability. For our scope, we need to identify an
artifact and to link up it with its design information. These meta-data could be automat-
ically derived (extracted) from the design models of the system, and then automatically
inserted into the code in the right places. To interleave the design information with the

63

related code, is the better way of rendering the code well documented and of granting
the consistency and a prompt update of the design and implementation views. There
are two ways to obtain a high coupling between design information and system code,
the first consists of deriving the design information from the system code, e.g. by using
tools for reverse engineering it is possible to obtain the UML diagrams from code, the
second consists of deriving the skeleton of the program from the design information,
e.g. tools as Rational Rose, and Poseidon permits of generating the code directly from
the UML diagrams.

An implementing mechanism to link up design information and system code could
be the meta-data facility present in a lot of programming languages. In general, meta-
data describe the implemented code, by storing information regarding classes, methods,
and types.

Several modern programming languages provide the programmers with a facility
for annotating the code with meta-data. In the case of the Java programming lan-
guage, for example, this facility allows developers to define custom annotation types
and to annotate fields, methods, classes, and other program elements with annotations
corresponding to these types. Development and deployment tools can read these annota-
tions and process them producing additional Java programming language source files,
XML document, or other artifacts to be used in conjunction with the program containing
the annotations.

Our idea consists of using the Java meta-data facility to express design information
over the implementation. In particular, we think to use as design information the UML
diagrams, or more just to use the textual representation of the UML diagrams.

4 UML as Meta-Data

The UML is de facto the standard (graphical) language used during the design process,
therefore our project considers its diagrams as a good representation of the system de-
sign information.

Our scope is to simplify the evolution/maintenance mechanism. That is, to render
the changes required by the evolution immediately available both to the design models
and to the implementation, all that we will have as direct consequence the maintenance
of the consistency among the design and the code.

In our view, the UML diagrams and the code are seen as different views (design
view and implementation view) on a software system, so that consistency between the
views is preserved by modeling a coherent refactoring of these views. To realize our
project, in particular we need to identify which diagrams are affected by the evolution
and also which pieces of software these diagrams describe, in other words, we need
a precise mapping between the two views mentioned above. The UML diagrams are,
typically, available at design time, to maintain the mapping between the design and im-
plementation view and then the consistency among design models and implementation
model during the evolution phase, all this information must be available also at loading
and run-time.

Our proposal consists of decorating the system code with the design information.
In this way, we obtain a twofold advantage: to render the design information available

64

at run-time; and, to create a mapping between the design and the implementation view.
The decoration will be realized by using Java annotations. Since UML is a graphical
language it is difficult to deal automatically with its diagrams, therefore, we have to
convert them into a textual representation to use them as meta-data.

We adopt, as most of the UML tools, the XML Meta-data Interchange (XMI [13]) as
handling form for the design information. XMI provides a translation of UML diagrams
in a text-based form more suitable for run-time manipulation. The XMI standard gives
a guideline for translating each UML diagram in XML. Each diagram is assimilated to
a graph whose nodes are the diagram’s components (e.g., classes, states, actions and
so on), and arcs represents the relation among the components. The graph is decorated
with XML tag describing the properties of the corresponding UML component.

An example of the translation between UML diagram and XML is showed in the
following listing.

<UML:Object xmi.id = ’Im169f2c98m10436f02a32mm7cfb’
name = ’TL2’ visibility = ’public’ isSpecification = ’false’>

<UML:Instance.classifier>
<UML:Class xmi.idref = ’Im13db344bm1041dfafc5emm7ec5’/>

</UML:Instance.classifier>
<UML:Instance.linkEnd>

<UML:LinkEnd xmi.idref = ’Im169f2c98m10436f02a32mm7cdb’/>
</UML:Instance.linkEnd>

</UML:Object>

<UML:Object xmi.id = ’Im169f2c98m10436f02a32mm7cec’
name = ’Left St’ visibility = ’public’ isSpecification = ’false’>

<UML:Instance.classifier>
<UML:Class xmi.idref = ’Im13db344bm1041dfafc5emm7c0a’/>

</UML:Instance.classifier>
<UML:Instance.linkEnd>

<UML:LinkEnd xmi.idref = ’Im169f2c98m10436f02a32mm7cdc’/>
</UML:Instance.linkEnd>
<UML:Instance.ownedLink>

<UML:Link xmi.id=’Im169f2c98m10436f02a32mm7cdd’ name=’has’ isSpecification=’false’>
<UML:Link.connection>

<UML:LinkEnd xmi.id = ’Im169f2c98m10436f02a32mm7cdc’ isSpecification = ’false’>
<UML:LinkEnd.instance>

<UML:Object xmi.idref = ’Im169f2c98m10436f02a32mm7cec’/>
</UML:LinkEnd.instance>

</UML:LinkEnd>
<UML:LinkEnd xmi.id = ’Im169f2c98m10436f02a32mm7cdb’ isSpecification = ’false’>

<UML:LinkEnd.instance>
<UML:Object xmi.idref = ’Im169f2c98m10436f02a32mm7cfb’/>

</UML:LinkEnd.instance>
</UML:LinkEnd>

</UML:Link.connection>
</UML:Link>

</UML:Instance.ownedLink>
</UML:Object>

The above portion of XMI code translates part of the object diagram showed in
Fig. 1a. In particular, it describes the object named TL2 and Left St and their inter-
connection. The instances description of a class is grouped into the XMI tag UML.Object.
The two occurrences showed in the above snippet describe respectively the object TL2
and Left St in Fig. 1a. The name of the instance is contained in the attribute name,
whereas the type of the instance is contained in the sub-tag Class. The xmi.idref

65

refers to description of the corresponding class into the class diagram. The has as-
sociation is described through the tags UML:Instance.linkEnd that specify which
instances are involved into the association and the tag UML:Instance.ownedLink that
describes the nature of the association.

5 How maintain consistency between design and implementation

Our goal, consists of transform system models and code to implement required mod-
ifications, and propagate the transformation effect across the views, this can be faced
using model-driven approach [9], i.e. to tackle the problem of evolving complex soft-
ware systems by raising the level of abstraction from source code to models, and then
maintain the consistency between model and code.

Since software designers think about evolution at the design level, and since design
information provide an immediate and understandable global view of the system, it is
quite natural to exploit the UML and its unified meta-model for expressing evolution.

Model-driven engineering is a software engineering approach that promotes the us-
age of models and transformations as primary artifacts. In our context, we can said
design information is a model and implementation code is a model; and following this
reasoning evolution and consistency between design and code is simply a model trans-
formation.

We could use, in first phase of the evolution, horizontal transformation [6] on design
models to describe the evolution of the system, and vertical transformation [6] in last
phase of evolution to propagate the evolution at the implementation in order to main-
tain consistency among the models. A crucial aspect of model transformation is model
consistency, since UML model is typically composed of many different diagrams, the
consistency between all these diagrams need to maintained when any of them evolves.

Graph transformation seems to be a suitable technology and associated formalism
to specify and apply model transformations for the following reasons: first graphs are
a natural representation of models that are intrinsically graph-based; last graphs trans-
formation theory provides a formal foundation for the automatic application of model
transformations. Table 1 show a direct correspondence between software evolution and
graph transformation.

Evolution Graph transformation
Software Artifact column Graph
Evolution Graph Production
Composite Evolution Composition of Graph Production
Evolution Application Graph Transformation

Table 1. Correspondence between evolution and graph transformation.

66

6 How to Use Meta-Data for Evolution

To annotate the code with design information we have to extract from each UML dia-
gram its XMI description that represents the perfect reification of the design information
at run-time.

The meta-data provided by a single UML diagram are many and, above all, refer
to different part of code, e.g., a class diagram describes every class in the system and
their relations, and this information encode both the class definitions and the defini-
tion of some of their attributes, that have to be annotated. Since the main elements of a
sequence diagram are objects and messages, from them it is possible to extract informa-
tion regarding the instances of a class, and the interactions among them, e.g., creation,
invocation of methods, destruction and so on. All this information is inserted into the
body of methods as annotations.

The right positioning of the annotations (i.e., from UML design information to Java
meta-data) is possible by mapping the UML model components to the OMG Interface
Description Language (IDL) and achieved by applying the meta-object facility (MOF)-
IDL mapping. The existence of this IDL representation of UML means that each UML
element, such as associations, classes, actions, operations and so on, has an IDL de-
scription. The last step to complete the mapping consists of applying an IDL to Java
mapping (e.g., Java IDL).

To realize the insertion of the XMI code into the right code place, we use Java
annotation facility. An annotation is a tag that we insert into the source code. It does not
alter the semantics of the code, but instead allows an external application of recognizing
and interpreting the tag for its purpose.

We go to explain how to use the annotations for our scope. Java allows the pro-
grammer to define and use user-defined annotation types. The facility consists of a syn-
tax for declaring annotation types, a syntax for annotating declarations, APIs for read-
ing annotations, and a class file representation for annotations. To create an annotation
we need to define an annotation type first. Annotation types are defined like interfaces
with an ’@’ (at) sign before the interface definition, and annotations are specified in the
program source by using the ’@’ sign, followed by the annotation name.

The following listing shows the Java annotation type CLASS declaration, this kind
of annotation will decorate the classes of the system, and the values of the attributes of
each annotation derives by the corresponding class diagram.

import java.lang.annotation.*;

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.CLASS)
public @interface CLASS{

String XMI_ID();
String XMI_name();
ATTRIBUTE[] attributes(); // array of annotation type ATTRIBUTE
ASSOCIATION[] associations(); //array of annotation type ASSOCIATION
METHOD[] methods(); // array of annotation type METHOD

}

Note that the annotation type declaration is itself annotated. Such annotations are
called meta-annotations. The first (@Retention(RetentionPolicy.RUNTIME)) indi-

67

cates that annotations with this type are to be retained by the virtual machine so they
can be reflectively read at run-time. The second (@Target(ElementType.CLASS)) in-
dicates that this annotation type can be used to annotate only class (type) declarations.

Traffic Light

−color:String
−corner−id:String

−sem_id:String

+turn−off():void

+turn−on()
+tick():void

Road

−road_id:String

link−id

has

asssyncid

0..*

Fig. 2. An UTCS class diagram fragment

@Retention(RetentionPolicy.RUNTIME)

public @interface MESSAGE{
String XMI_ID();
String XMI_name();
OBJECT Link-start();
OBJECT Link-end();

}

Fig. 3. declaration of annotation type MES-
SAGE

The following annotation is derived from the class diagram showed in Fig. 2.

@CLASS(XMI_ID="Im13db344bm1041dfafc5emm7c0a",
XMI_name="Road",
attributes={@ATTRIBUTE(XMI_ID="Im13db344bm1041dfafc5emm7bf6",

XMI_name="road_id"),
@ATTRIBUTE(XMI_ID="Im13db344bm1041dfafc5emm7be4",

XMI_name="road_link")},
associations={@ASSOCIATION(XMI_ID="Im13db344bm1041dfafc5emm7bba",

XMI_name="has",
multiplicity="Im13db344bm1041dfafc5emm7bbe",
associationEnd="Im13db344bm1041dfafc5emm7ec5")},

...
)

public class Road{
private String road_id;
private String road_link;
private Traffic_Light[] hastrafficlights;

...
}

The declaration of the annotation type MESSAGE showed Fig. 3 will be used to deco-
rate the pieces of code, statements and so on, which map the message exchanged among
objects, the values of the attributes of each annotation derives by the corresponding se-
quence and collaboration diagrams.

The Java annotation mechanism is not completely adequate for our purposes, be-
cause it permits annotating only the declarations whereas the UML diagrams have a
finer granularity. The sequence diagrams have information about blocks of statement,
and then the linked annotations would to be inserted inside the bodies, the the present
mechanism of Java does not allow this.

To overcome this problem, we are extending the Java annotation mechanism and
therefore the Java language to support custom annotations on arbitrary code blocks

68

or statements. This new Java dialect, called @Java extends the syntax of the Ja-
va language to allow a more general form of annotation. To carry out this job we are
benefiting of our experience on [a]C# [5].

Obviously, the mechanism to insert the annotations into the application code is com-
pletely transparent to the developer because it is realized as a preprocessor that analyzes
the design information and annotates on-the-fly the code by byte-code instrumentation.

In this way any kind of evolution could be developed at the design level (i.e. at the
design view of the system), simply modifying all the necessary diagrams and dynami-
cally realized by retrieving the related annotations and instrumenting the code according
to the planned evolution.

7 Conclusions

This paper presented an approach to use the design information for the dynamic soft-
ware evolution. This approach is based on some key concepts. The first concept is to
maintain a strict correlation between the design information and the application code,
in an automatic way. The second is to map all the evolutionary steps both in the design
view and in the application code, so that the previous requirement is always satisfied.
Into our work, we have used as design information UML diagram, and as programming
language Java. The correlation between the two views of the system is realized thanks
to the XMI description extracted by the UML diagrams, and thanks to the annotation
facility of Java programming language.

References

1. M. Blaha and W. Premerlani. A catalog of object model transformations. In WCRE ’96:
Proceedings of the 3rd Working Conference on Reverse Engineering (WCRE ’96), page 87,
Washington, DC, USA, 1996. IEEE Computer Society.

2. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Object Technology Series. Addison-Wesley, Reading, Massachusetts, third edition,
February 1999.

3. Walter Cazzola, Antonio Cisternino, and Diego Colombo. [a]C#: C# with a Customizable
Code Annotation Mechanism. In Proceedings of the 10th Annual ACM Symposium on Ap-
plied Computing (SAC’05), Santa Fe, New Mexico, USA, on 13th-17th of March 2005. ACM
Press.

4. Walter Cazzola, Ahmed Ghoneim, and Gunter Saake. RAMSES: a Reflective Middleware
for Software Evolution. In Proceedings of the 1st ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04), in 18th European Conference on Object-
Oriented Programming (ECOOP’04), pages 21–26, Oslo, Norway, on 15th June 2004.

5. Walter Cazzola, Sonia Pini, and Massimo Ancona. AOP for Software Evolution: A Design
Oriented Approach. In Proceedings of the 10th Annual ACM Symposium on Applied Com-
puting (SAC’05), Santa Fe, New Mexico, USA, on 13th-17th of March 2005. ACM Press.

6. Robert B. France and James M. Bieman. Multi-view software evolution: A UML-based
framework for evolving object-oriented software. In ICSM, pages 386–, 2001.

7. Adele Goldberg and Kenneth S. Rubin. Succeeding with objects: decision frameworks for
project management. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1995.

69

8. Timothy J. Grose, Gary C. Doney, and Brodsky Stephan A. Mastering XMI: Java Program-
ming with XMI, XML, and UML. John Willy & Sons, Inc., April 2002.

9. Stuart Kent. Model driven engineering. In IFM, pages 286–298, 2002.
10. K. Kowalczykiewicz and D. Weiss. Traceability: Taming uncontrolled change in software

development, 2002.
11. M. M. Lehman. Laws of software evolution revisited. In European Workshop on Software

Process Technology, pages 108–124, 1996.
12. Bennet P. Lientz, E. Burton Swanson, and Gail E. Tompkins. Characteristics of Application

Software Maintenance. Communications of the ACM, 21(6):466–471, June 1978.
13. OMG. OMG-XML Metadata Interchange (XMI) Specification, v1.2. OMG Modeling and

Metadata Specifications available at http://www.omg.org, January 2002.
14. J. Pierce, M. D. Smith, and T. Mudge. Instrumentation Tools. In Anthony Finkelstein, editor,

Fast Simulation of Computer Architectures, chapter 4. Kluwer Academic Publishers, Boston,
MA, USA, 1995.

15. Tom Mens Pieter Van Gorp, Hans Stenten and Serge Demeyer. Enabling and using the uml
for model-driven refactoring. In Stéphane Ducasse Serge Demeyer and Kim Mens, editors,
Proceedings WOOR’03 (ECOOP’03 Workshop on Object-Oriented Re-engineering), pages
37–40. Universiteit Antwerpen, July 2003.

16. James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-Oriented Modeling and Design. Prentice-Hall, Englewood Cliffs, NJ,
1991.

17. James E. Rumbaugh. Modeling through the years. JOOP, 10(4):16–19, 1997.

70

http://www.omg.org

Tools and Middleware for Softare Evolution
Chairman: Takuo Watanabe, Tokyo Institute of Technology, Japan

71

apel
Rechteck

72

apel
Rechteck

Towards a Meta-Modelling Approach to Configurable
Middleware

Nelly Bencomo1, Gordon Blair1, Geoff Coulson1, and Thais Batista2

1 Comp. Dept., InfoLab21, Lancaster University, Lancaster, LA1 4WA, UK
{nelly, gordon, geoff}@comp.lancs.ac.uk

 2 Comp. Scs. Dept., UFRN, 59072-970, Natal - RN, Brazil
thais@ufrnet.br

Abstract. In our research we are studying how to combine modelling, meta-
modelling, and reflection to systematically generate middleware configurations
that can be targeted at different application domains and deployment environ-
ments. Despite this generality our approach adopts a uniform set of concepts:
components, components frameworks, and reflection. Components and compo-
nent frameworks provide structure, and reflection provides dynamic
(re)configuration and extensibility for run-time evolution and adaptation. In this
paper we present meta-models that capture the generality inherent to our ap-
proach and form a basis for automatic generation of extensible “middleware
families” that can be instantiated differently depending on the application do-
main, QoS, deployment environment and degree of dynamic re-configurability
required.

1. Introduction

Reflection has now emerged as an important technique in the support of more config-
urable and re-configurable middleware [1]. A number of experimental reflective mid-
dleware platforms have been developed and used in industry. In our research [14] we
complement the use of reflection with the notions of components (language-
independent units of dynamic deployment), component frameworks (collections of
components that address a specific area of concern and accept additional plug-in
components) [12], and middleware families (abstract collections of component frame-
works that are tailored to specific application domains and deployment environ-
ments). In addition, middleware families employ reflection [9,11] to discover the
current structure and behaviour of the family instantiation, and to allow selected
changes at run-time for dynamically consistent evolution and adaptation. The end
result is a flexible middleware architecture that can be straightforwardly specialised
to a wide range of domains including multimedia, embedded systems [4], and mobile
computing [7].

Challenging new requirements emerge when working with such architecture. Mid-
dleware developers are faced with a large number of variability decisions when plan-
ning configurations at various stages of the development cycle. These include deci-
sions in design, component development, integration, deployment and even at run-
time. These factors make it error-prone to manually guarantee that all these decisions

73

apel
Rechteck

are consistent. In addition, such ad hoc approaches do not offer a formal foundation
for verification that the ultimately configured middleware will offer the required
functionality.

To address these issues, we are currently investigating the use of Model-Driven
Software Development (MDSD) techniques. MDSD is a new paradigm that encom-
passes domain analysis, meta-modelling and model-driven code generation. We be-
lieve that MDSD has great potential in systematically generating configurations of
middleware families. In our MDSD-based approach, we propose the capture of the
fundamental component-based programming concepts in a core set of meta-model
elements called a kernel. All middleware family members regardless of their domain
share this minimum set of concepts. On top of this, we propose a set of extension
meta-models which capture the extensibility characteristics of our underlying (con-
crete) component model and which can be plugged in as appropriate.

In the remainder of this paper we first, in section 2, introduce the main concepts of
our concrete component model. Then, in section 3, we discuss the MDSD-based
modelling of these concepts and show our current model-based realisation. Then in
section 4 we discuss the application of the meta-models and models in generating
middleware families. Finally, we present conclusions and discuss future work in sec-
tion 5.

2. A happy family: Lancaster’s reflective middleware

As mentioned, our notion of middleware families is based on three key concepts:
components, components frameworks, and reflection. Both the middleware platform
and the application are built from interconnected sets of components. The underlying
component model is based on OpenCOM[5], a general-purpose and language inde-
pendent component-based systems building technology. OpenCOM supports the
construction of dynamic systems that may require run-time reconfiguration. It is
straightforwardly deployable in a wide range of deployment environments ranging
from standard PCs, resource-poor PDAs, embedded systems with no OS support, and
high speed network processors. Components are complemented by the coarser-
grained notion of component frameworks (CFs) [12]. A CF is a set of components
that cooperate to address a required functionality or structure (e.g. service discovery
and advertising, security etc). CFs also accept additional ‘plug-in’ components that
change and extend behaviour. Many interpretations of the CF notion foresee only
design-time or build-time plugability. In our interpretation run-time plugability is also
included, and CFs actively police attempts to plug in new components according to
well-defined policies and constraints.

Figure 1. The OpenCOM main concepts

receptacle

binding
interface

component

runtime
API

capsule

74

The basic concepts of OpenCOM are depicted in figure 1. Specifically, capsules

are containing entities that offer a component run-time (CRT) API for the loading,
binding etc. of components. Components are language-independent units of deploy-
ment that support interfaces and receptacles (receptacles are “required interfaces” that
indicate a unit of service requirement). Bindings are associations between a single
interface and a single receptacle. The CRT API is roughly as follows (many details
have been omitted for reasons of space). The role of the notify() call is discussed
below.

struct load(comp_type name);
status unload(struct t);
comp_inst bind(ipnt_inst interface, ipnt_inst receptacle);
status notify(callback c);

The architecture into which this fits is shown in figure 2. The layer immediately

above the CRT consists of the so-called caplet extensions and a set of reflective ex-
tensions. The role of the caplet CF is to provide structured support for extensibility at
the deployment environment level in terms of pluggable caplets which are subscopes
within a capsule that are used for a variety of purposes including sandboxing and
supporting heterogeneous programming languages. The reflective services then pro-
vide generic support for target system reconfiguration—i.e. inspecting, adapting and
extending the structure and behaviour of systems at runtime (see below). Both the
caplet and reflective extensions are independently and optionally deployable (using
the CRT), and their precise configuration can be tailored to the needs of the target
system and deployment environment.

Figure 2.OpenCOM Architecture

The Reflection Services

As mentioned, reflection is used to support introspection and adaptation of the un-
derlying component/ CF structures [1]. A pillar of our approach to reflection is to
provide an extensible suite of orthogonal meta-models each of which is optional and
can be dynamically loaded when required, and unloaded when no longer required.
The meta-models manage both evolution and consistency of the base-level system.
The motivation of this approach is to provide a separation of concerns at the meta-

deployment environment (hardware and/or software)

CRT

reflective extensions

CRT API

caplet extensions

target system

75

level and hence reduce complexity. Three reflective meta-models are currently sup-
ported:

The architecture meta-model represents the current topology of a composition of

components within a capsule; it is used to inspect (discover), adapt and extend a set
of components. For example, we might want to change or insert a compression com-
ponent to operate efficiently over a wireless link. This meta-model provides access to
the implementation of the meta-component that has a component graph where com-
ponents are nodes and bindings are arcs. Inspection is achieved by traversing the
graph, and adaptation/extension is realized by inserting or removing nodes or arcs.

The interface meta-model supports the dynamic discovery of the set of interfaces

defined on a component; support is also provided for the dynamic invocation of meth-
ods defined on these interfaces [1]. Both capabilities together enable the invocation of
interfaces whose types were unknown at design time.

The interception meta-model supports the dynamic interception of incoming

method calls on interfaces and also the association of pre- and post-method-call code
[1]. The code elements that are interposed are called interceptors. For example, in the
above wireless link scenario we might want to use an interceptor to monitor the con-
ditions under which the compressor should be switched.

Causal connection between the base-level system and the meta-models is achieved

via the above-mentioned notify() operation from the CRT API. This operation allows
meta-models to register a callback that is invoked every time a subsequent call (bind,
load, etc) is made on the CRT. The callback invocation contains all the parameter
values of the call and so gives the callback holder a complete picture of all activity in
the capsule. As an example, the architecture meta-model uses a notify callback to
keep itself updated with information associated with the internal topology of the cap-
sule contents. In case a meta-model needs to change the base-level configuration in
some way, it simply invokes the respective operation (bind, load etc.) in the API. In
this way, the causal-connection relation between the base and the meta level is main-
tained.

3. Modelling

In this section we present a set of meta-models specified using UML [15]. This set of
meta-models support our abstract specification of families of middleware. Figure 3
shows the three packages that comprise the OpenCOM meta-model. The Kernel
package includes the fundamental model elements of OpenCOM: viz. component,
capsule, interface, receptacle, binding, composite component and component frame-
work. On top of this, the Caplet Extensions package includes the fundamental model
elements of the caplet extensions in OpenCOM: viz. caplets, loaders, and binders.
This package provides structured support for extensibility at the deployment envi-
ronment level in terms of pluggable extensions. The Reflective Extensions package

76

includes the fundamental model elements of the OpenCOM reflective meta-models
(see the three reflective packages in Figure 3).

Figure 3. The OpenCOM Meta-model

Crucially, these meta-models are organised in terms of a structure with two or-

thogonal dimensions. One axis of this is the UML hierarchy (with its layer M0, M1,
M2, and M3) and the other is a division into base level and (reflective) meta-level1.
This is illustrated in Figure 4. All the meta-models (packages) we have described
above populate the UML M2 level; however, while the kernel and caplet extensions
packages live in the base-level, the reflective extensions live in the meta-level. The
intention is that middleware family specifications will populate the UML M1 level
and, of course, instantiations of these specifications will populate the UML M0 level.
As a consequence, in implementation the meta-objects are optional and can be dy-
namically loaded/unloaded when required.

Figure 4 also shows an example instantiation of the model in terms of a very sim-
ple application example that illustrated the intended use of the model. This is a “cal-
culator” which contains three sub-components; an adder, a multiplier and a calculator.
The calculator component offers the services of adding and multiplying based on the
services of the adder and multiplier components.

1 Note that there is a potentially-confusing terminological clash here between the UML “meta-level” and

“reflective meta-levels”. These two concepts are entirely distinct; nevertheless we are forced to employ
both of these terms because they are so well established in their respective communities.

77

Figure 4 only shows details about the reflective architecture package. Work related
to the reflective interception and interface packages have been done but it is not
shown in this paper for reasons of space.

Figure 4. UML Models and Reflective Architecture of a Calculator Configuration

Finally, Figure 5 shows how the causal connection between the base and meta-

levels is generically modelled in terms of a UML sequence diagram. This is based on
the semantics of the notify() operation discussed above. The sequence diagram repre-
sents (part of) the dynamic behaviour specification of OpenCOM as opposed to the
static structure of the models that was shown in Figure 4. Different models at level
M1 will reuse or instantiate this generic causal-connection diagram.

Figure 5. Sequence Diagram for Causal Connection when calling the bind operation

Meta
Mod
M2

Model
M1

Architecture Meta Model

Model
M0
(Run-time
Instances)

Meta Model
Interface

MOF
M3

Calculator

Adder

SubtractorBinding

Binding
ICalculator

Capsule
ICapsule

Calculator
Architecture

<<instance

<<instance <<instance

<<instance

c:
Calculator

a:
Adder

s:
Subtractor

b1:
Binding

b2:
Binding

cp:Capsule
ICapsule

a :
Architecture

Meta - LevelBase - Level

Kernel
Caplet Extensions

OpenCOM
Component

Meta Model
Interception

Reflective Extensions

RArchitecture

NodeGraph

Edges 1

2

78

4. Discussion

We now turn to the application of the meta-modelling concepts to give support to the
specification and efficient generation of middleware families. We apply the approach
in terms of both configuration (i.e. establishing an initial set of components in a target
deployment environment, and reconfiguration (i.e. making changes to the initial set
of components at runtime).

In outline, different middleware configurations are generated from models that are
written in terms of the above meta-models. The models are sufficiently abstract that a
number of different concrete OpenCOM-level configurations of components can be
generated from them (i.e. the mapping of UML to Open COM components is not
simply 1:1). The concrete configurations that are generated are determined by the
following dimensions of variability:

− quality of service (QoS)
− deployment environment
− (re)configurability

The QoS dimension allows the abstract-to-concrete mapping to be influenced by

consideration such as mobility (e.g. whether the components should be able to mi-
grate), dependability (e.g. whether certain components should be replicated), or secu-
rity (e.g. whether certain components are allowed to dynamically load other compo-
nents). For example, consider an application with a QoS requirement for mobile code.
In the generated Open COM-level configuration, this will indicate the inclusion of the
caplet extension. The caplet extension is needed because of its support for sandbox-
ing untrusted components, and for its provision of specialised loaders that are able to
load remote objects. It will also indicate the inclusion of a security CF to validate the
remote components. All of this machinery will be transparently instantiated without
having to be explicitly present in the UML model.

The deployment environment dimension refers to the resource capabilities of the
hardware/software environment in which the system will be deployed. Consider, for
example, a distributed application that is deployed in a heterogeneous environment
consisting of PCs, PDAs and resource-poor sensor motes. While it would be unprob-
lematic to deploy the whole of the reflective extensions package on the PCs and
maybe the PDAs, this may not be possible on the sensor motes where perhaps only
components related to the kernel package might be deployed. This would preclude the
use, e.g., of the caplet extensions on the motes and thus restrict the functionality
available in that environment. We are currently working on the design of specific
middleware configurations addressing embedded systems domains where extremely
resource-constrained environments are found [4].

Finally, the configurability dimension refers to the degree of reflective support that
will be required at runtime. This essentially determines which of the reflective exten-
sions will be instantiated. For example, if performance monitoring for QoS purposes
is required, the interception meta-model would be included but not the others. Alter-
natively, if the application might need components to be added or replaced at runtime,
the architecture meta-model would additionally be needed [8].

79

The above example raised the possibility of multiple dimensions potentially cross-
cutting each other (i.e. QoS and configurability). Such cross-cutting is expected to be
a common occurrence. Aspect Oriented Software Development (AOSD) offers tech-
niques that may help us address this problem.

5. Conclusions and Future Work

We have developed a set of meta-models that assist in the specification of middle-
ware families and in the generation of specific family members which are determined
by quality of service, deployment environment and configurability dimensions of
variability. The meta-models capture the main concepts of the design philosophy of
our middleware family: components, components frameworks, reflection for dynamic
(re)configuration and extensibility. First, a package called Kernel containing the
meta-model of the fundamental concepts is proposed. The UML specifications of
reflective meta-models and caplets as extensions of the kernel are then presented in
the packages Caplet Extensions and Reflective Extensions. As a result, at runtime the
components/CFs related to caplets extensions and the meta-objects are optionally
dynamically (un)loaded when pluggable extensions and reflective capabilities are
required. In the particular case of the modelling of reflection, this paper describes
how meta-models and models specify the causal connection between the base and
meta-level.

We are now investigating how to generate different middleware configurations
while keeping decisions that are generic to a set of configurations at the meta-model
level design. More work has to be done to completely identify the variability among
the related configurations (members) of middleware families to support an efficient
generation of configurations. Another key area of future work will be to maintain the
UML models at runtime and to keep this causally connected with the underlying
running system. We think that it will give principled support for run-time evolution
and adaptation. We also plan to investigate how solutions for the crosscutting prob-
lems we described can be found in the area AOSD[13]. In this sense, AOSD tech-
niques should also be applicable and defined at the design level using UML as com-
putational reflection has been applied and identified in our approach.

Acknowledgement: This research is part-financed by the RUNES project. RUNES
is supported by research funding from European Commission's 6th framework Pro-
gramme under contract number IST-004536.

References

1. Bencomo N., Blair G.: Raising a Reflective Family, Models and Aspects - Handling
Crosscutting Concerns in MDSD, ECOOP, Scotland, 2005

2. Blair, G., Coulson, G., Grace, P.: Research Directions in Reflective Middleware: the
Lancaster Experience, Proc. 3rd Workshop on Reflective and Adaptive Middleware
(RM2004), (2004), 262-267

3. Clark, M., Blair, G.S., Coulson, G.: Parlavantzas, N., An Efficient Component Model for
the Construction of Adaptive Middleware, Proc. IFIP Middleware 2001, Germany, (2001)

80

4. Costa, P., Coulson, G., Mascolo, C., Picco, G.P., Zachariadis, S.: The RUNES Middle-
ware: A Reconfigurable Component-based Approach to Networked Embedded Systems,
PIMRC05,(2005)

5. Coulson, G., Blair, G.S., Grace, P., Joolia, A., Lee, K., Ueyama, J.: A Component Model
for Building Systems Software, Proc. IASTED Software Engineering and Applications
(SEA’04), USA, (2004)

6. Gabriel R., Bobroe D., White J., CLOS in Context – The Shape of the Design Space, in
Object-Oriented Programming – the CLOS perspective, Chapter 2, MIT Press, 1993, 29-
61

7. Grace P., Blair G. Samuel S.: ReMMoC: A Reflective Middleware to Support Mobile
Client Interoperability. Proc in International Symposium on Distributed Objects and Ap-
plications (2003)

8. Grace, P., Coulson, G., Blair, G., Mathy, L., Yeung, W.K., Cai, W, Duce, D., Cooper, C.:
GRIDKIT: Pluggable Overlay Networks for Grid Computing, Proc. Distributed Objects
and Applications, (2004)

9. Maes, P., “Concepts and Experiments in Computational Reflection”, Proc. OOPSLA'87,
Vol. 22 of ACM SIGPLAN Notices, pp147-155, ACM Press, 1987.

10. Okamura H., Ishikawa Y., Tokoro M.: Metalevel Decomposition in AL-1/D, Proceedings
of the First JSSST International Symposium on Object Technologies for Advanced Soft-
ware (1993), 110-127

11. Smith B.: Reflection and Semantics in a Procedural Language. PhD thesis, MIT Labora-
tory of Computer Science, (1982)

12. Szyperski C.: Component Software: Beyond Object-Oriented Programming, Addison-
Wesley, (2002)

13. Aspect-Oriented Software Development Community: http://aosd.net/
14. Middleware at Lancaster:

http://www.comp.lancs.ac.uk/computing/research/mpg/reflection/index.php
15. OMG Unified Modelling Language - UML : http://www.uml.org/

81

82

MADAPT: Managed Aspects for Dynamic
Adaptation based on Profiling Techniques

Robin Liu1, Celina Gibbs1 and Yvonne Coady1

1 University of Victoria, Department of Computer Science,
PO Box CSC Victoria, British Columbia, Canada
{cliu, celinag, ycoady}@cs.uvic.ca

Abstract. An increasingly significant cost associated with dynamically adap-
tive middleware is the complexity of managing the code responsible for adap-
tive behaviour. It is not surprising that, due to the fine-grained nature of trace-
data collection and the subtle adaptation that can result, more flexible systems
are typically more complex to manage. This paper makes the case for using
aspect-oriented programming (AOP) [6] as a means to achieve adaptive mid-
dleware based on fine-grained, customizable, profiling techniques. A feasibil-
ity-study combining Java Management Extensions (JMX) [3] and AOP shows
the effectiveness of the synergy between the management support for applica-
tion services offered by JMX, and the structured support for crosscutting con-
cerns offered by AOP.

1 Introduction

Management of adaptive middleware must provide a comprehensive means of struc-
turing code that is responsible for adaptation. Complex collections of probes for
trace-data are often scattered throughout the system in an unclear way, and accompa-
nied by subtle reconfiguration strategies that become tangled with other concerns in
the system.

Java Management Extensions (JMX) [3] is a standard architecture specifically de-
signed for management of commonly used Java-based services. By defining and
implementing a management interface, any java object can be a Managed Bean
(MBean) and use JMX Agent services (dynamic loading, monitoring, timer and rela-
tionship services), connectors and protocol adaptors. Though this support enhances
the manageability of certain concerns associated with adaptive behaviour, the inher-
ent scattering and tangling of fine-grained profiling instrumentation across an appli-
cation still remains.

83

apel
Rechteck

Fig. 1. High-level architecture: aspects (denoted as ManageableAspect) are managed as
MBeans.

The goal of aspect-oriented programming (AOP) [6] is to provide structure for cross-
cutting concerns. In our experiment, we leveraged the management facilities offered
by JMX and the structured approach to crosscutting concerns offered by AOP to
construct application-specific adaptive thread and memory management. A high-
level overview of this architecture is highlighted in Figure 1. MBeans structure the
management of standard JMX services, and aspects as MBeans further structure the
crosscutting code responsible for adaptation management.

The rest of the paper proceeds as follows: Section 2 provides background for JMX,
AOP, and profiling. The details of our MADAPT (Managed Aspects for Dynamic
Adaptation based on Profiling Techniques) proof-of-concept prototype are described
in Section 3. Section 4 presents conclusions and future work.

2 Background and Related Work

The motivation to combine JMX technology with AOP methodology stems from a
common underlying theme: concerted efforts to improve the modularity of complex
systems. The impact modularity has on productivity is becoming increasingly evident
as development moves to open source projects.

Profiling is a classic example of a concern that does not typically adhere to tradi-
tional structural boundaries, but is a necessary ingredient for dynamically adaptable
systems. Before launching into details of our experimental study with MADAPT, we
briefly provide background showing how these three pieces of the puzzle, JMX, AOP
and profiling, all fit together.

84

2.1 JMX Background

Originally known as Sun’s JMAPI, JMX is gaining momentum as an underlying
architecture for J2EE servers. MBeans act as wrappers, providing localized manage-
ment for applications, components, or resources in a distributed setting. MBean
servers are a registry for MBeans, exposing interfaces for local/remote management.
An MBean server is lightweight, and parts of a server infrastructure are implemented
as MBeans. JMX thus supports highly modular and customizable server architec-
tures.

2.2 AOP Background

AOP is gaining momentum as a methodology facilitating modularization of crosscut-
ting concerns – concerns that are present in more than one module, and cannot be
better modularized through traditional means.

An aspect is a module that structures crosscutting implementation. Looking at an
aspect, a developer can see both the internal structure of a crosscutting concern, and
its interaction with the rest of the program during execution. As brief example of the
mechanisms used in the particular incarnation of aspect-oriented programming used
in MADAPT, AspectWerkz [2], the aspect below captures all calls to the constructor
of myObject and simply prints tracing information:

package myapp;
import org.codehaus.aspectwerkz.joinpoint.JoinPoint;
public class MyAspect {
 /**
 * @Around call(myapp.myObject.new(..))
 */
 public void addToCreate(JoinPoint joinPoint) {
 System.out.println("before creating...");
 joinPoint.proceed();
 System.out.println("after creating...");
 }
}

The @Around annotation associates the execution of the aspect’s addToCreate()
method with the execution of the constructor .

2.3 Profiling Background

Log-based performance profiling has been used in distributed systems [5], operating
systems [11], and adaptive applications [8], and continues to be used for performance
analysis and fault detection. A common characteristic of implementations based on
profiling technology is the fact that instrumentation requires invasive changes to
multiple modules of the target system. In essence, profiling is a classic crosscutting
concern.

Though we are ultimately advocating a customizable, application-specific ap-
proach to profiling, it is important to note that tools for profiling based on well-

85

known published interfaces are gaining momentum. Magpie [7] profiles websites to
measure resource consumption (CPU, disk, network usage) of HTTP requests, and
builds probabilistic models for performance prediction, tuning and diagnosis. Pin-
point [4] uses a similar approach, relying on profiling, analysis and anomaly detection
for fault detection. Commercial request tracing systems include PerformaSure[9] and
AppAssure [1].

3 Feasibility Study

This study demonstrates the feasibility of combining JMX and AspectWerkz to pro-
vide synergistic JMX/AOP management for dynamic adaptation. The two examples
in our prototype, the ThreadManagerAspect and the MemoryManagerAspect, show
how aspects can be used to: (1) structure application-specific crosscutting concerns,
(2) implement JMX MBeans, and (3) enable crosscutting concerns to be managed
through standard JMX services.

3.1 ThreadManagerAspect

The ThreadManagerAspect structures a crosscutting concern associated with the
creation of new threads in a given application. This aspect impacts all points during
execution when a new thread is created. For example, if an application creates a
thread for each HTTP request it receives, and (within another class/component) cre-
ates a thread for each disk request, all of these points would be structured within this
aspect.

As shown in Figure 2 (left-hand side), the ThreadManagerAspect uses the
ThreadMXBean to monitor the thread system of the local Java virtual machine. Plat-
form MXBeans are part of the Java 2 Platform, Standard Edition (J2SE) 1.5 release.
MXBeans provide a standard monitor management interface for the JVM as well as
the operating system. This allows the aspect to be managed using standard JMX
services. Figure 2 (right- hand side) also depicts how this aspect crosscuts all objects
of an application that create threads. A closer look at the implementation details of
this aspect shows how the MBean services and the crosscutting structure are com-
bined within the aspect.

86

Fig 2. ThreadManagerAspect

3.1.1 Implementation Details

In order to make the ThreadManagerAspect an MBean, and hence manageable
through JMX services, we first define an interface shown at the top of Figure 3 (lines
1-4), the ThreadManagerAspectMBean interface, and use it in the aspect. Methods in
this interface will be exposed to JMX services.

The ThreadManagerAspect has a local variable maxThreadCount (line 11), which
is the application-specific upper limit of the number of live threads. Ultimately, it is
maxThreadCount that we intend to expose for local/remote management by imple-
menting the two operations: getMaxThreadCount() and setMaxThreadCount(), de-
fined in the interface.

In the constructor of the ThreadManagerAspect (lines 13-17), a reference to the
platform MBeanServer from the ManagementFactory establishes the current server
(there can be more than one MBeanServer per-JVM), and then registers the aspect as
an MBean with that server. The constructor also obtains the ThreadMXBean from the
ManagementFactory.

As indicated by the @Around AspectWerkz annotation (line 20), the logMethod is
defined to execute whenever there is a method call to construct a Thread (or Thread
subtype) from within any class in the prototypeApplication package. In this way, the
crosscutting concern spans all objects in the prototypeApplication that create threads.
At the point a new thread is being constructed, the logMethod() is invoked. This
method retrieves the number of live threads from the ThreadMXBean and compares
this value to the pre-defined maxThreadCount. If the number is greater that the limit,
our prototype simply throws a runtime exception. Otherwise, the execution proceeds
to the constructor (line 27).

As an MBean, the ThreadManagerAspect is eligible for JMX services, such as
JConsole, the monitoring and management GUI shown in Figure 4.

87

Fig 3. ThreadManagerAspect Code

Fig 4. JConsole screenshot for the ThreadManagerAspect.

88

The SampleAspect shown in the JConsole is the ThreadManagerAspect instance
registered in the MBeanServer as an MBean. JMX services can connect to any lo-
cal/remote JVM, and all the running MBeans can be displayed and managed through
this interface. JConsole also allows developers to view MBean information (regis-
tered name and class), view/set MBean attributes, call MBean operations, and view
MBean notifications

Figure 4 shows the results of having the registered MBean ThreadManagerAspect
discovered by a remote JConsole (using JMX Remote API), and maxThreadCount is
shown as a read/write attribute. In the console, the maxThreadCount can be set to a
new value which is passed to the ThreadManagerAspect’s setMaxThreadCount()
method.

3.1.2 Beyond Proof-of-Concept

The ThreadManagerAspect presented here is a simple proof-of- concept, demonstrat-
ing the synergy between JMX and AOP, but we plan implement more sophisticated
thread management strategies. For instance, instead of simply throwing a RuntimeEx-
ception, the aspect could:

a) block the method call, or
b) expose further strategies as manageable operations through the Thread-

ManagerAspectMBean interface
Furthermore, to reduce the thread creation overhead and garbage collection costs,

the ThreadManagerAspect could also implement an adaptive pool of reusable threads
and could dynamically adjust the size of the pool based on the usage pattern of an
application.

We are also exploring the option of using the ThreadManagerAspect to monitor
thread system(s) not only in the local virtual machine, but also in remote ones. Using
these JMX services, it would be possible to effectively implement a distributed load
balancing system as part of the ThreadManagerAspect.

3.2 MemoryManager Aspect

The MemoryManagerAspect structures a crosscutting concern associated with mem-
ory intensive operations, such as loading a large XML file into the memory. It essen-
tially monitors the memory system and other related systems, such as the garbage
collection system, of the Java virtual machine.

89

Fig 5. MemoryManagerAspect

As shown in Figure 5 (left-hand side), the MemoryManagerAspect collects informa-
tion from three local platform MXBeans: the GarbageCollectorMXBean, the Mem-
oryPoolMXBean, and the MemoryMXBean. As with the previous aspect, Figure 5
(right-hand side) also depicts that this aspect structures a concern that crosscuts ob-
jects in a given application, and can be manipulated through JConsole.

Garbage collection information, such as the total number of collections that have
occurred, and the elapsed time of a collection, are retrieved from the GarbageCollec-
torMXBean. Since a Java virtual machine typically has more than one memory pool,
the MemoryPoolMXBean is used to obtain detailed information of an individual pool,
such as current and peak memory usage, usage threshold, and the collection usage
threshold.

The MemoryMXBean provides basic memory usage information, such as initial
size of memory and used/committed size of both the heap and non-heap memories.
In addition to providing memory usage information for polling, the MemoryMXBean
emits usage threshold exceeded notifications to its registered listener(s). These noti-
fications are sent when the Java virtual machine detects that the memory usage of a
memory pool exceeds its predefined threshold [3]. In order to receive these notifica-
tions, the MemoryManagerAspect implements the NotificationListener (Figure 6, line
3) interface and registers itself to the MemoryMXBean upon instantiation (Figure 6,
line 6).

The MemoryManagerAspect differs from the ThreadManagerAspect in that it sim-
ply collects all the information mentioned above and sends this information out as
notifications. The strategy of sending notification is exposed as a manageable attrib-
ute. The aspect can then be configured to send out notifications upon each invocation
of any of its targets and/or when it receives usage threshold exceeded notification
from the MemoryMXBean.

90

3.2.1 Implementation Details

Fig 6: Code fragment of the MemoryManagerAspect.

Figure 6 shows a code fragment associated with our prototype implementation of the
MemoryManagerAsepct. This aspect extends NotificationBroadcasterSupport (line
2) in order to send JMX notifications, and implements NotificationListener (line 3) in
order to listen for the memory threshold exceeded notification from the MemoryMX-
Bean. In the constructor, the MemoryManagerAspect adds itself to MemoryMX-
Bean as a notification listener (line 6). The handleNotification method receives noti-
fication, checks its type and whether the notifyUponTargetInvocation is enabled
(lines 10,11), and sends notifications to its own listeners (line 12). The following
screen shots below show how this aspect can be managed through the JConsole inter-
face.

Fig 7. JConsole screenshot for the attributes of the MemoryManagerAspect.

Figure 7 shows all the management attributes exposed by the MemoryManagerAs-
pectMBean interface. The HeapUsedSize and NonHeapUsedSize are read only, while
the rest of the attributes are read/write. CachingEnabled is used to control the caching
mechanism provided by the MemoryManagerAspect. The other two attributes indi-
cate when notification should be sent out.

91

Fig 8. JConsole screenshot for the operations of the MemoryManagerAspect.

Figure 8 shows the management operations exposed by the MemoryManagerAs-
pectMBean interface. The gc() operation is for garbage collection (it calls the Mem-
oryMXBean’s gc()). The clearCache() operation clears the cached objects. The send-
Notifications() operation sends notifications containing the latest memory informa-
tion. The resetUsageThreshold() resets the threshold values to default values initially
set by JVM.

3.2.2 Beyond Proof-of-Concept
To collect additional information in the MemoryManagerAspect, we can add vendor-
specific or platform-specific methods which are not part of standard MXBean inter-
face. For example, to collect information about the last garbage collection operation,
we can use a method called getLastGcInfo(), which is available in the
sun.management.GarbageCollectorImpl class. This class is Sun’s implementation of
the GarbageCollectorMXBean interface. Though the disadvantage of incorporating
this type of information is the poor portability and reusability that results, the advan-
tage is the ways in which these customized approaches can further optimize and tune
application-specific needs.

4. Future Work and Conclusions

The current prototype has shown several encouraging proof-of-concept results with
respect to dynamic adaptation based on application profiling. Ongoing work is fo-
cused on exploring additional management capabilities, and assessing this approach
within new environments and coupled with further AOP structural support.

92

4.1 Containers

One of the key things we plan to investigate in terms of additional management capa-
bilities is the idea of a manageable AspectContainer, overviewed in Figure 9. This
use of customized containers can aid management of instantiation concerns associated
with AspectWerkz. Due to the fact that the AspectWerkz implementation uses reflec-
tion to instantiate aspects at runtime, every aspect in AspectWerkz has to provide
either no constructor at all or one of the two pre-defined constructors.

Fig 9. AspectContainer

The AspectContainer provides centralized management and control of all con-
tained aspects, such as: aspect lifecycle management, configuration and deployment.
It registers itself to the MBeanServer as an MBean in order to expose some generic
manageability, while the manageability exposed by individual manageable aspects
remains aspect-specific. This two-level approach can achieve much higher degree of
flexibility and manageability. For example, the ThreadManagerAspect and Mem-
oryManagerAspect explicitly implement JMX interfaces and register themselves to
the MBeanServer in their constructor. If an AspectContainer was used, such JMX
related code could be moved out of the aspects and put into the container's implemen-
tation. Moreover, since the container can keep track of all the contained aspects, it
can provide some information for statistics or reflection about itself and its contained
aspects.

In addition to being manageable through JMX, the AspectContainer can also be
implemented to fit into other container-centric frameworks, such as the Spring
Framework [12] and PicoContainer [10], in order to make the contained aspects as
framework specific components. Then they can have access to or be accessed by
container services and other components (probably in other containers).

4.2 Environments and Additional Structure

In terms of future environments, we plan to investigate crosscutting concerns within
an open-source J2EE server built on a JMX microkernel, and experiment with fine-
grained load balancing aspects within cluster environments. In terms of language
features, we plan to investigate available metadata (JSR-175) for additional manage-
ment capabilities, utilize control flow information structured within aspects for path-
specific resource provisioning, and experiment with dynamic aspects (aspects
loaded/unloaded at runtime) for adaptation.

93

4.3 Conclusions

The feasibility study shows how MADAPT can combine MBeans/aspects to improve
modularity of code responsible for dynamic adaptation. As opposed to having this
code scattered and tangled across classes and components, the examples show how
profiling techniques used by adaptation code can be localized, structured, and man-
aged as aspects.

Acknowledgments
We would like to thank Andrew Warfield for insightful discussions and valuable
feedback.

References

1. AppAssure, www.alignmentsoftware.com.
2. AspectWerkz, http://aspectwerkz.codehaus.org/index.html.
3. JMX, http://java.sun.com/products/JavaManagement.
4. M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox. Pinpoint: Problem determination

in large, dynamic, Internet services. Proc. International Conference on Dependable Sys-
tems and Networks (IPDS Track), pages 595-604, June 2002.

5. G. C. Hunt and M. L. Scott. The Coign automatic distributed partitioning system. Proc.
3rd Symposium on Operating Systems Design and Implementation (OSDI'99), pages 187-
200, Feb. 1999.

6. Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier and John Irwin, Aspect-Oriented Programming, European
Conference on Object-Oriented Programming (ECOOP), 1997.

7. Magpie, http://research.microsoft.com/projects/magpie/.
8. D. Narayanan, J. Flinn, and M. Satyanarayanan. Using history to improve mobile applica-

tion adaptation. Proc. 3rd IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 31-40, Dec. 2000.

9. PerformaSure, www.sitraka.com/software/performasure.
10. PicoContainer, http://www.picocontainer.org/
11. M. Seltzer and C. Small. Self-monitoring and self-adapting operating systems. Proc. 6th

Workshop on Hot Topics in Operating Systems (HotOS-VI), pages 124-129, May 1997.
12. Spring Framework, http://www.springframework.org/Baldonado, M., Chang, C.-C.K.,

Gravano, L., Paepcke, A.: The Stanford Digital Library Metadata Architecture. Int. J.
Digit. Libr. 1 (1997) 108–121

94

A Biologist’s View of Software Evolution

DeLesley Hutchins

CISA, University of Edinburgh
d.s.hutchins@sms.ed.ac.uk

Abstract. The term “software evolution” is generally used as an anal-
ogy for biological evolution. This paper explores that analogy in more
depth, analyzing software evolution from the biologist’s point of view. I
give a basic introduction to fitness landscapes and genetic algorithms,
and describe two major issues that effect evolvability: local optima in
the search space, and genotype to phenotype maps. Aspects and meta-
programs address both of these issues. Encapsulation can be seen as a
technique for reducing epistasis and pleiotropy, while meta-programming
can be seen as an analog to morphogenesis.

1 Introduction

The term “software evolution” is usually used as an analogy for biological evo-
lution. Biological species gradually change over the course of tens of millions
of years, adapting in response to changing environmental conditions. A piece of
software likewise changes over time, in response to changing requirements and
needs.

What distinguishes “software evolution” from other forms of software devel-
opment is that each version of an evolving program must be valid. It must at least
compile and run, even if it is not entirely bug-free. Some software development
teams enforce this discipline with weekly or even daily builds. In an truly evolu-
tionary development process, such as that advocated by Extreme Programming
[3], it is not possible to do major code rewrites. Updates must be kept small, and
each update must change a working program into another working program.

This, too, is analogous to biological evolution. Each organism in the real
world must produce viable offspring. These offspring are slightly different from
their parents, but they must be capable of surviving on their own. Major change
occurs only after thousands of generations.

Is this just an analogy, or is there something deeper? The purpose of this
paper is to look at the problem from a biologist’s point of view.

Section 2 introduces genetic algorithms and fitness landscapes, which are
mathematical models that can be used to understand evolutionary processes,
and applies these models to software. Section 3 discusses how epistasis and
pleiotropy affect evolvability, and discusses how these ideas can be interpreted
in the context of software engineering. Section 4 discusses how morphogensis,
which is the process of biological growth and development, is related to meta-
programming. As it turns out, there is strong evidence which supports the idea

95

apel
Rechteck

that aspects [12] [11] and meta-programs are, indeed, important tools for software
evolution. Section 5 concludes with a few brief thoughts about how these ideas
can be used to improve programming languages.

2 Genetic and Evolutionary Algorithms

One problem with applying biological models to software is that our current
understanding of the genome is extremely limited. Although the DNA sequences
for several species are now available, there is no “road map” of gene function. The
protein folding problem — the problem of predicting the 3-dimensional shape
of a protein molecule, given the DNA sequence which encodes that protein —
is computationally intractable. Understanding the effect of a given protein on
organism development and function is even harder. In fact, we do not even know
which portions of the genome encode useful information.

Moreover, we can only extract DNA from living creatures. The genomes of
past organisms are unavailable, which makes it difficult to study how they have
changed over time.

Evolutionary algorithms are computational models which abstract away from
the biochemical details of DNA. [5] [6] [14] EAs treat evolution as a form of search

through a space of all possible solutions.

2.1 Hillclimbing

The simplest form of search, known as “hillclimbing”, is essentially a form of
gradient ascent. The algorithm is defined as follows:

Let S be the set of all possible solutions to a problem. These solutions can
be numbers, vectors, graphs or even programs; the definition of what constitutes
a “solution” depends on the problem being solved.

Let C be the set of chromosomes. Each solution must be represented as a
data structure of type C, which encodes the solution in a form that can be ma-
nipulated. Early work on evolutionary algorithms ignored the difference between
a solution and the encoding of that solution, but this distinction turns out to be
critical for understanding the evolutionary process. In biology, the elements of
C are strands of DNA, while the elements of S are the actual organisms — two
very different things.

Let f : S → R be a fitness function, which computes a numeric value
f(s) for every solution s ∈ S. This value, called the fitness of the solution, is
a measure of “how good” the solution is. If f(s1) > f(s2), then s1 is a better
solution than s2.

Let g : C → S be a representation function, which interprets a chromo-
some c as a solution. This function is usually onto, which guarantees that every
solution has an encoding. If it is also one-to-one, then every solution has a unique
encoding, but this is not required.

Let m : C → P(C), where P denotes the power set, be a mutation op-

erator, which is used to generate new chromosomes from existing ones. This

96

operator defines the set of all possible single-point mutations for a given chro-
mosome. Mutations must be reversible: ∀c. c ∈ m(c′) implies c′ ∈ m(c). In other
words, if one mutation changes a chromosome, there must be another mutation
which restores the chromosome to its original state.

The algorithm itself starts with an initial chromosome c0, which is chosen
randomly from C. The next chromosome, cn+1, is chosen randomly from m(cn),
such that f(r(cn+1)) ≥ f(r(cn)).

This definition generates a sequence of chromosomes, where each new chro-
mosome in the sequence represents a better solution than the previous one. The
actual sequence is random, but the limit will be some local optimum in the
search space. The term “hillclimbing” is a metaphor; it conjures the image of a
blind hiker, who climbs to the top of a mountain, step by step, by always walking
uphill.

2.2 Modeling the Human Programmer

Hillclimbing offers a reasonably good model of a single human programmer. The
run-time behavior of a program, measured over all possible inputs, is a solution.
The program requirements constitute a fitness function. If the run-time behavior
of a program matches the requirements, then the program has good fitness.

The chromosome in this case is the source code of the program, which must be
evaluated at run-time to yield a behavior. The interpreter and/or compiler thus
constitute a representation function. There are many different programs which
all yield the same behavior, so the representation function in this case is clearly
not one-to-one. Moreover, the choice of programming language is important;
solutions which are easy to express in one language may be hard to express in
another.

The mutation operator can be defined as follows: for a given program p,
m(p) is the set of all programs that can be created by the insertion, deletion, or
modification of a single node in the abstract syntax tree (AST) of p. Although
programmers actually work with programs in the form of ASCII text, we wish
to restrict our model to the set of syntactically valid programs.

Even this definition is problematic, since a single change to the AST will
generally result in a program that is either not well-typed, or has a behavior
that is much worse than the original. Most improvements to real-world programs
involve many small changes to the AST, even if the programmer is developing
the code incrementally.

Human beings must be regarded as “intelligent mutators”, who have some
knowledge of the local shape of the search space, and can plan out a sequence of
mutations that lead to a better program. Nevertheless, a programmer’s knowl-
edge is limited. He or she may be able to plan out a short sequence of mutations,
but only up to a certain point; the larger the change to the source code, the more
difficult it becomes to predict the effect of that change.

The process of programming is still evolutionary so long as the number of
mutations made during a single edit-run-debug cycle is small when compared to

97

the total number of mutations needed to get from the initial prototype to the
finished product.

2.3 Genetic Algorithms

Most research on evolution in computer science has focused on genetic algorithms
(GAs). GAs extend the basic hill-climbing model by introducing a population of
chromosomes, along with a crossover operator.

Let ⊗ : C × C → P(C) be a crossover operator. This operator generates the
set of all possible chromosomes which can be constructed by drawing some genes
from one parent, and the rest from the other parent. Intuitively, crossover mixes
and matches different combinations of genes from two sources.

The algorithm starts with a population of chromosomes c1..cn, which are
randomly selected from C. It proceeds as follows:

• Calculate the fitness f(g(ci)) of each chromosome ci in the population.
• Remove the worst chromosome from the population.
• Select two of the better chromosomes – call them cx and cy. These are chosen

at random, but the choice is weighted by fitness, so better solutions are more
likely to be chosen.

• Choose a new chromosome cz at random from (cx ⊗ cy).
• Do one of the following:

(a) Add cz to the population.
(b) Choose a new chromosome at random from m(cz), and add it to popu-

lation. The probability of choosing this option is small, and is controlled
by the mutation rate.

• Repeat.

There is a difference of opinion between the biological literature and the
computer science literature on the role that crossover plays in evolution. When
genetic algorithms are used in computer science, crossover is the dominant search
operator. The initial population of chromosomes is distributed throughout the
search space, and crossover forces the population to converge to a single solution.
Once the population has converged, the algorithm terminates.

Biological populations are quite different, because every species has already
converged. Although there are differences between individuals, these differences
are relatively small. Biologists thus treat mutation as the dominant operator. The
assumption is that most mutations are bad, and bad mutations die out quickly.
Good mutations are rare enough that each one has time to propagate through
the gene pool before the next good mutation appears. Under this assumption,
the population remains converged, and evolution with crossover can be treated
as a form of hillclimbing.

I adopt the biological interpretation here. A GA with a population of size
n corresponds to a development team of n people, who are all working on the
same application. The application may have multiple branches of development,
which need to be merged together. The crossover operator serves the same role

98

as CVS, or other version-control systems; it is responsible for merging code from
one branch with code from another.

There is one major difference between crossover and CVS. In a software
development environment, each change to the source code has a time stamp.
CVS assumes that recent modifications are better, so in most cases it knows
which changes to merge. In biological evolution, this assumption is not valid.
Instead, crossover generates many different combinations of genes at random,
and then tests each one via natural selection. After many such trials, only the
combinations which contain the “good genes” from both parents will survive.

Although the mechanisms are different, the end result is the same. Whenever
a beneficial change is made to one chromosome, that change is incorporated into
the gene pool, where it can be improved by further mutations.

2.4 Fitness Landscapes

The mutation operator defines a distance metric on the search space. Since
mutations are reversible, the set of chromosomes can be treated as an undirected
graph, where two chromosomes c1 and c2 are connected by an edge if c1 ∈ m(c2).
The distance between two chromosomes is the shortest path between them —
the minimum number of mutations needed to get from one to the other.

The combination of distance metric + fitness function means that genetic
search spaces can be regarded as a fitness landscapes. [10] [9] The shape of the
landscape determines how easy it is to search. “Smooth” landscapes are easy
to search, whereas “rugged” landscapes are more difficult. There are two main
factors which influence shape.

The first factor is called fitness distance correlation. [8] In a smooth land-
scape, the difference in fitness between two chromosomes is correlated with the
distance between them; small changes to the chromosome result in small changes
in fitness. In a rugged landscape, this is not true.

The second factor is the number and size of local optima. A local optimum
is a chromosome c, which does not represent the best solution available, but
for which all mutations result in a worse solution. The fundamental limitation
of hillclimbing is that the search can get stuck in local optima. The metaphor
here is that of a hiker who reaches the top of a small foothill. She can no longer
proceed by going uphill; instead she must go down, off the hill, before she can
climb the larger mountain.

Rugged landscapes have more local optima than smooth ones. Rugged land-
scapes also have larger local optima. The size of a local optimum is measured by
its basin of attraction: the number of chromosomes c for which a hill-climbing
search, starting from c, is guaranteed to end in the local optimum.

The following figure illustrates difference between smooth and rugged land-
scapes:

99

3 Dealing with Local Optima

A software engineer encounters a local optimum whenever a small change to one
part of the source code is not sufficient to create a working program. If the source
code must be modified in several places simultaneously to keep it from breaking,
then each such change corresponds to a “downhill step” (i.e. a change which
does not improve fitness), which is necessary to get out of the local optimum.
Human programmers are intelligent enough to make such simultaneous changes,
even rewriting large amounts of code if need be, but true evolutionary systems
do not have that luxury.

The size of the local optimim is indicated by the amount of code that must be
rewritten. Most software engineers are familiar with the idea that it is sometimes
necessary to make major changes to the underlying architecture of an application
in order to implement a new feature. In severe cases, the architecture changes so
much that the application must be rewritten almost from scratch; such situations
are evidence of large local optima.

3.1 Pleiotropy, Epistasis, and Traits

One of the principle aims of evolutionary theory is to understand not only how
the shape of the fitness landscape makes evolution easy or difficult, but what
causes landscapes to have a particular shape. In biological jargon, the principles
of pleiotropy and epistasis are two of the main factors which influence how rugged
the landscape is going to be. [2] [17] These terms describe the mapping between
genes and traits.

It is somewhat difficult to come up with a rigorous definition of traits. A trait
is some property of a solution which has a direct correlation with fitness. In other
words, solutions which have the trait perform consistently better than solutions
which do not have the trait. For example, thick fur and blubber are survival
traits for animals which live in the arctic, while broad leaves are a survival trait
for trees in tropical rainforests.

Traits are partial solutions to software requirements. Requirements are gen-
erally specified as a list of features or capabilities that a program should have.
A trait is any aspect of program behavior which implements all or part of one
of those features. (Traits are difficult to define formally because the definition
assumes that total solutions can be broken down into partial solutions. Never-
theless, the intuition behind traits should be clear.)

100

Genes are easier to define. A chromosome is divided into a set of genes, where
each gene is the smallest section of the chromosome which can be interpreted
as a meaningful unit. In biology, a gene is a sequence of DNA base pairs which
codes for a single protein. In software, a gene would be a single line of code.

A gene is pleiotropic if it influences multiple unrelated traits in an organism.
A group of genes are epistatic if they all interact in some way to control a single
trait in an organism.

In the case of pleiotropy, the gene is hard to modify because a change which
improves one trait will likely impair another. In the case of epistasis, a change
to one gene will influence the effects of all the others, with unpredictable results.
The whole set of genes typically has to be changed at the same time, which
cannot be done in gradual steps.

Both epistasis and pleiotropy make the landscape more rugged because a
single change to one gene is much more likely to disrupt the effects of others,
thus causing a reduction in overall fitness. If all changes to the gene are disruptive
then the result is a local optimum. If only some changes are disruptive then the
result is a discontinuity that reduces the fitness distance correlation.

3.2 Modularity and Encapsulation

Pleiotropy crops up in software as the “backwards compatibility problem”. Li-
brary routines are difficult to modify because they are called from many different
parts of the code. Any change to the observable behavior of the routine will thus
have far-reaching effects on many traits throughout the program.

Epistasis crops up as the “parallel maintenance problem”. When two sections
of the code are tightly coupled, a change to one section almost always requires
a change to the other. For example, the visitor design pattern is often used to
traverse a data structure which is described by several different classes. [4] Every
visitor must implement a method for each class. When a new class is added to
the data type, a new method must be added to every visitor — a classic case of
close coupling.

In a nutshell, this is a biologist’s argument for modularity and encapsulation.
If the implementation of a feature is properly encapsulated behind a high-level
interface, then it is much easier to change that implementation without affecting
code that depends on it. This reduces pleiotropy. Similarly, if two pieces of code
can be decoupled by placing them into separate modules which communicate
through a well-defined interface, then the modules can be updated independently,
thus reducing epistasis.

101

4 Genotype to Phenotype Maps

The definition of an evolutionary algorithm given above involves two functions –
a fitness function, and a representation function. Early work with GAs ignored
the representation function; fitness was defined directly on chromosomes. It was
assumed that the difficulty of searching for a solution was determined by the
overall difficulty the problem being solved.

One of the major surprises of this early work was that representation mat-
tered a great deal. It is possible to transform an easy problem into a hard one, or
vice versa, by altering the way in which solutions are encoded by chromosomes.
[16] For example, an integer can be encoded using either standard binary, or gray
codes. A gray code is an encoding in which adjacent integers are a single bit flip
apart, which seems to improve hill-climbing performance on some problems.

A more sophisticated example arises in genetic programming. Genetic pro-
gramming is the application of genetic algorithms to actual computer programs,
thus providing a true example of “software evolution”. It is possible to encode
a program as a linear string of instructions, which is evaluated by a virtual ma-
chine. However, such encodings tends to be very “brittle” and difficult to evolve,
because the effect of each instruction depends heavily on the instructions that
precede it. A better mechanism is to represent programs directly as abstract syn-
tax trees, and modify the mutation and crossover operators so that they operate
on trees rather than strings. [13] This dramatically improves performance.

Using an explicit representation function highlights the difference between
the genotype (the chromosome) and the phenotype (the actual solution). [1] [17]
The mutation and crossover operators operate on the genotype — e.g. source
code or DNA. The fitness function, however, evaluates the phenotype — e.g. the
run-time behavior of a program, or the physical body of an organism.

In contrast to most popular descriptions of evolution, natural selection does
not select directly for genes. Instead, it selects for traits, which are properties of
the phenotype. If there is a natural mapping between genotype and phenotype,
then each gene (or small group of genes) in the genotype will correspond to a
single trait in the phenotype. In this case, natural selection for traits translates
directly to selection on the appropriate genes. However, many representation
functions do not create a natural mapping.

A natural mapping is not the same as a direct mapping, where each gene maps
to one specific part of the phenotype. For example, thick fur is an adaptive trait
for animals in the arctic. However, there is not a different gene for every hair
on the body. Instead, a few genes control the length of all hairs. It is the overall
thickness of the fur, not the length of an individual hair, that is the adaptive
trait. The same is true of plants. A fern has many branches, but the angle of each
branch is the same. It is the distribution of leaves, not the angle of a particular
frond, that constitutes a trait.

102

4.1 Morphogenesis and Meta-Programming

Multicellular organisms create a natural mapping between genotype and pheno-
type by means of morphogenesis. Morphogenesis is the process of growth and
development, whereby a single cell repeatedly divides and differentiates to build
an entire organism. While the exact mechanisms of morphogenesis are not well
understood, it is clear that the process is algorithmic. The evidence lies in the
recursive fractal patterns found in almost all living things, from ferns to blood
vessels to spiral shells. [15]

We do know that a significant percentage of genes are active only during
development. Developmental genes create chemical gradients, and switch on and
off in response to signals produced by other genes, thus producing the complex
structures found in living organisms. Because each cell in the body has a complete
copy of the DNA, a single gene can express itself in many different physical
locations.

Aspects and meta-programs serve the same role in software evolution that
morphogenesis plays in biological evolution — they help to establish a natural
map between genotype and phenotype. The clear lesson from evolutionary theory
is that controlling the genotype to phenotype map is the key to evolvability.

A language like C has a fairly direct mapping between source code and ma-
chine code; every function or statement can be translated almost directly to
(unoptimized) assembly. Since the interpretation of machine code is fixed by the
CPU architecture, this means that the genotype to phenotype map is also fixed.

Aspects and meta-programs introduce a more sophisticated genotype to phe-
notype map. A meta-program algorithmically generates an implementation that
is quite different from the source code. This is ideal for situations such as parser
generators and DSLs, where a great deal of repetitive code needs to be produced,
but where the repetition cannot be encapsulated into simple loops or functions.
Aspects are similar. An aspect can weave advice (such as logging code) through-
out an application, thus algorithmically generating an implementation.

Work on evolving neural-networks suggests that generating solutions algo-
rithmically does, in fact, lead to more modular and evolvable designs. [7]

5 Conclusion

The word “evolution” in software evolution is more than just an analogy. The
set of program requirements constitute a fitness function, and the space of all
possible programs constitute a fitness landscape. The act of developing and main-
taining a piece of software plots a path across this landscape. Software evolution
can be seen as a form of human-guided search for a program that meets the
specified requirements.

Encapsulation and modularity are basic techniques which improve software
evolvability by “smoothing” the fitness landscape, and reducing the number of
local optima. Backwards compatibility problems, parallel maintenance problems,
and major code rewrites are symptoms of local optima. All forms of modularity,
whether they be functions, classes, or aspects, are useful in this regard.

103

Aspects and meta-programs go beyond simple modularity, however, because
they alter the genotype to phenotype map. By introducing a different mapping,
it is possible to completely transform a rugged landscape into a smooth one.

The most sophisticated examples of such mappings are domain-specific lan-

guages. DSLs abstract away from the implementation language entirely; there
is little similarity between the source code (the genotype), and the executable
machine code (the phenotype). In a well-designed DSL, terms in the DSL map
directly to concepts in the problem domain. Program requirements (the fitness
function) are also domain-specific, which means that there is a natural mapping
between terms in the DSL, and fitness-correlated traits.

The main weakness of current DSLs is that the translation from the DSL to
the implementation language is fixed. Program requirements change over time,
and this means that the DSL itself may have to change too. The clear lesson for
software engineers is that we need meta-programming tools which allow DSLs
to be easily constructed and modified. Good integration between the DSL and
the implementation language remains a challenge.

References

1. Lee Altenberg. Genome growth and the evolution of the genotype-phenotype map.
Evolution and Biocomputation: Computational Models of Evolution, 1995.

2. Lee Altenberg. Nk fitness landscapes. T. Back, D. Fogel, Z Michalewicz. editors.
Handbook of Evolutionary Computation, Section B2.7.2, 1997.

3. Kent Beck and Cynthia Andres. Extreme Programming Explained. Addison-Wesley,
2004.

4. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

elements of reusable object-oriented software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

5. David E. Goldberg. Genetic algorithms in search, optimization and machine learn-

ing. Reading: Addison-Wesley, 1989.
6. David E. Goldberg. The Design of Innovation: Lessons from and for Competent

Genetic Algorithms. Kluwer Academic Publishers, Boston, MA, USA, 2002.
7. Frederic Gruau. Genetic synthesis of modular neural networks. In Proceedings

of the 5th International Conference on Genetic Algorithms, pages 318–325, San
Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

8. Terry Jones and Stephanie Forrest. Fitness distance correlation as a measure of
problem difficulty for genetic algorithms. Proceedings of the 6th International
Conference on Genetic Algorithms, pages 184–192, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc.

9. Stuart A. Kauffman. Adaptation on rugged fitness landscapes. Lectures in the
Sciences of Complexity. Addison-Wesley, 1989.

10. Stuart A. Kauffman and S. Levin. Towards a general theory of adaptive walks on
rugged landscapes. Journal of Theoretical Biology 128: 11-45., 1987.

11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of aspectj. Proceedings of ECOOP, 2001.

12. Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. vol-
ume 1241 of Proceedings European Conference on Object-Oriented Programming,
pages 220–242, Berlin, Heidelberg, and New York, 1997. Springer-Verlag.

104

13. John R. Koza. Genetic programming: on the programming of computers by means

of natural selection. MIT Press, Cambridge, MA, USA, 1992.
14. Melanie Mitchell. An introduction to genetic algorithms. MIT Press, Cambridge,

MA, USA, 1996.
15. P. Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants.

Springer-Verlag New York, Inc., New York, NY, USA, 1990.
16. Andrew Tuson. No Optimization Without Representation: A Knowledge Based

Systems View of Evolutionary/Neighborhood Search Optimization. Ph.D. Thesis,
University of Edinburgh, 1999.

17. Gunter P. Wagner and Lee Altenberg. Complex adaptations and the evolution of
evolvability. Evolution 50 (3): 967-976, 1996.

105

	cover.pdf
	foreword.pdf
	toc.pdf
	part1 - mechanisms.pdf
	P1 - 003-015 Apel, Leich, Rosenmueller and Saake.pdf
	P2 - 017-028 Weston, Taiani and Rashid.pdf
	P3 - 029-038 Reinsch and Watanabe.pdf
	Towards Reusable Heterogeneous Data-Centric Disentangled Parts
	Michael Reinsch, Takuo Watanabe (Tokyo Institute of Technology)

	part2 - technological limits.pdf
	P4 - 041-049 Ebraert, Vanderwoude, D'Hondy and Berbers.pdf
	P5 - 051-057 Rank.pdf
	P6 - 059-070 Cazzola, Pini and Ancona.pdf
	1 Introduction
	2 System Evolution through Design Information
	3 Defining Meta-Data
	4 UML as Meta-Data
	5 How maintain consistency between design and implementation
	6 How to Use Meta-Data for Evolution
	7 Conclusions

	part3 - tools and middleware.pdf
	P7 - 073-081 Bencomo, Blair, Coulson and Battista.pdf
	P8 - 083-094 Liu, Gibbs and Coady.pdf
	P9 - 095-105 Hutchins.pdf

