
Otto-von-Guericke-Universität Magdeburg
Faculty of Computer Science

D
S E
B

Databases

Software
Engineering

and

Master’s Thesis

Evaluation of Unsupervised and
Reinforcement Learning approaches

for Horizontal Fragmentation

Authors:

Milena Malysheva, Ivan Prymak
October 29th, 2019

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
M.Sc. Gabriel Campero

Databases and Software Engineering Workgroup,
University of Magdeburg

Malysheva, Milena; Prymak, Ivan:
Evaluation of Unsupervised and Reinforcement Learning approaches for Horizontal Fragmentation

Master’s Thesis, Otto-von-Guericke-Universität Magdeburg
Faculty of Computer Science, 2019.

Abstract

Finding the right horizontal fragmentation is one of the core database tuning tasks,
helping to improve query performance by reducing the data accessed or improving
parallelism. More so than any other physical database design tasks, choosing a “good”
or optimal horizontal fragmentation scheme has a high computational complexity. One
reason for that lies in the fact that, unlike the similar physical design tasks of vertical
fragmentation or indexing, where the search space is limited by a relatively small number
of table attributes, the complexity of horizontal fragmentation depends on the number of
tuples in a table. Most common algorithms solving the task of horizontal fragmentation
use a set of empirical heuristic rules [1, 2], which help them prune the search space, but
cannot guarantee optimality for all cases.

This thesis proposes two alternative Machine-Learning-based horizontal fragmentation
solutions (clustering-based and Reinforcement-Learning-based), which seek to extend
the potential of existing solutions. The first of them is developed to be a simple and
transparent intermediate ML-based baseline for evaluating the second. The RL-based
approach is built to be continuously trained on the new workloads and to generate
fragmentation schemes very fast after the training phase.

In this work we test different configuration parameters for the clustering based solution:
cost model usage, similarity measures and linkage criteria. As for the Reinforcement-
Learning-based solution, we evaluate multiple Deep-RL agents in the case of fixed query
workload and in the case of generalized query workload. We also test the impact of
hyper-parameters on the agent convergence. Both approaches are compared with a
classical horizontal fragmentation algorithm proposed by Zhang and Orlowska [1]. This
thesis provides a multifaceted comparative analysis of the proposed approaches and
suggests directions for further improvements.

iv

Acknowledgements

We would like to express our profound gratitude to our thesis supervisor M.Sc. Gabriel
Campero Durand. He was a constant source of support and advice and motivated us to
look for new approaches to solving the problems. He guided us through the process and
was always available when we needed his help.

We would also like to thank Prof. Dr. rer. nat. habil. Gunter Saake for letting us write
our Master thesis at his chair. We would like to acknowledge Dr.-Ing. Christoph Steup
for giving us valuable advice at our kickoff meeting.

And last but not least, we would like to thank our families and friends back home for
their love and encouragement. We are especially thankful to our friend Guzel Mussilova
for providing a feedback on the drafts of our thesis.

vi

Declaration of Academic Integrity

We hereby declare that this thesis is solely our own work and we have cited all external
sources used.
Magdeburg, October 29th 2019

———————–
Milena Malysheva

———————–
Ivan Prymak

Contents

List of Figures 4

List of Tables 5

1 Introduction (MM, IP) 1
1.1 Motivation . 1
1.2 Research aim . 4
1.3 Research methodology . 4
1.4 Thesis structure . 5

2 Background 7
2.1 Physical database design (IP) . 7

2.1.1 Vertical fragmentation . 10
2.1.2 Horizontal fragmentation . 10
2.1.3 Hybrid fragmentation . 11

2.2 Algorithms for horizontal fragmentation (MM) 11
2.3 Machine learning . 22

2.3.1 Supervised learning (IP) . 23
2.3.2 Unsupervised learning (MM) . 23

2.3.2.1 Hierarchical-based clustering 30
2.3.2.2 Clustering-based horizontal fragmentation 35

2.3.3 Reinforcement learning (IP) . 43
2.3.3.1 Basic RL . 44
2.3.3.2 Deep RL . 49

2.4 Summary . 53

3 Prototype implementation and research questions 55
3.1 Research questions . 55
3.2 General structure (MM) . 56
3.3 Cost model selection (IP) . 56
3.4 Classical algorithm adaptation (MM) . 59
3.5 Clustering-based solution (MM) . 60

3.5.1 Specific research questions . 60
3.5.2 Clustering algorithm selection . 60

2 Contents

3.5.3 Input data representation . 63
3.5.4 Similarity measures and linkage criteria 68

3.6 Deep-RL-based solution (IP) . 69
3.6.1 Research questions . 69
3.6.2 Architecture . 70
3.6.3 Input data representation . 71
3.6.4 Action representation . 74
3.6.5 Action pruning . 76

3.7 Summary . 77

4 Experimental design (MM, IP) 79
4.1 Experimental environment . 79
4.2 Dataset . 80
4.3 Workloads . 81
4.4 Algorithms settings . 82
4.5 Summary . 84

5 Evaluation and Results 85
5.1 Research questions . 85
5.2 Clustering-based solution (MM) . 86

5.2.1 No cost model included . 88
5.2.2 With the cost model included . 89

5.3 Deep-RL-based solution (IP) . 92
5.3.1 Convergence in the case of fixed workload 93
5.3.2 Convergence in the case of generalized workload 96

5.4 Comparison of the solutions . 99
5.4.1 Quality of the results (MM, IP) 99
5.4.2 Number of cost model calls (MM) 101
5.4.3 Inference times (IP) . 103

5.5 Summary . 103

6 Related work and Future Directions 105
6.1 Clustering for physical design problems (MM) 105
6.2 RL for physical design problems (IP) . 107
6.3 Other optimization algorithms for physical design problems (MM) 109
6.4 Summary . 112

7 Conclusion and Future work (MM, IP) 113
7.1 Work summary . 113
7.2 Threats to validity . 115
7.3 Future work . 116

Bibliography 119

List of Figures

1.1 CRISP-DM process diagram . 5

2.1 A comparison between logical and physical design 8

2.2 Taxonomy of fragmentation strategies . 9

2.3 Example of vertical fragmentation . 10

2.4 Example of horizontal fragmentation . 11

2.5 Example of hybrid fragmentation . 12

2.6 Taxonomy of horizontal fragmentation algorithms 13

2.7 A taxonomy of ML approaches . 23

2.8 Example of clustered data . 24

2.9 Taxonomy of clustering algorithms . 26

2.10 DBSCAN clustering mechanism . 28

2.11 Results of clustering with Gaussian mixture modeling (a) and k-means
(b) algorithms (k = 3) . 30

2.12 Results of clustering with commonly used clustering algorithms 30

2.13 Agglomerative and divisive hierarchical clustering 31

2.14 Dendrogram and clusters generated for k = 5 32

2.15 Single-linkage criterion . 32

2.16 Complete-linkage criterion . 33

2.17 Average-linkage criterion . 33

2.18 Centroid-linkage criterion . 33

2.19 Agent-environment interaction in RL . 43

2.20 Taxonomy of modern RL algorithms . 50

4 List of Figures

2.21 Network architectures for DQN and recent distributional RL algorithms . 53

3.1 General structure of the software system 56

3.2 Input data in Euclidean space . 66

3.3 Architecture of Deep-RL based solution 70

3.4 Schematic representation of rewards throughout the episode 76

3.5 Schematic representation of action pruning embedded into Deep-RL agent 76

5.1 Profiling results (the clustering-based solution) 87

5.2 Profiling results (the classical fragmentation approach) 88

5.3 Clustering-based solution without cost model usage (execution costs are
measured in tuples fetched) . 88

5.4 Clustering-based solution with the cost model usage (execution costs are
measured in tuples fetched) . 90

5.5 Clustering-based solution with the cost model usage (number of cost
model calls) . 90

5.6 Pareto-optimal solutions (execution costs are measured in tuples fetched) 92

5.7 Rainbow DQN in the case of fixed workload (execution costs are measured
in tuples fetched) . 94

5.8 Implicit Quantile in the case of fixed workload (execution costs are
measured in tuples fetched) . 95

5.9 Rainbow DQN in the case of generalized workload (execution costs are
measured in tuples fetched) . 97

5.10 Implicit Quantile in the case of generalized workload (execution costs are
measured in tuples fetched) . 98

5.11 Quality of the fragmentation schemes generated by the horizontal frag-
mentation solutions (execution costs are measured in tuples fetched) . . . 100

5.12 Number of the cost model calls of the clustering-based and the classical
fragmentation solutions . 102

6.1 Horizontal fragmentation approach proposed by Amina et al. 107

6.2 Overview of DRL-based approach to Learn a Partitioning Advisor 108

6.3 ReJOIN framework . 109

List of Tables

2.1 Stirling numbers of the second kind . 12

2.2 Predicate usage matrix . 18

2.3 Predicate affinity matrix . 19

2.4 Ordered predicate affinity matrix . 19

2.5 Clustered predicate affinity matrix . 20

2.6 Clustering in horizontal fragmentation 1 38

2.7 Clustering in horizontal fragmentation 2 42

3.1 Predicate usage matrix . 64

3.2 Atomic fragments . 65

3.3 Atomic fragments after processing . 66

3.4 Penalty-based method . 69

3.5 Example of observation space for 2 queries and 4 maximum fragments . . 74

3.6 Example of action based on query predicate 75

4.1 Ranges of values used by the query generator for numeric fields 82

4.2 Ranges of values used by the query generator for date fields 82

4.3 Parameters of Dopamine agents of DQN family 84

5.5 Average number of initial atomic fragments 102

5.6 Inference times for Rainbow and Implicit Quantile 103

5.7 Average cost model use times . 103

7.1 Comparative analysis of the solutions . 115

6 List of Tables

1. Introduction

In this chapter we present the motivation for our work, define research aims, describe
the research methodology we adopted and outline the structure of this thesis.

1.1 Motivation

The amounts of data modern applications need to store and process are increasing
rapidly. To keep up with this trend, companies and common users require scalable
relational database solutions, which make information easy to analyze and accessible via
traditional SQL-querying. To allow for fast and efficient database systems, developers of
database management systems and database administrators employ various optimization
techniques aiming to improve the speed of serving queries.

One core component in tuning a database system for performance is its physical design,
which defines the actual structure of the database on disk or in memory. Most of the
physical design tasks (index selection, data fragmentation, materialized views, database
storage topology) have a goal of increasing throughput and speed of query processing by
reducing I/O and memory consumption during runtime.

While solving the tasks of physical database design, it is essential to take into considera-
tion the profile of queries that will be executed on the system. A number of papers agree
that it is not feasible to measure performance by a completely random set of queries and
the usage of explicit or parametric workflows is wildly recognized when solving physical
database design problems [3]. In practice, adjusting the database structure to constantly
changing workload parameters proves tricky, leading to degrading performance.

There exist two approaches to automate database configuration for a given query work-
load. The first one relies on using partial automation, i.e. some database tuning advisor
software that suggests a configuration given the database structure and query workload.
This approach is prone to inaccurate estimates and exhibiting highly unpredictable

2 1. Introduction (MM, IP)

behavior in certain cases [4]. The second approach is the use of fully automated solutions.
These solutions can be based on heuristics, that means that they rely on domain specific
knowledge and do not employ machine learning methods; or they can more sophisticated
machine learning models allowing the configuration management system to learn from
its mistakes and successes.

One of the benefits of relational databases is physical data independence. This allows
the details of physical layer change without changing the results of query execution.
Such changes, however, impact performance. Thus, there exists an opportunity for
automated configuration managers to run continuously in a production environment
gathering information about query execution and adjusting physical design configuration
online.

In this thesis we research on applying machine learning (ML) methods to automate the
task of horizontal database fragmentation. This means, finding the groups of predicates
defining data fragments, which allow for the best query execution performance, while
keeping fragments disjoint and the tables reconstructable.

The task of primary horizontal fragmentation presents a specific challenge because
of its vast search space. Whereas in vertical fragmentation, solutions are typically
bound by the number of columns, the solutions to horizontal fragmentation tasks are
virtually unbounded. Therefore, naive approaches like full search have been proved to
be infeasible.

There are different types of the classical horizontal fragmentation algorithms (minterm-
based [2], affinity-based [1], cost-based [5]), but all of them are based on the fixed set
of empirical heuristic rules to limit the search space, and they can hardly be adapted
to the real-world database systems. That is why recently ML-based techniques are
becoming popular in this area, since ML approaches are widely used for tasks where
it is impossible or infeasible to apply fine-tailored traditional algorithms. The nature
of ML algorithms also makes them good candidates, as they can be reused across a
wide variety of applications and because they are considered to be more flexible and
adjustable than complex tailored heuristics.

One possible solution is to adopt machine learning models that would learn from
experience and enable an informed exploration of the search space. However, given the
vastness of potential machine learning models that can be adapted to the task (with
different levels of complexity), it is necessary to define a general data-adaptive (machine
learning) baseline, with limited complexity that would enable comparability and ease of
implementation.

In this thesis we pursue the goal of studying the applicability of machine learning
approaches to the horizontal fragmentation problem and we compare their results with
state-of-the-art approaches. In our research we employ two branches of ML for horizontal
fragmentation: Unsupervised Learning (UL) and Reinforcement Learning (RL). We omit
applying Supervised Learning because getting enough labeled examples to train a model
would require using some other algorithm for horizontal fragmentation. That would also

1.1. Motivation 3

skew the predictions of the model towards mimicking the results of the chosen algorithm,
which might prove sub-optimal.

Our RL-based approach uses model which is designed to learn from interactions with the
an environment, learning long-term value of actions it is taking. We believe that using
this approach makes it easier to navigate the vast search space, such that after model
is fully trained, it can make predictions about fragmentation configurations without
exploring the complete search space.

However, classic RL-approaches present challenges by themselves. One of the problems
arises from the vast search space the model needs to explore: to store the raw log
of traversal through such space would require enormous amounts of memory. The
other problem is caused by the need to represent the horizontal fragmentation problem
in a form that is accessible to the RL-model, i.e. split recommendation of complete
fragmentation into step-wise actions in discrete action space.

To solve some of these challenges we select deep reinforcement learning (DRL) as a
specific sub-type of RL-approaches. Its main advantage is using deep neural networks
(DNN) to gather information about the search space and drastically reduce the amount
of memory needed. Using function approximation based on DNN also provides the
benefit of estimating the rewards for unvisited states.

In order to carry out our research we make several assumptions:

• We consider the problem of horizontal fragmentation where the maximum fragments
is limited by some constant. This limitation is dictated by the requirement of the
RL-based approach to have a discrete finite observation space.

• We limit our design to use cost models instead of actual database query execution
statistics. The removal of this assumption will definitely require changes to our
models’ training and evaluation process and might cause longer convergence times
due to external factors affecting the database performance. Specifically, we use an
HDD cost model that estimates the cost of query execution as the amount of data
the database management system will have to fetch from the disk.

• We do not consider the costs of creating and maintaining fragments, focusing
solely on improvement of the query execution time.

• We assume that the database on which our solutions work is not distributed.
Therefore, we do not consider the costs and characteristics, which are typically as-
sociated with distributed databases (i.e. transportation costs, fragment allocation,
distributed query planning, etc.)

• We assume that all queries of the workload are executed equally often to simplify
the problem definition. To remove this assumption small changes will need to
be introduced into the cost calculation. In essence, this means that the cost of
executing each query should be multiplied by its weight factor, which represents
the frequency of this query being executed.

4 1. Introduction (MM, IP)

• For our RL-based approach we assume that all queries are only using range
predicates to streamline the encoding of queries. For that reason we use synthetic
queries with predicates over columns, which can be range-queried.

The assumptions above define our research’s scope and outline the possible directions
for future work.

1.2 Research aim

The main goal of this thesis is to study applicability of ML approaches to the problem
of finding optimal horizontal fragmentation for a fixed maximum amount of fragments.
In our thesis, we would like to address the following questions:

1. To what extent can an efficient, case-specific, transparent (i.e., with limited
configuration parameters and reasonably easy to interpret) approach based on
Unsupervised learning (UL) lead to cost improvements over a primitive strategy?

2. Which configuration parameters of UL-based approach have the most influence on
the result?

3. What is the training cost and impact of parameters for an RL-based approach?
How does the choice of Deep-RL model affect the convergence of RL-solution.

4. How well do proposed ML-based approaches perform compared to each other and
to state-of-the-art horizontal fragmentation algorithms? What are the optimal
parameters for a representative evaluation that would capture the best performance
of both RL- and UL-based approaches?

1.3 Research methodology

We adopt the CRISP-DM process model for research and design in our thesis [6]. It
is a popular standard for organizing data mining projects. Although our problem is
not strictly a data mining task, CRISP-DM is widely used in this related field and its
generality makes it appropriate to use as a framework for organizing work on this thesis.

1.4. Thesis structure 5

Figure 1.1: CRISP-DM process diagram

Business understanding: At this stage we survey state-of-the-art horizontal frag-
mentation approaches. We also research existing application of ML to horizontal
fragmentation and related fields. This is documented in Chapter 2.

Data understanding: At this stage we study the TPC-H benchmark (tables specif-
ically). Here we decide on what query and table features will ML models use for
fragmentation generation. This is documented in Chapter 4.

Data preparation: At this stage we design training and experiment test-benches. This
is documented in Chapter 4.

Modeling: At this stage the proposed horizontal fragmentation solutions are designed.
This is documented in Chapter 3.

Evaluation: At this stage we compare the performance of the aforementioned ML
approaches against each other as well as against traditional horizontal fragmentation
algorithms. This is documented in Chapter 5.

Deployment is beyond the scope of this thesis; therefore, we skip this stage.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

6 1. Introduction (MM, IP)

• Chapter 2 provides an overview on topics covered in this thesis, such as horizontal
database fragmentation and machine learning approaches. We specifically focus
on the UL and RL branches of machine learning here.

• Chapter 3 documents the design of the prototypes of the horizontal partitioning
advisors developed for this thesis.

• Chapter 4 describes how the experiments are designed. In this chapter we include
the description of queries and data used for training and evaluation. We specify
the parameters of the UL and RL models used in experiments.

• Chapter 5 includes the experiment results for both UL and RL models against
state-of-the-art algorithms as well as against each other. We also provide the
interpretation of the results here.

• Chapter 6 consists of our selection of related work that provides context to our
study.

• Chapter 7 concludes our work, summarizing the results of our study, providing
discussion about possible future work and disclosing possible threats to the validity
of our work.

2. Background

In this chapter we provide an overview of the topics covered in this thesis. This chapter
is structured as follows:

• In Section 2.1 we present concepts of database physical design, focusing on database
fragmentation.

• In Section 2.2 we proceed with describing state-of-the-art algorithms for solving
the problem of finding optimal horizontal fragmentations.

• In Section 2.3 we describe machine learning approaches, outlining the three main
branches: supervised learning, unsupervised learning and reinforcement learning.
We provide an in-depth overview of the last two, as they are relevant for our
research.

• In Section 2.4 we summarize our overview.

2.1 Physical database design

Physical database design represents the mapping of a logical data model of a database
to the physical data structure of the target database management system (DBMS).
Physical database design typically consists of two parts:

• Pre-deployment, where the logical data model is translated into table definitions
and column constraints, relations are broken down to normalize them, and basic
indexing is added.

• Post-deployment, where the physical design tuning takes place. Here the goal
is to improve performance while keeping higher level abstraction models intact.

8 2. Background

It should be noted that both pre- and post-deployment stages can happen on a live
database. The key difference here is that the former introduces a reaction to a change
in higher level data models, while the latter is independent from logical and conceptual
design.

Figure 2.1 outlines the main conceptual differences between logical and physical database
design.

Figure 2.1: A comparison between logical and physical design

• Tables are a basic storage structure in physical design of a relational database.
They represent typed data stored on a physical storage. Tables consist of multiple
tuples (or rows), where each tuple has the same attributes (columns). Tables can
be fragmented row-wise or column-wise for manageability or performance reasons.

• Integrity constraints serve as an enforcement of application-specific rules on the
way data is stored, added, processed and deleted. They also ensure data validity
and provide additional metadata for query planners.

• Materialized views are cached results of queries or sub-queries, representing a
collection of data from one or multiple tables structured in a way that is required
by a specific application. These results are stored to reduce the performance
impact of repeatedly running costly queries over and over in the cases when an
average cost of updating a materialized view is lower than an average cost of
re-running the query.

• Indexes are optional data structures used in databases to optimize query lookup
time for specific columns. There exist multiple types of indexes, tailored to the

2.1. Physical database design (IP) 9

data type of the column (or columns) that needs indexing or to the type of the
filter predicate (or predicates) in a query that is being optimized.

Among other challenges in database physical performance optimization is the problem of
fragmenting the relation into physical fragments, so that their layout produces the best
performance improvement over a specified query workload. Better query run time for
fragmented relations is achieved by reducing I/O costs, allowing to fetch from disk and
store in memory less data. Similarly, fragmentation can also contribute to parallelism.

There are several fragmentation techniques, their taxonomy is presented in Figure 2.2,
adapted from [7].

Fragmentation

HorizontalVertical Hybrid

Primary Derived

Figure 2.2: Taxonomy of fragmentation strategies

In general, each fragmentation technique is a way of altering the underlying physical
data structure while keeping the base logical-level relation intact. To ensure that no
data is lost and no redundant data is created during the fragmentation process, each
type of fragmentation must comply with the following correctness rules :

• Completeness: there must be no data loss due to the fragmentation process.
Each tuple from the base table should be present in at least one resulting fragment.

• Reconstructability: it should be possible to fully reconstruct the tuples of the
base table from the information stored in fragments. This ensures preservation of
functional dependencies.

• Disjointness: there should not be no tuples from the base table which are present
in two or more fragments. This is a requirement when there is no replication.

10 2. Background

2.1.1 Vertical fragmentation

Vertical fragmentation is a “column-wise” decomposition of a table into multiple sub-
tables. This results in fragments consisting of various attribute groups of the original
relation. For table R, fragments R1, R2, ..., Rn can be formed by applying the following
operation:

Ri = ΠAi
(R) + Πprimarykey(R), (1 ≤ i ≤ n) (2.1)

where Ai is a set of non-key attributes of table R. To satisfy the completeness requirement
each of the attributes from the original table should be present in at least one set from
A. An illustration of fragmenting a table vertically is presented in Figure 2.3.

Figure 2.3: Example of vertical fragmentation

The primary key is included in all fragments of a vertically fragmented table to ensure
that it is possible to reconstruct the relation satisfying the reconstructability requirement.
One can reconstruct the original table by joining the fragments on the primary key:

R = R1 ./primarykey R2 ./primarykey/primarykey Rn (2.2)

2.1.2 Horizontal fragmentation

Horizontal fragmentation is a “tuple-wise” decomposition of a table R into sub-tables
R1, R2, ..., Rn, where each sub-table Ri can be expressed as follows [8]:

Ri = σPi
(R), (1 ≤ i ≤ n) (2.3)

2.2. Algorithms for horizontal fragmentation (MM) 11

where Pi are fragmentation predicates. In principle, these predicates should not allow
overlapping fragments, and the collection of predicates should be sufficient to reconstruct
the whole table.

An illustration of fragmenting a table horizontally can be seen in Figure 2.4.

Figure 2.4: Example of horizontal fragmentation

There are two main types of horizontal fragmentation: primary and derived.

Primary horizontal fragmentation partitions the table using its own non-key data to
guide the fragmentation process. This improves the performance by allowing the query
planner to take advantage of fragment metadata and entirely skip fetching fragments
which do not fit the query.

Derived horizontal fragmentation partitions a table using its key data, usually by
association to some other table, related to the target table. This approach is useful when
the target query is only used together with the related table and the query workload
does not have predicates on attributes from the target table.

2.1.3 Hybrid fragmentation

Hybrid (also called mixed) fragmentation is a type of fragmentation, which combines
horizontal and vertical fragmentation. The fragments in such case are represented by
groups of rows and columns of the original relation.

An example of hybrid fragmentation can be seen in Figure 2.5:

2.2 Algorithms for horizontal fragmentation

As discussed earlier, a proper fragmentation plays an important role in the performance
of a database system. However, finding an optimal fragmentation is not an easy task
to solve. An obvious choice, which can provide an optimal fragmentation scheme by

12 2. Background

Figure 2.5: Example of hybrid fragmentation

considering all possible fragmentations would be exhaustive search. When possible, it
is a good approach to follow, if the task is to perform vertical fragmentation, as the
number of attributes in a table is often small and this number limits the search space.
However, it is infeasible to solve the horizontal and hybrid fragmentation problems with
exhaustive search. In combinatorics, the number of ways to group n elements into k
groups is called a Stirling Number of the second kind. It is denoted as S(n, k). It is
clear from Table 2.1, that even for small values of n and k, the Stirling number S(n, k)
can become very large. For example, for 64 rows and 5 fragments the number of possible
fragmentation schemes is equal to 4 ∗ 1042. Moreover, a table with only 64 rows is an
unrealistic scenario. PostgreSQL, for instance, does not put a limit on the number of
rows in the table at all.

n

k
1 2 3 4 5 6 7 8 9 10 11

1 1

2 1 1

3 1 3 1

4 1 7 6 1

5 1 15 25 10 1

6 1 31 90 65 15 1

7 1 63 301 350 140 21 1

8 1 127 966 1701 1050 266 28 1

9 1 255 3025 7770 6951 2646 462 36 1

10 1 511 9330 34105 42525 22827 5880 750 46 1

11 1 1023 28501 145750 246730 179487 63987 11880 1155 55 1

Table 2.1: Stirling numbers of the second kind

2.2. Algorithms for horizontal fragmentation (MM) 13

In general, in order to reduce the search space for problems like horizontal fragmentation
such methods as branch and bound or dynamic programming are usually applied [9].
But these methods are still not fast enough to provide a “good” solution within a limited
time frame. Therefore, nowadays horizontal fragmentation is performed using various
heuristic-based algorithms.

A comprehensive taxonomy of the horizontal fragmentation algorithms inspired by
Bouchakri et al. [10] is presented in Figure 2.6.

Figure 2.6: Taxonomy of horizontal fragmentation algorithms

The task of horizontal fragmentation can be addressed in two settings: static and
dynamic. A static setting corresponds to the cases where the workload (or patterns
of the user queries) is known beforehand and does not change over time. However, in
real life it is difficult to know user queries at the analysis stage. That is why usually
the default setting for the task is dynamic (with changing patterns of user queries). As
noted by Ozu et al. [2], the question is not whether a system is dynamic, but rather
how dynamic it is. If the system is not very dynamic designers might choose as a
workable solution to map a dynamic setting to a corresponding static setting, analysing
only the most popular user queries from the database system. This approach will
probably not produce an optimal fragmentation scheme, but it will reduce the search
space significantly and allow to generate “good enough” solutions. In this context, if
the information about all user queries is given and now the queries, which will be an
input for a fragmentation algorithm, should be selected, then the “80/20 rule” might be
applied as a rule of thumb [2]. This rule reads that the most popular 20% of the queries
that tend to make up 80% or more of all queries access should be used as an input for
the fragmentation algorithm.

As for the static fragmentation algorithms, all of them usually fall into one of the
following categories:

14 2. Background

• Minterm-based algorithms, which generate a fragmentation scheme from the
conjunction of simple predicates [2].

• Affinity-based algorithms, which group simple predicates from the queries
according to their affinities and generate horizontal fragments using a conjunction
of predicates belonging to the same group [1].

• Data mining algorithms, which will be discussed later in detail, focusing on
the clustering-based solutions.

• Cost-based algorithms, which work by generating a set of valid fragmentation
schemes and selecting the best one using a cost model. One of such algorithms
was proposed by Bellatreche et al. [5].

This taxonomy is neither strict nor entirely exhaustive: e.g. many data mining and
affinity-based algorithms use cost models to guide the fragmentation process. In addition,
other types of horizontal fragmentation algorithms can be distinguished: graph-based
algorithms, algorithms based on integer programming, etc.

Minterm-based algorithms

Ceri, Negri and Pelagatti [8] formulate the horizontal partitioning problem using the
access patterns of the applications. Authors define some fundamental terms, which later
were used in many other minterm-based fragmentation algorithms. One of these terms
is the so-called simple predicate. If Ai is an attribute of a relation R, a simple predicate
pk defined on the relation R can be expressed as follows:

pk = Ai θ V, (2.4)

where V is a value that lies within the domain of the attribute Ai and θ is a comparison
operator.

A conjunction of simple predicates in their natural or negated form is called a minterm
predicate. Minterm predicates are generated from a set of simple predicates, which are
selected according to the rules of completeness and minimality.

The completeness of a set of simple predicates is formulated using access statistics. A
set of simple predicates is said to be complete if tuples that belong to the same fragment
(constructed from a minterm predicate) have the same probability of being accessed.
Completeness of the predicates set can be checked automatically, but in this case access
probabilities of each tuple in relation on each query (application) should be known.
That is why a complete set of predicates is often chosen by a designer who uses his own
experience and his knowledge about the dataset [2].

A set of predicates is minimal if each predicate in the set is relevant. A predicate
is relevant if there are two fragments fi and fj obtained from minterm predicates mi

2.2. Algorithms for horizontal fragmentation (MM) 15

and mj, which differ only in the form of this predicate, and these two fragments have
different ratio between number of accesses to their records acc(mi) and acc(mj) and the
cardinality of the fragments:

acc(fi)

card(fi)
6= acc(fj)

card(fj)
(2.5)

Based on minterm predicates and the concepts of completeness and minimality, authors
propose a methodology for discovering access patterns and formulate the optimal
partitioning problem for different application environments. Authors have not proposed
a fully-fledged algorithm for horizontal fragmentation, but the concepts formulated in
the paper are the base for the complete class of minterm-based horizontal fragmentation
algorithms.

For instance, based on these concepts Ozsu and Valduriez [2] have proposed an algorithm
called COM_MIN, which automatically generates a complete and minimal set of simple
predicates Pr′ from the initial set Pr of simple predicates. First, the algorithm chooses
a relevant predicate and adds it to the set Pr′. Then, it iteratively tries to add other
simple predicates, while ensuring the minimality of Pr′ at each step. The algorithm is
presented below. In the algorithm Rule 1 ensures that each fragment obtained from Pr
is accessed differently by at least one application.

Algorithm 1: COM MIN algorithm [2]

Input: R: relation; Pr: set of simple predicates
Output: Pr′: set of simple predicates
Declare: F : set of minterm fragments
find pi ∈ Pr such that pi partitions R according to Rule 1 ;
Pr′ ← pi;
Pr ← Pr − pi;
F ← fi;
repeat

find a pj ∈ Pr such that pj partitions some fk of Pr′ according to Rule1;
Pr′ ← Pr′ ∪ pj;
Pr ← Pr − pj;
F ← F ∪ fj;
if ∃pk ∈ Pr′ which is not relevant then
Pr′ ← Pr′ − pk;
F ← F − fk;

end if
until Pr′ is complete ;

For primary horizontal fragmentation PHORIZONTAL algorithm was developed (Algo-
rithm 2). The algorithm calls COM_MIN algorithm to obtain a complete and minimal
set of simple predicates and generates a set of minterm fragments M from it. Then it

16 2. Background

tries to reduce the number of minterm fragments by eliminating the redundancy and
contradictions from the set M.

Algorithm 2: PHORIZONTAL algorithm [2]

Input: R: relation; Pr: set of simple predicates
Output: M : set of minterm fragments
Pr′ ← COM_MIN(R,Pr);
determine the set M of minterm predicates;
determine the set I of implications among pi ∈ Pr′;
for each mi ∈ M do

if mi is contradictory according to I then
M ←M −mi;

end if
end for

The PHORIZONTAL algorithm, in our opinion, has some restrictions which make it hard
to use when dealing with a real database system:

• The implications, that are used to eliminate redundancy and contradictions, are
defined according to the semantic properties of the predicates, not according to
the database state.

• The proposed implementation does not use any cost model and the algorithm
will generate as many fragments as it can, following minimality and completeness
rules. So the algorithm does not rate a simple predicate in terms of its efficiency
as a fragmentation feature, which makes the algorithm hard to use if there are
limitations on the number of fragments.

Affinity-based algorithms

Affinity-based algorithms use the concept of affinity between predicates to guide the
horizontal fragmentation process. The classic algorithm of this type was developed by
Zhang and Orlowska [1]. In this algorithm the fragmentation process is divided into two
phases: primary horizontal fragmentation, using a bond energy algorithm, and derived
horizontal fragmentation, which is based on the first phase.

The bond energy algorithm was originally introduced for the data fragmentation problem
by McCormick and Schwietzer [11]. This algorithm has been already applied to the
vertical fragmentation problem before [12]. In their work Zhang and Orlowska adapted
the bond energy algorithm to the horizontal fragmentation problem. To support this
kind of adaptation, the authors introduce the concept of predicate affinity, which reflects
the similarity between two simple predicates in terms of their usage in transactions.
Predicates with a high affinity between each other should be grouped together.

2.2. Algorithms for horizontal fragmentation (MM) 17

In the first phase of the algorithm predicates are clustered using a predicate affinity
matrix. The bond energy algorithm permutes rows and columns of the affinity matrix
while trying to maximize an overall global affinity measure. After predicates have been
ordered, split-non-overlap algorithm [12] iteratively splits the matrix into two parts.

In detail, the algorithm has the following steps:

1. Construct the predicate usage matrix with the transactions as rows and simple
predicates as columns:

PUij =

{
1, if a transaction i uses a simple predicate j

0, otherwise
(2.6)

2. Construct the predicate affinity matrix (PA), where a cell (i, j) contains the
combined frequency of the transactions, which access predicate i and predicate j.

3. Order the predicates using the bond energy algorithm. The global affinity measure
(AM) that needs to be maximized is:

i=n∑
i=1

j=n∑
j=1

PAij ∗ (PAi,j−1 + PAi,j+1), (2.7)

where n is the number of simple predicates and PAi,0 = PAi,n+1 = 0

4. Partition the predicate affinity matrix into non-overlapping fragments with the
split-non-overlap algorithm. In this step a point x along the main diagonal of
the PA matrix is found. It divides the matrix into two parts: upper and lower.
According to Navathe et al. [12] the point can be selected by evaluating the cost
function:

cost = CL ∗ CU − CI2, (2.8)

where CL is the sum of accesses of transactions which use only predicates from
the upper part of the matrix; CU is the sum of accesses of transactions which
use only predicates from the lower part; CI is the sum of accesses of transactions
which use predicates both from upper and lower parts.

By minimizing the proposed cost function authors intend to help the process of
partitioning the predicate space into two, while achieving as little transactions as
possible that have predicates in both of the obtained partitions.

It should be noted that the cost can also be obtained using other cost functions.

One problem of this algorithm is that without modifications it will not be able
to find “inner” fragments, if there are any (since it only finds one point, that
divides the matrix into two parts). This problem can be solved by using the SHIFT

18 2. Background

procedure [12], which iteratively shifts columns (and rows accordingly) of the PA
matrix one position to the right, and then runs the split-non-overlap algorithm
on the matrix again. The SHIFT procedure is called n times to obtain the best
possible position of the point x.

To obtain m fragments m− 1 points should be selected along the main diagonal.
This can be achieved by following one of the approaches:

• Try all possible m − 1 points along the main diagonal. The complexity of
such approach is: (

n

m− 1

)
=

n!

(m− 1) ∗ (n−m+ 1)
(2.9)

• Recursively split each partition obtained in the previous iteration into two
parts. The complexity of the approach is much lower, but it can lead to
suboptimal solutions.

5. Construct fragments using partitions obtained in the previous step.

6. Add to the list of fragments a fragment which is obtained from the negation of
the disjunction of the predicate terms.

For illustration, let’s consider the following PU matrix presented in Table 2.2.

transaction

predicate
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Access

freq.

T1 1 1 1 5

T2 1 1 1 1 1 20

T3 1 1 1 1 1 20

T4 1 1 1 1 15

T5 1 1 10

T6 1 1 1 1 10

Table 2.2: Predicate usage matrix

The PA matrix, which will be generated in the second step of the algorithm, is presented
in Table 2.3.

2.2. Algorithms for horizontal fragmentation (MM) 19

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

P1 30 0 0 0 0 20 0 20 0 20 30

P2 0 20 20 0 15 0 0 0 15 5 0

P3 0 20 20 0 15 0 0 0 15 5 0

P4 0 0 0 30 20 0 20 0 30 10 30

P5 0 15 15 20 35 0 20 0 35 0 20

P6 20 0 0 0 0 20 0 20 0 20 20

P7 0 0 0 20 20 0 20 0 20 0 20

P8 20 0 0 0 0 20 0 20 0 20 20

P9 0 15 15 30 35 0 20 0 45 10 30

P10 20 5 5 10 0 20 0 20 10 35 30

P11 30 0 0 30 20 20 20 20 30 30 60

Table 2.3: Predicate affinity matrix

The output of the bond energy algorithm for the PA matrix is presented in table
Table 2.4.

P6 P1 P8 P10 P11 P7 P4 P9 P5 P2 P3

P6 20 20 20 20 20 0 0 0 0 0 0

P1 20 30 20 20 30 0 0 0 0 0 0

P8 20 20 20 20 20 0 0 0 0 0 0

P10 20 20 20 35 30 0 10 10 0 5 5

P11 20 30 20 30 60 20 30 30 20 0 0

P7 0 0 0 0 20 20 20 20 20 0 0

P4 0 0 0 10 30 20 30 30 20 0 0

P9 0 0 0 10 30 20 30 45 35 15 15

P5 0 0 0 0 20 20 20 35 35 15 15

P2 0 0 0 5 0 0 0 15 15 20 20

P3 0 0 0 5 0 0 0 15 15 20 20

Table 2.4: Ordered predicate affinity matrix

20 2. Background

The actual behavior of the split-non-overlap algorithm in splitting the matrix will
depend on the cost function and on the way in which m-way partitioning is performed.
But visually three overlapping clusters can be distinguished:

P6 P1 P8 P10 P11 P7 P4 P9 P5 P2 P3

P6 20 20 20 20 20 0 0 0 0 0 0

P1 20 30 20 20 30 0 0 0 0 0 0

P8 20 20 20 20 20 0 0 0 0 0 0

P10 20 20 20 35 30 0 10 10 0 5 5

P11 20 30 20 30 60 20 30 30 20 0 0

P7 0 0 0 0 20 20 20 20 20 0 0

P4 0 0 0 10 30 20 30 30 20 0 0

P9 0 0 0 10 30 20 30 45 35 15 15

P5 0 0 0 0 20 20 20 35 35 15 15

P2 0 0 0 5 0 0 0 15 15 20 20

P3 0 0 0 5 0 0 0 15 15 20 20

Table 2.5: Clustered predicate affinity matrix

The concept of predicate affinity was also used by Navathe, Karlapalem and Ra [13]. But
instead of using the bond energy algorithm, authors use a graph-based algorithm inspired
by the MAKE-PARTITIONING vertical fragmentation algorithm proposed by Navathe and
Ra [14] to group the predicates. This algorithm takes the predicate affinity matrix in
the form of a complete graph as input and produces a linearly connected spanning tree.
It generates fragments which are formed by the cycles in the graph.

Along with the minterm-based PHORIZONTAL algorithm, the algorithm proposed by
Zhang and Orlowska is considered to be a classical horizontal fragmentation approach.
It is often used as a baseline for other horizontal fragmentation algorithms. But all the
affinity-based horizontal fragmentation algorithms presented above have some drawbacks:

• Transactions do not necessarily consist of an overlapping set of simple predicates.
In reality, it could be that there is not even a single pair of transactions sharing
a predicate. Moreover, some of the predicates, which are syntactically different,
could access the same set of tuples. The algorithms do not handle such cases
properly.

• The obtained fragments are not necessarily disjoint. There could be rows which
should be placed in several fragments.

2.2. Algorithms for horizontal fragmentation (MM) 21

Other horizontal fragmentation algorithms

There are other approaches to horizontal fragmentation presented in the literature.

An interesting approach to horizontal fragmentation was developed by Shin and Irani [15].
This approach is based on user reference clusters. Authors claim that the information
about user queries is not enough to produce a good horizontal fragmentation scheme.
Authors propose to use knowledge about data itself to revise user queries, so that
they can be used for better estimation of user reference clusters. This is done by a
so-called knowledge-based system. User reference clusters are thus the base for horizontal
fragmentation. In the paper authors answer the questions on how knowledge about
data can be incorporated into the horizontal fragmentation process, what knowledge is
relevant for the task and how the knowledge should be represented.

A transaction-based horizontal fragmentation algorithm was proposed by Khalil et a. [16].
They use an optimal binary fragmentation algorithm, which is based on the branch and
bound algorithm. The algorithm takes as input predicate usage matrix and generates
two fragments first. Then they can be further split using the same algorithm until the
required number of fragments is reached. Authors also proposed a replication protocol,
that provides better reliability and availability.

In 2010 Khan and Hoque [17] presented a fragmentation technique, which does not use
empirical data such as user queries and their frequencies. The proposed technique can
be used at the initial stage of the fragmentation and allocation. The information used
in the algorithm can be gathered at the requirements analysis stage: the fragmentation
scheme is generated based on the importance of the data with respect to nodes of a
distributed system.

Taft et. al., within the context of their solution E-STORE, frame the horizontal
fragmentation problem as an integer programming task [18]. Authors specifically tackle
fine-grained partitioning for OLTP workloads. In this context they discuss that fine-
grained partitioning is important in periods of high query loads, where the distribution
of queries needs optimization for load balancing, whereas coarse-grained partitioning
can be good enough for periods of moderate query loads. Authors note that fine-grained
partitioning needs more precise tracking of accesses and also requires more complex
models, than for the case of coarse-grained partitioning. Consequently they propose
to use a default coarse-grained approach and only switch to a fine-grained approach
when the load is detected to be increasing beyond a threshold. In the case of such
increases, authors carry out tracking at tuple-level, to identify better the relevance of
tuples to the workloads. At this stage, the authors establish the fragmentation task
as a bin-packing/integer programming problem, which consists of assigning tuples into
a number of fragments, for good data distribution and load balancing, subject to the
constraint that each fragment can receive a maximum load. Since exact solutions to
this problem are time consuming, authors study the use of some heuristics such as first
fit or greedy, which are shown to provide acceptable approximate solutions.

Curino et al. frame horizontal fragmentation as a graph partitioning problem [19]. They
specifically propose SCHISM, a methodology where tuples (or groups of tuples) are

22 2. Background

represented as nodes of a graph, and transactions are represented as a set of edges
connecting the tuples that the transaction uses. In this way, a min-cut partitioning is
sought, in order to create a horizontal fragmentation applicable for distributed scenarios,
where the chance of a distributed transaction is reduced and the load is balanced between
the nodes. In addition, authors consider data replication. Two drawbacks of this method
are: in the first place, the complexity of the partitioning problem as the number of
tuples and transactions grow, and in the second place, the difficulty of creating adequate
predicates to describe the resulting partitions. Authors adopt and evaluate solutions
for such drawbacks, including methods for grouping tuples together and sampling the
transactions, and a technique based on a decision tree to identify a compact set of
predicates able to describe the fragments to which tuples are assigned.

Golab et al. study different aspects of the approach proposed of Curino et al., such
as considering the impact of replication, materialized views, and others [20]. Authors
show the interesting connection that reducing the problem to graph-partitioning is more
efficient than treating it as an integer programming problem.

Serafini et al. propose CLAY [21], a graph-based approach similar to SCHISM. Authors
propose to start with an initial configuration, and to use the graph model for live
re-configurations, improving load balancing. CLAY represents a solution different from
SCHISM, because authors consider an incremental re-partitioning problem and there is
a goal of minimizing the migrations between partitions.

Horticulture [22], by Pavlo et al., is a related work that uses access graphs as models
to summarize database traces and to guide the choice of whether to apply horizontal
fragmentation among a set of optimizations from an overall physical design process.
The work focuses on skew conditions and tackles physical design beyond horizontal
fragmentation. It proposes a search tree to evaluate options, a local search approach
that gives an approximate solution and a cost model to guide the process. Unlike other
research, this work does not consider fine-grained fragmentation, and the use of the
graph is limited to data representation.

Apart from the discussed approaches, there are many others aiming to improve existing
algorithms with a faster runtime, better results or simpler-to-maintain fragmentation
strategies. In the next chapters we discuss clustering-based solutions and reinforcement-
learning based solutions, which are the core topic of our research.

2.3 Machine learning

In this section we briefly introduce the area of machine learning (ML), while describing
their applicability to the task of horizontal fragmentation. Given that the topic is vast,
we focus on the approaches we use in this thesis and briefly mention the other approaches
alongside with the reasoning about why we did not choose them.

Machine learning is often defined as a study of algorithms and approaches that computer
systems can use to solve tasks without being explicitly programmed [23]. ML approaches
rely heavily on mathematical/statistical models to make predictions and decisions.

2.3. Machine learning 23

ML approaches are widely used for tasks where it is impossible or infeasible to apply
fine-tailored traditional algorithms. The nature of ML algorithms also makes them good,
“pluggable” solutions, meaning that they can be potentially reused across a wide variety
of applications.

A taxonomy of ML approaches is presented in Figure 2.7:

Figure 2.7: A taxonomy of ML approaches

2.3.1 Supervised learning

Supervised learning is a type of machine learning, where the algorithm is designed
to approximate a function that maps values from input space to output space, using
already mapped examples. These examples are called a training set. A supervised
learning algorithm produces an inferred mapping function, which can be used to map
new, previously unseen by the model, inputs.

The core problem of designing a supervised learning solution for horizontal fragmentation
problem is preparing a training set of optimally partitioned tables. As discussed earlier,
the horizontal partitioning problem proven to be NP-complete; therefore, it is infeasible
to gather training sets via naive full search approaches. Employing various traditional
heuristic approaches to generate training data would implicitly change the task from
“finding an optimal horizontal fragmentation” to “finding the horizontal fragmentation
that traditional approach used in generation of training data would generate”, causing
the solution to mimic the behaviour and shortcomings of said algorithm.

2.3.2 Unsupervised learning

Unsupervised learning is defined as a type of machine learning, designed to find patterns
in data without using a pre-labeled training set. Unlike supervised, unsupervised learning
does not have any external guidance and its goal is to identify patterns in a set of inputs
to categorize them in some way, which could be very useful for such tasks as horizontal
fragmentation.

Density estimation is sometimes referred to as a statistic approach to unsupervised
learning [24]. Density estimation task is a task of finding an estimate of underlying

24 2. Background

probability density function from a dataset. Density estimation is often used in anomaly
detection tasks, distribution of disease cases, for exploratory data analysis, etc. And
although it is not suitable for our problem, density estimation can be applied for various
clustering-related issues, such as estimation of an optimal number of clusters or outlier
detection.

Another important unsupervised learning task is called dimensionality reduction. Due
to the curse of dimensionality and high computation complexity of some ML-algorithms
it is common practice to reduce a set of features used in the algorithms so that it still
captures important patterns in the dataset, but does not contain redundant or irrelevant
information. There are some methods of dimensionality reduction aimed at supervised
learning, but most of them are unsupervised [24]. In this thesis we do not concentrate
on the scalability of our approaches (e.g. scenario of horizontal fragmentation for large
workloads) so we will not apply this technique. However, it might be an interesting
direction for future work.

Clustering is another well-known unsupervised learning task. The goal of a clustering
algorithm is to group given objects into clusters (Figure 2.8). Objects inside each cluster
should be more similar to each other than to the objects from other clusters according
to a specified metric.

Figure 2.8: Example of clustered data

Applications of clustering analysis include, among others, biology, medicine, archaeology,
business analytic, marketing, physical geography. Clustering algorithms are also used in
computer science applications, such as: natural language processing, image processing,
document clustering and recommender systems.

Clustering-based approaches have been commonly applied for horizontal fragmentation.
There are several reasons for it:

• The horizontal fragmentation problem can be easily formulated as a typical
clustering problem: objects (rows) need to be grouped so that the objects (rows)

2.3. Machine learning 25

inside one group (fragment) are more similar (in terms of access patterns) to
each other than to the objects (rows) in other groups (fragments). The similarity
between a pair of rows can be evaluated using query access statistics.

• Clustering is an unsupervised ML problem. So unlike supervised learning there is no
need for a training dataset with the correct answers (labels) for given inputs. This
is a crucial point since the horizontal fragmentation problem is a computationally
complex problem and it is arguably difficult to generate a sufficient amount of
input-output pairs for supervised learning.

• Furthermore, unlike reinforcement learning (and its subclass, deep reinforcement
learning), unsupervised learning does not need so much time for training. And
although a trained model with reinforcement learning could give the correct answer
much faster, the amount of time one would spend on training it is potentially very
large.

Since we also use a clustering algorithm for horizontal fragmentation in this thesis, we
will expand more on this topic.

To solve a clustering task the following steps should be taken:

1. Selection of the dataset.

A set of objects for clustering should be selected.

2. Selection of the features.

Finding the proper features for clustering can be pretty challenging in itself. An
engineer needs to carefully analyse the points of concern and try to eliminate
redundant and irrelevant features. This step may also include normalization
procedures.

3. Selection of the similarity measure.

To assess the similarity between two objects a special function, called similarity
measure or similarity function, should be defined.

4. Selection of the clustering criterion.

Depending on the clustering algorithm some cost model or set of conditions should
be specified.

5. Selection of the clustering algorithm.

A lot of algorithms have been developed for solving clustering tasks. A taxonomy
of the clustering algorithms is presented below.

6. Running the algorithm and analysis of the results.

26 2. Background

Apart from the aforementioned steps, there are also algorithm-specific questions regarding
configurable aspects or hyper-parameters that need to be answered additionally, e.g.
how to initialize clusters in k-means algorithm, how to select an appropriate linkage
criterion for hierarchical clustering or how to pick a suitable minimum cluster size and
radius of a neighborhood for DBSCAN algorithm.

The categorization of clustering algorithms can be performed using different criteria,
like the clustering model or relationships between clusters. In this thesis we use a
categorization framework, which considers the algorithms from an engineer’s point of
view and categorizes them based on the general clustering approach used [25]:

Figure 2.9: Taxonomy of clustering algorithms

Partitioning-based clustering algorithms iteratively reorganize the initial dataset
into a set of partitions. The algorithms move objects at each iteration into different
clusters while trying to optimize some criterion. Typical examples of partitioning-
based clustering algorithms are: k-means, k-medoids or PAM (partitioning around
medoids), k-medians, CLARA (clustering large applications), CLARANS (clustering
large applications based on randomized search) and fuzzy c-means.

Many partitioning-based algorithms are variations of k-means. They divide objects
into k clusters. Each cluster is represented by a center, which is calculated differently
depending on the algorithm. In k-means the centroid is calculated as a mean of all points
in the cluster, the k-medians algorithm uses medians and in k-medoids the centroid of
a cluster is selected among objects, which are assigned to this cluster at the current
iteration.

The k-means algorithm iteratively performs two steps:

• Each object is assigned to a cluster, which is the closest to the object. So the
objective is to minimize the sum of Euclidean distances from the centers to the
points in the corresponding clusters, i.e. the sum of the squared error (SSE) [26]:

SSE =
K∑
i=1

∑
x∈Ci

dist(ci, x)2, (2.10)

where k is the number of clusters ci - the center of ith cluster.

2.3. Machine learning 27

• The centers of the clusters are recalculated based on the objects assigned to them
in the previous iteration:

ci =
1

mi

∑
x∈Ci

x, (2.11)

where mi is the number of objects assigned to a cluster i.

The k-means algorithm has the following advantages over others:

• the complexity of the algorithm is relatively low [26]:

O(I ∗ k ∗m ∗ n), (2.12)

where I - number of iterations, that is required for the algorithm to converge, m -
total number of objects, n - number of attributes (dimensions);

• it is simple and universally applicable.

However, it has drawbacks, which in some cases might be critical:

• sometimes k (the number of clusters) can be difficult to select;

• outliers and non-globular clusters are not handled properly by the k-means algo-
rithm;

• results strongly depend on the initial centers selection strategy.

Another partitioning-based clustering algorithm which is widely used for database
fragmentation is also a variation of k-means algorithm. It is called fuzzy c-means
clustering. This algorithm allows a point to belong to more than one cluster. At each
iteration instead of assigning a point to a cluster the algorithm calculates a membership
degree (between 0 and 1) of the point to each cluster. The algorithm outperforms
k-means algorithm in the case of an overlapping sets of objects.

CLARA - another example of partitioning-based clustering - is a modification of the
PAM algorithm, which is commonly used for large datasets. The algorithm reduces
an original dataset by selecting a random subset of objects from the original dataset.
On the selected objects the classic PAM algorithm is performed. The algorithm runs
multiple times and returns the best set of medoids found so far. Inspired by CLARA
Raymond T. Ng and Jiawei Han proposed the CLARANS algorithm, which is based on
randomized search.

Density-based clustering algorithms consider clusters as sets of objects in areas of
high density. The algorithms of this class use the concepts of density, connectivity and

28 2. Background

distances between objects and/or an object and a cluster. Such algorithms are very
good at discovering clusters of arbitrary shapes and handling outliers [25]. Examples of
density-based clustering algorithms are: DBSCAN (density-based spatial clustering of
applications with noise), OPTICS (ordering points to identify the clustering structure),
DenClue (density-based clustering) and HDBSCAN (hierarchical density-based spatial
clustering of applications with noise).

DBSCAN is one of the most popular density-based clustering algorithms. The basic
idea of the algorithm is to find areas of a higher density which are separated by areas
of lower density [27]. Input values for the algorithm are: ε - neighborhood radius of a
point and minPts - minimum number of points in a neighborhood of a point x for x to
be a core point. Core points, outliers and reachable points - these are the labels which
can be assigned to a point by DBSCAN algorithm. A point a is reachable from a point
b if there is a path between the points, which consists only of core points. If a point is
not reachable from any other point in the set, it is called an outlier. Core points are
those that have a given minimum number of points (minPts) within a given distance
(ε). The DBSCAN algorithm finds all the core points first and merges [27] neighboring
core points into clusters. Then it goes through the remaining points and assigns each
point to a cluster if there is a core point which is within the radius ε from the point.
Otherwise the point is considered to be an outlier. The DBSCAN clustering mechanism
is visualized in Figure 2.10.

Figure 2.10: DBSCAN clustering mechanism [27]

Some advantages of DBSCAN include:

• there is no need to provide k - the number of clusters to form;

• as a density-based clustering algorithm it can discover clusters of different shapes;

• it handles outliers well.

Some disadvantages are:

2.3. Machine learning 29

• it is very hard to choose values for ε and minPts, especially if there are clusters
of a different density;

• if there is a point, which is reachable from different clusters, it can be assigned to
either of them.

Grid-based clustering algorithms reduce the object space by using a grid to divide
the original dataset into groups and performing clustering taking grid cells as inputs.
Usually the number of grid cells is much smaller than the number of data objects,
which makes such algorithms run much faster. These algorithms perform very well
on large multidimensional object spaces. The most commonly applied grid-based
algorithms are [28]: Wave Cluster, STING (statistical information grid), CLIQUE
(clustering in quest), O-CLUSTER (orthogonal partitioning clustering) and MAFIA
(merging of adaptive intervals approach to spatial data mining). Sometimes grid-based
clustering algorithms are considered to be a subclass of so-called subspace clustering
algorithms. Subspace clustering algorithms in general are very good with clustering of
high-dimensional data because besides clustering data objects itself they aim to select a
subset of relevant dimensions (features) to perform clustering on.

The idea behind model-based clustering algorithms is that the data is generated by
a mixture of probability distributions. Such methods are usually considered to be robust
and flexible [25]. It is assumed that the objects of the same cluster will be part of the
same distribution. Popular methods belonging to this group of clustering algorithms are:
GMM (Gaussian mixture modeling) using EM (expectation–maximization algorithm),
COBWEB (incremental system for hierarchical conceptual clustering) and SOM (self-
organizing map).

Gaussian mixture modeling can be considered as a general case of k-means clustering.
First, k Gaussian distributions are initialized, which correspond to k clusters. Each
data object has a probability of belonging to each distribution. Parameters of the
distributions are iteratively optimized and the probability of each object to belong to
each distribution is re-estimated.

As shown in Figure 2.11, Gaussian mixture modeling can work much better than
the classic k-means clustering algorithm if the data can be described by Gaussian
distributions, but in a real world scenario this might not be the case.

Results of running some commonly used clustering algorithms on different input data
are presented in Figure 2.12. The provided examples show how the choice of a clustering
algorithm for a given dataset might influence the clustering results.

30 2. Background

Figure 2.11: Results of clustering with Gaussian mixture modeling (a) and k-means (b)
algorithms (k = 3) [29]

Figure 2.12: Results of clustering with commonly used clustering algorithms [30]

2.3.2.1 Hierarchical-based clustering

Another widely used type of clustering algorithms is hierarchical-based algorithms.
Hierarchical-based clustering algorithms perform clustering in a hierarchical manner.
Commonly used algorithms of this category are: DIANA (divisive analysis clustering),
AGNES (agglomerative nesting clustering), BIRCH (balanced iterative reducing and
clustering using hierarchies), CURE (clustering using representatives), ROCK (robust
hierarchical clustering) and Chameleon.

Hierarchical-based clustering algorithms are pretty flexible and the developer can choose
from a variety of implementation options and configuration parameters, such as: cluster-
ing strategy, similarity measure, linkage criteria and data structures used.

2.3. Machine learning 31

Considering clustering strategies, hierarchical clustering algorithms can be:

• Agglomerative (also known as a “bottom-up” strategy). Such algorithms start by
assigning each data object to its own cluster, and then they iteratively merge the
two closest clusters into a single cluster. Once a pair of clusters is merged it can
never be split.

• Divisive (also known as a “top-down” strategy). Divisive hierarchical clustering
algorithms start by moving all data points into a single cluster, and then they
iteratively split a cluster from the set of clusters obtained so far. Once a cluster is
split into two parts these parts can never be merged again.

Agglomerative and divisive strategies of hierarchical clustering are presented in Fig-
ure 2.13.

Figure 2.13: Agglomerative and divisive hierarchical clustering

Such split/merge operations and their order can be visualized using a dendrogram. The
dendrogram also contains information about how similar the clusters are to each other -
the y-axis represents the degree of dissimilarity between the clusters (Figure 2.14).

There are several approaches that can be used to extract clusters from a dendrogram [29]:

• If k is specified, then a horizontal line should be drawn so that the number of
intersecting vertical lines is equal to k (Figure 2.14). Clusters that are formed
below this line are the output of the algorithm.

• If k is not specified, the clustering process can be stopped once certain size or
density of the clusters is reached. The clustering process can also terminate once
some application-specific constraints are satisfied.

32 2. Background

Figure 2.14: Dendrogram and clusters generated for k = 5

The time complexity of the classical agglomerative hierarchical clustering is O(n3). It
can be reduced to O(n2 log n) by using a heap for storing distances between each pair
of clusters. As for the divisive hierarchical clustering, there are 2n possible splits, that is
why heuristic approaches should be used to reduce the time complexity [29].

One undoubted advantage of the hierarchical-based clustering algorithms is configurabil-
ity, given that a variety of similarity measures and linkage criteria can be used.

Linkage criteria is basically a function, which determines how distance between two
clusters is calculated. There are multiple linkage criteria that are often used with
hierarchical clustering:

• Minimum or Single-linkage.

This linkage criterion calculates distance between two clusters as a distance between
two of their closest points (Figure 2.15). As pointed in [31], Single-linkage criterion
may lead the algorithm to form clusters, which are generated by individuals
iteratively added to the same group.

a
b

c

d e

g

h
f

i

Figure 2.15: Single-linkage criterion

• Maximum or Complete-linkage.

This linkage criterion calculates the distance between two clusters as a distance
between two of their farthest points (Figure 2.16). Clusters, which are generated
using this linkage criterion are usually well split and compact [31].

2.3. Machine learning 33

a
b

c

d e

g

h
f

i

Figure 2.16: Complete-linkage criterion

• Average-linkage.

Using this approach the distance between two clusters is calculated as the average
distance between all pairs of points from different clusters (Figure 2.17).

a
b

c

d e

g

h
f

i

Figure 2.17: Average-linkage criterion

• Centroid-linkage.

The distance between two clusters is calculated as the distance between the
centroids of the clusters (Figure 2.18). This linkage criterion can only be used in
combination with the Euclidean distance similarity measure.

a
b

c

d e

g

h
f

i

Figure 2.18: Centroid-linkage criterion

• Other linkage criteria exist, including weighted average-linkage, minimum energy
linkage, median-linkage, Ward linkage, Min-Max linkage.

Similarity measures show how similar two data objects are. There are multiple similarity
measures that can be used in hierarchical clustering algorithms. Some of them are:

34 2. Background

• Euclidean distance. This is probably the most widely used similarity measure.
It calculates the straight-line distance between two data points:

de(x, y) =

√√√√ n∑
d=1

(xd − yd)2 (2.13)

• Squared Euclidean distance is calculated as follows:

d2e(x, y) =
n∑
d=1

(xd − yd)2 (2.14)

• Manhattan distance (also known as city-block distance):

dm(x, y) =
n∑
d=1

|xd − yd| (2.15)

• Maximum distance (along with Euclidean and Manhattan distances) is a special
case of Minkowski norm [29] and can be calculated as follows:

dmax(x, y) = maxd|xd − yd| (2.16)

It should be noted that the terms “distance”, “metric” and “similarity” are often used
interchangeably, but from a mathematical point of view they are different [29].

Apart from the above-mentioned similarity measures and linkage criteria, an expert can
create his own application-specific linkage criteria and similarity measures, based on his
knowledge about the application domain.

Hierarchical-based clustering algorithms provide very good clustering results, especially
for small datasets. As mentioned before, they are very flexible, which allows them
to be configured to pretty much every dataset. Such algorithms are transparent and
their results are easy to interpret. Moreover, unlike partitioning-based algorithms, these
algorithms do not require the number of clusters to be specified beforehand.

However, hierarchical-based clustering algorithms might not be the best choice for a
large dataset, considering their computational requirements. Another problem is that
the changes made once cannot be undone, which can lead to suboptimal results. Such
algorithms also do not use a global optimization function. Furthermore, hierarchical-
based clustering algorithms often do not handle outliers properly [29].

2.3. Machine learning 35

2.3.2.2 Clustering-based horizontal fragmentation

In the last century almost all presented horizontal fragmentation algorithms were purely
heuristic. Nowadays many of them are based on machine learning techniques and
clustering algorithms in particular. These relatively new approaches seem to be a
promising research direction, since machine learning solutions are considered to be more
flexible and adjustable than complex tailored heuristics.

In this chapter the results of a thorough literature review on applications of clustering
in horizontal fragmentation are presented. There are numerous studies devoted to this
topic, but probably the most extensive research in this direction with object-oriented
databases was conducted by the scientific group of Adrian Darabant.

In their work [32] Adrian Darabant and Alina Câmpan perform horizontal fragmentation
for an OO database, using the k-means clustering algorithm. Clusters are formed
based on the similarity between class instances, which is calculated using Cosine and
Manhattan similarity measures. Authors state that different similarity measures as well
as different methods for choosing the initial cluster centroids have a huge impact on
the fragmentation results. Although clustering using Manhattan distance in general
outperforms the one using Cosine similarity, neither of them is shown to perform
optimally in all cases.

In their study [33] authors use the same input data representations and similarity
measures but, in contrast to their previous work, authors use agglomerative hierarchical
clustering. In each iteration the algorithm merges two closest (according to the selected
similarity measure) clusters. Despite very promising results authors note that the reason
why the proposed approach does not always produce the optimal result lies in the
hierarchical clustering algorithm itself - the algorithm cannot revert erroneous decisions
made once.

The k-means-based and the hierarchical-based fragmentation approaches from the papers
discussed above were compared in a subsequent work [34].

In 2009 [35] authors conducted extensive experiments on the effectiveness of hierar-
chical clustering applied to the horizontal fragmentation problem. They compared
fragmentation scheme generated by it with the one generated by the k-means algorithm
over baselines of single site and fully replicated databases. Authors also compared
the results with the fragmentation schemes generated using algorithms proposed by
Baiao et al. [36] and Bellatreche [37]. The results show that hierarchical clustering
with the object-condition matrix as input data representation and Manhattan similarity
measure outperforms both k-means clustering and the baselines. Hence, this work
establishes that hierarchical clustering algorithm can indeed be successfully applied
to the problem. Moreover, the results corroborate that different similarity measures
and input representations can drastically affect the clustering results. However, it is
worthwhile to mention that with the growth of the database k-means algorithm starts
performing better than hierarchical clustering.

36 2. Background

Another paper called “Hierarchical Clustering in Object Oriented Data Models with
Complex Class Relationships” [38] extends their previous work [33] by taking into
account aggregation and association relationships between classes. In this way authors
perform primary horizontal fragmentation and derived horizontal fragmentation. Authors
introduce two new input representations, namely extended object-condition matrix
(EOCM) and extended characteristic matrix (ECVM), and use them as inputs for
agglomerative hierarchical clustering. In follow-up works [39, 40] authors apply k-means
clustering algorithm to the same problem.

Our research in clustering-based horizontal fragmentation was partially inspired by two
papers from the same team of authors [41, 42]. These papers analyse the influence
of different similarity measures on the quality of fragmentation results obtained using
agglomerative clustering. Although authors consider an object-oriented data model
(including complex class hierarchies) and use different input data representations, the
obtained results are highly relevant to the research in this thesis. Three similarity
measures are considered in the paper: Cosine, Euclidean and Manhattan. According
to the study, the best results are achieved by using the Euclidean similarity measure,
followed by the Manhattan similarity measure. Both measures in general outperform
Cosine similarity. For primary horizontal fragmentation the results obtained using
different similarity measures do not differ much though. In our thesis we would like
to test how the choice of a similarity measure will influence the results of horizontal
fragmentation in a relational database obtained using other input data representation.
We would like to consider other similarity measures as well, such as Maximum distance
or squared Euclidean distance.

In related work [43] authors use fuzzy c-means clustering algorithm to perform horizontal
fragmentation and replication in one step. Fuzzy c-means algorithm assigns an object to
one or multiple clusters and this feature is adapted to handle the replication task. Fuzzy
c-means generates a probability for each object to belong to a cluster. Unlike traditional
clustering algorithms, such as k-means or hierarchical clustering, fuzzy c-means clustering
takes into account the fuzzy nature of the fragmentation process and allows fine-grained
replication to be integrated into it. This is the reason why the proposed algorithm
outperforms previously developed k-means-based clustering approaches.

A paper published in 2011 [44] summarizes the research done by Adrian Sergiu Darabant
and his research group in previous years. Authors conduct experiments with hierarchical,
k-means and fuzzy c-means clustering algorithms applied to the horizontal fragmentation
task. They compare algorithms with fully replicated and centralized databases along
with the Min Complete algorithm proposed by Ezeife and Barker [45].

Information on the papers written by Adrian Darabant and his scientific group is
summarized in Table 2.6.

The team of Darabant et al. is not the only group that is working in this direction.
Other researchers solve the same problem in different environments, using different
clustering algorithms and input data representations.

Paper Year
Input data representa-
tion

Clustering algo-
rithm

Similarity mea-
sure / Linkage
criterion

“Semi-supervised learning techniques: k-means clus-
tering in OODB Fragmentation”

2004
object-condition ma-
trix, characteristic vec-
tor matrix

k-means
Cosine, Manhat-
tan

“AI clustering techniques: a new approach in hor-
izontal fragmentation of classes with complex at-
tributes and methods in object oriented databases”
/
“A new approach in fragmentation of distributed ob-
ject oriented databases using clustering techniques”

2004
/
2005

extended object-
condition matrix,
extended characteris-
tic matrix

k-means
Euclidian, Man-
hattan

“AI Clustering Techniques: a New Approach to
Object Oriented Database Fragmentation”

2004
object-condition ma-
trix, characteristic vec-
tor matrix

agglomerative
hierarchical
clustering

Cosine, Manhat-
tan + average
linkage

“Hierarchical clustering in object oriented data mod-
els with complex class relationships”

2004

extended object-
condition matrix,
extended characteris-
tic matrix

agglomerative
hierarchical
clustering

Cosine, Manhat-
tan + average
linkage

“Advanced Object Database Design Techniques” 2004
object-condition ma-
trix, characteristic vec-
tor matrix

k-means, agglom-
erative hierarchi-
cal clustering

Cosine, Manhat-
tan

38
2.

B
ack

grou
n
d

“Using Fuzzy Clustering for Advanced OODB Hor-
izontal Fragmentation with Fine-Grained Replica-
tion”

2005
extended object-
condition matrix

Fuzzy c-means
Euclidian, Man-
hattan

“The similarity measures and their impact on
OODB fragmentation using hierarchical cluster-
ing algorithms”
/
“A comparative study on the influence of similar-
ity measures in hierarchical clustering in complex
distributed object-oriented databases”

2006

extended object-
condition matrix,
extended characteris-
tic matrix

agglomerative
hierarchical
clustering

Euclidian, Man-
hattan, Cosine

“Hierarchical clustering in large object datasets —
a study on complexity, quality and scalability”

2009
object-condition ma-
trix, characteristic vec-
tor matrix

agglomerative
hierarchical
clustering

Euclidian, Man-
hattan

“Clustering methods in data fragmentation” 2011

extended object-
condition matrix,
extended characteris-
tic matrix

agglomerative
hierarchical,
k-means and
fuzzy c-means
clustering

Euclidean, Man-
hattan + average
linkage for hierar-
chical clustering

Table 2.6: Clustering in horizontal fragmentation 1

2.3. Machine learning 39

Recently clustering algorithms were applied to horizontal fragmentation in XML data
warehouses [46, 47]. Authors claim that the control over a number of horizontal fragments
is a very important issue in data warehouses; therefore, a horizontal fragmentation
algorithm based on k-means clustering was used in the paper. The algorithm takes an
XML data warehouse and a corresponding query-workload as inputs. The predicates
from the workload are grouped using the clustering algorithm. The proposed algorithm is
compared with predicate-based and affinity-based fragmentation algorithms adapted from
the relational domain. Authors compare query response time and fragmentation costs for
the algorithms. Although the proposed algorithm outperforms classical fragmentation
algorithms, it is worthwhile to mention that it is because of the inability of the classical
algorithms to control the number of generated fragments. Therefore, it is not clear
whether the proposed algorithm would provide better results if the number of fragments
was the same.

Agglomerative hierarchical clustering was also used for horizontal fragmentation in
multimedia databases [48]. Authors use selectivity of predicates and access frequencies
of the queries to perform fragmentation. PUM (predicate usage matrix) was selected
as input data representation. In our opinion, the main disadvantage of the proposed
approach is using the Single-linkage for hierarchical clustering. That means that if two
clusters were merged, in the next iteration the algorithm only takes into account similarity
between the closest points, which belong to the clusters. Moreover, clustering of the
predicate usage matrix does not guarantee two correctness properties of a fragmentation:
reconstructability and disjointness.

An interesting perspective on hybridized fragmentation problem was introduced by
Harikumar et al. [49]. Authors try to find some patterns in the data to guide the
hybridized fragmentation process. Using subspace clustering they identify correlated
attributes for a set of tuples. Projected clustering (a type of subspace clustering) helps
to find these patterns in the subspaces of high-dimensional data. Then the clusters
formed by projected clustering are merged to obtain a specified number of fragments.
Clusters are merged using hierarchical clustering based on Jaccard distance. Authors
use the execution time of the queries as a cost model for evaluation. The databases were
connected with dblink and it takes quite a long time to establish a remote connection.
This might be the reason why the proposed algorithm is sometimes outperformed by a
random fragmentation.

Another application of clustering algorithms for fragmentation is demonstrated in the
paper of Luong et al. [50, 51]. Authors use Knowledge-Oriented clustering algorithm
proposed by Shoji Hirano and Shusaku Tsumoto [52] both for vertical and horizontal
fragmentation. The proposed algorithm takes a tuple-predicate matrix as input, and the
similarity between two objects is calculated using Jaccard coefficient. Results obtained
by the algorithm are similar to the results obtained by classical fragmentation algorithms,
but unfortunately the generated fragmentation scheme was not evaluated in the papers
and we cannot analyze its quality.

40 2. Background

In 2015 a clustering-based algorithm for horizontal fragmentation of real-time data
warehouses was proposed [53]. Authors propose an approach that consists of two levels
(phases). The first phase is initial fragmentation using Gaussian-means clustering.
During this phase an optimal amount of clusters is determined. The second phase was
added to balance the amount of tuples in the fragments by merging and dividing existing
fragments when new data arrives to the system. In the context of this thesis the first
phase is the most interesting. On the one hand, the proposed clustering algorithm based
on Gaussian distribution does not require a number of fragments as an input parameter,
which makes it more flexible. On the other hand, it requires a standard statistical
significance level α to be specified in advance. Moreover, the chosen input representation
(predicate usage matrix) does not guarantee that the generated fragmentation scheme
conforms to the correctness properties of reconstructability and disjointness.

A clustering technique for horizontal fragmentation of fuzzy object-oriented databases
was recently introduced by Nguyen et al. [54]. Fuzzy object-oriented databases combine
the object-oriented database model with fuzzy mathematics to represent attributes with
uncertain values. To find fuzzy clusters in quantitative dataset authors use statistical
theory. They apply expectation maximization coefficient clustering (an improvement
over the expectation maximization algorithm) that uses the coefficient of variation in
order to increase the softness level in the clustering. This coefficient determines the
density distribution of the elements in a cluster. The results generated by the clustering
algorithm are then used for identifying fuzzy intervals of a quantitative attribute.

Another approach was studied by Sun in the context of relational database management
systems [55]. Here, data is grouped into blocks, each containing metadata that describes
the data inside the block. That allows query engines to know whether there is data
to read inside a block. This forms the idea of aggressive data skipping, a feature of
data systems where data is fragmented both horizontally and vertically, such that the
number of blocks that can be skipped is maximized. Author develops three systems
that build on each other: SOP (skipping-oriented partitioning), GSOP (generalized
SOP) and GSOP-R (GSOP with replication). SOP establishes the core technique of
feature-driven workload analysis. Through this approach, the queries that constitute
the expected workload (for which the fragmentation is optimized) are analyzed and
reduced to a small number of succinct predicates which subsume most queries in the
workload. Then tuples are finally distributed into blocks in such a way that each block
is represented by a single feature vector (called union vector, formed by a logical OR
of the feature vectors contained). If there is a 0 for a given predicate in the union
vector, then no tuple inside the block satisfies the predicate, otherwise there might be
tuples in the block that satisfy it. Author defines the optimization goal of achieving
the maximum skip partitioning and solves this optimization problem using hierarchical
clustering. Unfortunately, no comparison of the proposed approach with other classical
fragmentation algorithms was presented.

The above-mentioned papers are summarized in Table 2.7.

Paper Year Authors
Input data repre-
sentation

Clustering
algorithm

Similarity mea-
sure / Linkage
criterion

Database
model

“Data Mining-based Fragmenta-
tion of XML Data Warehouses”
/ “Fragmenting very large XML
data warehouses via K-means clus-
tering algorithm”

2008
/
2017

Alfredo Cuz-
zocrea, Jérôme
Darmont, Hadj
Mahboubi

query-predicate
matrix

k-means Euclidean XML

“Horizontal Partitioning of Multi-
media Databases Using Hierarchi-
cal Agglomerative Clustering”

2014

Lisbeth
Rodŕıguez-
Mazahua, Giner
Alor-Hernández,
Maŕıa Antonieta
Abud-Figueroa,
Silvestre Gus-
tavo Peláez-
Camarena

predicate usage
matrix

hierarchical
clustering

Euclidian +
Single-linkage

Multimedia

“Hybridized Fragmentation of
Very Large Databases Using Clus-
tering”

2015
Sandhya Hariku-
mar, Raji Ra-
machandran

a point (feature
vector) of a clus-
ter is a record
and a dimension
(feature) is an at-
tribute.

subspace
clustering
(Proclus)
+ hier-
archical
clustering

Manhattan Relational

42
2.

B
ack

grou
n
d

“An improvement on fragmen-
tation in Distribution Database
Design Based on Knowledge-
Oriented Clustering Techniques”
/ “An improvement on fragmen-
tation in Distribution Database
Design Based on Clustering Tech-
niques”

2015

Van Nghia Lu-
ong, Ha Huy
Cuong Nguyen,
Van Son Le

tuple-predicate
matrix

Knowledge-
Oriented
Clustering
Technique
Based on
Rough Sets

Jaccard coeffi-
cient

Relational

“2LPA-RTDW: a two-level data
partitioning approach for real-
time data warehouse”

2015

Issam Hamdi,
Emna Bouazizi,
Saleh Alshom-
rani, Jamel
Feki

predicate usage
matrix

Gaussian-
means

- Relational

“Skipping-oriented Data Design
for Large-Scale Analytics”

2017 Liwen Sun
feature vectors
(based on simple
predicates)

hierarchical
clustering

Ward’s criterion Relational

“Clustering and Query Optimiza-
tion in Fuzzy Object-Oriented
Database”

2019

Thuan Tan
Nguyen, Ban
Van Doan, Chau
Ngoc Truong,
Trinh Thi Thuy
Tran

-

expectation
maximiza-
tion co-
efficient
clustering

- Fuzzy OO

Table 2.7: Clustering in horizontal fragmentation 2

2.3. Machine learning 43

2.3.3 Reinforcement learning

Reinforcement learning(RL) is a type of machine learning defined usually by its problem:
learning from iterative interaction with an external system to achieve a goal. The
external system signals the learner about the current state it is in and what is the reward
of reaching this state. The learning model is then tasked to pick an action to try to
maximize the long-term total reward. The RL framework consists of several entities:

Figure 2.19: Agent-environment interaction in RL [56]

• Agent: a model that learns and makes decisions regarding which action to take
given a state. This is the “learning” part of RL.

• Environment: the system the agent interacts with. Generally, it is an external
application-specific concept, which represents the domain the RL algorithm needs
to navigate.

• State: a signal from the environment relaying to the agent its current position. It
is denoted as st ∈ S, where S is a finite state space.

• Action: a change of state as a result of a decision made by agent. It is denoted
as at ∈ A where A is finite action space. In this work we assume that A does not
change with state st.

• Reward: the reinforcement signal from environment to agent, relaying to agent
information about the quality of the state it reached. The goal of the agent is to
maximize the total rewards from reached states.

• Step: single discrete moment of interaction between agent and environment. State,
actions and reward are all measured for specific steps.

• Episode: single instance of agent-environment interaction process. Typically in
RL the number of steps for single learning/interaction is limited either by some
internal environment constraint or, in case of indefinite task optimization, by the
training regime.

44 2. Background

In its more formal specification, RL is defined as a task of learning the policy for a
Markov decision process (MDP) which maximizes the total reward. A specific MDP
is defined by its state and action spaces, as well as its single-step dynamics. Each
particular finite MDP is defined in terms of its transitional probabilities [56]:

P a
s,s′ = Pr{st+1 = s′|st = s, at = a} (2.17)

for each action a and state s. These define the probability to transition to state st+1

from state st when performing action at. The estimated reward for each state and action
is denoted as [56]:

Ra
s,s′ = E{rt+1|st = s, at = a} (2.18)

The agent is tasked with learning a policy : a mapping function between the current state
and action that needs to be taken. The policy of an agent can either be deterministic
(i.e. every state determines the exact action that needs to be taken) [56]:

π(st) = at; st ∈ S, at ∈ A (2.19)

or it can be stochastic, where each action is assigned a certain probability [56]:

π(at|st) = pi; st ∈ S, at ∈ A, 0 ≤ pi ≤ 1 (2.20)

2.3.3.1 Basic RL

To tackle the task of accruing the most reward during an episode, an agent needs to
store and improve its understanding of the environment dynamics. There are some
basic methods that allow agents to generalize such information. Besides direct policy
representation, where the policy that the agent refines is stored in the way presented
above, there exist the following approaches:

• Value function: is a function of a state which estimates how good the state is
for an agent’s goal. This includes the agent’s estimation of the rewards for future
steps it is going to take. Given the agent following policy π, we can denote its
value function as follows [56]:

V π(s) = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (2.21)

Using the Bellman equation, the agent can iteratively improve the precision of its
value function through dynamic programming methods [56]:

V π(s) =
∑
a

π(s, a)
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)] (2.22)

2.3. Machine learning 45

• Action-value function: similarly to value functions, the action-value function
defines the quality of taking action a on step s when following the policy π [56]:

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = t} (2.23)

Since the task of the RL agent is to maximize the total, we can rate the agent’s policies
using value and action-value functions. If the policy π is better than policy π′, its
expected returns should also be greater (i.e. V π(s) ≥ V π′(s) for all s ∈ S). One can
define the the optimal policy π∗, which is better or equal to all other policies. Then,
this policy has to have an optimal value function [56]:

V π∗(s) = maxπV
π(s) (2.24)

and optimal action-value function [56]:

Qπ∗(s, a) = maxπQ
π(s, a) (2.25)

Policy iteration

Both value and action-value function can be computed and improved using the Bellman
equation. Starting with some policy π for which we have calculated V π(s) and Q(s, π(s)),
we can try to replace it with policy π′. If the policy π′ is different only in one step st,
we can make sure that the new policy is better than π by checking the expected returns
of both policies [56].

Dynamic programming

At the core of iteratively improving the target policy lies the concept of greedy policy.
It changes the target policy by looking ahead one step and using the target policy for
value estimation from there, and then picking the action that has a highest estimated
reward [56]:

π′(s) = argmaxa
∑
s′

P a
ss′ [R

a
ss′ + γV π(s′)] (2.26)

Policy improvement in such way always yields better policies, only excluding the cases
where the target policy is already optimal. Once the policy was improved, the resulting
policy π′ can be used in the next iteration as a target policy, resulting in a sequence of
monotonically improving policies.

However, such approach requires multiple lookups through the state set to recalculate
the new policy’s value function. This can be avoided by using fixed-step look-ahead

46 2. Background

and value function backups, shortening a number of steps needed to evaluate the value
function. The single-step look-ahead variant of such approach is called value iteration.

Monte Carlo methods

Monte Carlo (MC) methods represent an elementary solution or RL problem where the
agent does not assume the full knowledge of the environment. Instead, MC methods
rely on learning only from the interaction with the environment they have experienced
in the past. Typically, the MC method is used to estimate the value or action-value
functions by averaging the returns for each state (or state-action) for each episode in
the training set.

MC methods borrow the notion of greedy policy, using it as a resulting policy once
the estimation of the action-value function gets good enough. However, the drawback
of such approach is that it is impossible to use the target policy for training runs. If
the greedy policy would be used as a navigation guide for training, it would prevent
the learning by choosing only the known paths, avoiding exploration. This leads to
the classic problem of exploration vs exploitation, where following a greedy policy may
cause worse results in the future, but might improve the reward now. It makes sense to
explore abundantly, as the agent learns from the environment, but let the agent focus
more when it has sufficient knowledge about the value of actions.

There are multiple ways of managing this contradiction, some of them are:

• The ε-greedy approach proposes to base the policy selection of an agent on some
variable ε which changes during the course of the training. This value represents
the probability of using the training strategy (which most often means random
choice of action) at each step. In most cases, ε is higher in earlier phases of
training, decaying over time to focus search and improve the total reward. There
are various applications of this approach with different functions of ε-decay.

• Boltzmann exploration is an approach designed to alleviate the hard switching
between greedy and random policies of ε-greedy. The idea here is that the training
choice of ε-greedy does not depend on the accumulated experience, which might be
a drawback in the later stages of learning. To use the experience when following
training policy it is proposed to assign each action of the state a probability using
Boltzmann distribution:

p(at|st, Qt) =
eQ(st,at)/τ∑
b∈As

eQ(st,at)/τ
(2.27)

The τ parameter here is used to control the training, the lower it is the greedier is
policy’s choice. One can apply decay functions to τ mentioned earlier to facilitate
proper training regime for MC and MC-based methods.

2.3. Machine learning 47

Temporal-difference learning

The idea behind temporal-difference (TD) learning is that of combining policy bootstrap-
ping of dynamic programming (DP) with raw experience learning of MC methods. The
key idea here is using experience of previously visited states to update value function
estimation, thus making better estimations in the future. TD brings the benefit of DP in
that the target policy can be used in estimation, allowing the MC approach to estimate
before the end of an episode. TD improves upon DP in that it does not require the
model of the environment to quickly calculate full backup of the value function. TD also
has an advantage over MC in that it allows for fully iterative online learning. Typically,
TD algorithms provide better results than purely DP and MC methods, especially on
unpredictable or unknown environments [56].

There exist two major types of approaches to TD in terms of action-value function
estimation:

• On-policy methods use the target policy to update estimations of Q(s, a). An
example of such method can be SARSA algorithm [56].

• Off-policy methods use policies different from the target policy to update esti-
mations of Q(s, a). An example of such method can be Q-learning [57].

SARSA

State–action–reward–state–action (SARSA) is an algorithm which employs on-policy
TD control. In contrast with previously discussed methods, SARSA algorithm estimates
action-value function instead of state-value function, updating its estimation each step.
The goal is to build a Q(s, a) table that is used by ε-greedy or ε-soft policy, using the
same policy to traverse the training episodes. In short, the SARSA algorithm can be
depicted as follows [56]:

Algorithm 3: SARSA

Q(s, a)← initial estimation
for each episode do
s← START
a← π(s) {e.g. π is ε-greedy or ε-soft}
repeat
s′, r ← step(s, a)
a′ ← π(s′) {e.g. π is ε-greedy or ε-soft}
Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)]
s← s′; a← a′

until s is terminal
end for

Q-learning

48 2. Background

Q-learning is another TD algorithm for RL, which uses off-policy control. Its procedural
representation is shown in Algorithm 4:

Algorithm 4: Q-learning

Q(s, a)← initial estimation
for each episode do
s← START
repeat
a← π(s′) {π is policy derived from Q, e.g. ε-greedy or ε-soft}
s′, r ← step(s, a)
Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
s← s′

until s is terminal
end for

The most prominent feature of Q-learning is that the estimated action-value function
directly approximates an optimal action-value function regardless of the target policy.
The policy still plays its role determining which state-action pairs to visit, but the only
requirement of convergence is that all pairs continue being updated [56].

For its simplicity and ease of analysis combined with good convergence, Q-learning is
used as a base for a number of more sophisticated algorithms, discussed below.

Function approximation

The assumed format of storing value and action-value functions is that of a table, mapping
s and s, a to some value. Considering huge state- and action-spaces or continuous states
or actions such format of storage does not scale well. Creation, storage and update of
such data structures quickly becomes the main bottleneck of an RL solution.

One of the possible solutions to this problem is applying existing techniques of function
approximation. This means that instead of storing the table for action-value function,
we represent it in parametrized functional form with parameter vector ~θt. Typically, the
number of items in ~θt is much smaller than the number of states or state-action pairs,
thus allowing to compress the data needed to store the function approximation. This,
however, means that instead of of Q(s, a) we would instead learn some function that
which approximates Q(s, a):

Q∗(s, a, θ) ≈ Q(s, a) (2.28)

Given the nature of lossy compression of function approximators, update on an ap-
proximated function by some actual reward from an environment for some particular
action-state pair actually affects many other states. The approaches to function approx-
imation are typically borrowed from supervised learning, with tweaks that allow for
step-by-step update via bootstrapping.

2.3. Machine learning 49

That said, for practical applications function approximation serves as a reasonable
approach to use in RL algorithms. There exist multiple algorithms which employ
various kinds of multivariate regression, decision trees or neural networks to approximate
action-value function.

The task of a function approximator in an RL solution is to bring the parametrized
function towards the target Q. A key metric of approximation accuracy is mean squared
error:

L(θ) =
1

N

∑
i∈N

[Q(si, ai)−Qθ(si, ai)]
2 (2.29)

The most popular class of methods of learning for function approximation are gradient-
descent based methods. The idea of gradient descent approach is moving the ~θt in the
direction of the largest possible decrease in error for Qtheta(s, a), which is determined
by its gradient. If we assume that we have a number of training observations st, at 7→
Q(st, at) on step t, the equation to update the ~θt values looks as follows:

~θt+1 = ~θt −
1

2
α∇~θt

[Q(st, at)−Qθ(st, at)]
2 (2.30)

The variable α is a step-size parameter. It serves the purpose of limiting change of
~θt+1, as overfitting the approximation on one state can lead to loss of accuracy on other

steps. The intention is to reduce α throughout training to improve the stability of the
approximator.

In practical applications, calculating and storing actual Q(s, a) for all t is also infeasible.
To alleviate that one can use bootstrapping with λ-steps lookahead like described earlier.
Parameter update equation for single-step lookahead algorithm like Q-learning looks as
follows:

~θt+1 = ~θt −
1

2
α∇~θt

[r(st, at) + γmax
at+1

Q(st+1, at+1)−Qθ(st, at)]
2 (2.31)

2.3.3.2 Deep RL

One of the most prominent state-of-the-art approaches in function approximation
is that of deep learning. With an advent of fast and easy-to-deploy neural network
implementations, deep neural networks (DNNs) have become a viable solution in multiple
domains, such as computer vision, pattern recognition, speech recognition, natural
language processing, and recommendation systems [58]. Deep learning is an umbrella
term for all applications of DNNs for machine learning tasks.

DNN in RL not only serves the purpose of function approximation, but also allows more
freedom for state and action space representations. With the developments of different

50 2. Background

neuron types (convolutional, recurrent, GANs) the input data profile of the DNN fits
pretty much any application.

In Figure 2.20 we can see the taxonomy of recent RL algorithms. There is a major
division into model-free and model-based RL, from which we chose to focus on model-free
class of algorithms. A further divide splits model-free approaches into policy optimization
and value-based methods.

Figure 2.20: Taxonomy of modern RL algorithms1

Deep Q-Network

Deep Q-Network is an algorithm proposed by Mnih et al., which uses DNN in a variant of
Q-learning algorithm to learn policies from high-dimensional input [59]. This particular
agent was learning how to play Atari games from raw bitmap screen representations.

In the work of Mnih et al., Q(s, a) is substituted by a convolutional neural network. The
inputs of the neural network are pixels of Atari 2600 video output, outputs are a vector
Q which represents action-value per each available action (this particular algorithm
assumes that all actions are available and are the same at each state). Given state si,
the neural network produces approximated Q(s, a) for each action at once.

Training is performed by minimization of the loss function at training iteration i:

Li(θi) = E(st,at,st+1,rt+1)r∼D[rt+1 + γmax
at+1

target network︷ ︸︸ ︷
Q(st+1, at+1; θi)− Q(st, at; θt)︸ ︷︷ ︸

current network

]2 (2.32)

Using the neural network to calculate both the target function and current function
leads to convergence instability: during the same episode changes in target and current

1https://spinningup.openai.com

https://spinningup.openai.com

2.3. Machine learning 51

functions develop a strong correlation. To alleviate that, DQN proposes to separate
target and current networks, fixing the target weights for the whole episode (or even
multiple episodes) while current continuously updates.

Another improvement of DQN over naive Q-learning with neural network is the intro-
duction of so called experience replay to improve convergence. The training samples
(st, at, st+1, rt+1) are stored in a special buffer D, from which they are sampled in batches
to train the network. This helps to propagate new and “controversial” experience through
the function approximator. In DQN the batches are selected uniformly.

The algorithm of DQN training is presented in Algorithm 5:

Algorithm 5: Deep Q-learning with Experience Replay [59]

Initialize D to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do

Initialize sequence s1 = x1 and preprocessed sequenced φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at otherwise select at =
maxaQ

∗(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random batch of transitions (φj, aj, rj, φj+1) from D

yj ←

{
rj, for terminal φj+1

rj + γmaxa′ Q(φj+1, aj; θ), for non-terminal φj+1

Perform gradient descent step on (yi −Q(φj, aj; θ))
2

end for
end for

Improvements over DQN

Over the course of the years since the original DQN paper was published, there have
been numerous proposals aiming to improve DQN. We discuss the most influential of
them in this subchapter.

• Prioritized experience replay is an improvement over uniform batch selection
from the experience replay buffer proposed in [60]. The key idea here is to select
more “controversial” (with more difference between target prediction and actual
values) samples more often, thus speeding up the convergence.

• Double DQN is a technique that helps reduce the overestimation bias of the
Q-network proposed in [61]. Since in basic DQN the same network is used for both
action selection and action evaluation, the model is prone to overoptimistic value

52 2. Background

estimates. By decoupling these tasks into two separate networks, this improvement
results in faster convergence and better performance in specific RL problems.

• Multi-step learning is an extension of the basic policy bootstrapping of the
original Q-learning algorithm. In the base Q-learning (and subsequently DQN) the
estimation update function only considers single step lookahead. By looking more
steps ahead one can improve agent performance in cases where precise sequences
of action matter and achieve an overall faster learning.

Distributional Deep RL

Distributional Deep RL is one of the more recent advancements in the field of Deep
RL [62]. The key idea of distributional RL is approximating the full distribution of
returns rather than its expectation. Bellemare et al. introduce a random variable Z(s, a)
which represents the reward aquired by starting from state s, performing action a and
following current policy from there. Action-value function can be redefined in terms of
Z(s, a):

Qπ(s, a) = E[Zπ(s, a)] (2.33)

Using variable Z(s, a), the Bellman equation can be rewritten in distributional form:

Zπ(s, a)
D
= R(s, a) + γZπ(s′, a∗) (2.34)

Here s′ ∼ p(·|s, a), a∗ = argmaxa′ E[Zπ(s′, a′)]. Using this formula of value distribution
authors proposed to work on optimization of distributions, reducing loss between current
value distribution function approximation and target value distribution. As metric for
measuring loss, the Wasserstein metric is proposed.

Based on the original C51 paper [62], Dabney et al. proposed Implicit Quantile RL
algorithm (IQN) [63]. This algorithm also operates with value distributions, but unlike
C51, its network outputs single sample from this distribution instead of fixed atomic
ranges. The algorithm transforms the state into a vector V with fixed dimensions, then
uses a randomly sampled scalar τ to produce a vector H of the same shape as V using
the function φ(τ) :

φj(τ) = ReLU(
n−1∑
i=0

cos(πiτ)wij + bj) (2.35)

This vector is then combined with V by concatenation or multiplication (depending
on the shape of the remaining layers) and then fed forward to the rest of the deep
layers, producing a vector with the size |A| which represents a single sample from the
distribution for each action. To get better fidelity, forward passes of IQN are re-run
multiple times to get more samples of distribution.

2.4. Summary 53

Distributional RL provides multiple state-of-the-art algorithms, their short overview is
presented in Figure 2.21

Figure 2.21: Network architectures for DQN and recent distributional RL algorithms [63]

In our work we use the Rainbow DQN agent, which consists of multiple improvements
over the regular DQN algorithm described, with a Distributed DQN approach based on
KL loss, and an IQN agent. Both of them are based on implementations provided as
part of Google Dopamine framework.

2.4 Summary

In this chapter we provided an overview of the domain of our research. First, we
described the core concepts behind physical database design and database fragmentation
in particular. Then we focused on the task of finding optimal horizontal fragmentation
and classical as well as state-of-the-art algorithms for solving this problem. We finish
with an overview of machine learning methods, with detailed description of clustering
and reinforcement learning tasks.

54 2. Background

3. Prototype implementation and
research questions

This chapter is devoted to the design of our proposed ML solutions for horizontal
partitioning, and the adaptation of classical algorithms. This chapter is structured as
follows:

• In Section 3.1 we start by formulating the questions we intend to answer with our
research.

• In Section 3.2 we proceed by outlining the framework for training and evaluation
of our solutions.

• In Section 3.3 we describe the design of the cost model, used by our solutions and
in the classical algorithm.

• Section 3.4 provides an outline of how we adapted the classical algorithm for
horizontal fragmentation to fit the evaluation requirements.

• In Section 3.5 we describe the design of the proposed Clustering-based ML solution
for horizontal fragmentation.

• In Section 3.6 we describe the design of the proposed Deep-RL-based ML solution
for horizontal fragmentation.

• We conclude the chapter by summarizing its contents.

3.1 Research questions

In Section 1.2 we define the general research structure for this thesis. In this chapter,
implementation-specific questions are included in each solution’s sub-chapter.

56 3. Prototype implementation and research questions

3.2 General structure

In this chapter we introduce and explain the general structure of our horizontal frag-
mentation software system. The system can be divided into stand-alone parts as shown
in Figure 3.1.

DB

Clustering approach

RL approach

Classical approach

C
os

t
m

o
d
el

Q
u
er

y
ge

n
er

at
or

Experiment environment

Figure 3.1: General structure of the software system

We implement and compare three approaches for horizontal fragmentation: clustering-
based, RL-based and an approach based on one of the classical algorithms for horizontal
fragmentation described in Section 2.2. All of the evaluated approaches use a cost
model to guide the fragmentation process. The cost model estimates the execution
cost of the queries based on the fragmentation scheme generated by the approaches. In
addition, the clustering-based and RL-based algorithms use the database directly, as
will be explained in the next sections. The query generator generates a set of queries
for the experimental environment taking into account the distribution of the attribute
values in the database. Implementation details of the components mentioned above will
be discussed in the next sections.

3.3 Cost model selection

Both ML approaches for horizontal fragmentation proposed in this thesis as well as the
classical algorithms need to create and tear down fragmentation repeatedly to optimize
them. Originally we intended to use PostgreSQL and its checks-based fragmentation

3.3. Cost model selection (IP) 57

semantics. To set up the partitions one needs to define a “master” table, which will serve
as a schema description for all fragments. This table will hold no data. Then fragment
tables can be created, inheriting from the “master” table. Fragment predicates should be
stated in CHECK statement of the child table. Finally insert triggers need to be added
to make sure that all data added to the master table gets redirected to fragments (select,
update and delete queries get redirected automatically due to the nature of inheritance
relation). The fragment creation operation has the following syntax:

CREATE TABLE test(...);

CREATE TABLE test_fragment_1(CHECK (predicate_1)) INHERITS (test);

CREATE TABLE test_fragment_2(CHECK (NOT predicate_1)) INHERITS (test);

However, in the course of developing this thesis we have encountered a major challenge:
it turned out that continuous recreation of fragments of the same table leaves over
temporary data from previous fragmentations. There is no effective way to manage this
redundant data from PostgreSQL and continuous vacuuming after each test introduced
too much overhead to keep working on algorithms.

Because of that we have decided to design a cost model that would work closely with
the original database, but would avoid the creation of actual data structures that
PostgresSQL needs to keep track of the fragments and without copying data to child
tables.

The main concern of design of our proposed cost model is imitating the query optimizer
of a modern DBMS while highlighting the reduction in CPU work and I/O caused by
fragmentation. In fragmented database query planner can make use of the meta-data
from fragment tables, allowing to skip loading some of them, thus skipping data fetching
and processing costs altogether [64].

The process of this optimization is applied as follows. Incoming queries can evaluate
their filter predicates against the predicates of fragments and find the correlations, which
decide if the data inside the fragment needs to be loaded or not. For example, if the
query has the filter predicate age = 25, and the fragment predicates contain predicate
age < 20, fragment can be safely marked as skippable.

We assume that the DBMS has unlimited time budget for determining such correlations
between query and fragment predicates and can find implications in complex query filter
conditions. Algorithm for determining if the fragment can be skipped for general case
can be seen in Algorithm 6:

58 3. Prototype implementation and research questions

Algorithm 6: Determining if fragment is eligible for skipping

Input: fragment predicates F , query predicates Q, query logic tree Tquery, fragment
logic tree Tfragment
Initialise independent predicates list V ← ∅
Initialise fragment predicate map M{f 7→ bool} ← ∅
Set solutions S ← SAT (T)
for each q in Q do

if q in all s ∈ S and value of q is same across all s ∈ S then
add q to V

end if
end for
for each v in V do

for each f in F do
if v =⇒ not f then

add {f 7→ false} to M
else if v =⇒ f then

add {f 7→ true} to M
end if

end for
end for
Substitute the support variables in Tfragment with M
return Tfragment simplifies to false

Both query and fragment are represented by two major parameters: set of atomic
column predicates, encoded as <column> <operand> <rvalue> and tree of logic tokens
and, or, not, which represent the relations between the predicates in filter statement.
This algorithm allows to find the correlation between two differently combined sets of
predicates by determining the set of independent (required for the query filter condition
to be true) values of query predicates, finding the implications between these values and
atomic fragment predicates, and computing the actual value of fragment predicate given
these implications.

The cost model designed as part of this thesis can operate on all atomic predicates
with one of the following operations: =, 6=, <,≤, >,≥. This corresponds to the query
workloads used for training and evaluation of algorithms as discussed in Chapter 4.

We subscribe to the assumption that the cost of query execution is proportional to the
amount of data that needs to be fetched from disk, as the amount of CPU processing
is negligible. This amount equals to tuples_fetched * size_of_tuple. However, for
measuring the performance of the queries on the same table size_of_tuple can be
dropped.

3.4. Classical algorithm adaptation (MM) 59

3.4 Classical algorithm adaptation

Using clustering or RL for horizontal fragmentation is not an end in itself, so when
analysing these approaches they should not be compared against each other, but rather
one should compare them against already existing “classical” algorithms for horizontal
fragmentation. That is why some of the articles that were discussed in Section 2.3.2.2
use a classical horizontal fragmentation algorithm to evaluate the proposed approach.

However, to use a classical fragmentation algorithm as a fair baseline, the algorithm
needs to be adapted to the limitations and specific features of the task domain. For
instance, comparing the results of the algorithm proposed by Cuzzocrea et al. [46]
with the results obtained from predicate-based and affinity-based algorithms is not fair,
because the classical algorithms without modifications can not limit the number of
fragments.

So in order to choose a classical horizontal fragmentation algorithm for a baseline we
need to specify the requirements, which the algorithm needs to satisfy:

• it should be possible to put a constraint on the number of fragments generated by
the algorithm, because it is a limitation of our RL-based approach;

• decisions made by the algorithm should only be based on the queries and their
access to the data;

• the algorithm should be applicable for a non-distributed environment;

• ideally, the algorithm should use a cost function to guide the fragmentation process,
at least to some extent.

From these and other considerations (e.g. complexity of the algorithms) the algorithm
proposed by Zhang and Orlowska [1] was selected as a baseline. This approach can be
perfectly adapted to the requirements given above. We have configured the algorithm
as follows:

• to obtain k fragments, k−1 points along the main diagonal of the predicate affinity
matrix are selected by trying all possible k − 1 combinations of the points;

• the optimal combination is selected using a cost function; hence, in this way we
incorporate the cost function into the decision process;

• although using the SHIFT procedure increases the algorithm complexity, we use it
to generate the best results possible with this algorithm;

• as mentioned in the Chapter 1, we assume that all the queries are executed equally
often, that is why the frequency of each transaction is set to 1.

60 3. Prototype implementation and research questions

3.5 Clustering-based solution

3.5.1 Specific research questions

Similarly to the classical fragmentation approach, there are requirements that our
clustering-based fragmentation approach must fulfill. However, there are more options
to choose from and all the decisions made (e.g. on input data representation, clustering
algorithm, data structures used, etc) must comply with the requirements:

1. Our clustering-based approach should be comparable to the RL-based approach.
That means that we need to take into account limitations and characteristics of
the RL-based approach:

• the number of generated fragments should be fixed;

• the RL-based approach uses a cost model to take an action, therefore the
clustering-based approach should also be able to use the cost model to make
decisions.

2. Besides that, it should also be:

• fast;

• transparent;

• case-specific.

Based on these requirements we formulate our implementation-specific research questions
for the clustering-based approach as follows:

1. Which of the clustering algorithms discussed in Section 2.3.2 is the best fit for our
task considering the requirements stated above? How and to what extent can the
complexity of the selected clustering algorithm be reduced?

2. Which input data representation can speed up the execution of the selected clus-
tering algorithm and guarantee completeness, reconstructability and disjointness
of the obtained fragmentation scheme?

3.5.2 Clustering algorithm selection

The selection of a clustering algorithm for the task is an essential decision in our case.
It must be efficient, but simple and transparent at the same time. All the types of
clustering algorithms presented in Section 2.3.2 have their drawbacks and benefits in
the context of our task:

• partitioning-based algorithms:

3.5. Clustering-based solution (MM) 61

+ fast;

+ easy to implement;

+ the number of fragments can be limited;

– it is hard to include a cost model into the decision process, because partitioning-
based algorithms make a decision at the cluster-point level, whereas a cost
model is used to compare the quality of two complete fragmentation schemes;

– the clustering process is not deterministic and the results depend on the
selection of initial centers.

• hierarchical-based algorithms:

+ a cost model can easily be included into the process of clustering;

+ the number of fragments can be limited;

+ these algorithms do not have parameters that need to be chosen based on
deep domain expertise;

+ they are easy to implement and the mechanism of the clustering process is
transparent and deterministic;

+ such algorithms are flexible in terms of a variety of similarity measures and
linkage criteria, that can be used;

– hierarchical-based algorithms have high computational complexity.

• density-based algorithms:

+ robust to outliers;

– it is not clear, how to select suitable values for parameters, which characterize
fragments as the areas of high density (e.g. ε and minPts for DBSCAN
algorithm) and it does not conform to the transparency requirement;

– it is hard to put a constraint on the number of fragments;

– it is hard to include a cost model into the clustering process.

• grid-based algorithms:

+ perform quite well on large datasets;

+ a cost model can be included into the fragmentation process;

– finding a suitable size of the grid is a difficult task;

– these algorithms are not very accurate [65], which can drastically degrade
the quality of results.

• model-based algorithms:

+ might generate better results than partitioning-based clustering algorithms [29];

62 3. Prototype implementation and research questions

+ the number of fragments can be limited;

– to choose suitable values for the parameters of model-based clustering algo-
rithms, the analyst should have certain knowledge of the underlying data
distribution, which is hard in our case;

– they have high computational complexity.

Taking into consideration these characteristics of the clustering algorithms, we have
chosen a hierarchical-based agglomerative clustering algorithm for our clustering-based
horizontal fragmentation approach. The algorithm is transparent, flexible, automatic
in the sense that it does not require a thorough analysis of the dataset. Furthermore,
high computational complexity of the algorithm can be reduced by using a heap, where
distances between cluster pairs are stored.

The heap is an implementation of a priority queue, which requires an element with
higher priority to be served before the one with a lower priority. So the element with
the highest priority is always placed at the root of the heap and the process of finding
this element has O(1) complexity. Deletion of an element from the heap and insertion
an element to the heap usually have O(log n) complexity. So the time complexity of the
heap-based agglomerative hierarchical clustering algorithm is O(n2 log n). With all the
improvements and adjustments our hierarchical clustering algorithm works as follows:

1. Input data preparation.

For details, please refer to the Section 3.5.3.

2. Generation of the initial clusters.

Each data point from the step 1 is put to its own cluster.

3. Building a heap.

Using the specified linkage criterion and similarity measure, all the distances
between each pair of the clusters are calculated and added to the heap.

4. Getting cluster pairs from the heap.

The algorithm repeatedly gets a pair from the heap and if both clusters of the pair
are valid (some clusters in the heap can be already merged before) adds it to a list
of cluster pairs under consideration.

5. Best pair selection.

The algorithm tries to merge each pair of clusters from the list of the cluster pairs
under consideration and using a cost model compares execution cost of the queries
on the modified fragmentation schemes.

6. Updating the clusters.

The best pair of clusters from the step 5 is merged, other pairs are pushed back to
the heap.

3.5. Clustering-based solution (MM) 63

7. Repeat steps 4-6 if the current number of clusters is less than the specified
number of clusters k.

3.5.3 Input data representation

Although the heap-based agglomerative hierarchical clustering algorithm is much faster
than the classical version, substantial increase in speed of the algorithm can only be
achieved by using an optimized input data representation.

From the problem statement (rows of the database table should be grouped based on
their usage in the queries) an obvious, straightforward solution would be to encode each
row using its access statistics. But are there better options? To choose the best one,
different input data representations from the papers discussed in Section 2.3.2.2 need to
be analyzed.

Adrian Darabant and his scientific group use object-condition and characteristic vector
matrices as their input data representations. If Pred(C) is a set of atomic predicates
extracted from the queries and Inst(C) is a set of instances of the class C, then the
object-condition matrix can be constructed as follows:

OCM(C) = aij, 1 ≤ i ≤ |Inst(C)|, 1 ≤ j ≤ |Pred(C)|, (3.1)

where aij:

aij =

{
1, if predicate j accesses instance i

0, otherwise
(3.2)

Each element in the characteristic vector matrix represents the ratio between the
instances of the class C, which are accessed in the same way as instance i by a predicate
j is, and the total number of instances of the class C.

For the purpose of the discussion we will call such input data representations object-
predicate representations after the level of its granularity. One advantage of such
representations is that the fragmentation algorithm proposed by Zhang and Orlowska
[1] is also predicate-based in a sense, so the algorithm proposed by Zhang and Orlowska
would be more comparable to our clustering approach if this input data representation
was used. The same input data representation, but for tuples instead of objects, was
used in other works [50, 51]. However, such representations only make sense if there
are predicates that are used in several queries. Moreover, they do not handle well the
situation when two different predicates fetch the same or similar sets of rows (objects), as
they only compare predicates syntactically. It is also not always an easy task to extract
and to analyze predicates from the queries. Object-/tuple-based component of the
representation is not a perfect solution either. For a table with 1 million objects/tuples
running an algorithm with O(n2 log n) complexity on the input data represented this
way would take too much time.

64 3. Prototype implementation and research questions

Other input data representation called predicate usage matrix was used in several works
[46–48, 53]. The matrix has queries as rows and predicates extracted from the queries as
columns. A cell (i, j) value is set to 1 if a query i includes a predicate j and 0 otherwise.
Representing the data in this way makes the algorithm work even more similar to the
algorithm proposed by Zhang and Orlowska [1]. This approach has the same problems
as the object-predicate representation does. And not to mention that by using this input
data representation, the reconstructability and disjointness of the obtained fragments
can not be guaranteed automatically (without using some post-processing). Both data
representations have scalability problems: even if the number of queries is small, the
queries might consist of a huge number of simple predicates and if there are not so many
queries sharing the same simple predicates, the matrix will have an enormous number of
columns and still will not provide enough data for clustering to be meaningful Table 3.1.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

q1 0 0 0 0 0 1 1 0 0 0

q2 0 0 0 1 1 0 0 0 0 0

q3 1 0 1 0 0 0 0 0 0 0

q4 0 1 0 0 0 0 0 1 1 1

Table 3.1: Predicate usage matrix

So by analyzing different input data representations from the literature we define our
requirements as follows:

• our input data representation should guarantee correctness properties of a hori-
zontal fragmentation scheme generated by the hierarchical clustering algorithm
automatically;

• our input data representation should not be based on the simple predicates from
the queries because of the reasons mentioned before;

• our input data representation should be faster than the tuple-/object-based input
representations, since our testing table is quite large.

All these requirements can be satisfied very easily by analyzing the problem again:
tuples, which are frequently accessed together in the queries, should be moved to the
same fragment. That means, that it does not make sense to consider each row separately.
Instead, we can use as an input data representation for the clustering algorithm sets of
tuples, which behave in the same way on each single query from the list of queries. We

3.5. Clustering-based solution (MM) 65

will call such sets atomic clusters (or atomic fragments), since they are on the lowest level
of granularity that is reasonable to use in the context of our task. For n queries there
are 2n possible combinations of the queries that need to be considered. To generate a
set of atomic fragments, a SELECT query needs to be constructed from each combination
of the queries: e.g. taking combination [0, 0, 1] of set Q of queries {q1, q2, q3} following
query will be formed:

¬q1 ∧ ¬q2 ∧ q3 =

SELECT * FROM <table> WHERE NOT <q1> AND NOT <q2> AND <q3>; (3.3)

The rows selected by this query will form an atomic fragment and [0, 0, 1], which will
become its fragment condition vector. A row can either be selected or not selected by a
query and the queries in normal or negated forms are connected by the AND operator,
which means that the predicates generated from the fragment condition vectors are
mutually exclusive and one row can be assigned only to a single atomic fragment. By
considering all the possible combinations of the queries we also guarantee that each row
will be assigned to at least one atomic fragment.

So as input data representation we use a set of atomic fragments (Table 3.2). Each
atomic fragment also has information about the number of rows assigned to it.

amount of rows selected
queries

q1 q2 q3

2006 0 0 0

0 0 0 1

1005 0 1 0

366 0 1 1

0 1 0 0

5001 1 0 1

99 1 1 0

800 1 1 1

Table 3.2: Atomic fragments

For instance, the Table 3.2 shows that there are 2006 tuples in the database table which
are selected by the predicate of the first atomic fragment(¬q1 & ¬q2 & ¬q3). The data
is prepared for the clustering algorithm as follows:

66 3. Prototype implementation and research questions

1. atomic clusters with 0 rows assigned to them are eliminated;

2. to each non-empty atomic cluster a unique id is assigned (Table 3.3).

amount of rows selected
queries

id
q1 q2 q3

2006 0 0 0 0

0 0 0 1 -

1005 0 1 0 1

366 0 1 1 2

0 1 0 0 -

5001 1 0 1 3

99 1 1 0 4

800 1 1 1 5

Table 3.3: Atomic fragments after processing

Input data can also be presented in Euclidean space by considering the fragment condition
vector of a cluster as its coordinate (Figure 3.2).

Figure 3.2: Input data in Euclidean space

3.5. Clustering-based solution (MM) 67

In agglomerative hierarchical clustering, the initial data points are moved to the separate
clusters at the beginning. So our clustering algorithm uses the set of atomic fragments
as initial clusters. In the next steps of the algorithm if two clusters are merged, the rows
stored previously in two different clusters (fragments) are now stored together. This
implies several things:

• id of a new cluster must contain information about the atomic clusters, which
were assigned to the old two clusters;

• the number of rows in the new cluster is equal to the total amount of rows assigned
to the old clusters;

• predicates generated from fragment condition vectors of the old clusters should be
ORed to obtain a predicate of the new cluster, since in the new cluster rows which
are selected by the predicate of the first cluster OR by the predicate of the second
cluster are stored.

Internally we represent the predicate of the new cluster as an array of fragment
condition vectors of the atomic clusters belonging to it. If a cluster c is encoded
like {id, predicate, rows amount} and two clusters c1 = {0, [0, 0, 0], 2006} and c2 =
{1, [0, 1, 0], 1005} are merged, a newly generated cluster c3 will be represented as follows:
({{0, 1}, [[0, 0, 0], [0, 1, 0]], 3011}).

When the required number of clusters is reached and fragments are generated from these
clusters, array of fragment condition vectors like [[0, 0, 0], [0, 1, 0]] can be optimized
following Boolean rules for simplification and obtained fragment predicate will look like:

¬q1 ∧ ¬q2 ∧ ¬q3 ∨ ¬q1 ∧ q2 ∧ ¬q3 = ¬q1 ∧ ¬q3 (3.4)

Analysis: initially all the combinations of the queries should be considered, which
limits the size of input dataset (the number of atomic clusters) to 2q, if q is the number
of queries. Theoretically, the selected input data representation can only guarantee that
this number will always be less or equal to the number of rows in the real database
table, but in reality the number of atomic clusters will be much smaller. It does only
make sense to select up to 10 queries with the “80/20 rule” mentioned in Section 2.2,
since neither of the approaches used in this thesis (the classical fragmentation algorithm,
the clustering-based approach and the RL-based approach) works well on a very large
set of queries or set of the simple predicates.

By using this input data representation we make our clustering algorithm run much faster,
than it would if tuple-based data representation was used. Moreover, by considering all
relevant combinations of the queries we guarantee completeness and disjointness of the
generated fragmentation scheme, which could not be achieved by using any other input
data representation from the literature.

68 3. Prototype implementation and research questions

3.5.4 Similarity measures and linkage criteria

Darabant et al. [41] present their research on the influence of different similarity measures
on the results obtained by clustering-based fragmentation. They use only 3 similarity
measures: Cosine, Euclidean and Manhattan. The results show, however, that the
impact of the similarity measures depends on the problem statement itself (primary
or derived horizontal fragmentation), the methods of constructing vectors, etc. We
also assume that the results could be completely different, if another cost model or
linkage criterion was used. One of the reasons for that lies in the inability of hierarchical
clustering algorithms to undo actions taken before, which increases the difference between
the results generated using different similarity measures at each iteration. Therefore, we
believe that choosing the right combination of similarity measure and linkage criterion
for the selected cost model and input data representation is an incredibly important
task for us. Generally, this also means that there is no optimal combination of similarity
measure and linkage criterion for all of the cases. Considering that hierarchical clustering
allows pretty much all existing similarity measures and linkage criteria to be used, we
would like to test as many combinations of them, as we can within a limited time frame.
In order to do that we support the following linkage criteria:

• Single-linkage criterion;

• Complete-linkage criterion;

• Average-linkage criterion;

• Centroid-linkage criterion.

And the following similarity measures:

• Euclidean distance;

• Squared Euclidean distance;

• Manhattan distance;

• Maximum distance.

Furthermore, for the hierarchical clustering algorithm application-specific linkage criteria
and similarity measures can be defined, which allows us to create case-specific, well-
tailored to the horizontal fragmentation problem and selected input data representation
linkage criteria and similarity measures. We have developed our own method of measuring
the distance between two clusters, called Penalty-based method.

This method is based on the intuition behind horizontal fragmentation. Consider a
fragment, which consists of multiple atomic fragments and set Q = {q1, q2, . . . qn} of

3.6. Deep-RL-based solution (IP) 69

queries. The fragmentation predicate provides an information to DBMS on whether or
not the fragment is selected by a query. All the rows from the fragment are fetched by
a query qi if at least one its atomic clusters has 1 in the ith element of its fragment
condition vector. If all of the atomic clusters are placed in their own clusters/fragments,
the total execution time of the queries Q is minimal. When two fragments are merged,
execution time of the queries increases. The reason is that after merge there are going
to be atomic clusters in the newly merged cluster, that are accessed differently by some
queries, i.e. some queries will fetch all the rows from the merged fragment even though
some of them are not relevant. The number of rows that were fetched unnecessarily is
the penalty for merging two fragments.

Using penalty-based distance measure the distance between two fragments is calculated
as follows:

1. Atomic clusters from the two fragments are merged together into a fragment F .

2. For all of the queries, which fetch some of the rows in F , we analyze the atomic
clusters one by one and sum the number of rows from the atomic clusters, which
have 0 in the corresponding element of the fragment condition vector (Table 3.4).

queries
amount of rows selected

q1 q2 q3 q4

2006 0 0 0 0

366 0 1 0 0

5001 1 0 0 1

Total penalty = 2006 * 3 + 366 * 2 + 5001 = 11751

Table 3.4: Penalty-based method

3.6 Deep-RL-based solution

3.6.1 Research questions

From the assumptions listed in Section 1.1 and general questions from Section 1.2 we
derive a set of implementation-specific research questions the design needs to answer:

• How to formulate the task of finding the right horizontal fragmentation in terms
of RL? This includes designing the environment, observation and action spaces.

• How does the logic of the environment traversal impact the convergence of the
model?

70 3. Prototype implementation and research questions

Figure 3.3: Architecture of Deep-RL based solution

3.6.2 Architecture

The implementation of our Deep-RL solution is based on Dopamine framework developed
by Google. Dopamine is designed to ease the prototyping and evaluation of Deep-RL
algorithms, and includes a number of state-of-the-art algorithms (including DQN,
Rainbow, Implicit quantile) [66]. This framework uses environment interface from Gym
toolkit, which provides a set of standardized environments as well as means to define
new environments [67].

The general architecture of the Deep-RL solution, based on original Dopamine framework
architecture, is shown in Figure 3.3

1. Runner is a key component that defines the routines for single training or
training-and-evaluation task. It orchestrates the training and evaluation process
by connecting agent and environment, accumulates and processes the statistics for
logging. Here we also include scripts for starting and managing multiple runners
in series of experiments.

2. Environment is designed to encapsulate all the domain-specific business logic of
horizontal fragmentation, providing standard Gym interface with extensions for
action pruning. It serves as a bridge between ML model and database, translating
the changes to target fragmentation to concepts of RL task (observation, action).

3. Cost model is designed to improve experiment run time as discussed in Section 3.3.
It uses the target database and assumptions on query planner’s optimizations to
calculate costs of executing query workload on a given fragmentation.

3.6. Deep-RL-based solution (IP) 71

4. Agent is a component that represents the RL entity of the same name. Dopamine
framework comes with a number of easily adaptable agents, from which we use Rain-
bow and Implicit Quantile. The agent behaviour was extended to accommodate
action pruning.

5. Experience replay is an optimization technique commonly used in Deep-RL
algorithms of the DQN family. High performance implementations of replay buffer
are provided in Dopamine framework. Some minor changes were done by us for it
to fit the required data format.

6. Summary writer is a component, which is tasked with filtering and storing
experiment results. We use Tensorboard to visualize and group data, and this
component preprocesses the data for it.

3.6.3 Input data representation

In order for RL-algorithms to be applicable, the optimal horizontal fragmentation task
needs to be re-framed in RL terms. This means defining the implementation details of
the following concepts:

• Observation: the information about current state of the task the RL agent solves.
In our specific case, it should include the information about the database, queries
and current fragmentation.

• Action: the information about how to transition between states. This part is
especially hard because the choice of action representation also limits the possible
fragmentation the agent can create by taking them.

• Reward: the information about how good the action taken was.

To start designing the observation space for the horizontal fragmentation we need to
consider the limitations of the Deep-RL agents. The observation space of all Deep-RL
agents used in this thesis represents a multidimensional finite-sized field, where values
are typically of the same magnitude.

The observation should encode the information about the data in table, so that the
agent can use it to find the patterns to be used in fragmentation. However, the typical
size of a database is huge by the standards of the RL agents (most of the agents used in
this thesis are designed to interact with the environment with 160 by 210 matrix of 7 bit
pixels as state observation and 18 discrete actions [68]). The database can also change
its size when the user adds or deletes tuples. This makes it unwieldy for RL agent to
operate on the tuple level.

However, the agent does not need the full information on the data in table. It is
mostly interested in how the data interacts with queries and fragments. Authors in [69],

72 3. Prototype implementation and research questions

when faced with similar problem for the index selection task, proposed the following
representation of the query workload with regards to the selectivity of each column used
in the query:

Iworkload =


Sel(q1, c1) . . . Sel(q1, cn)

...
. . .

...

Sel(qk, c1) . . . Sel(qk, cn)

 (3.5)

for queries qi ∈ Q, columns cj ∈ C and:

Sel(q, c) =

{
number of tuples selected by q on c
total number of tuples in the table

; if q has predicates on c

1; if q no has predicates on c
(3.6)

This, however, requires multi-staged preparation of query workload to separate predicates
column-wise and calculate their selectivity separately. Such approach also hinders the
ability of the agent to find correlation between the queries and their predicates.

Assuming that each predicate of query is a range selection on specific column, we can
instead provide the agent with the raw information about predicate itself. We can
define the query workload input data representation with same shape to [69], but with
predicate ranges:

Iworkload =


[Rleft(q1, c1);Rright(q1, c1)] . . . [Rleft(q1, cn);Rright(q1, cn)]

...
. . .

...

[Rleft(qk, c1);Rright(qk, c1)] . . . [Rleft(qk, cn);Rright(qk, cn)]

 (3.7)

where

R(q, c) = [Rleft(q, c);Rright(q, c)]

=

{
[left limit point; right limit point] if q has predicates on c

[COLUMN MIN, COLUMN MAX]; if q no has predicates on c

(3.8)

Defining the observation in such way helps limit the dimensions of the problem by
condensing them to the size of |Q| ∗ |C| ∗ 2. The same principle can be applied to

3.6. Deep-RL-based solution (IP) 73

representing the fragments. Taking into account the limitation of number of fragments,
we can encode the fragment predicates in 3-dimensional table of size Fmax ∗ |C| ∗ 2 where
Fmax is the maximum number of fragments.

The Deep-RL solutions usually operate on uniform data, however, data in columns (and,
consequently, in column ranges) depends on the column type. To make the input data
uniform, we propose to normalize it using the following formula:

xnormalized =
x− COLUMN MIN

COLUMN MAX− COLUMN MIN
(3.9)

This way, any value x can be brought to range of [0; 1], which can then be easily
consumed by Deep-RL agents. We additionally specify single column per query/fragment
which shows the selectivity of said query/fragment. The final shape of observation is
(|Q|+ Fmax) ∗ (|C| ∗ 2 + 1).

However, this way of encoding ranges is very restrictive in number of values it can
represent. For encoding the fragments one key type of range is an inverse interval,
which is useful when defining negation of predicates for co-fragments to guarantee
the disjointness and completeness requirements. In current encoding, a negation of a
predicate range [a, b] will, in general case, result in two fragments: [0, a) and (b, 1]. This
hinders the ability of the agent to create the co-fragments while being restricted on
maximum number of fragments. To work around this, we introduce inverse ranges which
are encoded as [b, a] where b > a. Since regular ranges with left limit point being higher
than right limit point do not make much sense (these two limits contradict each other
and, therefore, yield when used in filter statement of query or fragment), we can safely
use encode the negated predicates this way and rely RL agents to recognise the pattern.

We also need to highlight the empty fragments for the agent. Fortunately, there is still
ranges of [0, 0] unused and not encoding any meaningful intervals. An example of single
observation encoded in such way can be seen on Table 3.5:

74 3. Prototype implementation and research questions

c1 c2 c3 c4 sel

0 1 0.245 0.65 0 1 0 0.4 0.1

 q
u
er

ie
s

0.33 0.98 0 1 0 1 0 1 0.4

0.1 0.25 0 1 0 1 0 1 0.3

 fr
ag

m
en

ts

0.25 0.1 0 1 0 1 0 1 0.7

em
p
ty

fr
ag

m
en

ts


0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Table 3.5: Example of observation space for 2 queries and 4 maximum fragments

3.6.4 Action representation

Given that the RL agent is tasked with finding the optimal horizontal fragmentation, it
needs to be able to create and update fragments. This maps to actions concept of RL:
the atomic changes in observed state chosen by agent, which give some reward. From
the Section 3.6.3 it is clear that actions should change defined ranges, updating them or
creating new ranges if the fragment is already partitioned.

However, actions represented by arbitrary changes to continuous values create huge
action space, which proves tricky for Deep-RL agents to learn. We propose using atomic
filter predicates of the queries from query workload to form action. This way the learning
process starts from single proto-fragment (representing unfragmented table) and then
agent selects predicate-fragment pairs to form new fragments or update existing.

The mechanism of applying the predicate [a, b] on column c to fragment with current
number of allocated fragments Fcurrent has following steps:

1. Both [a, b] and the fragment predicate [fleft, fright] on c are converted to mathe-
matical interval forms iquery and ifragment (inverting the predicate if the left limit
point is higher than right).

2. ipositive is calculated as ipositive = iquery ∩ ifragment. If ipositive is the same ifragment,
the process of fragment splitting is ended prematurely, signaling the agent that
this action does not produce meaningful result.

3. inegative is calculated as inegative = ¬iquery ∩ ifragment. If the inegative is empty
interval, the process of fragment splitting is ended prematurely, signaling the agent
that this action does not produce meaningful result.

3.6. Deep-RL-based solution (IP) 75

4. Both ipositive and inegative are converted to state encoding. This might produce
maximum of 3 different ranges using the inverted interval encoding discussed
earlier. Lets mark the number of ranges created as Fnew.

5. If Fmax < Fcurrent+Fnew−1, , the process of fragment splitting is ended prematurely,
signaling the agent that this action does not fit the requirements on maximum
number of fragments.

6. Otherwise, next Fnew−1 empty fragments are set to copy of the original fragments
on all columns except c; it is instead set to its respective range from newly created
ones. The original fragments has its c set to the first from set of new ranges.

Assuming that the queries have only a single range predicate on specific column, any
action can be encoded as three values query, column, fragment. Action space of this
approach is discrete and final, with maximum of |Q| ∗ |C| ∗ Fmax actions. An example
of applying this kind of action is shown in Table 3.6:

c1 c2 sel

0.1 0.5 0.7 1.0 0.2

. . .

. . .

0.5 0.1 0.1 1.0 0.39

0 0 0 0 0

=⇒

c1 c2 sel

0.1 0.5 0.7 1.0 0.2

. . .

. . .

0.5 0.1 0.7 1.0 0.23

0.5 0.1 1.0 0.7 0.16

Table 3.6: Example of action based on query predicate

Here, action is highlighted in blue, presenting query, column, fragment triplet that
defines the changes applied to fragmentation. Changes themselves are highlighted with
green.

Reward engineering

To make a horizontal fragmentation optimizer based on RL, information about the
quality of the defined fragments needs to be used as a reinforcement signal. Since the
RL agent tries to maximize the total reward and we are interested only in the quality of
the final fragmentation, it makes sense to withhold the reward until the terminal state,
leaving it to policy bootstrapping to propagate the information about the fragmentation
through states. The proposed method of rewarding the agent is presented in Figure 3.4

76 3. Prototype implementation and research questions

Figure 3.4: Schematic representation of rewards throughout the episode

Figure 3.5: Schematic representation of action pruning embedded into Deep-RL agent

Since the task is to minimize cost of query execution, the reward function needs to
decrease with the increase of cost. We propose the following function to be used to
calculate the final reward in the end of the episode:

reward = max(
costunfragmented
costfragmentation

− 1; 0) (3.10)

This function normalizes the performance for fragmentation with the performance on
unfragmented database, cutting off all the results that perform worse then unfragmented
database.

3.6.5 Action pruning

Taking some of the actions from the action space described in Section 3.6.4 results in
either not changing state in any meaningful way, or changing the state into an invalid
state. The traditional RL approach to such actions is to assign high negative rewards
for taking them, teaching the agent to avoid them. However, another approach suggests
embedding this knowledge into the architecture of the agent itself, thus improving the
convergence [70]. To ensure that agent does not pick actions, which are invalid or useless,
we propose the action pruning extension presented in Figure 3.5.

First step to employ action pruning is to build a mask at each step, which has the same
shape as the action space. Each value of the mask is set to +∞ if the action does not
yield an invalid state, and the resulting state is different from current; otherwise value is

3.7. Summary 77

set to −∞. When agent picks an action, the Q-values of each action are then replaced
with min(Qi,maski), ensuring that actions that are invalid have zero probability to be
picked during greedy step of the agent. We additionally filter actions during exploratory
steps of the agent, picking random actions only from those, which have +∞ in action
mask.

3.7 Summary

In this section we outline the design decisions we made during work on our thesis.
We specify the research questions we would like to answer with our work. Then we
discussed the design on cost model used to evaluate the proposed solutions. After that,
we described the designs of both clustering-based and Deep-RL-based solutions as well
as the design decisions made to adapt the baseline classical algorithm.

78 3. Prototype implementation and research questions

4. Experimental design

In this chapter we discuss our experimental setup and provide some important details,
which can be used for reproducing the experiments disclosed in our study. We organize
the chapter as follows:

• In Section 4.1 we list important hardware and software characteristics of our
experimental environment;

• In Section 4.2 we describe the dataset used for running the experiments;

• In Section 4.3 we discuss the query generator used to generate input data for the
experiments and provide a sample set of queries generated by it;

• In Section 4.4 we list general settings of our horizontal fragmentation algorithms
and some relevant configuration parameters of out RL-based solution in particular;

• We summarize the whole chapter in Section 4.5.

4.1 Experimental environment

We run our experiments with the classical horizontal fragmentation algorithm, clustering-
and RL-based fragmentation algorithms on a device with the following characteristics:

• Memory: 32GiB

• Processor: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz

• Graphics Card: GeForce GTX 1050 Ti Mobile

• OS: GNU/Linux Ubuntu 18.04.1

80 4. Experimental design (MM, IP)

The list of software we have used and its versions:

• Python: 3.6

• PostgreSQL: 10.3

• psycopg2: 2.7.4

• pyeda: 0.28.0

• tensorflow: 1.14.0

• gym: 0.14.0

• Keras: 1.1.0

• dopamine-rl: 1.0.5

• scipy: 1.3.1

• gin-config: 0.2.0

4.2 Dataset

We use the LINEITEM table from the standard TPC-H benchmark. The TPC-H dataset
is designed to have large data volumes and to represent a real-world business analysis
industry case. The LINEITEM has the following attributes1:

• l_orderkey identifier;

• l_partkey identifier;

• l_suppkey identifier;

• l_linenumber integer;

• l_quantity decimal;

• l_extendedprice decimal;

• l_discount decimal;

• l_tax decimal;

• l_returnflag fixed text, size 1;

• l_linestatus fixed text, size 1;

1http://www.tpc.org/tpc documents current versions/pdf/tpc-h v2.17.1.pdf

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

4.3. Workloads 81

• l_shipdate date;

• l_commitdate date;

• l_receiptdate date;

• l_shipinstruct fixed text, size 25;

• l_shipmode fixed text, size 10;

• l_comment variable text size 44.

4.3 Workloads

Since in our thesis we aim to find an optimal way to fragment horizontally a database
based on a set of queries and specifically based on a set of simple predicates (in case of
classical and RL-based fragmentation algorithms) we would like to have a set of queries,
which do not introduce features other than those, and which can be easily decomposed
into a set of simple predicates. Therefore, queries of the TPC-H benchmark, which use a
wide variety of complex operators and joins between the tables, are not really a perfect
fit for us. That is why we have implemented a query generator, which generates a set of
queries for the LINEITEM table and is designed according to such requirements:

• a query should be in the canonical form:

SELECT * FROM lineitem WHERE (<predicate> AND)* <predicate>;

• RL-based approach requires a predicate to be in the form:

<column> ’<’ | ’>=’ <value>

• we define predicates on numeric and date attributes of the LINEITEM table:
l_orderkey, l_partkey, l_suppkey, l_linenumber, l_quantity, l_extendedprice,
l_discount, l_tax, l_shipdate, l_commitdate, l_receiptdate;

• a predicate should select 30-70% of the data, which requires <value> term of a
predicate to be selected from the ranges provided in Table 4.1 and Table 4.2;

• the number of queries in the set and number of predicates in the queries are fixed;

• additionally, the percentage of duplicates in the list of simple predicates can be
configured, since we would like to test, how presented horizontal fragmentation
approaches will perform on the queries sharing some predicates;

• <column> term in the simple predicates should be evenly distributed over the set
of above-mentioned numeric and date attributes of the LINEITEM table.

82 4. Experimental design (MM, IP)

orderkey partkey suppkey linenumber quantity extendedprice discount tax

min
(30%)

314691 59994 3007 2 16.00 22421.56 0.03 0.02

max
(70%)

733478 140010 7005 4 36.00 51223.75 0.07 0.06

Table 4.1: Ranges of values used by the query generator for numeric fields

shipdate commitdate receiptdate

min
(30%)

1994-02-25 1994-02-25 1994-03-13

max
(70%)

1996-10-12 1996-10-11 1996-10-27

Table 4.2: Ranges of values used by the query generator for date fields

For the experiments we generate the sets of queries with 10%, 20%, 30%, 40%, 50%, 60%,
70% of duplicates in simple predicates. For each of the duplicates percentage option we
generate 10 sets of queries. Each set of queries contains 6 queries and each query has 3
simple predicates. An example of generated set of queries for 30% of duplicates is:

SELECT * FROM lineitem WHERE (l_receiptdate < ’1994-08-05’ AND

l_quantity >= 29.87735203286717 AND l_linenumber >= 2);

SELECT * FROM lineitem WHERE (l_receiptdate < ’1994-08-05’

AND l_partkey < 95522 AND l_discount >= 0.05116648238656971);

SELECT * FROM lineitem WHERE (l_commitdate >= ’1995-07-23’ AND

l_tax >= 0.0314102265849505 AND l_orderkey < 381711);

SELECT * FROM lineitem WHERE (l_extendedprice < 44812.95404350133 AND

l_tax >= 0.026040578265457394 AND l_shipdate < ’1995-07-19’);

SELECT * FROM lineitem WHERE (l_receiptdate < ’1994-08-05’ AND

l_shipdate < ’1995-07-19’ AND l_suppkey < 4079);

SELECT * FROM lineitem WHERE (l_extendedprice < 44812.95404350133 AND

l_partkey >= 67271 AND l_shipdate < ’1995-07-19’);

4.4 Algorithms settings

General settings: We set k (number of horizontal fragments) for all of the discussed
solutions to 4.

4.4. Algorithms settings 83

Deep-RL experiment design

The Deep-RL solution is tested in two modes: with a fixed query workload and generalized
over the whole testbench provided by the query generator.

The first test serves to prove that the design of the RL environment suits the task of
finding the optimal horizontal fragmentation and that the model can mine the data from
a fixed workload. The design of this experiment is straightforward: the specified query
workload is passed to runner, which then starts to continuously train and evaluate the
specifies agent on it. Each run consists of a fixed number of iterations, which represent
a fixed number of training steps followed by model evaluation. In the experiments with
fixed workload, the training and evaluation happen on the same batch of queries.

The generalization test implies that training and evaluation follow different rules on
picking queries. In our generalization design we evaluate the agent over all queries
provided by testbench to track model performance across all duplicate buckets. The
queries for training are picked from a pool using weighted random choice. Each query
batch is assigned weight, which is inversely proportional to the recorded performance of
the agent on it. This ensures that agents train more on data they have not yet managed
to master.

Hyper-parameters for DQN agents

Dopamine provides a number of configurable parameters for the DQN agent family. In
most experiments the majority of them is kept in their default values. In Table 4.3 we
provide a brief description of the key parameters and the values we set them to, in order
to give insights into the learning process and ensure reproducibility of our results.

Parameter Description Value

training steps The maximum length of a single
training phase of iteration

1000

evaluation steps The maximum length of evaluation
phase of iteration. This value is a
soft limit, meaning that once the
episode has started, no checks are
performed until next episode starts

1

num iterations Number of iterations (training +
evaluation phases)

Varies depending on the
experiment

gamma Discount factor γ for future rewards 0.99

epsilon train Epsilon value for training phase at
the end of epsilon decay

0.01

84 4. Experimental design (MM, IP)

epsilon decay period Number of steps in which epsilon
reaches epsilon train

num itearations * train-
ing steps * 0.95

target update period Update period of target NN 200

update horizon Number of steps in which the model
performs its Q-values update

Varies depending on the
experiment

min replay history Minimum number of steps stored
in the replay memory for agent to
start updating target NN

2000

replay capacity Maximum number of steps stored
in replay memory

1000000

batch size Number of steps sampled from re-
play memory each update

32

learning rate Learning rate of gradient descent 0.00005

optimizer Optimization algorithm used to up-
date NN towards minimizing objec-
tive function

Adam [71]

Table 4.3: Parameters of Dopamine agents of DQN family

4.5 Summary

In this chapter our experimental setup is discussed. We disclose hardware and software
characteristics of the experimental environment, describe the dataset and the workloads
used in the experiments. We also discuss important configuration parameters of the
proposed horizontal fragmentation solutions.

5. Evaluation and Results

In this chapter we compare a classic horizontal fragmentation algorithm designed by
Zhang and Orlowska [1] and our proposed clustering-based and RL-based horizontal
fragmentation solutions. We consider different parameters, which can influence the
results and we analyze the quality of the fragmentation schemes generated by the
algorithms.

We structure the chapter as follows:

• In Section 5.1 we formulate the research questions we intend to answer with
evaluations.

• In Section 5.2 we document the evaluation results of clustering-based solution.
We provide comparison of the solution’s performance with different configuration
parameters.

• In Section 5.3 we provide the evaluation details of the Deep-RL based solution.
We document its performance in different training modes and discuss the impact
of hyperparameters on convergence and performance of Deep-RL models.

• In Section 5.4 we provide the final evaluation, comparing the both clustering-based
and Deep-RL-based algorithms with each other as well as with a classical baseline.

5.1 Research questions

In this section we refine some of the research questions presented in Section 1.2 that
will be answered in this chapter:

1. To what extent can the clustering-based fragmentation approach reduce the query
execution cost compared to the classical fragmentation approach?

86 5. Evaluation and Results

2. To what extent can the cost model usage improve the fragmentation schemes
generated by the clustering-based fragmentation approach?

3. Which similarity measure and linkage criterion for the clustering-based solution
result in the lowest execution costs?

4. What is the training cost and impact of parameters for an RL-based approach?

5. How does the choice of Deep-RL model affect the convergence of the RL-solution?

6. What are the optimal parameters for a representative evaluation that would
capture the best performance of both RL- and UL-based approaches?

7. How well do proposed ML-based approaches perform compared to each other and
to state-of-the-art horizontal fragmentation algorithms?

5.2 Clustering-based solution

There are numerous internal and external evaluation criteria for a clustering algorithm,
including the following: SSQ, Davies–Bouldin index, Silhouette coefficient, Adjusted
Rand Index, Normalized Mutual Information, Purity [29]. However, we cannot fully rely
on these criteria, as we have incorporated a cost model into our approach to control
and guide the clustering process. Moreover, we would like to compare our clustering
algorithm with the classical horizontal fragmentation algorithm and with our fully cost-
model-driven RL-based approach. Therefore, in this chapter we compare our solutions
based on the estimated execution cost of the queries on a fragmented table.

To design meaningful tests we need to define parameters, which might influence the
results generated by the clustering-based horizontal fragmentation algorithm. In section
Section 3.5 we mentioned that the fragmentation scheme obtained by applying the
algorithm can differ depending on the linkage criterion and similarity measure used, so
in the experiments we test all relevant combinations of them:

• Single-linkage criterion(SL) & Euclidean distance;

• Single-linkage criterion(SL) & Squared Euclidean distance;

• Single-linkage criterion(SL) & Manhattan distance;

• Single-linkage criterion(SL) & Maximum distance;

• Complete-linkage criterion(CL) & Euclidean distance;

• Complete-linkage criterion(CL) & Squared Euclidean distance;

• Complete-linkage criterion(CL) & Manhattan distance;

5.2. Clustering-based solution (MM) 87

• Complete-linkage criterion(CL) & Maximum distance;

• Average-linkage criterion(AL) & Euclidean distance;

• Average-linkage criterion(AL) & Squared Euclidean distance;

• Average-linkage criterion(AL) & Manhattan distance;

• Average-linkage criterion(AL) & Maximum distance;

• Centroid-linkage criterion(CentrL) & Euclidean distance;

• Penalty-based method.

Another parameter that we would like to consider is the cost model usage. That was one
of the main requirements for the clustering-based fragmentation solution. The reason
for that is obvious: the cost model usage might significantly improve the quality of
the results. However, it should be possible to run the algorithm without a cost model
included. This feature should always be optional, because it is not always an easy task to
choose a suitable cost model. Moreover, the selected cost model might be a performance
bottleneck. If a cost model takes a lot of time, it is important to configure the algorithm
in such a way that the algorithm produces good enough results within a reasonable
amount of time.

In our case this is definitely an important factor to consider. With Single-linkage
criterion and Euclidean distance our clustering-based fragmentation algorithm spends
93.2% of the time on estimating the execution costs using the cost model (Figure 5.1).
The approach based on the algorithm designed by Zhang and Orlowska [1] behaves
similarly and spends almost 100% of the time on the cost model usage (Figure 5.2).
Therefore, we use the number of cost model calls not only to compare different similarity
measures and linkage criteria with each other, but also to compare our clustering-based
fragmentation solution with the classical fragmentation approach developed by Zhang
and Orlowska.

Figure 5.1: Profiling results (the clustering-based solution)

88 5. Evaluation and Results

Figure 5.2: Profiling results (the classical fragmentation approach)

5.2.1 No cost model included

To answer the question of how the choice of a similarity measure and linkage criterion
influences the quality of the generated fragmentation schemes, we first need to consider
them “in isolation”, i.e. with no cost model included into the clustering process.

We expect the Average-linkage and Penalty-based method to outperform other linkage
criteria, because the Average-linkage criterion is generally considered to be very effective,
especially when there is no information about the shape of the clusters in the input data.
In Average-linkage approach each element of a cluster contributes to the calculation of
the distance between the clusters. The Penalty-based method was developed specifically
for the horizontal fragmentation task and we expect it to generate the best results among
all the linkage criteria. The experiments were performed on the ten sets of queries
generated by the query generator with 10% of duplicates in the input predicates. The
results presented in Figure 5.3 are average values of the results generated from each
query workload.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

Euclidean distance Squared Euclidean
distance

Manhattan distance Maximum distance Penalty-based

co
st

Single-linkage

Complete-linkage

Average-linkage

Centroid-linkage

Penalty-based

Figure 5.3: Clustering-based solution without cost model usage (execution costs are
measured in tuples fetched)

5.2. Clustering-based solution (MM) 89

Analysis

• Single-linkage criterion generally leads to the worst results (5,578,129 vs 4,115,017
with Complete-linkage and 4,020,392 with Average-linkage using Euclidean distance;
5,629,254 vs 4,340,258 with Complete-linkage and 4,087,210 with Average-linkage
using Squared Euclidean distance; 5,803,449 vs 4,302,953 with Complete-linkage
and 4,224,468 with Average-linkage using Manhattan distance).

The reason for this could be that the Single-linkage criterion can cause a chaining
effect (or chaining phenomenon). It means that if there are two clusters close to
each other, they might end up being merged together even though many of their
elements are very far from each other.

• Clustering using the Average-linkage generally produces better results than the one
using Complete-linkage.

The nature of the Complete-linkage causes the clusters generated using this criterion
to be compact, but it makes it very sensitive to outliers.

• In average the Penalty-based method results in 2.3 times better solutions than the
other methods (including Average-linkage and Centroid-linkage).

Average-linkage and Centroid-linkage might provide better results in terms of
internal and external validity, but since our Penalty-based method was specifically
designed to meet the concept of horizontal fragmentation and our final goal is to
generate the best possible fragmentation schemes in terms of the execution cost,
it is clear that the Penalty-based method will outperform other classical linkage
methods.

• Maximum distance leads to the worst results in comparison to the other similarity
measures.

There is not much difference between using similarity measures like Euclidean,
Squared Euclidean or Manhattan (average costs of 4,591,382, 4,685,574 and
4,776,956 respectively) but Maximum distance turned out to be the worst fit
for our task with an average cost of 5,992,403. The reason behind this is that
with the selected input data representation the Maximum distance between two
points will always be either a 0 or 1. As a result, there are a lot of pairs of clusters
at each iteration with the same distances to each other and with no cost model
included a pair of clusters to merge will be selected randomly. Obviously, when
using a hierarchical clustering algorithm, where the changes made once cannot be
undone, random selection is not the best strategy to follow.

5.2.2 With the cost model included

As mentioned earlier, along with the execution cost the number of cost model calls is
a very important factor for us. Our general expectation would be that the more the

90 5. Evaluation and Results

algorithm uses the cost model, the better results it will generate. The number of cost
model calls depends in turn on the diversity of distance values that a similarity measure
and a linkage criterion can yield. But of course different similarity measures and linkage
criteria will lead to different results even with the same number of cost model calls, as
shown in the previous section. In this experiment we use the same input data and test
the same linkage criteria and similarity measures, but with the cost model included.
The average execution cost of the queries is presented in Figure 5.4 and the average
number of the cost model calls is shown in Figure 5.5.

Figure 5.4: Clustering-based solution with the cost model usage (execution costs are
measured in tuples fetched)

Figure 5.5: Clustering-based solution with the cost model usage (number of cost model
calls)

5.2. Clustering-based solution (MM) 91

Analysis

The following conclusions can be drawn from the results of this experiment:

• The best fragmentation schemes were generated using the Maximum distance.

In contrast to the experiments conducted in the previous section, fragmentation
schemes generated using the cost model and the Maximum distance lead to the
lowest execution costs of the queries (2,013,827), which was absolutely predictable
considering how many cost model calls it needs (39,307) to achieve such results.
The clustering algorithm with the Single-linkage produces results not much worse
than with the Maximum distance (2,047,838) but using much less cost model calls
(8039). A great alternative to using Maximum distance is to use the Penalty-based
method, since it also produces very good results (2,145,374) and calls the cost
model only 9 times.

• Single-linkage is proportionally almost as good as Complete- and Average-linkages.

The execution costs of the queries on the fragmentation schemes generated using
Single-linkage are almost 2 times lower than those generated using Complete- and
Average-linkages, but the number of cost model calls is in turn twice as high. The
reason why the algorithm calls the cost model so many times with the Single-linkage
lies in the fact that the input data for our clustering algorithm generally consists
of all possible combinations of Boolean values and the number of combinations,
which differ only in one value, is higher than the number of combinations, which
differ in all the values. For instance, with the Single-linkage selected and 4 queries
used maximum number of cluster pairs with the same distances to each other is
32 at the first iteration, whereas with the Complete-linkage selected this number
would be 8.

• Centroid-linkage is outperformed by Average- and Complete-linkages.

The execution costs of the queries on the fragmentation schemes generated using
Centroid-linkage (4,145,271) is higher, than on the fragmentation schemes generated
using Average- and Complete-linkages and considering that the number of cost
model calls when using Centroid-linkage (4,416) is also higher than the number of
cost model calls when using Average- and Complete-linkages we can conclude that
the concept of centroids does not fit well to the task and the selected input data
representation.

• The Penalty-based method seems to be one of the best methods for calculating the
distances between clusters.

Besides generating very good fragmentation schemes, the algorithm needs an
incredibly small number of cost model calls. This is due to the fact that this
method incorporates information about the number of rows in the atomic fragments
to estimate the execution cost, which leads to the quite large value space of the
distance function. That means that most of the time the method can rely on

92 5. Evaluation and Results

its own estimation of the distance to distinguish between different cluster pairs
instead of calling the cost function for that.

Using the results obtained in this experiment we can choose the best similarity measure
and linkage criterion pairs for our next experiments. Figure 5.6 depicts the Pareto-
optimal solutions for the multi-objective optimization problem, which involves two
objectives: minimization of the execution costs and minimization of the number of cost
model calls.

Figure 5.6: Pareto-optimal solutions (execution costs are measured in tuples fetched)

Based on the results presented in Figure 5.6 the following methods were selected for the
further experiments:

• Maximum distance & Complete-linkage;

• Euclidean distance & Single-linkage;

• Penalty-based method.

5.3 Deep-RL-based solution

In this section we intend to answer the research question of how different different Deep-
RL algorithms tackle solving the task of finding an optimal horizontal fragmentation;
and what are the key factors that influence their convergence and performance. As

5.3. Deep-RL-based solution (IP) 93

discussed in Section 3.6, we use Dopamine framework and the models bundled with it
to evaluate our Deep-RL approach.

In our evaluation we use the following models from the DQN algorithm family:

• Rainbow DQN

• Implicit Quantile (IQN)

We decided to skip testing with DQN algorithm itself, as its extensions (mentioned
above) tend to outperform it on most benchmarks.

5.3.1 Convergence in the case of fixed workload

We start our experiments by ensuring convergence for a simple case of fixed query
workload. We expect all agents to converge very early for such trivial task; therefore,
we set maximum number of iterations to 100.

As mentioned in chapter Chapter 4, the testbench for our solutions provides 7 distinct
query buckets, with different percentage of predicate duplicates. We provide a results of
execution costs for single query from each bucket to illustrate convergence.

As we can see, all agents converge very quickly in first couple of iterations (10000 steps).
We expect fast convergence due to the fact that the task is pretty straightforward. This
test shows that the Dopamine models can successfully mine the features from data
representation we designed.

Figure 5.7 also shows that the Rainbow agent proves to be slightly unstable on some
workloads, with the execution cost oscillating after convergence.

We also have ran the tests with variable to evaluate influence of update horizon (UH)
parameter on speed of convergence, but the models converge too fast to see significant
difference. UH defines a number of steps in which the model performs its Q-values
update.

94 5. Evaluation and Results

Figure 5.7: Rainbow DQN in the case of fixed workload (execution costs are measured
in tuples fetched)

5.3. Deep-RL-based solution (IP) 95

Figure 5.8: Implicit Quantile in the case of fixed workload (execution costs are measured
in tuples fetched)

96 5. Evaluation and Results

5.3.2 Convergence in the case of generalized workload

As mentioned in chapter Chapter 4, the testbench for our solutions provides 7 distinct
query buckets, with different percentage of predicate duplicates. We provide a results of
average execution costs for each bucket to illustrate convergence.

For this experiment we fix all of the parameters of Dopamine agents except for the
update horizon (UH). We test the following model-UH configurations:

• Rainbow DQN + UH=1;

• Rainbow DQN + UH=2;

• Rainbow DQN + UH=4;

• Implicit Quantile + UH=1;

• Implicit Quantile + UH=2;

• Implicit Quantile + UH=4;

The models are trained for 2000 iterations on workloads, which are randomly chosen from
the testbench as described in Section 4.4. We track the query execution performance
for all queries from the testbench, grouping it by predicate duplicates percentage.
The Figure 5.9 provides the results of the average cost for each duplicates bucket on
each iteration of the training of the Rainbow agent.

Both agents tend to converge during the training. The graphs show that results of both
agents oscillate even when it has nearly converged, signalling that the randomly selected
environments skew their predictions at each training iteration. However, oscillations
decrease with time, proving that the agents can learn the general patterns from the data
encoded by our proposed environment.

The experiments show that the Rainbow agent manages to converge faster than Implicit
Quantile in generalization scenario and tends to deliver better results. The change of
UH parameter impacts agent’s results differently. While the increase of UH for Rainbow
agent results in slightly faster convergence for high duplicates percentage, the increase
of it for Implicit Quantile agent does not yield noticeable improvement, and in some
cases even slows the convergence down.

5.3. Deep-RL-based solution (IP) 97

Figure 5.9: Rainbow DQN in the case of generalized workload (execution costs are
measured in tuples fetched)

98 5. Evaluation and Results

Figure 5.10: Implicit Quantile in the case of generalized workload (execution costs are
measured in tuples fetched)

5.4. Comparison of the solutions 99

Since the results produced by Implicit Quantile and Rainbow are slightly different after
full training period, we decided to include both of them in final evaluation.

5.4 Comparison of the solutions

In the final experiment we compare three horizontal fragmentation solutions discussed
in this thesis:

• classical affinity-based algorithm proposed by Zhang and Orlowska [1];

• clustering-based solution with the distance calculation methods selected in Sec-
tion 5.2;

• RL-based approach.

We surmise, that the results obtained by using the classical fragmentation approach might
differ depending on the percentage of duplicates, that the queries have in predicates.
So for this experiment we use sets of queries with 10%, 20%, 30%, 40%, 50%, 60% and
70% of duplicates (10 sets of queries each). We compare average execution costs of the
queries on the fragmentation schemes generated by all 3 approaches and we also provide
the data on the number of cost model calls, which was needed to generate the results
using the classical algorithm and the clustering-based algorithm.

We do not evaluate the number of cost model calls used by RL-based solution, because
the fully trained agent does not require the cost model, and the usage of the cost model
in training accounts for all the possible workloads agent can process thereafter (even
previously unseen ones). Instead, we provide inference times for the agents.

5.4.1 Quality of the results

In this section we compare the quality of the fragmentation schemes generated by the
proposed solutions using the cost model described in Section 3.3 (Figure 5.11).

100
5.

E
valu

ation
an

d
R
esu

lts

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

5000000

10% 20% 30% 40% 50% 60% 70%

co
st

Zhang

Rainbow

IQN

Penalty-based

SL + Euclidean

CL + Maximum

Figure 5.11: Quality of the fragmentation schemes generated by the horizontal fragmentation solutions (execution costs are
measured in tuples fetched)

5.4. Comparison of the solutions 101

Analysis

• Fragmentation schemes generated using Complete-linkage and Maximum distance
have the lowest average cost.

Complete-linkage in combination with the Maximum distance takes first place
with the average result of 1,655,485, Penalty-based method takes second place
with the result of 1,748,916.

• The impact of the percentage of duplicates in the queries.

The query execution performance for Deep-RL tends to improve as the duplicates
percentage grows. This was expected, as the increase in the amount of duplicates
makes its task easier. Having the same predicates in multiple queries means that
fragmenting the table on those predicates improves the performance on more
than one query. However, both the clustering-based and the classical algorithm
proposed by Zhang et al. use different fragmentation strategies, and quality of
their results does not seem to correlate with the percentage of duplicates.

• General quality of the results.

The results of the solutions seem to follow a certain trend: clustering-based solution
provides the results of the best quality (generally 2 times better than the results
of the RL-based solution). Both ML solutions outperform the baseline.

To analyze the behaviour of the solutions on different input data sets it is not enough
to compare the quality of the generated fragmentation schemes. That is why in the
next section we compare the average number of the cost model calls required by the
algorithms on the same input data.

5.4.2 Number of cost model calls

Since the data on the number of cost model calls might be very important for a designer
to make a choice between different fragmentation solutions, in Figure 5.12 we illustrate
the dependency between percentage of predicate duplicates in the queries and the number
of cost model calls for the discussed horizontal fragmentation approaches.

102 5. Evaluation and Results

Figure 5.12: Number of the cost model calls of the clustering-based and the classical
fragmentation solutions

Analysis

• The number of cost model calls in the classical fragmentation algorithm depends
on the percentage of predicate duplicates in the queries.

As far as the algorithm proposed by Zhang and Orlowska is concerned, there is a
tendency for the number of cost model calls to be reduced with the increase in the
number of predicate duplicates in the queries. The reason for that lies in reduction
of the PA matrix, since the matrix is built from the set of unique predicates.

• The number of cost model calls in the clustering-based fragmentation algorithm
does not directly depend on the percentage of predicate duplicates in the queries.

As for the clustering-based approach, there is no clear correlation between the
percentage of the duplicates and the number of cost model calls. But it seems
like with all of the distance calculation methods that we consider (Penalty-based
method, Single-linkage with Euclidean distance and Complete-linkage with Maxi-
mum distance) the number of cost model calls depends on the average number of
initial atomic fragments, that changes as shown in Table 5.5.

percentage of the duplicates 10 20 30 40 50 60 70

number of cost model calls 32 42 42 31 22 21 11

Table 5.5: Average number of initial atomic fragments

• Clustering-based fragmentation algorithm with the Penalty-based method requires
the least number of the cost model calls.

5.5. Summary 103

The average number of the cost model calls required by the method is 23, which, in
comparison to the other methods (7,797 by Single-linkage and Euclidean distance;
43,239 by Complete-linkage and Maximum distance and 4,489 by the classical
algorithm), is a pretty good result.

5.4.3 Inference times

Unlike the algorithm proposed by Zhang and Orlowska and the clustering-based solution,
proposed in this thesis, the Deep-RL-based solution does not require the cost model
usage once it is fully trained. This section provides the comparison between the time
needed for each agent to produce fragmentation for a single workload.

Rainbow Implicit Quantile

1.1343s 1.0309s

Table 5.6: Inference times for Rainbow and Implicit Quantile

Table 5.7 shows the elapsed times for a single cost model usage. Given that the clustering-
based solution and the algorithm proposed by Zhang and Orlowska use the cost model
multiple thousand times to process a single workload (presented in Section 4.3), a
fully-trained Deep-RL-based solution ends up several orders of magnitude faster.

Zhang clustering-based Deep-RL-based

0.0496s 0.0154s 0.0007s

Table 5.7: Average cost model use times

5.5 Summary

In this chapter we provide the results of the evaluation of both of our proposed solutions.
We evaluate the solutions separately and then proceed with the comparison between
them and the baseline. We wrap this chapter up with comparison of the cost model
usage between the baseline and the clustering-based solution, and the inference times
for the Deep-RL-based solution.

104 5. Evaluation and Results

6. Related work and Future
Directions

In this chapter we review papers that use ML-based approaches for solving related
database physical design problems. We compare our solutions with those presented in
the literature and spot some ideas, which can be integrated into our solutions in the
future.

We structure the chapter as follows:

• In Section 6.1 we discuss papers where clustering algorithms are used for solving
the issues related to the horizontal fragmentation problem.

• In Section 6.2 we review RL-based solutions to the various physical design problems.

• In Section 6.3 we analyze papers that study usage of other optimization algorithms
for the database fragmentation.

• We summarize the whole chapter in Section 6.4

6.1 Clustering for physical design problems

Clustering algorithms can be applied to various physical design problems. Papers that
are concerned with the task being solved in this thesis, were in detail described in
Section 2.3.2.2. In this section we compare our work with the papers that are devoted to
problems slightly different from ours and use clustering-based algorithms to solve them.

For instance, in related works [72, 73] an algorithm for incremental horizontal fragmenta-
tion was proposed. Authors concentrate on the problem of an evolving user applications
set and they claim that rerunning the horizontal fragmentation algorithm might be an
obvious but very inefficient solution. That is why they extend their clustering-based

106 6. Related work and Future Directions

fragmentation algorithm developed before [32] by adapting it to an evolving set of
queries. Initially, fragments are generated by applying k-means over object-condition
vectors. When a new set of queries arrives, k-means Core-Based Incremental Clustering
(CBIC) algorithm is used to adapt the fragmentation scheme obtained in the previous
step. The algorithm selects a set of objects, which after feature extension remain close to
the centroid of a cluster. These objects are called a core of the cluster and they become
initial clusters for the iterative fragmentation process. K-means and CBIC clustering
results are compared using the core stability factor measure and the fragmentation
results are compared using a cost function that considers the local irrelevant access
and remote relevant access costs. The CBIC algorithm is proven to be effective for
horizontal fragmentation in an evolving environment, except for cases when new user
queries require a lot of changes to the initial fragmentation scheme.

Using similar concepts of the core-based clustering authors introduce a hierarchical
adaptive clustering algorithm [74], which is an extension of the classical hierarchical
clustering algorithm used in their previous works. Authors claim that it can also
be effectively used for horizontal re-fragmentation. Although our clustering-based
fragmentation solution does not focus on the problem of the evolving user queries, the
results shown in these papers seem to be very promising and the idea of incremental
adaptive clustering can be integrated into our clustering-based approach in the future.
This would contribute to making our solution more competitive with the feature learning
of the generalized RL-approach.

Horizontal fragmentation can also be performed during the initial database design phase.
Ramachandran et al. [75] show how clustering algorithms can be applied to this task.
The algorithm proposed in the paper considers relationships between the data being
fragmented, because users usually select related (similar) data and storing such data in
the same fragment can significantly improve query response time. In contrast to our
clustering-based horizontal fragmentation solution, the algorithm described in the paper
does not consider empirical query patterns. However, the clustering approach they use
has something in common with our approach. The first step is to group similar objects
together. Then from each group a prototype (representative) is selected. These cluster
representatives are used for calculating the similarity between clusters and merging
the similar clusters together till the specified amount of fragments is reached. Authors
perform experiments using a PostgreSQL database and compare the fragmentation
scheme generated by their algorithm with a randomly generated fragmentation scheme.
Although the experiments show significant performance improvements, in order to talk
about the relevance of applying this approach, the results generated by it must be
compared with those generated by existing horizontal fragmentation algorithms.

Amina et al. [76] address the issue of very large workloads in the horizontal fragmentation
problem. Since this constitutes an NP-complete problem, traditional approaches do not
perform well when the workload is very large. For solving this issue authors propose
a method which consists of two phases: classification of the queries in the workload
and election of a query from each generated class (Figure 6.1). For the classification
phase authors use k-means algorithm, which groups queries according to the data they

6.2. RL for physical design problems (IP) 107

reference. Authors validate their solution in Oracle and show that the method not only
generates a horizontal fragmentation scheme much faster than the existing algorithms,
but it also produces results with the similar or even better quality. As of now, neither
of the proposed solutions in our thesis works well on large workloads. In the future the
method of Amina et al. can be integrated into our solutions to improve their scalability
and reduce their computational complexity.

Figure 6.1: Horizontal fragmentation approach proposed by Amina et al. [76]

6.2 RL for physical design problems

In this section we provide an overview of the papers that apply RL to tasks of physical
database design and database optimization problems, such as join-order enumeration,
vertical and horizontal fragmentation, etc.

Campero Durand et al. [77] propose the GridFormation framework for formulating
database fragmentation problems in terms of RL, emphasizing the online self-managing
capabilities of RL-based solutions. This paper presents an early implementation of the
grid environment, deconstructing the database fragmentation problem into a sequence
of steps to be taken by the RL agent. The authors compare the convergence of Deep
Q-learning based approach against straightforward Q-learning implementation; however,
the proposed framework lacks the integration with the database.

In [78] authors expand on the ideas of GridFormation, applying the Deep-RL learning to
the vertical fragmentation problem. The paper presents an approach of re-framing the
problem of finding the right vertical fragmentation in RL terms. The authors provide
early evaluation results, testing their solution against single workload-table pair as well
as the generalized case of random workloads with fixed table. The evaluations are
performed using tables and queries from the TPC-H benchmark. The authors report
that their solution performs well in the case of the fixed workload; however, the case of

108 6. Related work and Future Directions

generalizing to random query workload proves tricky for the model to grasp and requires
further work.

Hilprecht et al. propose [79] a fragmentation advisor based on Deep-RL, capable
of managing multiple tables at once. The proposed solution operates using hash
partitioning, fragmenting relations horizontally on the selected attribute. The solutions
also manages replication and hybrid horizontal fragmentation using co-partitions for
the tables, partitioned on the same attribute. The Deep-RL agent at the core of the
approach proposed by Hilprecht et al. can choose table and attribute for fragmentation;
however, fragmentation details beyond that are hidden from the model. The paper also
describes a training process for Deep-RL agent, aimed at deployment of said agent as an
automated fragmentation manager. The overview of the approach proposed by Hilprecht
et al. is shown in Figure 6.2:

Figure 6.2: Overview of DRL-based approach to Learn a Partitioning Advisor [79]

The authors also provide comprehensive evaluation and analysis of the performance of
agent in both pre-trained and online-learning modes. The paper provides the results of
the workload adaptivity tests, measuring how the solution performs when exposed to
the queries it was not trained with.

Marcus et al proposed a solution for optimizing the order of join operations during
query execution using Deep-RL, called ReJOIN [80]. The authors adopt a common
cost-based approach for query optimization, encoding the information about the current
join ordering in a state vector, which is then used as a input of the NN. Figure 6.3 shows
the outline of the ReJOIN framework.

6.3. Other optimization algorithms for physical design problems (MM) 109

Figure 6.3: ReJOIN framework [80]

The authors use a so called Join Order Benchmark and IMDB dataset to evaluate their
solution. The paper provides the result that confirm ReJOIN outperforming PostgreSQL
optimizer by 20% in terms of join-order cost.

In contrast to most related work applying RL to database tasks, we use standard
implementations of the agents, supported by an existing DRL framework. We also
provide a design for the horizontal fragmentation task that differs substantially from
those in the literature, since we do not consider hash partitioning. In future work we
could consider, as does Hillprecht et al., pre-training and creation of expert agents.

6.3 Other optimization algorithms for physical de-

sign problems

Another type of ML algorithms that can be used for solving such computationally hard
problems of physical design as fragmentation or allocation is genetic algorithms. These
population-based metaheuristic algorithms are known to be efficient for optimization
and search problems.

Gorla et al. [81] apply genetic algorithms to the hybrid fragmentation task. They use a
genetic algorithm to iteratively fragment database tables into vertical and horizontal
fragments until a termination criterion is satisfied. The genetic algorithm takes a
transaction profile as input, which consists of an attribute usage matrix and a tuple
usage matrix. Such tuple-based data representation has some disadvantages when
compared to the input data representation used in this thesis. We discussed these
disadvantages in Section 3.5.3. Since it is very computationally hard to find an optimal

110 6. Related work and Future Directions

hybrid fragmentation, authors do not compare the obtained results with the optimal
fragmentation scheme; rather they compare their solution with an attribute-only and a
random fragmentation. The experiments show that the proposed algorithm reduces the
execution cost of the queries up to 70%.

Cheng, Wong and Lee use a genetic algorithm-based clustering to fragment data tables
both vertically and horizontally [9]. Authors formulate the partitioning problem as the
well-known traveling salesman (TCP) problem. For horizontal fragmentation Cheng et al.
represent input data as a transaction-predicate matrix. The matrix is then decomposed
into submatrices, which determine the resulting set of fragments. It is not easy to tell
how exactly the matrix should be decomposed though. Authors propose to formulate
this problem as the TSP problem and to solve it using the distance values between
transaction and predicate pairs. Based on these values a path for predicates and a
path for transactions are calculated using the proposed genetic algorithm-based TSP
solution. The paths are cut then by the edges which contribute the most to the costs.
Authors do not conduct extensive experiments on their fragmentation algorithm; they
just mention that the results obtained by it and the results generated by the algorithm
proposed by Zhang and Orlowska are the same. Which allows us to argue that our
clustering-based solution might produce better results than those generated by the
genetic algorithm-based solution proposed in this paper.

Thenmozhi and Vivekanandan [82] use a genetic algorithm applied to referential hori-
zontal fragmentation in data warehouses. Authors propose two hybrid solutions for the
problem: a genetic algorithm combined with hill climbing technique and a genetic algo-
rithm combined with tabu search. Authors claim that the genetic algorithm combined
with hill climbing can help overcome the weaknesses of both approaches considered in
isolation: hill climbing can easily get stuck in a local optimum, and a genetic algorithm
might generate worse solutions with an increasing problem size. So the idea behind the
proposed approach is to use a genetic algorithm to find good solutions and hill climbing
technique to quickly optimize them. Tabu search method is designed to assure that
the recently considered solutions are not re-entered again. Authors use tabu search
method to inhibit solutions from being selected more than a specified number of times by
moving best solutions obtained in each iteration into the tabu list. Proposed solutions
are compared by comparing their execution time, execution cost of the queries on the
generated fragmentation schemes and the number of fragments the algorithms generate.
Authors state that genetic algorithm combined with with tabu search requires less time
than genetic algorithm combined with hill climbing technique while generating even
better results. However, the algorithms generate different number of fragments, which
depending on the cost function used might be the real reason why the quality of the
results differs.

The problem of the dynamic horizontal fragmentation in data warehouses was addressed
in [10]. Authors introduce the way of using genetic algorithms both for static and
dynamic fragmentation. Chromosome encoding for the genetic algorithm is defined as
attribute domain partitioning, i.e. an array of attribute vectors and each element of the
vector corresponding to a subdomain of the attribute. To each subdomain a number is

6.3. Other optimization algorithms for physical design problems (MM) 111

assigned and subdomains with the same identifiers are merged together. Authors aim to
make the encoding representation for dynamic fragmentation flexible. They introduce
several selection strategies: naive incremental selection that uses MERGE operator to
adjust the fragmentation scheme, incremental selection based on the genetic algorithm
and ameliorated incremental selection based on the genetic algorithm. Although dynamic
aspect of the proposed solution is not really relevant for us, we would like to discuss the
way authors represent the fragments. The proposed algorithm fetches simple predicates
from the queries and for each predicate it divides domain of the attribute into subdomains
according to the value used in the predicate. This approach is very similar to the one
we use in our RL-based solution, where the size of the observation space must be fixed,
and therefore such data representation is a good option to choose. This approach is also
suitable for dynamic fragmentation, since the size of the chromosome encoding remains
the same when new queries arrive. However, we would like to point out that in general,
because of the reasons mentioned in Section 3.5.3, for the static fragmentation problem
it might be more efficient to use selected in this thesis queries-based data representation
for chromosome encoding in genetic algorithms.

Another metaheuristic that is often applied to optimization problems is PSO (Particle
swarm optimization). PSO algorithms start with a set of random solutions (particles)
and move these particles in a search space towards an optimal solution.

Database fragmentation can also be performed using PSO algorithms. For instance,
in [83] authors formulate fragmentation problem as an optimization problem and use a
PSO algorithm to find an optimal fragmentation scheme for data warehouses. In data
warehouse environment an important requirement for a fragmentation scheme is a fixed
number of fragments. Proposed PSO-based fragmentation algorithm controls the number
of generated fragments while trying to minimize an objective function. The algorithm
places particles randomly in the search space and assign them an initial direction. The
particles then move towards or away from each other according to the specified rule of
local behaviour. Sets of particles that are moving together form fragments. Authors
test the results using Oracle database and compare them with the results generated
using range partitioning technique and classical horizontal fragmentation algorithms
(affinity- and predicate-based algorithms). Additionally, authors compare their results
with a non-fragmented database table. Although the experiments do not show much
improvement over range partitioning technique, proposed by the authors PSO-based
fragmentation algorithm outperforms affinity- and predicate-based algorithms. However,
it is worthwhile to mention that unlike our affinity-based algorithm adaptation their
predicate- and affinity-based algorithms do not limit the number of fragments (there
are 150 fragments generated by predicate-based algorithm, 115 - by affinity-based
algorithm and only 8 fragments generated by the PSO-based solution). That is why
these experiments are not quite representative.

PSO and genetic algorithms are similar to each other [84] in the sense that they are
population-based; the members of the population interact with each other and share
information in order to find an optimal solution for the problem. The process is guided
by a set of probabilistic and deterministic rules. Both of them can be applied to

112 6. Related work and Future Directions

the fragmentation task. However, in this thesis we wanted to provide a simple and
transparent alternative approach for RL-based horizontal fragmentation algorithm, that
is why we decided to use one of the classical clustering algorithms with limited number
of configuration parameters.

6.4 Summary

In this chapter we discuss and analyse papers that solve similar problems of physical
database design using Machine Learning. First, we review some papers that use
clustering-based approaches for solving the issues related to horizontal fragmentation.
Next, we show how Reinforcement Learning is used for different physical design problems.
Last, we discuss the papers that use other optimization algorithms for the database
fragmentation task.

7. Conclusion and Future work

In this chapter we summarise our work, discuss possible threats to its validity and
suggest directions for future research.

7.1 Work summary

In this thesis we evaluate the applicability of ML approaches to the task of primary
horizontal fragmentation. We focus on two specific ML techniques: Unsupervised
Learning (Clustering) and Deep Reinforcement Learning.

In this thesis we proposed two clustering-specific research questions. We answer the
first one by designing a clustering-based horizontal fragmentation approach in Section 3.5
and comparing it to the classical horizontal fragmentation algorithm proposed by Zhang
and Orlowska in Chapter 5. The second question is answered in Section 5.2 by testing the
impact of the following configuration parameters of our clustering-based fragmentation
solution: cost model usage, linkage criterion and similarity measure.

We answer the RL-specific research questions by designing the Deep-RL-based hor-
izontal fragmentation solution in Section 3.6 and evaluating the impact of the agent
choice and update horizon hyper-parameter as well as generalization of the workload in
Section 5.3.

There are multiple comparison criteria, which can be used to evaluate the quality of
a horizontal fragmentation solution. Based on the research we have done to answer
the questions from Section 1.2 and the evaluation results from Chapter 5 we provide
multifaceted comparative analysis of the features of our approaches in Table 7.1.

criterion classical affinity-
based solution

clustering-based solu-
tion

RL-based solution

114 7. Conclusion and Future work (MM, IP)

strategy top-down bottom-up top-down

data represen-
tation

predicate-dependent data-dependent data- and predicate-
dependent

cost model us-
age

optional optional required

fragmentation
correctness
rules

does not guarantee
disjointness of the
generated fragmenta-
tion scheme

guarantees complete-
ness, reconstructabil-
ity and disjointness
of the generated frag-
mentation scheme

guarantees complete-
ness, reconstructabil-
ity and disjointness
of the generated frag-
mentation scheme

quality of the
results

baseline generally better re-
sults

results vary in quality,
being, however, bet-
ter than the baseline

speed is in general faster
than the clustering-
based solution
(except the clustering-
based solution with
the Penalty-based
method)

the Penalty-based
method allows the
clustering-based
algorithm to generate
results faster than
the classical fragmen-
tation algorithm

is comparable to
clustering during
training; fully trained
agent generates
a fragmentation
scheme almost imme-
diately (not using the
cost model)

scalability with the increase in
the number of unique
simple predicates, the
time complexity of
the classical fragmen-
tation solution in-
creases rapidly

with the increase in
the number of queries,
the time complexity
of the classical frag-
mentation solution in-
creases

with the increase
in the number of
columns, fragments
or queries, the
time complexity of
the classical frag-
mentation solution
increases

7.2. Threats to validity 115

limitations it can difficult to split
the real-world user
queries into simple
predicates;

similarity between
predicates is defined
using their usage in
the queries, rather
than the amount of
common data they
access

since the algorithm
is data-dependent if
the data in the ta-
ble was changed, gen-
erated fragmentation
scheme might not be
optimal anymore

only range predicates
in queries and frag-
ments;

fixed number of max-
imum fragments

Table 7.1: Comparative analysis of the solutions

Generally, the clustering-based algorithm outperforms other solutions in regard to the
quality of the generated fragmentation schemes. However, fully trained Deep-RL solution
has a benefit of generating the results much faster, which can prove useful for rapidly
changing workloads. Both ML-based approaches tend to outperform the baseline in
both regards.

7.2 Threats to validity

• Different input data representation: our ML approaches use different input
data representation and fragmentation strategies; therefore, some differences in
the evaluation results might be caused by this reason.

• Imperfect cost model: in our research we used a cost model to speed up the
fragmentation process. We tried to capture the core optimization concepts used in
modern DBMSs. However, there a real database system might behave differently
on the generated fragmentation schemes.

• Number of workloads: due to time constraints we test the solutions on a limited
number of workloads. Running more tests would result in higher accuracy of the
experiments. This is especially important for Deep-RL based solution, since it
requires a large number of test data to fully generalize.

• Testbench limitations: The solutions are tested on single table from TPC-H
benchmark. To allow for more robust performance comparison, the solutions might
need more diverse set of input data.

116 7. Conclusion and Future work (MM, IP)

• Deep-RL hyper-parameters: we test the impact of only small subset of hyper-
parameters on convergence of Deep-RL-based solution. Some of the untested
parameters might also have influence on the training process.

• Deep-RL training time: some of the artifacts in the results of the RL-based
solutions might have been caused by limited time we had for the training. Better
quality of the results might be achieved by allowing the agents to train for a longer
time.

• Baseline algorithms: due to the time constraints we could not adapt more than
one classical horizontal fragmentation algorithm to the assumptions made in this
thesis. There might be more suitable baselines for our work to compare against.

7.3 Future work

Our thesis provides insights into the applicability of two very different ML approaches
to the task of primary horizontal fragmentation. To be able to compare them, we made
a number of assumptions. However, some of these assumptions can be eliminated to
allow for more universally applicable solutions. Moreover, the analysis of related works
allowed us to formulate further directions for future work.

Improvements that can be made to our solutions in general are:

• Scalability. Neither of the proposed solutions works well on the large workloads
and to improve the scalability one can use various methods for reducing the search
space (e.g. pre-processing of the queries as suggested in [76])

• Cost model accuracy. As mentioned above, in the future we would like to use
more accurate tools for evaluating fragmentation scheme performance. There exist
tools for low-level simulation of a fragmented database (HypoPG for PostgreSQL),
which, unfortunately, do not provide the functionality we need yet.

• Distributed environment. In this thesis we limit our problem to a horizontal
fragmentation in non-distributed environment. However, many databases are dis-
tributed nowadays and the tasks of allocation and replication are often considered
alongside with the fragmentation task. Therefore, in the future work we would
like to adapt our solutions to the distributed environment.

• Query statistics. We believe that including the frequencies, with which the
queries are executed, into the data representation and the fragmentation process
might provide more meaningful results.

• Other ML techniques. As discussed in the related work chapter, there are
multiple ML-based optimization algorithms that can be used for solving physical
design tasks. In this thesis we only considered two of them, but comparison with
other optimization algorithms might be interesting for the further research.

7.3. Future work 117

The future work directions specific to the clustering-based solution are:

• Evolving set of queries. Current implementation of the clustering-based frag-
mentation solution is not able to adapt when new queries arrive. Since rerunning
of the clustering algorithm in this case might be time-consuming, approaches for
dynamic fragmentation similar to those used in [72, 73] can be applied to make
the clustering-based solution more flexible.

• Other clustering algorithms. Due to the reasons mentioned in Section 3.5.2,
we use a hierarchical clustering algorithm in this thesis. However, in the future
some of the assumptions we made in the work might not be relevant anymore, and
other clustering algorithms such as partitioning-based or grid-based algorithms
might be considered.

Possible improvements specific to our Deep-RL-based approach consist of:

• Predicate type generalization. The assumptions made in the beginning of
this thesis limit the type of query and fragment predicates, which can be used
with Deep-RL solution. We would like to lift this limitation by considering other
data representation and environment designs and evaluate their performance.

• Dynamic number of fragments. Another hard limitation of Deep-RL solution
is a fixed maximum number of fragments. The future implementation of this
approach might consider the problem formulation, where maximum number of
fragments is an input parameter instead of a hyper-parameter (i.e. it can be
changed without re-training the Deep-RL model).

• Deep-RL agents. The evaluation chapter of this thesis only considers tests on
two agents provided by Dopamine framework: Rainbow and Implicit Quantile.
We would like to expand this list and conduct experiments on more agents in the
future.

118 7. Conclusion and Future work (MM, IP)

Bibliography

[1] Y. Zhang and M. E. Orlowska, “On fragmentation approaches for distributed
database design,” Information Sciences-Applications, vol. 1, no. 3, pp. 117–132,
1994. (cited on Page iii, 2, 14, 16, 59, 63, 64, 85, 87, and 99)

[2] M. T. Özsu and P. Valduriez, Principles of distributed database systems. Springer
Science & Business Media, 2011. (cited on Page iii, 2, 13, 14, 15, and 16)

[3] S. Chaudhuri and V. Narasayya, “Self-tuning database systems: A decade of
progress,” in Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB ’07, pp. 3–14, VLDB Endowment, 2007. (cited on Page 1)

[4] R. Borovica, I. Alagiannis, and A. Ailamaki, “Automated physical designers: what
you see is (not) what you get,” in Proceedings of the Fifth International Workshop
on Testing Database Systems, p. 9, ACM, 2012. (cited on Page 2)

[5] L. Bellatreche, K. Boukhalfa, P. Richard, and K. Y. Woameno, “Referential horizon-
tal partitioning selection problem in data warehouses: Hardness study and selection
algorithms,” International Journal of Data Warehousing and Mining (IJDWM),
vol. 5, no. 4, pp. 1–23, 2009. (cited on Page 2 and 14)

[6] R. Wirth and J. Hipp, “Crisp-dm: Towards a standard process model for data min-
ing,” in Proceedings of the 4th international conference on the practical applications
of knowledge discovery and data mining, pp. 29–39, Citeseer, 2000. (cited on Page 4)

[7] D. Nashat and A. A. Amer, “A comprehensive taxonomy of fragmentation and
allocation techniques in distributed database design,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, p. 12, 2018. (cited on Page 9)

[8] S. Ceri, M. Negri, and G. Pelagatti, “Horizontal data partitioning in database
design,” in Proceedings of the 1982 ACM SIGMOD international conference on
Management of data, pp. 128–136, ACM, 1982. (cited on Page 10 and 14)

[9] C.-H. Cheng, W.-K. Lee, and K.-F. Wong, “A genetic algorithm-based clustering
approach for database partitioning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 32, no. 3, pp. 215–230, 2002.
(cited on Page 13 and 110)

120 Bibliography

[10] R. Bouchakri, L. Bellatreche, Z. Faget, and S. Breß, “A coding template for handling
static and incremental horizontal partitioning in data warehouses,” Journal of
Decision Systems, vol. 23, no. 4, pp. 481–498, 2014. (cited on Page 13 and 110)

[11] W. T. McCormick Jr, P. J. Schweitzer, and T. W. White, “Problem decomposition
and data reorganization by a clustering technique,” Operations Research, vol. 20,
no. 5, pp. 993–1009, 1972. (cited on Page 16)

[12] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical partitioning algorithms for
database design,” ACM Transactions on Database Systems (TODS), vol. 9, no. 4,
pp. 680–710, 1984. (cited on Page 16, 17, and 18)

[13] S. Navathe, K. Karlapalem, and M. Ra, “A mixed fragmentation methodology for
initial distributed database design,” Journal of Computer and Software Engineering,
vol. 3, no. 4, pp. 395–426, 1995. (cited on Page 20)

[14] S. B. Navathe and M. Ra, “Vertical partitioning for database design: a graphical
algorithm,” in ACM Sigmod Record, vol. 18, pp. 440–450, ACM, 1989. (cited on

Page 20)

[15] D.-G. Shin and K. B. Irani, “Fragmenting relations horizontally using a knowledge-
based approach,” IEEE Transactions on Software Engineering, no. 9, pp. 872–883,
1991. (cited on Page 21)

[16] N. Khalil, D. Eid, and M. Khair, “Availability and reliability issues in distributed
databases using optimal horizontal fragmentation,” in International Conference on
Database and Expert Systems Applications, pp. 771–780, Springer, 1999. (cited

on Page 21)

[17] S. I. Khan and A. Hoque,“A new technique for database fragmentation in distributed
systems,” International Journal of Computer Applications, vol. 5, no. 9, pp. 20–24,
2010. (cited on Page 21)

[18] R. Taft, E. Mansour, M. Serafini, J. Duggan, A. J. Elmore, A. Aboulnaga, A. Pavlo,
and M. Stonebraker, “E-store: Fine-grained elastic partitioning for distributed
transaction processing systems,” Proceedings of the VLDB Endowment, vol. 8,
no. 3, pp. 245–256, 2014. (cited on Page 21)

[19] C. Curino, E. Jones, Y. Zhang, and S. Madden,“Schism: a workload-driven approach
to database replication and partitioning,” Proceedings of the VLDB Endowment,
vol. 3, no. 1-2, pp. 48–57, 2010. (cited on Page 21)

[20] L. Golab, M. Hadjieleftheriou, H. Karloff, and B. Saha, “Distributed data placement
via graph partitioning,” arXiv preprint arXiv:1312.0285, 2013. (cited on Page 22)

[21] M. Serafini, R. Taft, A. J. Elmore, A. Pavlo, A. Aboulnaga, and M. Stonebraker,
“Clay: fine-grained adaptive partitioning for general database schemas,” Proceedings
of the VLDB Endowment, vol. 10, no. 4, pp. 445–456, 2016. (cited on Page 22)

Bibliography 121

[22] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database partitioning in
shared-nothing, parallel oltp systems,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 61–72, ACM, 2012. (cited

on Page 22)

[23] C. Bishop, Pattern recognition and machine learning. New York: Springer, 2006.
(cited on Page 22)

[24] S. Marsland, Machine learning: an algorithmic perspective. Chapman and Hal-
l/CRC, 2014. (cited on Page 23 and 24)

[25] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya, S. Foufou,
and A. Bouras, “A survey of clustering algorithms for big data: Taxonomy and
empirical analysis,” IEEE transactions on emerging topics in computing, vol. 2,
no. 3, pp. 267–279, 2014. (cited on Page 26, 28, and 29)

[26] P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar, Introduction to Data Mining
(2Nd Edition). Pearson, 2nd ed., 2018. (cited on Page 26 and 27)

[27] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited,
revisited: why and how you should (still) use dbscan,” ACM Transactions on
Database Systems (TODS), vol. 42, no. 3, p. 19, 2017. (cited on Page 28)

[28] I. MR and D. MOHAN,“A survey of grid based clustering algorithms,” International
Journal of Engineering Science and Technology, vol. 2, 08 2010. (cited on Page 29)

[29] E. Schubert, “Knowledge discovery in databases. part iii. clustering.” (cited on

Page 30, 31, 32, 34, 61, and 86)

[30] Y. Z. Mohith Manjunath, “Exploring patterns in big data using clustereng: A
clustering engine for genomics.” (cited on Page 30)

[31] N. S. Software, “Hierarchical clustering / dendrograms.” (cited on Page 32)

[32] A. S. Darabant and A. Campan, “Semi-supervised learning techniques: k-means
clustering in oodb fragmentation,” in Second IEEE International Conference on
Computational Cybernetics, 2004. ICCC 2004., pp. 333–338, IEEE, 2004. (cited

on Page 35 and 106)

[33] A. S. Darabant and A. Campan, “Ai clustering techniques: a new approach to object
oriented database fragmentation,” in Proceedings of the 8th IEEE International
Conference on Intelligent Engineering Systems, Cluj Napoca, pp. 73–78, 2004.
(cited on Page 35 and 36)

[34] A. S. Darabant and A. Câmpan, “Advanced object database design techniques,”
Carpathian Journal of Mathematics, pp. 21–30, 2004. (cited on Page 35)

122 Bibliography

[35] A. S. Darabant and A. Gog, “Hierarchical clustering in large object datasets-a
study on complexity, quality and scalability.,” Studia Universitatis Babes-Bolyai,
Informatica, no. 2, 2009. (cited on Page 35)

[36] F. Baião and M. Mattoso, “A mixed fragmentation algorithm for distributed object
oriented databases,” in Proc Int’l Conf Computing and Information (ICCI’98),
Winnipeg, pp. 141–148, 1998. (cited on Page 35)

[37] L. Bellatreche, K. Karlapalem, and A. Simonet, “Horizontal class partitioning in
object-oriented databases,” in International Conference on Database and Expert
Systems Applications, pp. 58–67, Springer, 1997. (cited on Page 35)

[38] A. S. Darabant, A. Campan, and O. Cret, “Hierarchical clustering in object oriented
data models with complex class relationships,” in Proceedings of the 8th IEEE
International Conference on Intelligent Engineering Systems, Cluj Napoca, pp. 307–
312, 2004. (cited on Page 36)

[39] A. S. Darabant, “A new approach in fragmentation of distributed object oriented
databases using clustering techniques,” Studia Univ. babes, L (2), 2005. (cited on

Page 36)

[40] A. Darabant, A. Câmpan, G. Moldovan, and H. Grebla, “Ai clustering techniques:
a new approach in horizontal fragmentation of classes with complex attributes
and methods in object oriented databases,” in the Proceedings of the International
Conference on Theory and Applications of Mathematics and Informatics-ICTAMI,
pp. 109–128, 2004. (cited on Page 36)

[41] A. S. Darabant, H. Todoran, O. Cret, and G. Chis, “The similarity measures
and their impact on oodb fragmentation using hierarchical clustering algorithms.,”
WSEAS Transactions on Computers, vol. 5, no. 9, pp. 1803–1810, 2006. (cited on

Page 36 and 68)

[42] A. S. Darabant, H. Todoran, O. Cret, and G. Chis, “A comparative study on the in-
fluence of similarity measures in hierarchical clustering in complex distributed object-
oriented databases,” in Proceedings of the 10th WSEAS international conference
on Computers, pp. 235–240, World Scientific and Engineering Academy and Society
(WSEAS), 2006. (cited on Page 36)

[43] A. S. Darabant, A. Campan, and O. Cret, “Using fuzzy clustering for advanced
oodb horizontal fragmentation with fine-grained replication.,” in Databases and
Applications, pp. 116–121, Citeseer, 2005. (cited on Page 36)

[44] A. S. Darabant and L. Darabant, “Clustering methods in data fragmentation,”
Rom. Journ. of Information Science and Technology, vol. 14, no. 1, pp. 81–97, 2011.
(cited on Page 36)

Bibliography 123

[45] C. Ezeife and K. Barker, “Horizontal class fragmentation for advanced-object modes
in a distributed object-based system”,” in the Proceedings of the 9th International
Symposium on Computer and Information Sciences, pp. 25–32, 1994. (cited on

Page 36)

[46] A. Cuzzocrea, J. Darmont, and H. Mahboubi, “Fragmenting very large xml data
warehouses via k-means clustering algorithm,” International Journal of Business
Intelligence and Data Mining, vol. 4, no. 3/4, p. 301, 2009. (cited on Page 39, 59,

and 64)

[47] H. Mahboubi and J. Darmont, “Data mining-based fragmentation of xml data
warehouses,” 2008. (cited on Page 39)

[48] L. Rodŕıguez-Mazahua, G. Alor-Hernández, M. A. Abud-Figueroa, and S. G. Peláez-
Camarena, “Horizontal partitioning of multimedia databases using hierarchical
agglomerative clustering,” in MICAI, 2014. (cited on Page 39 and 64)

[49] S. Harikumar and R. Ramachandran, “Hybridized fragmentation of very large
databases using clustering,” in 2015 IEEE International Conference on Signal
Processing, Informatics, Communication and Energy Systems (SPICES), pp. 1–
5, IEEE, 2015. (cited on Page 39)

[50] V. N. Luong, H. H. C. Nguyen, and V. S. Le, “An improvement on fragmentation
in distribution database design based on knowledge-oriented clustering techniques,”
ArXiv, vol. abs/1505.01535, 2015. (cited on Page 39 and 63)

[51] V. N. Luong, H. H. C. Nguyen, and V. S. Le, “An improvement on fragmentation
in distribution database design based on clustering techniques,” 2015. (cited on

Page 39 and 63)

[52] S. Hirano and S. Tsumoto, “A knowledge-oriented clustering technique based on
rough sets,” in 25th Annual International Computer Software and Applications
Conference. COMPSAC 2001, pp. 632–637, IEEE, 2001. (cited on Page 39)

[53] I. Hamdi, E. Bouazizi, S. Alshomrani, and J. Feki, “2lpa-rtdw: A two-level data parti-
tioning approach for real-time data warehouse,”2015 IEEE/ACIS 14th International
Conference on Computer and Information Science (ICIS), pp. 632–638, 2015. (cited

on Page 40 and 64)

[54] T. T. Nguyen, B. Van Doan, C. N. Truong, and T. T. T. Tran, “Clustering and
query optimization in fuzzy object-oriented database,” International Journal of
Natural Computing Research (IJNCR), vol. 8, no. 1, pp. 1–17, 2019. (cited on

Page 40)

[55] L. Sun, Skipping-oriented Data Design for Large-Scale Analytics. PhD thesis,
EECS Department, University of California, Berkeley, Dec 2017. (cited on Page 40)

124 Bibliography

[56] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge,
MA, USA: MIT Press, 1st ed., 1998. (cited on Page 43, 44, 45, 47, and 48)

[57] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–
292, 1992. (cited on Page 47)

[58] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp. 11–26, 2017. (cited on Page 49)

[59] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” 2013. (cited on

Page 50 and 51)

[60] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,”
2015. (cited on Page 51)

[61] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” 2015. (cited on Page 51)

[62] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on
reinforcement learning,” 2017. (cited on Page 52)

[63] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit quantile networks for
distributional reinforcement learning,” 2018. (cited on Page 52 and 53)

[64] L. Sun, M. J. Franklin, J. Wang, and E. Wu, “Skipping-oriented partitioning for
columnar layouts,” Proceedings of the VLDB Endowment, vol. 10, no. 4, pp. 421–
432, 2016. (cited on Page 57)

[65] G. Huang, D. Wang, and J. Ren, “Grid and density based clustering algorithm with
relative entropy,” Advances in Information Sciences and Service Sciences, vol. 5,
no. 2, p. 36, 2013. (cited on Page 61)

[66] P. S. Castro, S. Moitra, C. Gelada, S. Kumar, and M. G. Bellemare, “Dopamine: A
research framework for deep reinforcement learning,” 2018. (cited on Page 70)

[67] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016. (cited on Page 70)

[68] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, p. 253–279, Jun 2013. (cited on Page 71)

[69] A. Sharma, F. M. Schuhknecht, and J. Dittrich, “The case for automatic database
administration using deep reinforcement learning,” 2018. (cited on Page 71 and 72)

Bibliography 125

[70] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and S. Mannor, “Learn what
not to learn: Action elimination with deep reinforcement learning,” 2018. (cited on

Page 76)

[71] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014.
(cited on Page 84)

[72] A. Campan, A. S. Darabant, and G. Serban, “Clustering techniques for adap-
tive horizontal fragmentation in object oriented databases,” in Proceedings of
the International Conference on Theory and Applications of Mathematics and
Informatics ICTAMI, pp. 263–274, 2005. (cited on Page 105 and 117)

[73] A. S. Darabant, A. Câmpan, H. Todoran, and G. Serban, “Incremental horizon-
tal fragmentation: A new approach in the design of distributed object oriented
databases,” ICCCC 2006, p. 170, 2006. (cited on Page 105 and 117)

[74] G. Şerban and A. Câmpan, “Hierarchical adaptive clustering,” Informatica, vol. 19,
no. 1, pp. 101–112, 2008. (cited on Page 106)

[75] R. Ramachandran, D. P. Nair, and J. Jasmi, “A horizontal fragmentation method
based on data semantics,” in 2016 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), pp. 1–5, IEEE, 2016. (cited on

Page 106)

[76] G. Amina and K. Boukhalfa, “Very large workloads based approach to efficiently
partition data warehouses,” in Modeling Approaches and Algorithms for Advanced
Computer Applications, pp. 285–294, Springer, 2013. (cited on Page 106, 107, and 116)

[77] G. Campero Durand, M. Pinnecke, R. Piriyev, M. Mohsen, D. Broneske, G. Saake,
M. Sekeran, F. Rodriguez, and L. Balami, “Gridformation: Towards self-driven
online data partitioning using reinforcement learning,” pp. 1–7, 06 2018. (cited on

Page 107)

[78] G. Campero Durand, R. Piriyev, M. Pinnecke, D. Broneske, B. Gurumurthy, and
G. Saake, Automated Vertical Partitioning with Deep Reinforcement Learning,
pp. 126–134. 09 2019. (cited on Page 107)

[79] B. Hilprecht, C. Binnig, and U. Röhm, “Towards learning a partitioning advisor with
deep reinforcement learning,” in Proceedings of the Second International Workshop
on Exploiting Artificial Intelligence Techniques for Data Management, aiDM ’19,
(New York, NY, USA), pp. 6:1–6:4, ACM, 2019. (cited on Page 108)

[80] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join order enu-
meration,” Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management - aiDM’18, 2018. (cited on Page 108

and 109)

126 Bibliography

[81] N. Gorla, V. Ng, and D. M. Law, “Improving database performance with a mixed
fragmentation design,” Journal of intelligent information systems, vol. 39, no. 3,
pp. 559–576, 2012. (cited on Page 109)

[82] M. Thenmozhi and K. Vivekanandan,“A comparative analysis of fragmentation selec-
tion algorithms for data warehouse partitioning,” in 2014 International Conference
on Advances in Engineering & Technology Research (ICAETR-2014), pp. 1–5,
IEEE, 2014. (cited on Page 110)

[83] H. Derrar, M. Ahmed-Nacer, and O. Boussaid, “Particle swarm optimisation for
data warehouse logical design,” International Journal of Bio-Inspired Computation,
vol. 4, no. 4, pp. 249–257, 2012. (cited on Page 111)

[84] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A compari-
son of particle swarm optimization and the genetic algorithm,” in 46th
AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials
conference, p. 1897, 2005. (cited on Page 111)

	Contents
	List of Figures
	List of Tables
	1 Introduction (MM, IP)
	1.1 Motivation
	1.2 Research aim
	1.3 Research methodology
	1.4 Thesis structure

	2 Background
	2.1 Physical database design (IP)
	2.1.1 Vertical fragmentation
	2.1.2 Horizontal fragmentation
	2.1.3 Hybrid fragmentation

	2.2 Algorithms for horizontal fragmentation (MM)
	2.3 Machine learning
	2.3.1 Supervised learning (IP)
	2.3.2 Unsupervised learning (MM)
	2.3.2.1 Hierarchical-based clustering
	2.3.2.2 Clustering-based horizontal fragmentation

	2.3.3 Reinforcement learning (IP)
	2.3.3.1 Basic RL
	2.3.3.2 Deep RL

	2.4 Summary

	3 Prototype implementation and research questions
	3.1 Research questions
	3.2 General structure (MM)
	3.3 Cost model selection (IP)
	3.4 Classical algorithm adaptation (MM)
	3.5 Clustering-based solution (MM)
	3.5.1 Specific research questions
	3.5.2 Clustering algorithm selection
	3.5.3 Input data representation
	3.5.4 Similarity measures and linkage criteria

	3.6 Deep-RL-based solution (IP)
	3.6.1 Research questions
	3.6.2 Architecture
	3.6.3 Input data representation
	3.6.4 Action representation
	3.6.5 Action pruning

	3.7 Summary

	4 Experimental design (MM, IP)
	4.1 Experimental environment
	4.2 Dataset
	4.3 Workloads
	4.4 Algorithms settings
	4.5 Summary

	5 Evaluation and Results
	5.1 Research questions
	5.2 Clustering-based solution (MM)
	5.2.1 No cost model included
	5.2.2 With the cost model included

	5.3 Deep-RL-based solution (IP)
	5.3.1 Convergence in the case of fixed workload
	5.3.2 Convergence in the case of generalized workload

	5.4 Comparison of the solutions
	5.4.1 Quality of the results (MM, IP)
	5.4.2 Number of cost model calls (MM)
	5.4.3 Inference times (IP)

	5.5 Summary

	6 Related work and Future Directions
	6.1 Clustering for physical design problems (MM)
	6.2 RL for physical design problems (IP)
	6.3 Other optimization algorithms for physical design problems (MM)
	6.4 Summary

	7 Conclusion and Future work (MM, IP)
	7.1 Work summary
	7.2 Threats to validity
	7.3 Future work

	Bibliography

