
Otto-von-Guericke University Magdeburg

Faculty of Computer Science

Master Thesis

User Controlled Spectral Clustering: A
Framework for Tailored Analysis of Different

Similarity Graphs and Graph Laplacians

Author:

Imran Sheikh

August 23, 2023

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake
Database and Software Engineering Group, Otto von Guericke University

Jun.-Prof.Dr. Robert Heyer
Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V.

Faculty of Technology, Bielefeld University

Dr.-Ing. David Broneske
Deutsches Zentrum für Hochschul- und Wissenschaftsforschung

M.Sc. Daniel Walke
Bioprocess Engineering, Otto von Guericke University

M.Sc. Daniel Micheel
Database and Software Engineering Group, Otto von Guericke University



Sheikh, Imran:
User Controlled Spectral Clustering: A Framework for Tailored Analysis of Different
Similarity Graphs and Graph Laplacians
Master Thesis, Otto-von-Guericke University Magdeburg, 2023.



Abstract

Spectral clustering, a popular unsupervised learning technique, effectively uncovers
intricate patterns in data by leveraging graph-based representations. Frameworks
like scikit-learn facilitates the application of spectral clustering. However, current
implementation in scikit-learn is limited. Scikit-learn’s spectral clustering offers
limited choices for distance metrics, similarity graph construction, and graph Lapla-
cian types, constraining its adaptability to diverse datasets. We identified three key
criteria required for a good spectral clustering framework.

Our framework tackles these limitations by offering users seven different choices of
distance metrics (criteria i) and three distinct similarity graph options (criteria ii),
kNN graph, ϵ-neighborhood graph, and fully connected graph. Additionally, users
can choose from three variants of the Laplacian matrix (criteria iii), including the
unnormalized, random walk normalized, and symmetric normalized Laplacians.

To assess our framework’s capabilities, we conducted performance analyses on the
Iris and CORA datasets, comparing their spectral clustering results against k-Means
clustering. For Iris, our framework achieves remarkable gains with 94.7% accuracy
(5.4% increase), 0.851 Adjusted Rand Index (ARI) (12.1% increase), and 0.831
Normalized Mutual Information (NMI) (9.4% increase). On CORA, our framework
exhibits similar performance for accuracy at 22.2% (0.45% increse), significant
improvements, were observed for an ARI of 0.23 (283.33% increase) and a NMI of
32.1 (215.69% increase).

As a final evaluation step, we compared our framework results to a prior study on
spectral clustering’s performance for the Iris dataset. Our framework consistently
excels, delivering substantial enhancements in external and internal cluster validity
measures. Particularly notable is the combination of the symmetric normalized
Laplacian with the epsilon neighborhood graph, resulting in a 15.33% accuracy
increase, a 53.92% increase in ARI, and a 38.39% improvement in NMI.

Keywords: Spectral clustering, k-Means, machine learning, distance metric, similarity
graphs, graph Laplacian, Iris, CORA.





Acknowledgments

I would like to extend my heartfelt gratitude to Prof. Dr. rer. nat. habil. Gunter
Saake for providing me with the incredible opportunity to undertake my thesis under
his guidance. Your mentorship and encouragement have been instrumental in shaping
my academic journey, and I am truly thankful for your unwavering support.

I am immensely grateful to Jun.-Prof.Dr. Robert Heyer and Dr.-Ing. David Broneske,
for their exceptional mentorship and dedicated guidance throughout the entire
duration of my thesis. Your expertise, experience, and continuous support have been
invaluable in refining my academic pursuits.

A special acknowledgment goes to M.Sc. Daniel Walke for his remarkable patience,
understanding, and expertise in supervising me throughout this journey. Your
guidance has been invaluable in shaping my work, enhancing my understanding, and
bettering my critical thinking.

I extend my sincere appreciation to my family members and close ones for their
unwavering support and encouragement throughout this challenging yet rewarding
journey. Your belief in me has been a constant source of inspiration.

I also wish to express my gratitude to my elder brother for his unwavering support
and dedication to furthering my academic endeavors. Your encouragement has been
a driving force in my pursuit of knowledge.

Last but not least, I extend my deepest gratitude to my parents for their unending
support and belief in me. Your love, encouragement, and sacrifices have been the
cornerstone of my achievements.

Thank you all for being an integral part of this incredible journey and for contributing
to my growth as an academician.





Contents

List of Figures ix

List of Tables xvii

1 Introduction 1

2 Background 5
2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Types of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Graph representations . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Graph operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Spectral Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Different similarity graph construction . . . . . . . . . . . . . . . 23
2.3.3 Graph Laplacian choices and their properties . . . . . . . . . . . 24
2.3.4 Eigendecomposition . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.5 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Challenges of spectral clustering . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Choice of similarity measure . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.3 Which is the preferred Graph Laplacian? . . . . . . . . . . . . . . 34
2.4.4 Sensitivity to hyperparameters . . . . . . . . . . . . . . . . . . . 34
2.4.5 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 A use case for spectral clustering . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1 Distance metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6.2 Internal cluster validity indices . . . . . . . . . . . . . . . . . . . 40
2.6.3 External cluster validity indices . . . . . . . . . . . . . . . . . . . 41

3 Related Work 45
3.1 Research in spectral clustering development . . . . . . . . . . . . . . . . 45
3.2 Comparison of Spectral clustering and k-means clustering . . . . . . . . 47
3.3 Evaluation of spectral clustering performance . . . . . . . . . . . . . . . 47

4 Methodology 49
4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Iris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



viii Contents

4.1.2 CORA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 (RQ1): Creation and customizability of the spectral clustering framework 53
4.3 Choosing hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Choosing a distance function . . . . . . . . . . . . . . . . . . . . 55
4.3.2 Choosing hyperparameters for similarity graphs . . . . . . . . . 57
4.3.3 Choosing the optimal number of clusters . . . . . . . . . . . . . 58

4.4 (RQ2): Comparative analysis of spectral clustering with k-Means clus-
tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 (RQ3): Comparative analysis of spectral clustering approaches . . . . . . 62
4.6 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Environment for experiments . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Framework 65

6 Results and discussion 69
6.1 (RQ1) Creation and customizability of our spectral clustering framework 69
6.2 (RQ2) Performance comparison of spectral clustering and k-Means clus-

tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.1 Comparison of Spectral clustering and k-Means clustering per-

formance using Iris dataset . . . . . . . . . . . . . . . . . . . . . 70
6.2.2 Comparison of Spectral clustering and k-Means clustering per-

formance using CORA dataset . . . . . . . . . . . . . . . . . . . 74
6.2.3 Insight into graph Laplacian and similarity graph choices . . . . 79

6.3 (RQ3): Comparing our spectral clustering frameworkwith other spectral
clustering approach: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Conclusion and future work 83
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Appendix 87
A.1 Graph Laplacians and their properties . . . . . . . . . . . . . . . . . . . 87

A.1.1 Unnormalized graph Laplacian . . . . . . . . . . . . . . . . . . . 87
A.1.2 The normalized graph Laplacians . . . . . . . . . . . . . . . . . . 89

A.2 Algorithms for spectral clustering . . . . . . . . . . . . . . . . . . . . . . 90
A.3 Different similarity graph construction . . . . . . . . . . . . . . . . . . . 92
A.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 99



List of Figures

2.1 Anatomy of an undirected graph . . . . . . . . . . . . . . . . . . . . . 6

2.2 Examples of Directed and undirected graphs . . . . . . . . . . . . . . 8

2.3 Examples of Connected and Disconnected graphs . . . . . . . . . . . 9

2.4 Examples of d-Regular and Complete graphs . . . . . . . . . . . . . . 10

2.5 Examples of Weighted and Bipartite graphs . . . . . . . . . . . . . . 11

2.6 Cyclic Graph for the water cycle . . . . . . . . . . . . . . . . . . . . . 11

2.7 Examples of Null, Trivial, and Empty Graphs . . . . . . . . . . . . . 12

2.8 An example graph G with 4 vertices and its corresponding (4x4)
adjacency matrix based on the edge connections of the graph G. . . . 13

2.9 An example graph G with 4 vertices and its corresponding adjacency
list based on the 5 edge connections of the graph G. The arrow
from A to B in the adjacency list is the pointer to the linkedlist and
subsequently the vertices B, C, and D are linkedlist to vertex A. . . . 14

2.10 (a) An example undirected, weighted graph G, (b) Edge List with only
vertices pair also called a tuple, and (c) Edge List with vertices pair
and weights also called a triple . . . . . . . . . . . . . . . . . . . . . . 15

2.11 (a) is an undirected graph G with 4 vertices and 4 edges and (b)
is its corresponding 4x4 incidence matrix, where vertices and edges
are represented as rows and columns respectively. In the case of
an undirected graph the entry 1 in the incidence matrix indicates
connection of an edge to a vertex and 0 otherwise. (c) is a directed
graph G and (d) is its corresponding incidence matrix. In this incidence
matrix, -1 indicates an edge leaving a vertex, 1 indicates an edge
entering a vertex, and 0 indicates an edge is not incident to a vertex. 16

2.12 An example graph with DFS (Depth-First Search) traversal order 1,
2, 4, 5, 3, 6, 7 and BFS (Breadth-First Search) traversal order 1, 2, 3,
4, 5, 6, 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.13 Steps involved in computing the Laplacain matrix from a graph. (a)
An example connected and undirected graph G. (b) Adjacency matrix
A based on the connection of vertices and edges of G. (c) degree
matrix D computed from the adjacency matrix, and (d) Laplacian
matrix L computed as, L = D − A. . . . . . . . . . . . . . . . . . . . 20



x List of Figures

2.14 Eigen representation of the Laplacian matrix L of size 6 × 6 of the
graph G in (Figure 2.13). The figure shows the six eigenvalues
(λ1, ..., λ6) sorted in ascending order along with its corresponding
eigenvectors(u1, ..., u6). The eigenvectors are 6-dimensional vectors
corresponding to the 6 vertices of the graph represented by the Lapla-
cian matrix. See text for more details. . . . . . . . . . . . . . . . . . 22

2.15 Different similarity graph construction from a sample dataset. (a)
Sample dataset with 100 data points that are randomly distributed,
which can be visually partitioned into two groups (bottom left and
the top right). The parameters for the different graph construction
techniques are carefully chosen to replicate the partitioning. (b) kNN
graph constructed from the sample with k = 4, (c) ϵ-neighborhood
graph constructed from the sample with ϵ = 0.5, and (d) the fully
connected graph with σ = 1. See (Appendix A.3) for graphs with
different parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.16 Comparison of different clustering algorithms on different toy datasets
with pre-defined shapes in each row (a) through (f). . . . . . . . . . . 29

2.17 K-means algorithm. Training examples are shown as dots, and cluster
centroids are shown as crosses. (a) Original dataset. (b) Random initial
cluster centroids. (c-f) Illustration of running two iterations of k-means.
In each iteration, there is an assignment of each training example to
the closest cluster centroid (shown by ”painting” the training examples
the same color as the cluster centroid to which it is assigned); then
each cluster centroid is moved to the mean of the points assigned to it. 31

2.18 Steps involved in computing the Laplacian matrix from a graph. (a)
An example connected and undirected graph G. (b) Laplacian matrix
L computed as, L = D − A. (c) degree matrix D computed from
the adjacency matrix, and (d) Adjacency matrix A constructed using
a binary similarity measure based on the connection of vertices and
edges of G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.19 Eigen representation of the Laplacian matrix L of size 6 × 6 of the
graph G. (a) shows the sorted eigenvalues and their corresponding
eigenvectors of the Laplacian matrix, indicating the most important
eigenvalues and eigenvectors of the graph. (b) shows the lower -
dimensional representation of L as U . . . . . . . . . . . . . . . . . . 37

2.20 (a) Depicts the ability of the second smallest eigenvalue λ2 and its
corresponding eigenvector, the Fiedler vector in identifying clusters
in the lower-dimensional representation. (b) Shows the clusters of G
based on the signs of the values of the Fiedler vector. . . . . . . . . . 38

4.1 Distribution of Iris flower types, showing the count of each flower
species in the dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Visualization of the Iris dataset using PCA with a scatter plot showing
two principal components . . . . . . . . . . . . . . . . . . . . . . . . 51



List of Figures xi

4.3 Visualization of the pairwise relationships of Iris flower features, cate-
gorized by their respective species. Along the diagonal, Kernel Density
Estimation (KDE) plots provide a visual representation of the fea-
ture distribution for each species. Each point in the scatter plot
corresponds to an individual Iris flower, with its position and color
indicating its specific species. The visualization provides insights into
feature correlations and variations across the different Iris species. . . 52

4.4 Distribution of CORA publications, showing the count of each publi-
cation across the 7 classes. . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Scatter plot of PCA visualization for CORA dataset by subject: Each
data point represents a scientific publication, projected onto two
principal components through PCA. The scatter plot is color-coded
with seven distinct colors, each representing a different subject of
publication within the CORA dataset. . . . . . . . . . . . . . . . . . 54

4.6 Visualization of Two Principal Components of CORA Data: Panels
(a), (b), and (c) depict the distribution plot, box plot, and probability
plot for Component 1, which exhibits a skew of 2.2 in the probability
plot—indicating a moderate departure from a perfectly symmetric
distribution. Panels (d), (e), and (f) showcase the distribution plot,
box plot, and probability plot for Component 2, which displays a
minor skew of 0.3 in the probability plot, implying a slight deviation
from symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 Comparison of different distance functions with internal cluster mea-
sures of Iris data. (Spectral Clustering: kNN=6, Lrw, and no. of
clusters k = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Comparison of different distance functions with external cluster mea-
sures of Iris data. (Spectral Clustering: kNN=6, Lrw, and no. of
clusters k = 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 Comparison of different distance functions with internal cluster mea-
sures of CORA data. (Spectral Clustering: kNN=23, Lrw, and no. of
clusters k = 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Comparison of different distance functions with external cluster mea-
sures of CORA data. (Spectral Clustering: kNN=23, Lrw, and no. of
clusters k = 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.11 Elbow method: the line plot illustrates the Elbow Method applied to
the Iris dataset. The x-axis represents the number of clusters, while
the y-axis depicts the inertia. A distinct ”elbow” point is evident at
cluster three, indicating the optimal number of clusters for the Iris data 59

4.12 Internal measures to identify optimal number of clusters : the three-
subplot image shows internal cluster scores (Silhouette Score, Calinski-
Harabasz Score, and Davies-Bouldin Score) across a range of cluster
numbers for the Iris dataset. The analysis aids in determining the
optimal number of clusters for the data. . . . . . . . . . . . . . . . . 60



xii List of Figures

4.13 Eigengap heuristics for the Iris Dataset. The plot displays the eigen-
values of the graph Laplacian matrix computed from the Iris dataset.
The gap, observed between the third and fourth eigenvalues, indicates
the presence of three distinct clusters in the dataset. The first three
eigenvalues are very close to zero, this further suggests the presence of
three connected components within the Iris dataset which are clusters
of Iris. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.14 Spectral clustering hyperparameters . . . . . . . . . . . . . . . . . . . 63

5.1 A high-level view of spectral clustering framework: The framework
is depicted in four stages: (a) introduces the initial .csv input file.
Preprocessing (b) involves (b1) pairwise distance calculation for the
adjacency matrix, (b2) weighted adjacency matrix (or similarity ma-
trix) construction using three similarity graph techniques, (b3) degree
matrix creation, and (b4) Laplacian matrix construction with three
Laplacian variants. Eigendecomposition (c) includes (c1) eigen solver
for eigenvectors and eigenvalues and (c2) selection of k eigenvectors for
lower-dimensional representation. Clustering (d) involves (d1) k-Means
clustering in reduced space and (d2) assignment of data points to
clusters. The framework generates nine diverse outputs, each resulting
from varying selections (kNN graph, ϵ-neighborhood graph, and fully
connected graph) of similarity graphs and graph Laplacians (L,Lrw

and Lsym), and subsequently, these nine outputs are systematically
compared to determine the optimal spectral clustering result. . . . . . 67

6.1 k-Means clustering and Spectral clustering performance comparison:
the figure compares external cluster validity measures (Accuracy, Ad-
justed Rand Index, and Normalized Mutual Information) for the Iris
dataset. Subplots contrast the k-Means approach with nine spectral
clustering configurations. We use the naming convention, SC-spectral
clustering, Lrw-random walk normalized Laplacian, Lsym-symmetric
normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest
neighbor graph, EN-epsilon neighborhood graph, and FC-fully con-
nected graph for our framework. . . . . . . . . . . . . . . . . . . . . . 71

6.2 k-Means clustering and Spectral clustering performance comparison:
the figure compares internal cluster validity measures (Silhouette Score,
Calinski-Harabasz Score, and Davies-Bouldin Score) for the Iris dataset.
Subplots contrast the k-Means approach with nine spectral cluster-
ing configurations, with naming convention, SC-spectral clustering,
Lrw-random walk normalized Laplacian, Lsym-symmetric normalized
Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor graph,
EN-epsilon neighborhood graph, and FC-fully connected graph. . . . 73

6.3 PCA visualization of Iris data: image(a) - reduced Iris data, image(b) -
projection of Iris data after applying k-Means clustering, and image(c)
- projection of Iris data after applying spectral clustering. . . . . . . . 74



List of Figures xiii

6.4 k-Means clustering and Spectral clustering performance comparison:
the figure compares external cluster validity measures (Accuracy,
Adjusted Rand Index, and Normalized Mutual Information) for the
CORA dataset. Subplots contrast the k-Means approach with nine
spectral clustering configurations. We use the naming convention,
SC-spectral clustering, Lrw-random walk normalized Laplacian, Lsym-
symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k
nearest neighbor graph, EN-epsilon neighborhood graph, and FC-fully
connected graph for our framework. . . . . . . . . . . . . . . . . . . . 76

6.5 k-Means clustering and Spectral clustering performance comparison:
the figure compares internal cluster validity measures (Silhouette Score,
Calinski-Harabasz Score, and Davies-Bouldin Score) for the CORA
dataset. Subplots contrast the k-Means approach with nine spectral
clustering configurations, with naming convention, SC-spectral cluster-
ing, Lrw-random walk normalized Laplacian, Lsym-symmetric normal-
ized Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor
graph, EN-epsilon neighborhood graph, and FC-fully connected graph. 77

6.6 PCA visualization of CORA data: image(a) - reduced CORA data,
image(b) - projection of CORA data after applying k-Means clustering,
and image(c) - projection of CORA data after applying spectral
clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Spectral clustering performance comparison between Jordan approach
and our framework: the figure compares external cluster validity mea-
sures (Accuracy, Adjusted Rand Index, and Normalized Mutual Infor-
mation) for the Iris dataset. Subplots contrast the Jordan approach
by [Somashekara and Manjunatha, 2014] with nine spectral cluster-
ing configurations, with naming convention, SC-spectral clustering,
Lrw-random walk normalized Laplacian, Lsym-symmetric normalized
Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor graph,
EN-epsilon neighborhood graph, and FC-fully connected graph. . . . 81

6.8 Spectral clustering performance comparison between Jordan approach
and our framework: the figure compares internal cluster validity mea-
sures (Silhouette Score, Calinski-Harabasz Score, and Davies-Bouldin
Score) for the Iris dataset. Subplots contrast the Jordan approach
by [Somashekara and Manjunatha, 2014] with nine spectral cluster-
ing configurations, with naming convention, SC-spectral clustering,
Lrw-random walk normalized Laplacian, Lsym-symmetric normalized
Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor graph,
EN-epsilon neighborhood graph, and FC-fully connected graph. . . . 82



xiv List of Figures

A.1 Different similarity graph construction from a sample dataset. (a)
Sample dataset with 100 data points that are randomly distributed,
which can be visually partitioned into two groups (bottom left and
the top right). The parameters for the different graph construction
techniques are undesired and therefore it does not replicate the parti-
tioning. (b) kNN graph constructed from the sample with k = 3, (c)
ϵ-neighborhood graph constructed from the sample with ϵ = 0.4, and
(d) the fully connected graph with σ = 0.5. . . . . . . . . . . . . . . . 92

A.2 Performance of Spectral Clustering on Iris (k = 3) using L and k
nearest neighbor graph with varying kNN, optimal at 6. . . . . . . . . 93

A.3 Performance of Spectral Clustering on Iris (k = 3) using L and ϵ-
neighborhood graph with varying ϵ, optimal at 0.01. . . . . . . . . . . 93

A.4 Performance of Spectral Clustering on Iris (k = 3) using L and fully
connected graph with varying σ, optimal at 0.01. . . . . . . . . . . . 93

A.5 Performance of Spectral Clustering on Iris (k = 3) using Lrw and k
nearest neighbor graph with varying kNN, optimal at 6. . . . . . . . . 94

A.6 Performance of Spectral Clustering on Iris (k = 3) using Lrw and
ϵ-neighborhood graph with varying ϵ, optimal at 0.01. . . . . . . . . . 94

A.7 Performance of Spectral Clustering on Iris (k = 3) using Lrw and fully
connected graph with varying σ, optimal at 0.01. . . . . . . . . . . . 94

A.8 Performance of Spectral Clustering on Iris (k = 3) using Lsym and k
nearest neighbor graph with varying kNN, optimal at 6. . . . . . . . . 95

A.9 Performance of Spectral Clustering on Iris (k = 3) using Lsym and
ϵ-neighborhood graph with varying ϵ, optimal at 0.01. . . . . . . . . . 95

A.10 Performance of Spectral Clustering on Iris (k = 3) using Lsym and
fully connected graph with varying σ, optimal at 0.01. . . . . . . . . . 95

A.11 Performance of Spectral Clustering on CORA (k = 7) using L and k
nearest neighbor graph with varying kNN, optimal at 23. . . . . . . . 96

A.12 Performance of Spectral Clustering on CORA (k = 7) using L and
ϵ-neighborhood graph with varying ϵ, optimal at 1. . . . . . . . . . . 96

A.13 Performance of Spectral Clustering on CORA (k = 7) using L and
fully connected graph with varying σ, optimal at 1. . . . . . . . . . . 96

A.14 Performance of Spectral Clustering on CORA (k = 7) using Lrw and
k nearest neighbor graph with varying kNN, optimal at 23. . . . . . . 97

A.15 Performance of Spectral Clustering on CORA (k = 7) using Lrw and
ϵ-neighborhood graph with varying ϵ, optimal at 0.8. . . . . . . . . . 97

A.16 Performance of Spectral Clustering on CORA (k = 7) using Lrw and
fully connected graph with varying σ, optimal at 0.4. . . . . . . . . . 97

A.17 Performance of Spectral Clustering on CORA (k = 7) using Lsym and
k nearest neighbor graph with varying kNN, optimal at 22. . . . . . . 98



List of Figures xv

A.18 Performance of Spectral Clustering on CORA (k = 7) using Lsym and
ϵ-neighborhood graph with varying ϵ, optimal at 0.8. . . . . . . . . . 98

A.19 Performance of Spectral Clustering on CORA (k = 7) using Lsym and
fully connected graph with varying σ, optimal at 0.1. . . . . . . . . . 98





List of Tables

4.1 Statistical Analysis of Iris Dataset: Summary of descriptive statistics
including count, mean, standard deviation, minimum, 25th percentile,
median (50th percentile), 75th percentile, and maximum values for
the four features of the Iris dataset . . . . . . . . . . . . . . . . . . . 51

4.2 List of the best hyperparameters for similarity graphs used in all
experiments: This table presents the best hyperparameters identified
through a comprehensive sensitivity analysis for Spectral Clustering
on two distinct datasets, Iris and CORA. The table showcases nine
different combinations of Laplacian types and similarity graphs, along
with their corresponding optimal hyperparameters. The optimal values
for each combination are listed for both the Iris and CORA datasets,
providing insights into the ideal settings for successful Spectral Clus-
tering. We refer to Appendix A.4 for a comprehensive evaluation of
all values of evaluated hyperparameters. . . . . . . . . . . . . . . . . 58

4.3 Libraries used for experiments. . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Comparison of k-Means and Spectral Clustering Performance: the
table compares our framework with k-Means clustering for Iris dataset.
The best values across all the cluster validity measures and the various
methods are highlighted in bold. We use the naming convention,
SC-spectral clustering, Lrw-random walk normalized Laplacian, Lsym-
symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k
nearest neighbor graph, EN-epsilon neighborhood graph, and FC-fully
connected graph for our framework. . . . . . . . . . . . . . . . . . . . 70

6.2 Comparison of k-Means and Spectral Clustering Performance: the
table compares our framework with k-Means clustering for CORA
dataset. The best values across all the cluster validity measures
and the various methods are highlighted in bold. We use the nam-
ing convention, SC-spectral clustering, Lrw-random walk normalized
Laplacian, Lsym-symmetric normalized Laplacian, L-unnormalized
Laplacian, KNN-k nearest neighbor graph, EN-epsilon neighborhood
graph, and FC-fully connected graph for our framework. . . . . . . . 75



xviii List of Tables

6.3 Comparison of Spectral Clustering Performance: the table compares
our framework with spectral clustering by Jordan approach suggested
by [Somashekara and Manjunatha, 2014] for Iris dataset. The best
values across all the cluster validity measures and the various methods
are highlighted in bold. We use the naming convention, SC-spectral
clustering, Lrw-random walk normalized Laplacian, Lsym-symmetric
normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest
neighbor graph, EN-epsilon neighborhood graph, and FC-fully con-
nected graph for our framework. . . . . . . . . . . . . . . . . . . . . . 80



1. Introduction

In today’s data-driven world, an unprecedented volume of information is generated
daily across various domains, ranging from social networks [Newman, 2004] and
biological systems [Barabasi and Oltvai, 2004] to recommendation systems [Adomavi-
cius and Tuzhilin, 2005] and image analysis [Arbelaez et al., 2010]. The intricate
relationships that underlie this data often form a complex web of interconnectedness,
rendering traditional analytical techniques inadequate for comprehensive insights.
Consequently, a pressing need has emerged to devise novel methodologies that can
unearth hidden patterns and structures within this intricate data landscape.

Graphs have emerged as a versatile and powerful abstraction for modeling and
analyzing interconnected data. A graph is a mathematical representation that consists
of vertices (nodes) and edges (links) connecting these vertices, aptly capturing the
relationships, dependencies, and interactions among different entities. As real-world
data continues to grow in complexity, graphs have proven indispensable for revealing
valuable insights and enabling informed decision-making. A graph, can be defined as
”G = (V, E)”, where V represents the set of vertices, and E represents the set of
edges connecting these nodes.

Graphs have gained substantial attention in the realm of machine learning, serving
as a foundational data structure for designing algorithms that leverage the intrinsic
structure of data. Machine learning techniques can be broadly categorized into
two main paradigms, supervised and unsupervised learning. Supervised machine
learning operates on labeled datasets, where each data point is associated with
a corresponding label or target value. Algorithms in this category learn to map
input features to output labels by observing a set of training examples. Classic
examples include linear regression [Hastie et al., 2009], decision trees [Breiman, 2017],
and support vector machines [Cortes and Vapnik, 1995]. Unsupervised machine
learning, on the other hand, thrives in scenarios where labeled data is scarce or
entirely absent. This paradigm focuses on uncovering underlying patterns and
structures within data [Bishop and Nasrabadi, 2006], often through techniques such
as clustering and dimensionality reduction. Clustering algorithms group similar
data points together based on intrinsic similarities, providing insights into natural



2 1. Introduction

groupings within the data. Classic examples include k-Means [MacQueen et al., 1967],
hierarchical clustering [Jain and Dubes, 1988], and Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) [Ester et al., 1996].

The traditional spectral clustering framework involves constructing a similarity graph
followed by graph partitioning through eigenvalue decomposition. However, a pivotal
concern in this framework is the choice of similarity graph and different normalization
strategies before eigen decomposition, which significantly influence the clustering
performance [Ng et al., 2002]. The lack of a one-size-fits-all solution necessitates
a tailored approach that allows users to customize these choices according to the
dataset characteristics. The goal of this thesis is to develop a versatile framework
that empowers users to improve customization of the spectral clustering process [Shi,
2003].

This thesis attempts to address the limitations of conventional spectral clustering
methods by proposing a novel framework that allows for user controlled spectral
clustering. The core objective of this framework is to provide users with the autonomy
to select distinct similarity graphs and graph Laplacians that align with the specific
characteristics of their data. By enabling this level of customization, the framework
aims to enhance the clustering performance and robustness across diverse datasets.

In contrast to our comprehensive spectral clustering framework, scikit-learn’s [Pe-
dregosa et al., 2011] spectral clustering implementation exhibits several limitations
that restrict its adaptability and hinder its effectiveness in certain scenarios.

criteria (i) - Notably, scikit-learn does not provide specifying the distance metric as a
hyperparameter to compute the adjacency matrix for pairwise distance calculations.
Instead, users must compute the adjacency matrix in advance and then pass the
adjacency matrix to the spectral clustering module. This indirect approach can be
less intuitive and requires preprocessing steps.

criteria (ii) - Furthermore, scikit-learn’s spectral clustering offers only two choices
for similarity graphs, the k-Nearest Neighbors (kNN) graph and the Gaussian kernel.
This limitation narrows the scope for users to explore different graph structures that
might better reflect the underlying relationships within their data.

criteria (iii)) - Another constraint lies in scikit-learn’s limited selection of graph
Laplacians. The library exclusively employs the symmetric normalized Laplacian
(Lsym) as the Laplacian matrix. This constraint prevents users from leveraging other
Laplacian variants, such as the random walk normalized Laplacian (Lrw) and the
unnormalized Laplacian (L). [Von Luxburg, 2007] suggests the use of Lrw over Lsym.

These limitations collectively hinder the exploration of alternative spectral clustering
strategies within scikit-learn. Users are confined to a specific set of choices for
constructing similarity graphs and graph Laplacians, leaving them unaware and
unable to maximize the potential benefits that different configurations might offer
for their specific datasets.

Our spectral clustering framework is strategically designed to address these short-
comings, by offering a wide array of choices for distance metrics, similarity graph
construction, and graph Laplacians.



3

Goals of the Thesis and ResearchQuestions

The goal of this thesis is to implement and evaluate a framework which fulfills
a pre-defined criteria(i-iii) which allows us to extend the possibilities of spectral
clustering in regard to the choice of distance metrics, similarity graphs, and graph
laplacian. To achieve this objective, I define the following research questions:

(RQ1) How does the proposed framework enable users to customize their choices to
perform spectral clustering across different similarity graphs and graph Laplacians?

(RQ2) How do the clustering results of the proposed framework compare to k-Means
approach?

(RQ3) How does the performance of our user-controlled spectral clustering framework
compare against existing spectral clustering approaches on the same dataset?

My thesis meticulously addresses the research questions, leveraging insights gained
from experiments conducted on both the Iris and CORA dataset.

Structure of this Thesis

Chapter 2 offers essential background context, followed by a review of related work
in Chapter 3. Chapter 4 delves into various methodologies and comprehensive exper-
imental procedures. In Chapter 5, we introduce the spectral clustering framework.
Our findings and discussions are presented in Chapter 6, and finally, Chapter 7 offers
a summary and outlines potential directions for future research.





2. Background

In this chapter, we provide a detailed exploration and analysis of spectral clustering
as a technique for effective data clustering. In section 2.1, we begin by introducing
readers to graphs, their types, representations, and operations. In section 2.2, there is
a brief introduction to spectral graph theory. Then we move on to the most in-depth
section of this chapter, spectral clustering, in section 2.3 where we discuss the various
steps involved in spectral clustering. In section 2.4 we discuss the challenges of
spectral clustering. A use case for explaining the whole spectral clustering process is
described in section 2.5. We discuss the various metrics used in this thesis in the
final section 2.6.

2.1 Graphs
Graphs are a fundamental data structure used to model relationships between objects
in computer science and mathematics. A graph consists of a set of vertices (also
called nodes or points) and a set of edges (also called links, lines or arcs) connecting
them. A vertex represents an object or an entity in the real world, such as a city,
a person, a web page, or a molecule. Vertices are usually represented as points or
circles in a graph. An edge, on the other hand, is a line connecting two vertices
in a graph, indicating a relationship or a connection between the two vertices. For
example, we can think of the internet as a virtual graph, with vertices representing
individual webpages and edges representing hyperlinks between two webpages.

Mathematically, we can define a graph G = (V,E ) where V is the set of vertices and
E is the set of edges. Graphs can be visualized as a collection of vertices connected
by edges in a graph or network diagram. Listed here are some definitions mentioned
in the works of [Sedgewick and Wayne, 2011] that will help us understand graph
structures and guide us through our discussions on graphs. We refer to (Figure 2.1)
for acquainting with some of these definitions. Self - Loop- A self-loop is an edge
that connects a vertex to itself.

Parallel Edges - Two edges are parallel if they connect the same pair of vertices.



6 2. Background

Adjacent and Incident - When an edge connects two vertices, we say that the vertices
are adjacent to one another and that the edge is incident on both vertices.

Degree - The degree of a vertex is the number of edges incident on it.

Subgraph - A subgraph is a subset of a graph’s edges (and associated vertices) that
constitutes a graph.

Path - A path in a graph is a sequence of vertices connected by edges, with no
repeated edges.

Simple Path - A simple path is a path with no repeated vertices.

Cycle - A cycle is a path (with at least one edge) whose first and last vertices are
the same.

Simple Cycle - A simple cycle is a cycle with no repeated vertices (other than the
requisite repetition of the first and last vertices).

Length of Path or cycle - The length of a path or a cycle is its number of edges.

Connected Vertices - One vertex is said to be connected to another if there exists a
path that contains both of them.

Connected Graph - A graph is connected if there is a path from every vertex to
every other vertex.

Connected Components - A graph that is not connected consists of a set of connected
components, which are maximal connected subgraphs.

Vertex

Edge

Path of length 5

Cycle of length 4

Vertex of degree 3

Connected components

Self loop

Figure 2.1: Anatomy of an undirected graph

Graphs are powerful tools for visualizing and analyzing data in various fields such as
mathematics [West et al., 2001], statistics [Moore et al., 2017], economics [Mankiw,



2.1. Graphs 7

2014], and computer science [Cormen et al., 2009b]. Graphs provide a clear and
concise representation of information, allowing us to identify patterns, trends, and
relationships that may not be apparent in raw data. Graphs enable us to communicate
complex data in a visual format, making it easier for others to understand and
interpret the information. They help us present data-driven insights, support decision-
making processes, and communicate findings in a more accessible and intuitive
manner.

2.1.1 Types of graphs
Graph theory is a branch of mathematics that studies the properties and relation-
ships of graphs. Graphs can be categorized into various types based on specific
characteristics and properties. Here is a brief overview of some common types of
graphs in graph theory:

Directed Graph - A directed graph, also known as a digraph, is a graph that consists
of a set of vertices and a set of directed edges. In a directed graph, each edge has a
direction associated with it, which means that it has a starting vertex and an ending
vertex. The graph in the (Figure 2.2a) has four vertices, labeled A, B, C, and D,
and four directed edges, labeled AB, BC, CD, and DA. The direction of each edge
is indicated by an arrowhead, which points from the starting vertex to the ending
vertex.

For instance, the edge AB has its tail connected to vertex A and its head connected
to vertex B, indicating that it goes from A to B. Similarly, the edge CD has an
arrowhead pointing from vertex C to vertex D, indicating that it goes from C to D.

It is important to note that the direction of an edge is crucial in a directed graph
because it indicates the nature of the relationship between the vertices. The edge
AB in this example represents a one-way relationship from A to B, which is different
from the reverse relationship from B to A.

Directed graphs can be used to represent various types of relationships, such as
communication networks [Peterson and Davie, 2011], food webs [Pascual and Dunne,
2006], traffic flow [Ni, 2015], electrical circuits [Nilsson, 2014] and many more.

For example, consider a social network where users can follow each other. The users
can be represented as vertices, and the follow relationship can be represented as
directed edges from the follower to the followed user.

Undirected Graph - An undirected graph is a graph where each edge connects two
vertices, but no direction is associated with the edge. In other words, the edges
do not have a specific starting or ending point. In the (Figure 2.2b) the edge that
connects vertex A to vertex B, also connects vertex B to vertex A.

Undirected graphs are commonly used to model pairwise relationships between
objects or to represent networks in which the direction of a connection is irrelevant.
They are particularly useful in situations where the relationship is symmetric.

For example, consider a group of friends who are connected by their friendships. The
friends can be represented as vertices, and the friendships can be represented as
undirected edges between the vertices.

1https://algs4.cs.princeton.edu/41graph/



8 2. Background

A

D

B

C

a) Directed Graph 

A

D

B

C

b) Undirected Graph 

Figure 2.2: Examples of Directed and undirected graphs

Connected Graph - A connected graph is a graph in which there is a path between
any two vertices in the graph. In other words, there are no isolated vertices in
the graph, and every vertex can be reached from every other vertex by following a
sequence of edges. (Figure 2.3a) shows a connected graph. In this graph, there are
five vertices labeled A, B, C, D, and E, and there are four edges connecting them.
This graph is a connected graph because there is a path between any two vertices in
the graph. For instance, there is a path between vertex A and vertex E that goes
through vertices A, B, D, and E.

An example of a connected graph is a road network. In a road network, cities
or locations are represented as vertices, and roads or highways between them are
represented as edges. Since there is a path between any two cities or locations in a
road network, although it may not be the shortest path, the graph is connected.

Analyzing the structure of a road network graph can provide insights into traffic
flow, congestion, and transportation planning. For example, identifying key vertices
(such as large cities or transportation hubs) and edges (such as major highways or
intersections) can help prioritize infrastructure improvements and reduce bottlenecks
in the network [Gross and Yellen, 2005].

Disconnected Graph - A disconnected graph is a graph that is not connected, meaning
that there is at least one vertex in the graph that is not connected by a path. In
other words, the graph can be split into two or more disconnected components, each
of which is a connected subgraph. In the graph shown in (Figure 2.3b), there are
six vertices labeled A, B, C, D, E, and F, and there are four edges connecting them.
However, the graph is disconnected because there is no path between vertices A, B,
and C and vertices D, E, and F. Instead, the graph can be split into two connected
components: {A, B, C} and {D, E, F}.

Disconnected graphs arise in many applications. An example of a disconnected graph
is a power grid. In a power grid, power stations and substations are represented
as vertices, and power lines between them are represented as edges. Disconnected
components in the graph can represent areas that are not well-connected to the rest
of the grid, indicating areas where power outages are more likely to occur. Analyzing
the structure of a power grid graph can help identify vulnerabilities and improve the
resilience of the system [Dorf and Svoboda, 2010]. Identifying key vertices and edges
and ensuring redundancy in the network can help prevent widespread outages in the
event of failures or natural disasters.



2.1. Graphs 9

A

D

B C

a) Connected Graph 

E

A

C

B D

b) Disconnected Graph 

E F

Figure 2.3: Examples of Connected and Disconnected graphs

Regular Graph - A regular graph is a graph in which every vertex has the same
degree, meaning the number of edges incident to each vertex is the same. In other
words, every vertex in a regular graph has the same number of adjacent vertices.
A regular graph is often represented as a k-regular graph, where k is the degree of
each vertex in the graph. (Figure 2.4a) shows an example of a 3-Regular graph. In
this example, every vertex has three incident edges and three adjacent vertices. The
vertex A is adjacent to vertices B, D, and F and the edges incident to vertex A are
edges AB, AD, and AF.

An application of a regular graph is well illustrated in the work of [Brouwer and
Haemers, 2012]. The authors explain that the atoms in a crystal can be viewed as
vertices of a graph, and the bonds between atoms can be represented as edges of
the graph. If the crystal has a regular structure, then the resulting graph will be
a regular graph. By studying the spectrum of the adjacency matrix of the graph,
physicists can gain insights into the properties of the crystal, such as its mechanical
and electrical properties. We will see more about adjacency matrix of a graph under
Graph Representations in subsection 2.1.2. Regular graphs have many interesting
properties and are studied in various fields, including graph theory [Godsil and Royle,
2001], computer science [Hoory et al., 2006], and physics [Brede, 2012].

Complete Graph - A complete graph is a graph in which each pair of distinct vertices
is connected by an edge. In other words, a complete graph is a graph in which every
vertex is adjacent to every other vertex. A complete graph is a regular graph, which
has a degree of n-1, where n is the total number of vertices. In the example shown in
(Figure 2.4b) the complete graph has a degree of n -1 (6 - 1 = 5) and thus can also
be called a 5-regular graph.

One example of the application of complete graphs in the study of complex networks
[Börner et al., 2010] is the visualization of citation networks in scientific literature.
In a citation network, each paper is represented as a vertex, and edges represent
citations between papers. By constructing a complete graph between papers that
have cited each other, researchers can visualize clusters of papers that are highly
connected and have a strong influence on each other.

Weighted Graph - A weighted graph is a graph in which each edge is assigned
a numerical weight. These weights are numerical values that could be used to
represent any attribute of the edge, such as distance, time, cost, or any other metric.
Weighted graphs are used to model a variety of real-world phenomena. For example,



10 2. Background

a) 3-Regular graph

A

F

E D

B

C

b) Complete graph

A

F

E D

B

C

Figure 2.4: Examples of d-Regular and Complete graphs

in a transportation network, the weights might represent the distance between two
locations, the time required to travel between them, or the cost of traveling between
them. (Figure 2.5a) shows an example of weighted graph which is also directed. In
this example the numbers associated with the edges are their weights. For e.g. the
edge from vertex A to vertex B has a weight of 3, the edge from vertex B to vertex
H has a weight of 10, and so on.

In the work of [Sedgewick and Wayne, 2011], the authors provide an example of a
weighted graph that represents an airline route network. In this graph, each vertex
represents an airport, and each edge represents a flight route between two airports.
The weight of each edge represents the distance or cost associated with the flight
route. For instance, the edge connecting New York City and Chicago might have
a weight of 800 miles, while the edge connecting New York City and Los Angeles
might have a weight of 2,800 miles. By using weighted graphs, airline companies can
optimize their routes to reduce costs and improve efficiency.

Bipartite Graph - A bipartite graph is a special type of graph in which the vertices
can be divided into two disjoint sets such that no edge connects vertices within the
same set. In other words, edges connect vertices in different sets and not in the same
set. (Figure 2.5b) shows an example of a bipartite graph. In this example the vertex
set V1 is {A,B,C,D,E} and the vertex set V2 is {F,G,H}. Note that all edges are
between the two vertices set V1 and V2 and not within the same set.

A classic example of a bipartite graph is a graph representing the relationship between
customers and products in a store [Barabási, 2016]. Customers can be represented
by one set of vertices and products by another set, and an edge is drawn between
a customer and a product if that customer has purchased that product. Another
example of a bipartite graph is a graph representing the relationship between actors
and movies. Actors can be represented by one set of vertices and movies by another
set, and an edge is drawn between an actor and a movie if that actor has appeared
in that movie.

Cyclic Graph - A cyclic graph is a type of graph where there is at least one cycle.
A cycle is a path that starts and ends at the same vertex. In other words, a cyclic
graph has at least one path that traverses some edges and vertices and returns to
the starting point, forming a loop. A cycle can be of any length, including length 1,
which means a single vertex that connects to itself.



2.1. Graphs 11

A

D

B

C

E F

H

G

a) Weighted graph

3

2

4

8

5

3
10

A

D

B

C

E

F

H

G

b) Bipartite graph

V1

V2

Vertices set

Weights
12

Figure 2.5: Examples of Weighted and Bipartite graphs

A real-world example of a cyclic graph is the cycle of water through the Earth’s
atmosphere, oceans, land, and back to the atmosphere. This cyclic process is called
the water cycle or hydrological cycle [Winterwerp and Van Kesteren, 2004]. Water
evaporates from the Earth’s surface and forms clouds, which then precipitate as rain
or snow onto the land or oceans. The water that falls on the land or oceans then flows
back into rivers, lakes, and oceans, or is absorbed by plants and animals. This water
is eventually evaporated back into the atmosphere, completing the cycle. (Figure 2.6)
shows an example of a cyclic graph. In this graph, the different phases of the water
cycle are represented as vertices. Namely, Collection, Evaporation, Condensation,
and Precipitation and the edges represent the direction of water movement between
different phases in the cycle.

Cyclic graph

Condensation

Collection

Precipitation

Evaporation

Figure 2.6: Cyclic Graph for the water cycle

Null Graph, Trivial Graph, and Empty Graph - A null graph, a trivial graph, and
an empty graph are all special cases of graphs with no edges.

A null graph is a graph with one or more vertices and no edges. (Figure 2.7a) shows
a null graph with five vertices and no edges between them.

A trivial graph is a graph with one vertex and no edges. It is also called a singleton
graph. (Fiure 2.7b) shows a trivial graph with one vertex and no edge.



12 2. Background

An empty graph is a graph with no vertices and no edges. Depending on the author
and the text, an empty graph can sometimes interchangeably be called as a null
graph. (Figure 2.7c) shows an empty graph which has no vertex or edge.

The applications of these graphs [Trudeau, 2013] are limited due to their simple
nature. It is worth noting that while these graphs may not have many practical
applications, they are still important in graph theory as they form the basis for more
complex graphs and help to establish fundamental concepts and properties.

A

E D

B

C

a) Null graph b) Trivial graph

A

c) Empty graph

Figure 2.7: Examples of Null, Trivial, and Empty Graphs

2.1.2 Graph representations
Graph representation refers to the way in which a graph is represented or stored
in a computer program or an algorithm. Graph representation is important for
many graph-based algorithms, as the choice of representation can have a significant
impact on the efficiency and effectiveness of the algorithm. There are several ways
to represent graphs, including:

Adjacency matrix - An adjacency matrix is a way to represent a graph as a 2D
matrix where the rows and columns correspond to the vertices of the graph, and the
entries in the matrix indicate whether there is an edge between the corresponding
vertices. An adjacency matrix for a graph with n vertices is a square matrix (n× n)
with n rows and n columns. Mathematically, we can represent an adjacency matrix
A for a graph G with n vertices as follows:

The element,

A[i, j] = 1, if there is an edge from vertex i to vertex j in G

A[i, j] = 0, otherwise

If G is an undirected graph, then

A[i, j] = A[j, i] for all i, j.

It is important to note that the diagonal elements of the adjacency matrix A are
always 0 for an undirected graph since there are no self-loops in an undirected graph.
For a directed graph, the diagonal elements can be either 0 or 1, depending on
whether self-loops are allowed or not.

If G is a weighted graph, then

A[i, j] = w[i, j], where w[i, j] is the weight of the edge from



2.1. Graphs 13

vertex i to vertex j.

Adjacency matrices are commonly used to represent graphs in computer algorithms
because they allow for efficient access to information about the edges and vertices of
the graph. For example, to find all the neighbors of a vertex in the graph, we simply
need to look at the corresponding row or column in the adjacency matrix. (Figure
2.8) shows an example of an adjacency matrix for an undirected graph G with 4
vertices labeled A, B, C, and D and the following edges: AB, BC, CD, and DA.

A

D

B

C

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

A B C D

A

B

C

D

Graph G Adjacency Matrix 

A B C D

A

Figure 2.8: An example graph G with 4 vertices and its corresponding (4x4) adjacency
matrix based on the edge connections of the graph G.

Adjacency list - An adjacency list is a data structure used to represent a graph as a
collection of linked lists, where each linked list corresponds to a vertex in the graph
and contains the vertices adjacent to it. In other words, in an adjacency list, each
vertex in the graph has a list of its neighboring vertices. Each vertex in the list
represents an adjacent vertex and can contain additional information, such as the
weight or label of the edge connecting the vertices.

The adjacency list representation is particularly useful for sparse graphs where the
number of edges is much smaller than the number of vertices, as it allows for a more
efficient use of memory compared to the adjacency matrix representation.

(Figure 2.9) shows an example of an adjacency list representation for an undirected
graph with 4 vertices labeled A, B, C, and D and the following edges: AB, AC, BC,
CD, and DA.

In this example, the adjacency list for vertex A contains the adjacent vertices B, C,
and D. Similarly, the adjacency list for vertex B contains the adjacent vertices A
and C. The adjacency list representation provides an efficient way to iterate over the
neighbors of each vertex, making it a popular choice for graph algorithms. Note that
for a directed graph, the adjacency list representation would contain separate lists
for the incoming and outgoing edges for each vertex. Also, for weighted graphs, the
adjacency list would store the weight of each edge in addition to the adjacent vertex.

Edge list - An edge list is a simple way to represent a graph by listing all the
edges in the graph as pairs of vertices or triples of vertices and edge weights. In an



14 2. Background

A

D

B

C

Graph G Adjacency List

0 B C0A

A CB

A BC

A CD

D

D

Pointer to the linkedlist
Linkedlist of the neighbouring vertices to
vertex A

Figure 2.9: An example graph G with 4 vertices and its corresponding adjacency
list based on the 5 edge connections of the graph G. The arrow from A to B in the
adjacency list is the pointer to the linkedlist and subsequently the vertices B, C, and
D are linkedlist to vertex A.

edge list, each edge in the graph is represented by a tuple or triple, where the first
two elements indicate the vertices connected by the edge, and the third element (if
present) indicates the weight or label of the edge as shown in (Figure 2.10). A tuple
is a sequence of two values, such as (A, B), where A and B are the endpoints of an
edge in the graph. A triple, on the other hand, is a sequence of three values, such as
(A, B, W), where A and B are the endpoints of an edge and W is the weight of the
edge.

(Figure 2.10b) shows an example of an edge list for an undirected and unweighted
graph (Figure 2.10a) without the weights. In this example, each line represents an
edge between two vertices.

Note that for weighted graphs (Figure 2.10a), the edge list representation would
include a third element for each edge indicating the weight or label of the edge, as
shown in (Figure 2.10c). In this example, each line represents an edge between two
vertices and the weight of the edge.

The edge list representation is compact and easy to understand, making it a popular
choice for small graphs or for storing graph data in a text file. However, the edge list
representation does not provide direct access to information about the vertices or
their neighbors. In order to determine the neighbors of a vertex, one must iterate
over all the edges in the list to find those that involve the given vertex. For example,
to find all the neighbors of vertex A, we need to scan through the edge list and
identify all the edges that have A as one of the endpoints. This can be less efficient
than the adjacency list representation, which provides direct access to the neighbors
of each vertex.

Incidence matrix - An incidence matrix is a matrix representation of a graph where
each row corresponds to a vertex and each column corresponds to an edge. For a
graph with n vertices and m edges, the incidence matrix is an n x m matrix.



2.1. Graphs 15

A

D

B

C

a) Graph G b) Edge List (Tuple)

A , B

B , C

C , D

D , A

Vertices pair

c) Edge List (Triple)

A , B , 3 

B , C , 5

C , D , 7

D , A , 2

Vertices pair along
with weights

3

7

5 2

Figure 2.10: (a) An example undirected, weighted graph G, (b) Edge List with only
vertices pair also called a tuple, and (c) Edge List with vertices pair and weights also
called a triple

In an undirected graph, the incidence matrix is a binary matrix. The entry in row
i and column j is 1 if vertex i is incident to edge j, and 0 otherwise. For example,
let’s consider the undirected graph in (Figure 2.11a), vertex A is incident to edges
e1, and e4, so the entries in the first row of the incidence matrix shown in (Figure
2.11b) are 1, 1 respectively for e1 and e4.

In a directed graph, the incidence matrix can have entries of -1, 0, and 1 [Gross and
Yellen, 2005]. The sign of the entry depends on whether the vertex is connected to
the tail or head of the edge. If the vertex is connected to the tail of an edge then
the entry in the incidence matrix is -1, if the vertex is connected to head of an edge
the entry in the matrix is 1, and 0 when an edge is not incident on a vertex. For
example, consider the directed graph in (Figure 2.11c). The vertex A is connected to
vertices B and D with two edges e1 and e4 with their tails respectively. Thus, the
entry in the incidence matrix shown in (Figure 2.11d) is -1 and -1 for edges e1 and
e4 alongside vertex A. However, vertex B is connected to vertices A and C with two
edges e1 and e2 with their head and tail respectively. Thus, the entry for vertex B is
1 and -1 for edges e1 and e2 respectively. It is important to note that many authors
use the opposite sign convention.

The incidence matrix can be used to represent graphs in computer algorithms and
to perform various graph operations. However, it is not always the most efficient
representation, especially for sparse graphs, where the number of edges is much
smaller than the number of possible edges. In those cases, alternative representations
such as adjacency matrices or adjacency lists may be more efficient.

Each of these representations has its own advantages and disadvantages, depending
on the application and the properties of the graph. For example, adjacency matrices
are efficient for testing whether two vertices are adjacent (adjacency test), but can be
memory-intensive for large graphs. However, adjacency lists, on the other hand, are
memory-efficient but can be slower for adjacency tests. Edge lists are compact, but
can be slow in searching for specific vertices. Incidence matrices are useful for certain
algorithms, such as network flow algorithms, but can be slow for adjacency test



16 2. Background

A

D

B

C

a) Undirected Graph G

1 1 0 1

1 1 1 0

0 1 1 0

0 0 1 1

A C D

A

B

C

D

b) Incidence Matrix 

e1 e3 e4

A

e2

0 1

01

Vertices as rows
Edges as columns

e1

e4

e3

e2

A

D

B

C

c) Directed Graph G

e1

e4

e3

e2

-1 1 0 1

1 -1 1 0

0 1 -1 0

0 0 1 1

A C D

A

B

C

D

d) Incidence Matrix 

e1 e3 e4

A

e2

0 -1

01

Figure 2.11: (a) is an undirected graph G with 4 vertices and 4 edges and (b) is
its corresponding 4x4 incidence matrix, where vertices and edges are represented as
rows and columns respectively. In the case of an undirected graph the entry 1 in the
incidence matrix indicates connection of an edge to a vertex and 0 otherwise. (c) is
a directed graph G and (d) is its corresponding incidence matrix. In this incidence
matrix, -1 indicates an edge leaving a vertex, 1 indicates an edge entering a vertex,
and 0 indicates an edge is not incident to a vertex.

[Sedgewick and Wayne, 2011]. A comprehensive overview about graph representations
is presented by [Goodrich et al., 2014].

2.1.3 Graph operations
Graph operations are algorithms or procedures that manipulate a graph or extract
information from it. There are several types of graph operations, including basic
operations such as adding and removing vertices and edges, updating vertex/edge
properties, and traversing the graph, furthermore there are advanced operations such
as finding shortest paths, minimum spanning trees, and maximum flows.

The basic graph operations are:

Add vertex

Add edge



2.1. Graphs 17

Remove vertex

Remove edge

Update vertex/edge properties

Traversal - This operation visits all the vertices in the graph in a systematic way,
such as depth-first search (DFS) or breadth-first search (BFS) algorithms. DFS and
BFS are two fundamental graph traversal algorithms used to visit all the vertices
and edges of a graph.

Depth-First Search (DFS) [Sedgewick and Wayne, 2011] is a graph traversal algorithm
that explores as far as possible along each branch before backtracking. The algorithm
starts at a vertex, visits all its adjacent vertices, and recursively explores the vertices
that have not been visited until all vertices in the graph have been visited. DFS can
be implemented using a stack or by recursion. The traversal order for DFS of the
graph in (Figure 2.12) is 1, 2, 4, 5, 3, 6, 7. Starting from vertex 1, the DFS algorithm
will visit vertex 2, then vertex 4, then backtrack to vertex 2 and visit vertex 5, then
backtrack to vertex 1 and visit vertex 3, then visit vertex 6, backtrack to vertex 3,
visit vertex 7, and finally backtrack to vertex 1.

Breadth-First Search (BFS) [Cormen et al., 2009a] is a graph traversal algorithm that
explores the graph level by level. It starts at a vertex and visits all of its adjacent
vertices. Then, it moves to the next level of vertices and visits all of their adjacent
vertices. The process continues until all vertices have been visited. BFS can be
implemented using a queue. The traversal order for BFS of the graph in (Figure
2.12) is 1, 2, 3, 4, 5, 6, 7. Starting from vertex 1, the BFS algorithm will visit vertex
1, then visit vertices 2 and 3, then visit vertices 4, 5, 6, and 7 in that order.

1

32

4 5 76

Figure 2.12: An example graph with DFS (Depth-First Search) traversal order 1, 2,
4, 5, 3, 6, 7 and BFS (Breadth-First Search) traversal order 1, 2, 3, 4, 5, 6, 7.



18 2. Background

The advanced graph operations are:

Shortest path - The concept of a ”shortest path” between two vertices in a graph
is typically associated with weighted graphs, where the edges of the graph have
numerical weights that represent the cost or distance between the vertices. In this
context, the shortest path problem involves finding the path between two vertices
that has the smallest sum of edge weights.

However, it is possible to extend the concept of shortest path to unweighted graphs
as well. In an unweighted graph, all the edges have the same weight, and the shortest
path between two vertices is simply the path with the smallest number of edges.
There are many algorithms for solving the shortest path problem, but two of the
most commonly used algorithms are Dijkstra’s algorithm [Dijkstra, 2022] and the
Bellman-Ford algorithm [Bellman, 1958].

Minimum spanning tree - A minimum spanning tree is a tree that connects all the
vertices of a given undirected graph with the minimum possible total edge weight.
In other words, it is a tree that spans all the vertices of the graph while minimizing
the sum of the weights of the edges in the tree. Overall, the minimum spanning
tree operation is useful for finding a subgraph that represents the ”cheapest” way
to connect all the vertices of a graph. Kruskal’s [Kruskal, 1956] and Prim’s [Prim,
1957] algorithms provide two ways to efficiently find such a subgraph.

If there are no weights associated with the edges of a graph, then the problem of
finding a minimum spanning tree reduces to the problem of finding a minimum
spanning tree with respect to the number of edges. In other words, the goal is to
find a subgraph that is a tree and connects all the vertices of the graph with the
minimum possible number of edges. One algorithm that can be used to solve this
problem is the breadth-first search (BFS) algorithm [Cormen et al., 2009a].

Maximum flow - In a network flow graph, there is a directed graph with a source
vertex (a vertex that generates flow) and a sink vertex (a vertex that receives
flow). Each edge in the graph has a capacity that determines how much flow can
pass through that edge. The goal of the maximum flow operation is to find the
maximum amount of flow that can be sent from the source vertex to the sink vertex
without exceeding the capacity of any edge. The Ford-Fulkerson algorithm [Ford and
Fulkerson, 1956] and the Edmonds-Karp algorithm [Edmonds and Karp, 1972] are
two common algorithms used to solve this problem.

Topological sorting - Topological sorting is a common graph operation that involves
ordering the vertices in a directed acyclic graph (DAG) in such a way that for every
directed edge uv in the graph, vertex u comes before vertex v in the ordering. In
other words, the ordering is such that all the edges in the graph point forward, from
earlier vertices to later vertices.

To perform a topological sort of a DAG, there are several algorithms that can be
used, including depth-first search (DFS) [84] and breadth-first search (BFS) [24].
The basic idea is to start at a vertex with no incoming edges (i.e., a vertex with
in-degree 0) and add it to the ordering. Then, remove that vertex and all its outgoing
edges from the graph and repeat the process until all vertices have been added to
the ordering.



2.2. Spectral Graph Theory 19

It is important to note that topological sorting is only defined for directed acyclic
graphs (DAGs), since cyclic graphs have no valid ordering that satisfies the require-
ment of all edges pointing forward. If the graph contains cycles, it is not possible to
perform a topological sort.

Connectivity - Connectivity is a fundamental graph operation that involves deter-
mining whether a given graph is connected or disconnected. A graph is said to be
connected if there exists a path between any two vertices in the graph. If a graph
is not connected, it is said to be disconnected and can be broken down into two or
more connected components.

There are several algorithms that can be used to determine the connectivity of a
graph, including depth-first search (DFS) and breadth-first search (BFS). The basic
idea behind these algorithms is to start at a vertex and explore all the vertices that
can be reached from that vertex using edges in the graph. If all vertices can be
reached, the graph is connected; otherwise, the graph is disconnected and can be
broken down into connected components. Finding the connected components of a
graph involves identifying all the subgraphs of the graph that are connected. This
can be done using similar algorithms to those used to determine the connectivity of
the graph, such as DFS or BFS.

These operations are essential for solving many problems in graph theory and are
widely used in various applications such as network routing [Kurose and Ross, 2017],
social network analysis [Newman, 2018], and image segmentation [Jain, 1989]. Graph
algorithms including various graph operations are discussed in [Brandes, 2005],
[Cormen et al., 2009a], [Goodrich et al., 2014].

2.2 Spectral Graph Theory
Spectral graph theory [Biggs, 1993] is a branch of mathematics that explores the
properties of graphs using linear algebra [Strang, 2012] and spectral theory [Aupetit,
2012]. In spectral graph theory, ”spectral” refers to the use of the eigenvalues and
eigenvectors of certain matrices associated with a graph [Chung, 1997]. These
matrices are often called ”spectral matrices”. The most commonly used spectral
matrix in spectral graph theory is the Laplacian matrix. Other spectral matrices used
in spectral graph theory include the normalized Laplacian matrix, and the adjacency
matrix itself. By analyzing the eigenvalues and eigenvectors of these matrices, spectral
graph theory provides insights into various aspects of graph structure, connectivity,
and behavior. In this subsection, we introduce and familiarize readers with the
Laplacian matrix. We will discuss in detail the different graph Laplacian and their
properties in section 2.3.3.

To derive the Laplacian matrix L, we need to compute a separate matrix called the
degree matrix D from the adjacency matrix A of a graph. The degree matrix is a
diagonal matrix that sums up the number of edges on every node in the graph. The
degree matrix is computed by summing each row of the adjacency matrix and then
placing the sum or the degree in the corresponding position of the row number. We
have already seen the computation of an adjacency matrix in section 2.1.2. Once we
have computed both the adjacency matrix and the degree matrix of a graph we then
compute the Laplacian matrix which is defined as:



20 2. Background

L = D − A (2.1)

where L is the Laplacian matrix, D is the degree matrix and A is the adjacency
matrix of a graph.

We present an example in (Figure 2.13) to visualize the various steps involved in
deriving the Laplacian matrix from a graph. (Figure 2.13a) shows an example
graph G with six nodes and eight edges and the (Figure 2.13b) shows the adjacency
matrix constructed from the graph G based on the connectivity of nodes and edges.
(Figure 2.13c) shows the degree matrix computed from the adjacency matrix of the
graph G, and (Figure 2.13d) shows the unnormalized Laplacian matrix computed by
subtracting the adjacency matrix from the degree matrix.

1

2

3 4

5

6

0 1

0

0

0

0

0

01 1

0 0 011

0

0 01 11

1 1100

0 01 1 1

1 10 00

(a) Graph G (b) Adjacency matrix

(c) Degree matrix

3 0 0 00 0

0 2 0 00 0

0 0 0 03 0

0 0 3 00 0

0 0 0 30 0

0 0 0 00 2

No. of nodes (n) of G = 6

(n x n) matrix

3 -1 0 -1-1 0

-1 2 0 0-1 0

-1 -1 -1 03 0

0 0 3 -1-1 -1

-1 0 -1 30 -1

0 0 -1 -10 2

-1

-1 -1

-1 -1 -1

-1

-1

-1 -1

-1

-1 -1 -1

-1 -1

-1 -1 -1

-1 -1 -1

-1

3

2

(d) Laplacian matrix

Figure 2.13: Steps involved in computing the Laplacain matrix from a graph. (a)
An example connected and undirected graph G. (b) Adjacency matrix A based on
the connection of vertices and edges of G. (c) degree matrix D computed from the
adjacency matrix, and (d) Laplacian matrix L computed as, L = D − A.

2http://snap.stanford.edu/class/cs224w-2019/slides/05-spectral.pdf



2.3. Spectral clustering 21

The spectral bit of the Laplacian matrix focuses on analyzing the eigenvalues and
eigenvectors of a graph as it can provide insights into the structural properties of the
graph. For example, the second smallest eigenvalue of the Laplacian matrix, known
as the algebraic connectivity or the Fiedler value, provides valuable insights into the
connectivity and structural properties of a graph, facilitating the understanding of
network behavior, partitioning, synchronization, and resilience [Mohar et al., 1991]
[Mohar, 1997].

The (Figure 2.14) shows the eigen representation( i.e. the eigenvalues and eigenvec-
tors) of the Laplacian matrix L in (Figure 2.13d). In this example the Laplacian
matrix for a 6-vertex graph is a symmetric matrix of size 6 × 6, denoted as L.
To describe the eigen representation of a 6x6 Laplacian matrix, we consider the
eigenvalues and eigenvectors associated with the matrix. The Laplacian matrix has
six eigenvalues, denoted as λ1, λ2, λ3, λ4, λ5, and λ6. These eigenvalues are real and
non-negative, with the smallest eigenvalue being zero [Von Luxburg, 2007]. For each
eigenvalue, there is a corresponding eigenvector. In this case of a 6× 6 Laplacian
matrix, there are six eigenvectors, denoted as u1, u2, u3, u4, u5, and u6. These eigen-
vectors are real-valued and mutually orthogonal. In the example, each eigenvector
contains 6 values. The eigenvectors are 6-dimensional vectors corresponding to the
6 vertices of the graph represented by the Laplacian matrix. Each value in the
eigenvector represents the contribution or weight of the corresponding vertex in the
particular eigenvector. So, in this specific case, the eigenvectors are 6-dimensional
vectors, with each vector having 6 values.

The eigenvectors associated with the smallest non-zero eigenvalues (λ2, λ3, λ4, λ5,
and λ6) capture information about the graph’s connectivity, community structure,
and partitioning [Mohar et al., 1991]. In particular, the second smallest eigenvalue
(λ2), known as the Fiedler value, and its corresponding eigenvector (u2), called the
Fiedler vector, are of special interest [Chung, 1997]. The Fiedler vector provides
insights into graph partitioning and can be used to divide this graph into two parts
based on the sign of its entries. The eigenvector associated with the zero eigenvalue
(λ1) is called the constant vector 1 [Von Luxburg, 2007]. It is a special eigenvector
representing the uniform distribution of values across the vertices of the graph.

Spectral graph theory has numerous applications across various disciplines. Spectral
graph theory is extensively used in graph partitioning and clustering algorithms
[Chung, 1997], image segmentation [Boykov and Funka-Lea, 2006], community detec-
tion in social networks [Fortunato, 2010], network analysis and visualization [Seary
and Richards, 2003], graph embeddings and dimensionality reduction [Yan et al.,
2006], spectral clustering [Von Luxburg, 2007] and many more.

2.3 Spectral clustering
Spectral clustering is a popular technique in data analysis and machine learning
that leverages the principles of spectral graph theory. It is used to partition data
points into clusters based on their similarity, considering the underlying structure
of the data represented as a graph. The work of [Von Luxburg, 2007] provides an
introduction to spectral clustering. In this section, we are going to see in detail the
various steps involved in spectral clustering and its challenges.



22 2. Background

vertices (x1,..,6) of G

0.41 -0.29

-0.58

-0.29

-0.29

-0.5

-0.41

0.580.58 0.41

-0.29 -0.41 -0.0-0.290.41

-0.0

0.41 0.5-0.29 -0.290.41

-0.41 -0.5-0.290.290.41

0.29 0.580.41 0.58 0.5

-0.29 0.410.58 -0.290.41

0 1 533 4

corresponding eigenvectors of L

1

6

2

3

4

5

λ1    λ2    λ3   λ4   λ5   λ6

sorted eigenvalues (λ1,..,6) of L

u1    u2    u3   u4   u5   u6

Fiedler value
or algebraic connectivity

indicator vector
Fiedler vector

eigen representation of L

Figure 2.14: Eigen representation of the Laplacian matrix L of size 6 × 6 of the
graph G in (Figure 2.13). The figure shows the six eigenvalues (λ1, ..., λ6) sorted in
ascending order along with its corresponding eigenvectors(u1, ..., u6). The eigenvectors
are 6-dimensional vectors corresponding to the 6 vertices of the graph represented by
the Laplacian matrix. See text for more details.

2.3.1 Similarity measures

In spectral clustering, the first step is to define a similarity measure or similarity
function between data points. The similarity measure quantifies how similar or
related two data points are, and it plays a fundamental role in constructing the
similarity graph. Common similarity measures include Gaussian kernel similarity,
cosine similarity, Euclidean distance, and others. The choice of a similarity measure
depends on the nature of the data and the specific problem at hand. For example,
in a dataset of points in a high-dimensional space, the Euclidean distance between
two points can be used as a similarity measure. Alternatively, in a text dataset, the
cosine similarity between two document vectors may be employed.

Gaussian kernel - The Gaussian kernel, also known as the radial basis function (RBF)
kernel, is defined by the Gaussian distribution function, which assigns a similarity
value to each pair of data points based on their Euclidean distance. Thereby, it
quantifies the similarity between data points by assigning higher values to data points
that are closer together and lower values to data points that are further apart. The



2.3. Spectral clustering 23

similarity Wij between data points i and j can be calculated using the formula for
the Gaussian kernel function, given as:

Wij = exp(
−||xi − xj||2

2σ2
) (2.2)

where xi and xj are the feature vectors of data points i and j, ||xi−xj|| represents the
Euclidean distance between the data points i and j, and σ2 is the variance parameter
of the Gaussian kernel which determines the extent to which nearby data points
influence each other(i.e. σ controls the width of the neighborhoods) [Von Luxburg,
2007].

The width of the Gaussian kernel is determined by the value of σ. A smaller
value of σ results in a narrow kernel, where only nearby points have significant
similarities. Conversely, a larger value of σ leads to a wider kernel, where points
further apart still exhibit some level of similarity. The kernel enables modeling of
non-linear relationships and enables the clustering algorithm to consider the density
and proximity of data points [Bishop and Nasrabadi, 2006].

Cosine similarity - Cosine similarity is commonly used when the data points represent
documents or text, where the feature vectors represent the word frequencies or some
other kind of word representations. The cosine similarity measures the cosine of
the angle between two feature vectors and is suitable for capturing the semantic
similarity between documents [Salton, 1983]. The cosine similarity between data
points i and j is given by:

cosine similarity = Sc(xi, xj) := cos(θ) =
(xi · xj)

(||xi|| ∗ ||xj||)
(2.3)

where Sc(xi, xj)represents the cosine similarity between two feature vectors, xi and
xj. The numerator of the cosine similarity formula, (xi · xj), represents the dot
product of vectors xi and xj. The dot product calculates the sum of the products
of the corresponding elements of the two vectors. The denominator ((||xi|| ∗ ||xj||)),
represents the product of the Euclidean norms (or magnitudes) of the two vectors,
denoted as ||xi|| and ||xj||. By dividing the dot product by the product of the vector
magnitudes, the cosine similarity formula normalizes the similarity measure, allowing
comparisons between vectors of different lengths.

The cosine similarity ranges from -1 to 1, where a value of 1 indicates that the vectors
are identical, 0 indicates no similarity, and -1 indicates complete dissimilarity.

Graph-based similarity measures - These measures are based on the concept of graph
theory and leverage the connectivity of data points to determine their similarities.
The adjacency matrix section 2.1.2 and the Laplacian matrix section 2.2 of a graph
are two commonly used graph-based similarity measures in spectral clustering.

2.3.2 Different similarity graph construction

Once the similarity measure is defined, the next step is to construct a similarity
graph based on the pairwise similarities between data points. The similarity graph is



24 2. Background

represented as an adjacency matrix, where each entry A[i, j] indicates the similarity
between data points i and j. Here, we will discuss some of the different techniques
used to construct a similarity graph in spectral clustering [Von Luxburg, 2007].

Epsilon-neighborhood graph - In an ϵ-neighborhood graph each pair of data points
(xi, xj) is connected if their distance is below the given threshold ϵ. In other words,
an edge is formed between xi and xj if ||xi − xj|| ≤ ϵ, where ||xi − xj|| denotes the
distance metric. (Figure 2.15c) shows an example of an ϵ-neighborhood graph with
ϵ = 0.5.

k-nearest neighbors graph - For each data point xi, the k-nearest neighbors graph
connects it to its k nearest neighbors based on the calculated pairwise distances.
This involves finding the k data points with the shortest distances to xi. An edge
is then formed between xi and each of its k nearest neighbors, representing the
local connectivity in the graph. A variation of the k-nearest neighbors graph is the
mutual k-nearest neighbors graph. To construct the mutual k-NN graph, a mutual
nearest neighbor criterion is applied. This means that two data points xi and xj are
considered mutual neighbors if both are among the k nearest neighbors of each other.
In other words, xi is a mutual neighbor of xj if xj is one of the k nearest neighbors
of xi, and vice versa. (Figure 2.15b) shows an example of k-nearest neighbors graph
with k = 4.

Fully connected graph The fully connected graph is the simplest similarity graph
construction technique, where every pair of data points is connected with an edge,
resulting in a complete graph. In this graph, all data points are considered similar to
each other, and there are no constraints on the edge connections based on distances
or thresholds. However, the similarity between pairs of data points is distinguished
by weighting the edges using a similarity measure. (Figure 2.15d) shows an example
of a fully connected graph constructed using the Gaussian kernel with σ = 0.5.
Constructing a fully connected graph can be computationally expensive, especially
for large datasets.

2.3.3 Graph Laplacian choices and their properties

After constructing the similarity matrix using one of the similarity graph construction
techniques, we need to convert the similarity matrix to a Laplacian matrix. The
Laplacian matrix is the primary tool for spectral clustering, because of its many
useful properties. There are different Laplacian matrices [Von Luxburg, 2007], and
we will discuss their properties respectively. When we talk about the eigenvector
of a matrix here, the constant vector 1 and a multiple a.1 for some a ̸= 0 are
considered as the same eigenvectors. This means that if a matrix has an eigenvalue
λ with a corresponding eigenvector u, then any scalar multiple of u (such as a.u for
some nonzero scalar a) is also considered as an eigenvector associated with the same
eigenvalue λ. Essentially, the eigenvectors are considered equivalent as long as they
are scalar multiples of each other. Eigenvalues will always be ordered increasingly,
respecting multiplicities. Meaning that when listing the eigenvalues of a matrix
in ascending order, any eigenvalue that has multiplicity (repeated multiple times)
will be listed accordingly with its respective multiplicity count. For example, if an
eigenvalue λ occurs three times, it will appear three times in the ordered list of



2.3. Spectral clustering 25

(a) (b)

(d)(c)

Figure 2.15: Different similarity graph construction from a sample dataset. (a)
Sample dataset with 100 data points that are randomly distributed, which can be
visually partitioned into two groups (bottom left and the top right). The parameters
for the different graph construction techniques are carefully chosen to replicate
the partitioning. (b) kNN graph constructed from the sample with k = 4, (c) ϵ-
neighborhood graph constructed from the sample with ϵ = 0.5, and (d) the fully
connected graph with σ = 1. See (Appendix A.3) for graphs with different parameters.

eigenvalues. By the first k eigenvectors, we refer to the eigenvectors corresponding
to the k-smallest eigenvalues. The first k eigenvectors often represent the most
informative and significant eigenvectors in spectral clustering.

The unnormalized graph Laplacian - We refer the readers to section (2.2) for the
derivation and definition of the unnormalized Laplacian matrix. An overview of many
graph Laplacian properties can be found in the work of [Mohar et al., 1991; Mohar,
1997]. The following proposition summarizes the most important facts needed for
spectral clustering [Von Luxburg, 2007].

Proposition 1 (Properties of L) The matrix L satisfies the following properties:



26 2. Background

1. For every vector f ∈ Rn we have

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)
2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Proposition 2 (Number of connected components and the spectrum of L) Let G
be an undirected graph with non-negative weights. Then the multiplicity k of the
eigenvalue 0 of L equals the number of connected components A1, ..., Ak in the graph.
The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1, ...,1Ak of
those components.

The proof of these propositions and explanations can be found in (Appendix A.1.1).
The unnormalized Graph Laplacian, despite its simplicity, has proven to be effective
in capturing the local structure and connectivity of graphs in spectral clustering.
However, it does not consider the scale or normalization factors of the graph, which
may affect the performance in certain scenarios. The normalization factors refer
to the scaling or normalization of the Graph Laplacian to consider the scale and
magnitude of the graph’s data or weights. When using the unnormalized Graph
Laplacian, the original values of the graph’s edge weights or vertex degrees are
directly used in the Laplacian computation without any scaling. Therefore, other
variants of graph Laplacians, such as the normalized Laplacians, have been developed
to address these limitations.

The normalized graph Laplacians - The normalized graph Laplacians [Chung, 1997]
are a variant of the graph Laplacian matrix, which is derived from the adjacency
matrix and degree matrix of a graph. The normalized graph Laplacian can be
computed in different ways, depending on the specific normalization scheme used.
Two commonly employed normalization methods are random walk normalization
and symmetric normalization [Von Luxburg, 2007].

1. Random walk normalized Laplacian: It incorporates the normalization factor
based on the concept of random walks on the graph. The random walk normalized
Laplacian is denoted as Lrw and is defined as:

Lrw := D−1L = I −D−1W (2.4)

where Lrw is the random walk normalized Laplacian matrix, D is the degree matrix,
L is the unnormalized Laplacian matrix, I is the identity matrix, and W is the
weighted adjacency matrix of a graph. In the random walk normalized Laplacian,
the edge weights of the graph are normalized by the corresponding node degrees.
The motivation behind this normalization is to interpret the graph as representing a
random walk process on the graph.

2. Symmetric normalized Laplacian: It is a symmetric matrix denoted as Lsym and
is defined as:

Lsym := D−1/2LD−1/2 = I −D−1/2WD−1/2 (2.5)



2.3. Spectral clustering 27

where Lsym is the symmetric normalized Laplacian, D is the degree matrix, W
is the adjacency matrix, L is the unnormalized graph Laplacian matrix, I is the
identity matrix, and D−1/2 denotes the matrix square root of the inverse of the degree
matrix of a graph. In the symmetric normalized Laplacian, the edge weights of the
graph are scaled by the inverse square root of the corresponding node degrees. This
normalization is designed to ensure that the resulting Laplacian matrix is symmetric.

The following propositions summarize the properties of the normalized Laplacians
Lrw and Lsym [Von Luxburg, 2007].

Proposition 3 (Properties of Lsym and Lrw) The normalized Laplacians satisfy the
following properties:

1. For every f ∈ Rn we have

f ′Lsymf =
1

2

n∑
i,j=1

wij

(
fi√
di

− fj√
dj

)2

.

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of
Lsym with eigenvector w = D1/2u.

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the
generalized eigenproblem Lu = λDu.

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an
eigenvalue of Lsym with eigenvector D1/21.

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued
eigenvalues 0 = λ1 ≤ ... ≤ λn.

The multiplicity of the eigenvalue 0 of the normalized graph Laplacian is related to
the number of connected components, as it is for the unnormalized graph Laplacian:

Proposition 4 (Number of connected components and spectra of Lsym and Lrw)
Let G be an undirected graph with non-negative weights. Then the multiplicity k of
the eigenvalue 0 of both Lrw and Lsym equals the number of connected components
A1, ..., Ak in the graph. For Lrw, the eigenspace of 0 is spanned by the indicator
vectors 1Ai

of those components. For Lsym, the eigenspace of 0 is spanned by the
vectors D1/21Ai

.

The proof of these propositions and explanations can be found in (A.1.2). The main
difference between these two normalization processes is in the scaling of the edge
weights in the graph. The random walk normalized Laplacian normalizes each edge
weight by the degree of its corresponding source vertex. On the other hand, the
symmetric normalized Laplacian scales each edge weight by the product of the square
root of the degrees of both the source and target vertices.

2.3.4 Eigendecomposition

Eigendecomposition, also known as diagonalization, is a fundamental matrix decom-
position technique that breaks down a square matrix into its constituent eigenvalues



28 2. Background

and eigenvectors. An eigenvalue represents a scalar that quantifies how the corre-
sponding eigenvector is stretched or shrunk by the linear transformation [Lang, 2012]
defined by the matrix. The eigenvectors are the directions along which the linear
transformation only stretches or shrinks the vectors without changing their direction.
For spectral clustering, we perform two steps in the eigendecomposition phase:

1. Compute eigenvalues and eigenvectors of the Laplacian matrix: The first step
involved in eigendecomposition is to compute the eigenvalues and eigenvectors of
the Laplacian matrix (L). The Laplacian matrix captures the pairwise relationships
between data points and reflects the underlying structure of the data. Eigenvalues
and eigenvectors are calculated by solving the eigenvalue problem for the Laplacian
matrix. The eigenvalues represent the spectral decomposition of the Laplacian matrix,
while the eigenvectors correspond to the directions associated with each eigenvalue.
The eigenvalues are arranged in ascending order, denoted as λ1, λ2, ..., λn, where n is
the number of data points. The eigenvectors are represented as, u1, u2, ..., un, with
each eigenvector corresponding to an eigenvalue. Mathematically, the eigenvalue-
eigenvector pairs of the Laplacian matrix are defined as follows:

Given a graph with Laplacian matrix L, an eigenvector u and its corresponding
eigenvalue λ satisfy the equation:

Lu = λu (2.6)

Eigenvectors - Eigenvectors represent different partitions or clusters of nodes in the
graph. Each eigenvector corresponds to a specific eigenvalue and provides information
about the connectivity and relationships between nodes. The values in an eigenvector
indicate the membership or assignment of each node to a particular cluster.

Eigenvalues - Eigenvalues quantify the significance of the corresponding eigenvectors.
They indicate the amount of variation explained by each eigenvector and can be used
to determine the number of clusters or partitions in the graph. Eigenvalues associated
with smaller magnitudes represent cohesive clusters, while larger eigenvalues indicate
less structured or more homogeneous regions. The first few eigenvalues in ascending
order, often referred to as the dominant eigenvalues, are particularly important as
they capture the most significant structure and can guide the selection of the number
of clusters in spectral clustering.

2. Map data points to lower-dimensional representation: Once the eigenvalues
and eigenvectors are obtained, the next step is to map each data point to a lower-
dimensional representation based on one or more eigenvectors. The number of
eigenvectors chosen determines the dimensionality of the lower-dimensional space
and also can be representative of the choice of number of clusters in the dataset.
This lower-dimensional representation captures the important structural information
of the data, which can then be used for clustering.

2.3.5 Clustering

The final step in spectral clustering is the actual clustering of the data points
based on the lower-dimensional representation. After computing the eigenvalues



2.3. Spectral clustering 29

and eigenvectors of the Laplacian matrix and mapping the data points to the lower-
dimensional space, the next step is to apply a clustering algorithm to group the data
points into distinct clusters.

Clustering is a fundamental technique in data analysis and machine learning that
aims to group similar data points together based on their intrinsic characteristics.
It is an unsupervised learning method, meaning that it does not rely on prior class
labels or target variables. Clustering algorithms organize data into clusters or groups
such that the data points within each cluster are more similar to each other than
to those in other clusters. The goal is to discover hidden patterns, structures, or
relationships in the data without any prior knowledge.

Clustering algorithms can be broadly categorized into partitioning-based (e.g., k-
mean), hierarchical (e.g., Agglomerative Hierarchical Clustering), density-based (e.g.,
DBSCAN ), and model-based approaches (e.g., Gaussian Mixture Models). Each
algorithm has its own strengths and weaknesses and is suitable for different types of
data and clustering objectives. (Figure 2.16) shows a comparison of various clustering
algorithms that are applied to different toy datasets (a through f) with pre-defined
shapes in each row of the image. In the (Figure 2.16), we see that all datasets give
an impression of visually well separated clusters except for the dataset (f) in the last
row where the data is homogeneous, which leads to poor cluster performance.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2.16: Comparison of different clustering algorithms on different toy datasets
with pre-defined shapes in each row (a) through (f).

Clustering is widely used in various domains, including pattern recognition [Duda
et al., 2001], image analysis [Szeliski, 2022], document classification [Mogotsi, 2010],
customer segmentation [Jain et al., 1999], anomaly detection [Chandola et al., 2009],

3https://scikit-learn.org/stable/auto examples/cluster/plot cluster comparison.html



30 2. Background

and recommendation systems [Ricci et al., 2010]. Clustering can help in understanding
the underlying data distribution, making predictions, and supporting decision-making
processes. It is important to note that clustering is an exploratory technique, and
the interpretation of the resulting clusters relies on domain knowledge and context.
It is also essential to understand the limitations of clustering algorithms, such as
sensitivity to initialization, sensitivity to noise and outliers, and difficulty in handling
high-dimensional data.

The specific clustering algorithm used in the final step of spectral clustering can
vary depending on the application and requirements. One common choice is the
k-means algorithm, which partitions the data points into k clusters based on their
proximity in the lower-dimensional space. Other clustering algorithms, such as
DBSCAN, hierarchical clustering, and many more, can also be employed to perform
the clustering step. In this thesis, we use k-means clustering as the third step
for grouping data points that are represented in low-dimensional space through
eigendecomposition to form clusters.

K-means clustering: K-means clustering is one of the most widely used unsupervised
machine learning algorithms for partitioning data into groups or clusters based on
similarity. It is a simple and intuitive algorithm that aims to find K centroids
representing the cluster centers and assigns each data point to its nearest centroid.
K-means clustering aims to minimize the within-cluster sum of squares, also known as
the distortion function. The algorithm iteratively refines the clusters by minimizing
the distances between the data points and their assigned centroids. Once convergence
is reached, each data point belongs to a specific cluster.

K-means clustering algorithm:

Algorithm 1 K-means clustering algorithm

Require: K, number of clusters; D, a data set of N points.
Ensure: A set of K clusters.

1. Initialization.
2. repeat
3. for each point p in D do
4. find the nearest center and assign p to the corresponding cluster.
5. end for
6. update clusters by calculating new centers using mean of the members.
7. until stop-iteration criteria satisfied
8. return clustering results.

Given a dataset Dwith N data points and the desired number of clusters K, the
k-means clustering algorithm proceeds as follows:

Initialization: Randomly initialize K cluster centroids in the feature space. These
centroids serve as the initial representatives of the clusters.
Assignment: For each data point, calculate its distance to each centroid using a

4https://link.springer.com/referenceworkentry/10.1007/978-0-387-30164-8 425



2.3. Spectral clustering 31

distance metric, typically Euclidean distance. Assign each data point to the cluster
with the nearest centroid.
Update: Recalculate the centroids of each cluster by computing the mean of all
the data points assigned to that cluster. This step ensures that the centroids are
representative of the cluster members.
Iteration: Repeat the steps of assignment and update until convergence, which
occurs when the assignments and centroid updates no longer change significantly, or
a maximum number of iterations is reached.
Final Result: The result of the k-means clustering algorithm is K clusters, each
containing data points that are most similar to each other based on their distance
to the cluster centroid. (Figure. 2.17) is a pictorial representation of different
transitional steps of the k-means clustering algorithm until the centroids converge.

Figure 2.17: K-means algorithm. Training examples are shown as dots, and cluster
centroids are shown as crosses. (a) Original dataset. (b) Random initial cluster
centroids. (c-f) Illustration of running two iterations of k-means. In each iteration,
there is an assignment of each training example to the closest cluster centroid (shown
by ”painting” the training examples the same color as the cluster centroid to which it
is assigned); then each cluster centroid is moved to the mean of the points assigned
to it.

Advantages of k-means: The k-means algorithm has several advantages that con-
tribute to its popularity and widespread use in various applications:

• Simplicity and availability: K-means is a simple and intuitive algorithm that is
easy to understand and implement. It does not require complex mathematical
computations or extensive parameter tuning. K-means is implemented in various

5https://stanford.edu/ cpiech/cs221/handouts/kmeans.html



32 2. Background

software libraries and packages, making it readily available and easy to use. It
is widely supported in popular programming languages such as Python (scikit-
learn), R, and MATLAB.

• Efficiency and parallelizability: The algorithm is computationally efficient and
scales well with large datasets. It has a linear time complexity with respect to
the number of data points, making it suitable for handling big data scenarios.
The k-means algorithm can be parallelized, allowing for faster execution on
multi-core or distributed computing systems. This enables efficient clustering of
large-scale datasets.

• Effectiveness: Despite its simplicity, k-means often produces satisfactory results
in many real-world scenarios. It can effectively partition data into clusters based
on similarity, revealing underlying patterns and structures in the data.

• Interpretability: The resulting clusters and centroids in k-means are easily
interpretable. Each cluster represents a distinct group of data points, and the
centroids provide meaningful representations of the cluster centers.

• Versatility: K-means can be applied to various types of data, including nu-
merical, continuous, categorical, and mixed data. Thus, making it a versatile
clustering algorithm.

Limitation of k-means: While the k-means algorithm has many advantages, it also
has several limitations that should be considered when applying it to clustering tasks:

• Predefined number of clusters: One of the main limitations of k-means is that
it requires the number of clusters (k) to be specified in advance. However,
determining the optimal number of clusters is often a challenging task and may
require prior knowledge or cross validation.

• Sensitive to initial centroid positions: The performance of k-means can be
highly influenced by the initial positions of the centroids. It is possible for the
algorithm to converge to suboptimal solutions if the initial centroids are poorly
chosen. Multiple runs with different initializations may be required to mitigate
this issue.

• Assumption of spherical clusters and similar sizes: K-means assumes that
the clusters have a spherical shape and similar sizes. However, in real-world
data, the clusters may have complex shapes and different variances. As a result,
k-means may not perform well on datasets with irregular or overlapping clusters.

• Sensitivity to outliers: K-means is sensitive to outliers, which are data points
that deviate significantly from the majority of the data. Outliers can distort the
cluster centroids and affect the clustering results. One way to deal with outliers
is to remove them from the dataset before running the k-means algorithm, or we
could use variations of k-means, such as the outlier-robust k-means clustering
[Olukanmi and Twala, 2017], that is designed to be less affected by outliers.

2.4 Challenges of spectral clustering
Spectral clustering is a powerful unsupervised machine learning technique that can
effectively cluster complex and non-linear data. However, spectral clustering also



2.4. Challenges of spectral clustering 33

presents some challenges that can impact its performance and practical applicability.
In this subsection, we discuss some of the main challenges of spectral clustering.

2.4.1 Choice of similarity measure

Spectral clustering relies on constructing an affinity matrix if there is no initial graph
structure that captures the pairwise similarities between data points. The choice
of similarity measure determines how these similarities are calculated. Different
similarity measures capture different aspects of the data, and selecting an appropriate
measure is essential for obtaining meaningful clusters. There is no universal similarity
measure that works optimally for all scenarios. The choice of similarity measure
depends on the nature of the data, the underlying cluster structure, and the desired
clustering outcome. It requires careful consideration and domain knowledge. For
example, Euclidean distance works well when the data points are represented in
a continuous feature space and are relatively dense. However, it can be sensitive
to outliers and might not perform optimally in high-dimensional spaces (curse
of dimensionality). The Gaussian kernel can be effective in capturing non-linear
relationships between data points, and is more robust to outliers compared to the
Euclidean distance. However, selecting an appropriate width (variance) parameter
for the Gaussian kernel is critical. Cosine similarity is particularly suitable for
high-dimensional and sparse data, such as text data in document clustering. It is
commonly used in text mining and information retrieval tasks.

2.4.2 Scalability

Scalability is a critical challenge when applying spectral clustering to large-scale
datasets. The computation of eigenvectors for the affinity matrix requires O(n3)
operations, where n represents the number of data points. As the dataset size
increases, the computational requirements and memory usage of spectral cluster-
ing grow significantly, making traditional algorithms impractical for large datasets
[Mahoney and Drineas, 2009].

The high computational complexity arises from the computation of the affinity matrix,
eigendecomposition, and final clustering step. Additionally, storing the affinity matrix
for large datasets can be memory-intensive, requiring memory-efficient techniques
like sparse matrix representations or approximation methods [Mahoney and Drineas,
2009].

To address scalability challenges, various techniques have been proposed. Approxi-
mation methods, subsampling, and parallel computing aim to reduce computational
and memory requirements while preserving clustering performance [Mahoney and
Drineas, 2009].

[Yang et al., 2012] recognize the scalability limitations of traditional spectral clustering
algorithms for large datasets and propose a scalable algorithm based on random
graph embedding to approximate the original data graph and enable efficient spectral
clustering.



34 2. Background

2.4.3 Which is the preferred Graph Laplacian?
The choice of the preferred Graph Laplacian presents challenges in spectral clustering,
as it directly influences the clustering performance and interpretability of results
[Chung, 1997]. The choice of Laplacian is influenced by the degree distribution of the
similarity graph. When the graph exhibits a regular and uniform degree distribution,
the Laplacians, whether unnormalized or normalized, yield similar results. However,
if the graph’s degree distribution is highly diverse, the Laplacians differ significantly,
leading to distinct clustering outcomes [Von Luxburg, 2007].

To choose a specific type of Graph Laplacian, certain considerations can be made. The
unnormalized Laplacian, introduced by Chung [Chung, 1997], is the most straightfor-
ward definition and incorporates node degrees in its computation. However, it lacks
normalization factors, which might affect the scaling of eigenvalues and eigenvectors.
There are several compelling arguments in favor of using normalized spectral cluster-
ing over unnormalized spectral clustering. First, the normalized Laplacian accounts
for the varying degrees of vertices in the graph, making it more robust in handling
datasets with non-uniform degree distributions [Von Luxburg, 2007]. Second, the
normalized Laplacian ensures that the eigenvalues and eigenvectors are independent
of the graph size, providing a more stable and consistent representation of the data
structure [Von Luxburg, 2007].

Within the normalized case as described by [Von Luxburg, 2007], using the eigen-
vectors of the random walk Laplacian (Lrw according to [Shi and Malik, 2000]) is
recommended over those of the symmetric normalized Laplacian (Lsym according
to [Ng et al., 2002]). The rationale behind this preference lies in the fact that the
eigenvectors of Lrw represent cluster indicator vectors 1Ai, while the eigenvectors of
Lsym are further multiplied with D1/2, which could introduce unintended distortions
or artifacts in the clustering results. Moreover, opting for Lsym does not offer any
computational advantages compared to Lrw.

Ultimately, the choice of the preferred Graph Laplacian depends on the specific
characteristics of the data, the similarity measure used in constructing the graph,
and the desired clustering outcome. The appropriate Laplacian should be selected
to best capture the underlying structure of the data and optimize the clustering
performance.

2.4.4 Sensitivity to hyperparameters
Spectral clustering encounters challenges due to the sensitivity of hyperparameters,
including the scaling parameter(e.g., ϵ-neighborhood graph), the number of eigenvec-
tors (eigenvectors chosen from the eigendecomposition determines the dimensionality
of the reduced space), the clustering algorithm (e.g., k-means) [Chung, 1997], and
the choice of optimal number of clusters k. The selection of these hyperparameters is
crucial for the clustering performance, but determining their optimal values can be
difficult, as no universal guidelines exist for their selection. Instead, the appropriate
parameter values depend on the dataset’s characteristics, the desired clustering
outcome, and the specific spectral clustering algorithm used. This lack of universal
guidelines makes hyperparameter selection a challenging task that often requires
sensitivity analysis Chung [1997].



2.4. Challenges of spectral clustering 35

To address these challenges and improve the robustness of the clustering results,
several approaches have been proposed. Cross-validation is a widely used technique
to estimate the model or algorithm’s performance on unseen data, allowing the
assessment of clustering quality for different hyperparameter settings [Arlot and
Celisse, 2010]. Grid search and optimization algorithms systematically explore
a range of hyperparameter values to find the combination that yields the best
clustering performance. Optimization algorithms, such as gradient-based methods or
evolutionary algorithms, can automatically search for optimal hyperparameter values
based on specific optimization criteria [Bergstra and Bengio, 2012]. Furthermore,
robust clustering techniques aim to minimize dependence on hyperparameters by
incorporating additional mechanisms to handle uncertainty or variability in the data.
These methods often integrate robust statistical techniques or Bayesian frameworks,
reducing sensitivity to hyperparameters [Huang et al., 2005].

Various techniques have been proposed for estimating the optimal number of clusters.
The elbow method involves plotting clustering performance against the number
of clusters and identifying the ”elbow” point, indicating a significant decrease in
improvement [Thorndike, 1953]. Silhouette analysis evaluates clustering quality
based on cohesion and separation, calculating a silhouette coefficient for each data
point [Rousseeuw, 1987]. Stability-based approaches assess a clustering solution’s
robustness by perturbing data or algorithm parameters, identifying the number of
clusters that yield stable results across perturbations [Ben-Hur and Guyon, 2003].
Gap statistics, spectral gap or eigengap heuristics, and information criteria have also
been suggested to estimate the optimal number of clusters [Von Luxburg, 2007].

To address the challenge of the choice of clustering algorithm, researchers have
proposed using various post-processing techniques to refine the initial cluster assign-
ments obtained from spectral decomposition. These techniques, such as density-based
clustering, hierarchical clustering, or consensus clustering, can better capture the
inherent structure and resolve ambiguity in the cluster assignments [Von Luxburg
et al., 2010]. Consensus clustering, for example, combines multiple clusterings ob-
tained from different runs or variations of spectral clustering to improve stability
and reliability [Monti et al., 2003]. Density-based approaches, like DBSCAN, can be
employed as post-processing steps to handle overlapping clusters and improve cluster
assignments [Sander et al., 1998].

2.4.5 Interpretability

Interpretability is an essential aspect of clustering algorithms, allowing users to
comprehend and make sense of the clustering results. However, interpreting the
clusters produced by spectral clustering can be challenging due to several reasons [1].
First, spectral clustering operates in a transformed space defined by the eigenvectors
obtained from the spectral decomposition. The resulting eigenvectors may not have
a direct correspondence with the original features of the data, making it difficult to
understand the precise meaning or relevance of each eigenvector in the context of
the underlying data [Von Luxburg, 2007].

Another challenge is the subjectivity in interpretation. The interpretability of spectral
clustering often involves assigning semantic meaning to the clusters based on patterns



36 2. Background

observed in the transformed space. However, different interpretations of the same
clustering result may arise, leading to potential ambiguity or disagreement in the
interpretation process [Von Luxburg, 2007].

To enhance the interpretability of the clustering results, several techniques have been
proposed. Dimensionality reduction techniques, such as PCA (Principal Component
Analysis) [Jolliffe, 2002] or t-SNE (t-Distributed Stochastic Neighbor Embedding)
[Van der Maaten and Hinton, 2008], can be employed to reduce the dimensionality
of the transformed space and visualize the clusters in a lower-dimensional space [1].
Cluster profiling aims to characterize and describe the clusters in a more interpretable
manner by analyzing the attributes or features of data points within each cluster
[Jain et al., 1999]. Involving domain experts in the interpretation process can
also significantly enhance interpretability by providing domain-specific knowledge,
validating the clustering results, and contributing insights that align with the context
of the data [Caruana et al., 2015].

2.5 A use case for spectral clustering

In this section, we present a use case for spectral clustering. We will walk through
an example of spectral clustering to demonstrate its steps and concepts. To maintain
continuity and clarity, we will use the same example graph introduced earlier in
(Figure 2.13a).

Laplacian matrix construction: In the first step of spectral clustering also called
preprocessing, we construct a Laplacian matrix from a set of data points by a
constructing a similarity graph using some similarity measure. In our example, we
assume that the graph G has already been precomputed, as shown in (Figure 2.18a).
As discussed in section 2.2, we need to construct various matrices to perform spectral
clustering. To begin, we employ a binary similarity measure to create the weighted
adjacency matrix (Figure 2.18d). Next, we proceed to construct the unnormalized
Laplacian matrix (Figure 2.18b). This is achieved by subtracting the adjacency
matrix from the degree matrix (Figure. 2.18c).

1

2

3 4

5

6

0 1

0

0

0

0

0

01 1

0 0 011

0

0 01 11

1 1100

0 01 1 1

1 10 00

(a) Graph G (d) Adjacency matrix(c) Degree matrix

3 0 0 00 0

0 2 0 00 0

0 0 0 03 0

0 0 3 00 0

0 0 0 30 0

0 0 0 00 2

A

3 -1 0 -1-1 0

-1 2 0 0-1 0

-1 -1 -1 03 0

0 0 3 -1-1 -1

-1 0 -1 30 -1

0 0 -1 -10 2

-1

-1 -1

-1 -1 -1

-1

-1

-1 -1

-1

-1 -1 -1

-1 -1

-1 -1 -1

-1 -1 -1

-1

3

2

(b) Laplacian matrix

= _

DL

Figure 2.18: Steps involved in computing the Laplacian matrix from a graph. (a)
An example connected and undirected graph G. (b) Laplacian matrix L computed
as, L = D − A. (c) degree matrix D computed from the adjacency matrix, and
(d) Adjacency matrix A constructed using a binary similarity measure based on the
connection of vertices and edges of G.



2.5. A use case for spectral clustering 37

Eigendecomposition: The second step of spectral clustering involves eigendecomposi-
tion of the Laplacian matrix, which is performed in two stages. In the first stage, we
compute the eigenvalues and eigenvectors of the Laplacian matrix, as illustrated in
(Figure 2.19a). These eigenvalues and eigenvectors capture essential patterns and
relationships within the data.

In the second stage of eigendecomposition, we transform the eigen representation
of the Laplacian matrix into a lower-dimensional representation denoted as U , as
shown in (Figure 2.19b). Here, we have chosen to reduce the dimensionality from
6 to 2 for this specific use case. The reason behind this choice is that the Fiedler
vector, derived from the eigen representation, exhibits remarkable discriminative
power. It can effectively partition the graph into distinct groups based on the signs of
its values. The Fiedler vector serves as a valuable indicator of the underlying clusters
in the data. By observing its behavior in a two-dimensional space, we can clearly
distinguish the data points and establish meaningful partitions without the need to
consider the remaining dimensions. This decision enhances the interpretability and
simplicity of the clustering process.

Note that in the lower-dimensional representation, the similarity matrix of the original
graph S ∈ R6×6 is transformed to U ∈ R6×2 and the data points (xi)i=1,...,6 ∈ R6 is
transformed to (yi)i=1,...,6 ∈ R2. See algorithm (2) for unnormalized Laplacian.

vertices (x1,..,6) of G

0.41 -0.29

-0.58

-0.29

-0.29

-0.5

-0.41

0.580.58 0.41

-0.29 -0.41 -0.0-0.290.41

-0.0

0.41 0.5-0.29 -0.290.41

-0.41 -0.5-0.290.290.41

0.29 0.580.41 0.58 0.5

-0.29 0.410.58 -0.290.41

0 1 533 4

corresponding eigenvectors of L

1

6

2

3

4

5

λ1    λ2    λ3   λ4   λ5   λ6

sorted eigenvalues (λ1,..,6) of L

u1    u2    u3   u4   u5   u6

Fiedler value
or algebraic connectivity

indicator vector
Fiedler vector

(a) 

-0.29

-0.58

-0.29

0.29

0.29

0.58

U ∈ Rn*k =

0.41

0.41

0.41

0.41

0.41

0.41

u1    u2 

(b) 

Figure 2.19: Eigen representation of the Laplacian matrix L of size 6 × 6 of the
graph G. (a) shows the sorted eigenvalues and their corresponding eigenvectors of
the Laplacian matrix, indicating the most important eigenvalues and eigenvectors of
the graph. (b) shows the lower -dimensional representation of L as U .

Clustering: The third and final step of spectral clustering is to cluster the graph
using a suitable clustering algorithm within the low-dimensional representation. In
this example and within the scope of this thesis, we opt to employ the k-means
clustering algorithm for this purpose.



38 2. Background

Upon transforming the data into the reduced space, we find that the first dimension
consists of an indicator vector with constant values, while the second dimension
contains the Fiedler vector, which holds significant discriminatory power, as demon-
strated in (Figure 2.20a).

With the reduced data representation now comprising two dimensions, we proceed
with k-means clustering. This algorithm effectively partitions the data points into
clusters by separating the values of the Fiedler vector into two groups (A and B)
based on their signs, as depicted in (Figure 2.20b).

By leveraging the Fiedler vector’s capacity to distinctly categorize data points, we
successfully obtain two well-defined clusters in the reduced space. The k-means
algorithm efficiently handles the clustering task, and the separation of values based
on the Fiedler vector facilitates the formation of meaningful and cohesive clusters.

-0.29

-0.58

-0.29

0.29

0.29

0.58

λ2 = 1

yi=1

yi=2

yi=3

yi=4

yi=5

yi=6

yi ∈ Rk =

1

2

3 4

5

6

A B

(a) (b)

Figure 2.20: (a) Depicts the ability of the second smallest eigenvalue λ2 and its
corresponding eigenvector, the Fiedler vector in identifying clusters in the lower-
dimensional representation. (b) Shows the clusters of G based on the signs of the
values of the Fiedler vector.

2.6 Metric
In this section, we utilize a range of metrics to calculate distances and evaluate
the efficacy of our spectral clustering framework. We begin by introducing diverse
distance metrics for pairwise distance computations. In our framework, we use
distance metric for constructing the adjacency matrix and different similarity graphs
for constructing the weighted adjacency matrix ( or similarity matrix). We then
discuss clustering evaluation metrics, starting with internal cluster measures and
subsequently exploring external measures.

2.6.1 Distance metric

To facilitate the foundation of spectral clustering, we judiciously employ a diverse set
of distance metrics. These metrics, encapsulate distinct aspects of data relationships,
thereby ensuring adaptability to the inherent characteristics of diverse datasets



2.6. Metric 39

[Jain and Dubes, 1988] [Xu and Wunsch, 2005]. The distance metrics used in our
framework are as follows:

Euclidean distance: Euclidean distance between two points u and v in a multi-
dimensional space is the straight-line distance between them [Xu and Wunsch, 2005]:

euclidean distance(u, v) =

√∑
i

(vi − ui)2 (2.7)

vi and ui are the i-th componenets of vectors v and u, respectively.

Squared Euclidean distance: Squared Euclidean distance is the square of the Eu-
clidean distance between two points [Everitt et al., 2011]:

squared euclidean distance(u, v) =
∑
i

(vi − ui)
2 (2.8)

Cosine distance: Cosine distance between two vectors u and v is calculated as the
cosine of the angle between them, representing their normalized similarity [Schutze
et al., 2008]:

cosine distance(u, v) = 1− u · v
||u|| · ||v||

(2.9)

where, · denotes the dot product between vectors u and v. ||u|| and ||v|| are the
Euclidean norms of vectors u and v, which represent the lengths of vectors u and v
in the Euclidean space respectively.

Bray-Curtis distance: Bray-Curtis distance between two vectors u and v is calculated
as the sum of absolute differences divided by the sum of their absolute values [Bray
and Curtis, 1957]:

bray curtis distance(u, v) =

∑
i |ui − vi|∑

i |ui|+
∑

i |vi|
(2.10)

Canberra distance: Canberra distance between two vectors u and v is calculated as
the sum of absolute differences between corresponding elements, normalized by the
sum of their absolute values [Lance and Williams, 1966]:

canberra distance(u, v) =

∑
i |ui − vi|∑

i(|ui|+ |vi|)
(2.11)

Correlation distance: Correlation distance between two vectors u and v is calculated
based on their Pearson correlation coefficient [Kaufman and Rousseeuw, 2009]:

correlation distance(u, v) = 1− cov(u, v)

std(u) · std(v)
(2.12)

where, cov(u, v) is the covariance between vectors u and v. std(u) and std(v) are the
standard deviations of vectors u and v, respectively.



40 2. Background

The formula for covariance is:

cov(u, v) =
1

n− 1

n∑
i=1

(ui − ū)(vi − v̄) (2.13)

Where n is the number of elements in the vectors. ui and vi are the elements of
vectors u and v at index i, respectively. ū and v̄ are the means (average) of vectors
u and v, respectively. This formula calculates the average of the product of the
deviations of each element from the mean of their respective vectors. The division
by (n− 1) is used for unbiased estimation.

The formula for the standard deviation is:

std(u) =

√∑n
i=1(ui − ū)2

n− 1
(2.14)

City block distance (Manhattan distance): The city block distance, also known
as the Manhattan distance [Jain and Dubes, 1988], between two points u and v in
multi-dimensional space is calculated as the sum of the absolute differences between
their corresponding coordinates:

city block distance(u, v) =
∑
i

|vi − ui| (2.15)

2.6.2 Internal cluster validity indices

To assess the clustering quality without relying on any external ground truth, we
have selected three widely used internal measures, the Silhouette Score [Rousseeuw,
1987], Davies-Bouldin (DB) Score [Davies and Bouldin, 1979], and Calinski-Harabasz
(CH) Score [Caliński and Harabasz, 1974].

Silhouette Score: The Silhouette Score computes the cohesion and separation of
clusters by considering the average distance of each data point to its own cluster and
the average distance to the nearest neighboring cluster. The Silhouette Score has a
range of values from -1 to 1. A higher Silhouette Score indicates better-defined and
well-separated clusters [Rousseeuw, 1987]. For each data point i, let:

a(i) be the average distance of data point i to all other points within the same
cluster. b(i) be the minimum average distance of data point i to all points in any
other cluster. The silhouette score for data point i is given by:

Silhouette(i) =
b(i)− a(i)

max(b(i), a(i))
(2.16)

The overall silhouette score is the average of all the individual silhouette scores across
all data points.

Davies-Bouldin (DB) Score: The DB Score evaluates the compactness and separation
of clusters by measuring the average similarity between each cluster and its most
similar cluster. The DB Score is a relative measure with no fixed range. It ranges



2.6. Metric 41

from a minimum of 0, and there is no predefined upper limit. Lower values indicate
improved clustering performance, with values near zero indicating well-separated
clusters [Davies and Bouldin, 1979].

The DB score is calculated as:

DB Score =
1

n

∑
[maxRk] (2.17)

where n be the number of clusters. Ck be the kth cluster. Mk be the centroid of
cluster Ck. Sk be the average distance of all points in cluster Ck to the centroid Mk.
Rk be the maximum of (Si + Sj) for all i and j, where i and j are different clusters.

Calinski-Harabasz (CH) Score: The CH Score assesses the ratio of between-cluster
variance to within-cluster variance.Similar to the DB Score, the CH Score is also a
relative measure and does not have a specific fixed range. It evaluates the compactness
and separation of clusters, with higher CH Scores indicating better-defined clusters
and a higher ratio of inter-cluster distance to intra-cluster distance [Caliński and
Harabasz, 1974]. Let:

B be the between-cluster variance. W be the within-cluster variance. k be the
number of clusters. N be the total number of data points. The CH score is given by:

CH Score =
B

W
· N − k

k − 1
(2.18)

Where, B =
∑

[nk · d(Mk,M)2]. W =
∑

[
∑

[d(x,Mk)
2]], for each data point x in

cluster Ck. nk = number of data points in cluster Ck. Mk = centroid of cluster Ck.
M = overall centroid (mean) of all data points in the dataset. d(A,B) = Euclidean
distance between points A and B.

2.6.3 External cluster validity indices

In addition to internal evaluation metrics, we have employed external evaluation
measures to compare the clustering results to the external ground truth, making them
suitable for datasets with known class labels. The selected external measures include
Accuracy [Schutze et al., 2008], Normalized Mutual Information (NMI) [Strehl and
Ghosh, 2003], Adjusted Rand Index (ARI), Rand Index (RI) [Hubert and Arabie,
1985], Homogeneity and Completeness [Rosenberg and Hirschberg, 2007].

Accuracy: Accuracy quantifies the ratio of data points correctly classified to the
total number of data points, thereby gauging the agreement between the clustering
outcomes and the actual class labels [Schutze et al., 2008].

Accuracy =
Number of correctly classified data points

Total number of data points
(2.19)

Normalized Mutual Information (NMI): The NMI measures the mutual information
between the clustering results and the true class labels, normalized by the entropy of
the clustering outcomes and the entropy of the true class labels. NMI is bounded
between 0 and 1, where higher values denote enhanced clustering performance and



42 2. Background

a more robust alignment between the clustering and the actual labels [Strehl and
Ghosh, 2003].

NMI =
2 · I(C,G)

H(C) +H(G)
(2.20)

Where, H(C) stands for the entropy of the clustering outcome C. H(G) represents
the entropy of the true class labels G. I(C,G) signifies the mutual information
between the clustering outcome C and the true class labels G.

Entropy in the context of clustering evaluation, is used to measure the amount of
disorder or impurity within a cluster.

The formula for entropy is given by:

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (2.21)

Where H(X) is the entropy of the random variable X. p(xi) is the probability of
observing the outcome xi.

Rand Index (RI): The Rand Index (RI) quantifies the agreement between a clustering
result and the true class labels by comparing pairs of data points. It evaluates the
proportion of pairs of data points that share the same cluster assignment in both the
clustering result and the true class labels (agreement) or are in different clusters in
both (agreement) [Hubert and Arabie, 1985]. The RI ranges from 0 to 1, where a
higher value indicates greater agreement between the clustering result and the true
class labels. The formula for RI is:

RI =
Number of agreeing pairs

Total number of pairs
(2.22)

Where the Number of agreeing pairs (a+d) represents pairs of data points that are ei-
ther in the same cluster (a) in both the clustering result and the true class labels (agree-
ment) or in different clusters(d) in both (agreement). The Total number of pairs
(a+ b+ c+ d) represents all possible pairs of data points.

Adjusted Rand Index (ARI): The Adjusted Rand Index (ARI) is a modification
of the Rand Index that adjusts for chance greement. It accounts for the expected
agreement that could occur by random chance [Hubert and Arabie, 1985]. The
formula for ARI is :

ARI =
RI − ExpectedRI

max(RIMax − ExpectedRI)
(2.23)

Where, RI represents the Rand Index. ExpectedRI is the expected Rand Index
under random agreement. RIMax is the maximum possible Rand Index value. The
ARI ranges from -1 to 1, where:
- ARI = 1, indicates perfect agreement.
- ARI = 0, suggests clustering results no better than random.
- ARI < 0, indicates clustering results worse than random.



2.6. Metric 43

The formula for RI and ExpectedRI is given by:

RI =
TP + TN

TP + TN + FP + FN
(2.24)

ExpectedRI =
(TP + FP ) · (TP + FN)

TP + TN + FP + FN
(2.25)

Where TP = True Positives (number of pairs that are in the same cluster in both
the clustering result and the true class labels). TN = True Negatives (number of
pairs that are in different clusters in both the clustering result and the true class
labels). FP = False Positives (number of pairs that are in the same cluster in
the clustering result but in different clusters in the true class labels). FN = False
Negatives (number of pairs that are in different clusters in the clustering result, but
in the same cluster in the true class labels).

Homogeneity: Homogeneity assesses how well clusters align with individual true
classes. It is calculated using conditional entropy:

H = 1− H(C|K)

H(C)
(2.26)

where H(C|K) = conditional entropy of true class labels given cluster assignments.
H(C) = entropy of true class labels.

The conditional entropy H(C|K) measures the uncertainty of true class labels given
cluster assignments. It quantifies how well the cluster assignments explain the true
class labels. The formula for conditional entropy is:

H(C|K) = −
∑
i

∑
j

p(ci, kj) log
p(ci, kj)

p(kj)
(2.27)

Where p(ci, kj) represents the joint probability of true class ci and cluster assignment
kj. p(kj) is the probability of cluster assignment kj. The sums run over all possible
true class labels ci and cluster assignments kj.

Homogeneity ranges from 0 to 1, with higher values indicating better class consistency
within clusters [Rosenberg and Hirschberg, 2007].

Completeness: Completeness measures if all data points of a true class are correctly
grouped in a single cluster. It is calculated using conditional entropy:

C = 1− H(K|C)

H(K)
(2.28)

Where H(K|C) = conditional entropy of cluster assignments given true class labels.
H(K) = entropy of cluster assignments

Completeness ranges from 0 to 1, with higher values indicating better capture of
true classes by clusters [Rosenberg and Hirschberg, 2007].





3. Related Work

Spectral clustering has gained significant attention in machine learning [Bishop and
Nasrabadi, 2006] and data mining [Tan et al., 2016] research due to its versatility
and theoretical foundation rooted in spectral analysis. In this chapter, we explore
the related work on spectral clustering from three perspectives that coincide with
the research questions and the scope of this thesis:

• In Section 3.1, we provide a comprehensive overview of recent findings and
evaluations in the field of spectral clustering, focusing on three key aspects: the
construction of similarity matrices, the formation of Laplacian matrices, and the
selection of eigenvectors.

• In Section 3.2, we discuss the research conducted for comparing the performance
of spectral clustering to k-means clustering.

• In Section 3.3, we discuss research conducted to evaluate spectral clustering
performance.

3.1 Research in spectral clustering development
In the research direction of spectral clusering, various authors have proposed distinc-
tive methodologies and conducted comprehensive assessments, unveiling valuable
insights into their respective advantages and limitations [Jia et al., 2014]. This section
delves into the research conducted on crucial aspects of spectral clustering, focusing
on three key areas.

Constructing similarity matrix

Researchers propose novel methods for constructing similarity matrices to enhance
spectral clustering performance:

[Zhang et al., 2011] introduced the Common-Near-Neighbor (CNN) method, a local
density adaptive similarity measure. Utilizing local density to scale the Gaussian
kernel function, CNN amplifies intra-cluster similarity, resulting in a clearer block



46 3. Related Work

diagonal affinity matrix. In this matrix, the groups of datapoints are represented as
distinct blocks along the diagonal, separated by lower similarity values, which are
indicative of the boundary regions between groups.

[Wang et al., 2011] proposed Spectral Multi-Manifold Clustering (SMMC), effective
when similarity values between points of different clusters are relatively low. In
spectral clustering, a manifold denotes a curved or distorted space within higher
dimensions, while ”low-dimensional” implies efficient representation with fewer dimen-
sions than the original space. SMMC assumes data lie on or near multiple smooth
low-dimensional manifolds, some separated while others intersect. Local geometric
information is leveraged to construct a suitable similarity matrix.

[Zhang and You, 2011] proposed a random walk-based approach to process the
Gaussian kernel similarity matrix, incorporating neighbor relations to enhance the
similarity matrix and better describe the data distribution. In the absence of
neighbors, [Zhang and You, 2011]’s random walk-based approach could face challenges
in enhancing the similarity matrix and accurately representing the data distribution.

[Li and Guo, 2012] introduced a new similarity matrix generation method based on
the neighbor relation propagation principle, increasing the similarity of point pairs
belonging to the same cluster and effectively detecting the underlying data structure.

Creating the Laplacian matrix

Once the similarity matrix is constructed, the next step involves creating the Laplacian
matrix, which is crucial for various graph cut methods used in spectral clustering
[Luo et al., 2010]. The Laplacian matrix plays a significant role in the performance of
spectral clustering algorithms, and its selection depends on the clustering conditions
(see section 2.3.3).

In recent research, the application of the p-Laplacian, a natural nonlinear extension
of the graph Laplacian, to two-class cases has garnered attention ([Luo et al., 2010]).
The authors undertake a comprehensive eigenvector analysis of the p-Laplacian,
resulting in a naturally derived representation that captures the global arrangement
of data points, rendering it well-suited for navigating the intricacies of complex
data. In stark contrast to earlier methods reliant on greedy search strategies, their
innovative approach employs efficient gradient descent optimization.

[Yang et al., 2010] propose the clustering algorithm LDMGI (Local Discriminant
Models and Global Integration), which learns a new Laplacian matrix by combining
manifold structure and local discriminant information. LDMGI constructs a local
clique for each data point and evaluates the clustering performance within these cliques
using local discriminant models. A unified objective function globally integrates the
local models of all the cliques, making LDMGI more robust to algorithmic parameter
selection and more suitable for real image clustering applications.

Selection of eigenvectors

Eigenvector selection is crucial in spectral clustering, as not all eigenvectors are
informative for clustering. [Xiang and Gong, 2008] introduce ”eigenvector relevance”
to identify only relevant ones for clustering. Their method accurately estimates the
cluster number and reveals natural grouping even with sparse and noisy data.



3.2. Comparison of Spectral clustering and k-means clustering 47

[Zhao et al., 2010] proposed an eigenvector selection method based on entropy ranking
(ESBER). They rank eigenvectors by their importance on clustering and select the
most relevant ones.

Rebagliati and Verri challenge the NJW algorithm’s working hypothesis [Rebagliati
and Verri, 2011]. They suggest a weaker version, using a k-dimensional subspace of
the first m (m > k) eigenvectors for optimal partition.

3.2 Comparison of Spectral clustering andk-means clus-
tering

Somashekara and Manjunatha [Somashekara and Manjunatha, 2014] conducted a
comprehensive comparison based on eleven different clustering validity indices (both
internal and external) for various clusters for the iris dataset. Their findings demon-
strated the superior performance of spectral clustering over k-means clustering. They
employed the Jordan approach (symmetric normalized Laplacian and Gaussian kernel)
for spectral clustering. However, they did not employ different graph construction
techniques nor different Laplacians for conduction spectral clustering. Unlike their
approach, in our study, we also compare spectral clustering and k-means clustering
using the iris and cORA dataset, but with six different cluster validity indices (three
internal and three external) for three clusters.

3.3 Evaluation of spectral clustering performance
In order to reevaluate the performance of our spectral clustering framework, we draw
upon the insights provided by Somashekara et al. ([Somashekara and Manjunatha,
2014]). In this instance, our comparative analysis focuses on the Iris dataset, assessing
the performance of the two approaches across six distinct cluster evaluation measures.
While Somashekara et al. ([Somashekara and Manjunatha, 2014]) utilized the Jordan
approach for spectral clustering, we extend the evaluation by employing nine different
combinations of similarity graphs (kNN, ϵ-neighborhood graph, and fully connected
graph) and graph Laplacian (L, Lrw, andLsym) methods within our framework. This
allows us to conduct a comprehensive comparison between their approach and our
framework, spanning a spectrum of clustering strategies and enhancing the depth of
analysis.





4. Methodology

In this chapter, we present the methodological framework designed to address
the research questions posed in this thesis. Another objective of our study is to
comprehensively explore the flexibility and performance of our proposed spectral
clustering framework. The following sections detail the methodologies devised to
investigate each of the three research questions. We begin in section 4.1 where
we describe our dataset, preprocess and analyse them. Section 4.2 describes the
methods involved in creation and customization of our framework. In section 4.3
we discuss the methods for choosing various optimal hyperparameters. We then
describe how we compare spectral clustering and k-Means clustering in section 4.4.
Followed by comparing spectral comparing performance with other spectral clustering
approach in section 4.5. In section 4.6 and section 4.7 we show the spectral clustering
hyperparameters and environment of experiments respectively.

4.1 Datasets
This section of the thesis focuses on the two key datasets that form the foundation of
the research. Each dataset is examined through two main phases, data preprocessing
and data analysis. We begin by introducing the Iris dataset in subsection 4.1.1, and
the CORA dataset is discussed in subsection 4.1.2.

4.1.1 Iris
In this section, we present the Iris dataset, a classic benchmark dataset in the realm
of machine learning and pattern recognition [Bishop and Nasrabadi, 2006]. The
Iris dataset comprises measurements of iris flowers’ sepal length, sepal width, petal
length, and petal width in centimeters. It consists of 150 samples, with each sample
representing one iris flower. The (Figure 4.1) describes that there are three classes
of Iris flower which have the same amount of samples in each class. Over time, Iris
dataset has evolved into a foundational benchmark dataset for numerous classification
and clustering algorithms due to its simplicity and well-balanced composition.

Data preprocessing



50 4. Methodology

Figure 4.1: Distribution of Iris flower types, showing the count of each flower species
in the dataset.

Initially, we delve into the various preprocessing techniques applied to refine the
Iris dataset. The preprocessing phase encompasses the handling of missing values,
encoding of categorical data, and normalization.

Removal of missing values: The Iris dataset, reveals no traces of missing values.

Encoding categorical data: Within the Iris dataset, categorical class labels
corresponding to ”species” are translated into numerical values via label encoding.

Normalization: Data were not normalized, as the Iris dataset exhibits a well-
balanced distribution of attributes. This strategic choice ensures that the distinct
attributes of the dataset are maintained in their original scale, thereby preserving
the integrity of the datasets in the spectral clustering process.

Data analysis

We depict the Iris data using a scatter plot in two reduced components via Principal
Component Analysis (PCA), as illustrated in Figure 4.2. We detail the descriptive
statistical analysis of Iris data, including count, mean, standard deviation, and range
calculations for features such as sepal length, sepal width, petal length, and petal
width as shown in (Table 4.1). We also conduct exploratory data visualization
(Figure 4.3), plotting Kernel Density Estimate (KDE)) and scatter plots to visualize
feature distributions and potential relationships among species.

4.1.2 CORA

In this section, we introduce the CORA dataset, a widely used benchmark dataset in
the field of academic literature-based research. The CORA dataset was compiled by



4.1. Datasets 51

Figure 4.2: Visualization of the Iris dataset using PCA with a scatter plot showing
two principal components

sepal length sepal width petal length petal width
count 150 150 150 150
mean 5.84 3.05 3.76 1.2
std 0.83 0.43 1.76 0.76
min 4.3 2 1 0.1
25% 5.1 2.8 1.6 0.3
50% 5.8 3 4.35 1.3
75% 6.4 3.3 5.1 1.8
max 7.9 4.4 6.9 2.5

Table 4.1: Statistical Analysis of Iris Dataset: Summary of descriptive statistics
including count, mean, standard deviation, minimum, 25th percentile, median (50th
percentile), 75th percentile, and maximum values for the four features of the Iris
dataset

Andrew McCallum, and was first introduced in their paper [McCallum et al., 2000].
The dataset was created to facilitate research in the area of semi-supervised learning
[Chapelle et al., 2009] and text classification [Sebastiani, 2002].

The version of the CORA dataset we use in our work, comprises 2708 scientific
papers that have been categorized into seven distinct classes as shown in (Figure
4.4). Additionally, the dataset contains 5429 edges linking papers based on citations.
Each individual publication in the dataset is represented by a binary word vector,
where the presence or absence of each word from a dictionary of 1433 unique words
is indicated by 1 or 0, respectively. Notably, the dataset portrays an inherent class
imbalance, wherein certain classes may possess a considerably higher number of
instances than others.



52 4. Methodology

Figure 4.3: Visualization of the pairwise relationships of Iris flower features, cate-
gorized by their respective species. Along the diagonal, Kernel Density Estimation
(KDE) plots provide a visual representation of the feature distribution for each
species. Each point in the scatter plot corresponds to an individual Iris flower,
with its position and color indicating its specific species. The visualization provides
insights into feature correlations and variations across the different Iris species.

In the CORA dataset, the existence of edges introduces a directed graph structure,
which is a common feature in citation networks. However, for the seamless operation
of our spectral clustering framework, it is imperative that the graph representation
remains undirected. Consequently, we deliberately disregard both the inherent
directionality of the edges in the citation network and the edges themselves. Our
primary objective centers around leveraging the node features within the CORA
dataset for the purpose of spectral clustering, with the aim of effectively clustering
similar publications.

Data preprocessing

Removal of missing values: The chosen version of the CORA dataset, is also
devoid of any missing values.

Encoding categorical data: Within the CORA dataset, the categorical class
labels ”subject” is encoded utilizing label encoding.



4.2. (RQ1): Creation and customizability of the spectral clustering framework 53

Figure 4.4: Distribution of CORA publications, showing the count of each publication
across the 7 classes.

Normalization: Data were not normalized, as the CORA dataset features binary
word vectors (represented as 1s and 0s).

Data analysis

For the CORA dataset, given the dataset’s high dimensionality, we undertake an
initial dimensionality reduction step for enhanced interpretability. We employ PCA
to transform the data into a two-dimensional representation, as illustrated in (Figure
4.5). This visualization aids in intuitively grasping the inherent structure of the data.

While the full statistical analysis of all dimensions of the dataset would be cumber-
some to depict comprehensively, we instead employ data visualization techniques.
Distribution plots, box plots, and probability plots are generated using two principal
components, providing insights into the feature distributions of the dataset, as shown
in (Figure 4.6).

4.2 (RQ1): Creation and customizability of the spec-
tral clustering framework

Our spectral clustering function takes input in the form of a numpy array X, where
X is of datatype numpy.ndarray and has a shape of [n samples, n samples] if the
adj parameter is set to True. Alternatively, when adj is False, users can provide a
numpy.ndarray with shape [n samples a, n features], and the adjacency matrix is
precomputed using the specified distance metric. The distance metric is governed by
the metric parameter and utilizes the scipy.spatial.distance.pdist() function.

The type of similarity graph used is defined by the string parameter sim_graph,
which has a datatype of str. The options for sim_graph include ’fully_connect’,



54 4. Methodology

Figure 4.5: Scatter plot of PCA visualization for CORA dataset by subject: Each
data point represents a scientific publication, projected onto two principal compo-
nents through PCA. The scatter plot is color-coded with seven distinct colors, each
representing a different subject of publication within the CORA dataset.

’eps_neighbor’, and ’knn’. The parameter sigma, of datatype float, is relevant
when constructing a fully connected graph using the Gaussian (RBF) kernel. For
k-Nearest Neighbor graphs, the knn parameter, of datatype int, sets the number
of neighbors. The epsi parameter, of datatype float, controls connections in an
epsilon neighborhood graph.

Furthermore, users can customize the graph Laplacian normalization using the
integer parameter normalized, which has a datatype of int. The choices include
1 for Random Walk normalized, 2 for Symmetric normalized, and other integers
corresponding to Unnormalized versions.

The output of the function is an instance of the sklearn.cluster class, which in-
cludes the following attributes: cluster_centers_, an array with shape [n clusters,
n features] containing the coordinates of cluster centers in K-Means; labels_, an
array containing the labels of each data point; inertia_, a float representing the
sum of squared distances of samples to their closest cluster center in K-Means; and
n_iter_, an integer indicating the number of iterations run in K-means. Additionally,
for reproducibility of results, the attribute random_state=0 is available to set the
random seed.

This spectral clustering framework is implemented using libraries like NumPy, SciPy,
and scikit-learn, bettering user control and enabling tailored analysis of different
similarity graphs and graph Laplacians for improved clustering performance.

4.3 Choosing hyperparameters
In our comprehensive hyperparameter analysis, we systematically explore the sensi-
tivity of Spectral Clustering on both the Iris dataset and the Cora dataset, utilizing
ground truth information.



4.3. Choosing hyperparameters 55

comp_1 |  Distplot comp_1 |  Boxplot comp_1 |  Probability plot - skew: 2.2

comp_2 |  Distplot comp_2 |  Boxplot comp_2 |  Probability plot - skew: 0.3

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Visualization of Two Principal Components of CORA Data: Panels
(a), (b), and (c) depict the distribution plot, box plot, and probability plot for
Component 1, which exhibits a skew of 2.2 in the probability plot—indicating a
moderate departure from a perfectly symmetric distribution. Panels (d), (e), and
(f) showcase the distribution plot, box plot, and probability plot for Component 2,
which displays a minor skew of 0.3 in the probability plot, implying a slight deviation
from symmetry.

4.3.1 Choosing a distance function

In this section, we perform sensitivity analysis aimed at selecting an optimal distance
function, a critical aspect of our spectral clustering framework. To this end, we
explore the impact of different distance functions on the quality of clustering results
for both the Iris and CORA datasets. The goal is to identify a distance metric that
maximizes the effectiveness of our framework, keeping in mind the use case and
datasets. We begin by considering seven distinct distance functions as discussed in
section 2.6.1 for calculating pairwise distances between data points to construct the
adjacency matrix. This comprehensive evaluation is performed manually, leveraging
the ground truth information available for both the Iris and CORA datasets.

In our spectral clustering approach applied to both the Iris and CORA datasets, we
had the freedom to choose from nine different combinations of similarity graph types
and Laplacian matrices. However, we opted for specific configurations, not with
the intention of identifying the best clustering performance, but rather to observe
consistent outcomes across various distance metrics and configurations.



56 4. Methodology

For the Iris dataset, we selected a k-Nearest Neighbors (kNN) graph with k=6 and
the random walk normalized Laplacian (Lrw). This choice of kNN graph aims to
capture local neighborhood relationships within the Iris dataset, emphasizing the
proximity of nearby data points while mitigating noise influence. The choice of Lrw

adheres to the recommendation of [Von Luxburg, 2007] for Lrw usage due to its
aptness in reflecting balanced data connectivity. The decision to form m=3 clusters
was guided by the known ground truth of the Iris dataset. We assess the performance
of each distance metric through spectral clustering as shown in (Figure 4.7) and
(Figure 4.8) using three internal cluster validity indices (discussed in Section 2.6.2)
and three external cluster validity indices (discussed in Section 2.6.3) respectively.

Figure 4.7: Comparison of different distance functions with internal cluster measures
of Iris data. (Spectral Clustering: kNN=6, Lrw, and no. of clusters k = 3)

Figure 4.8: Comparison of different distance functions with external cluster measures
of Iris data. (Spectral Clustering: kNN=6, Lrw, and no. of clusters k = 3)

For the CORA dataset, in a similar vein, a kNN graph with k=23 in tandem with
Lrw was applied. This configuration acknowledges the intricate relationships in
high-dimensional data, particularly prominent in academic paper citation networks.
The choice of m=7 clusters aimed to effectively encapsulate the diverse academic
paper topics (labels of the dataset). This enables us to assess the performance of
each distance metric through spectral clustering, gauging their effectiveness via three
internal cluster validity indices (Figure 4.9) and three external cluster validity indices
(Figure 4.10).



4.3. Choosing hyperparameters 57

Since the cosine distance shows good consistency for both Iris and CORA datasets
and achieved the best performance for some evaluation metrics, we chose the cosine
distance as distance metric for all following experiments.

Figure 4.9: Comparison of different distance functions with internal cluster measures
of CORA data. (Spectral Clustering: kNN=23, Lrw, and no. of clusters k = 7)

Figure 4.10: Comparison of different distance functions with external cluster measures
of CORA data. (Spectral Clustering: kNN=23, Lrw, and no. of clusters k = 7)

4.3.2 Choosing hyperparameters for similarity graphs

To comprehensively gauge the performance of different Laplacian types, namely
the unnormalized (L), random walk normalized (Lrw), and symmetric normalized
(Lsym) Laplacians, we pair each of them with three diverse types of similarity graphs.
These similarity graph variants include the k-Nearest Neighbors (kNN) graph, epsilon
neighborhood graph, and fully connected graph. Each combination of Laplacian
type and similarity graph forms a unique configuration, resulting in a total of nine
configurations.

Our methodology involves systematically tuning the hyperparameters associated with
each configuration. We consider factors such as the number of nearest neighbors ’k’
for kNN graphs, the threshold ’ϵ’ for epsilon neighborhood graphs, and the standard
deviation ’σ’ for Gaussian kernels in fully connected graphs. By carefully varying
these hyperparameters, we evaluate the performance of Spectral Clustering for each
configuration and Laplacian type across both the Iris and CORA datasets.



58 4. Methodology

To comprehensively assess the performance of these configurations, we use six external
cluster evaluation metrics. Rand Index, Adjusted Rand Index, Homogeneity Score,
Completeness Score, V-Measure Score (or Normalized Mutual Information), and
Accuracy. Notably, these metrics capitalize on our prior knowledge of the datasets’
ground truth, ensuring a meaningful evaluation process. This cohesive approach
provides an intuitive and holistic view of performance, enabling effective comparison
and selection of optimal hyperparameters. Table 4.2 shows the selection of the best
hyperparameters of nine different combinations of Laplacian types and similarity
graphs of both the Iris and the CORA dataset. The exhaustive evaluation of
all hyperparameters is plotted in Appendix A.4. These optimal settings lay the
foundation for our subsequent evaluation of spectral clustering performance on
both the Iris and Cora dataset. This data-driven approach ensures that the chosen
hyperparameters align with the true nature of the datasets, enhancing the reliability
of our subsequent analyses.

Combination
Laplacian
Type

Similarity
Graph

Best Hyperparameters
Iris CORA

1 Unnormalized (L) k-NN k = 6 k = 23
2 Unnormalized (L) Epsilon Neighbor ϵ = 0.01 ϵ = 1
3 Unnormalized (L) Fully Connected σ = 0.01 σ = 1
4 Normalized (Lrw) k-NN k = 6 k = 23
5 Normalized (Lrw) Epsilon Neighbor ϵ = 0.01 ϵ = 0.8
6 Normalized (Lrw) Fully Connected σ = 0.01 σ = 0.4
7 Normalized (Lsym) k-NN k = 6 k = 22
8 Normalized (Lsym) Epsilon Neighbor ϵ = 0.01 ϵ = 0.8
9 Normalized (Lsym) Fully Connected σ = 0.01 σ = 0.1

Table 4.2: List of the best hyperparameters for similarity graphs used in all experi-
ments: This table presents the best hyperparameters identified through a compre-
hensive sensitivity analysis for Spectral Clustering on two distinct datasets, Iris and
CORA. The table showcases nine different combinations of Laplacian types and
similarity graphs, along with their corresponding optimal hyperparameters. The
optimal values for each combination are listed for both the Iris and CORA datasets,
providing insights into the ideal settings for successful Spectral Clustering. We
refer to Appendix A.4 for a comprehensive evaluation of all values of evaluated
hyperparameters.

4.3.3 Choosing the optimal number of clusters

Our methodology for finding optimal k clusters involves exploring three distinct
techniques, the elbow method, internal measures, and the eigengap heuristics. Irre-
spective of the availability of the ground truth of the dataset in use, one can employ
these techniques for evaluating the best k. For demonstration, we use the Iris dataset
to illustrate the application of each technique.

Elbow method: The elbow method as shown in (Figure 4.11) is employed to determine
the optimal number of clusters for k-means clustering. The within-cluster sum of
squares (WCSS) also called inertia is calculated across a range of potential cluster



4.3. Choosing hyperparameters 59

counts (no_of_clusters). The k-means clustering is executed using the KMeans

class from the scikit-learn library with ’k-means++’ initialization and a maximum of
500 iterations (max_iter = 500) for stability. The resulting WCSS values are stored
in the list wcss. The inertia values are visualized using a Plotly Express line plot.

Figure 4.11: Elbow method: the line plot illustrates the Elbow Method applied
to the Iris dataset. The x-axis represents the number of clusters, while the y-axis
depicts the inertia. A distinct ”elbow” point is evident at cluster three, indicating
the optimal number of clusters for the Iris data

The plot assists in identifying the ”elbow point,” indicating an appropriate balance
between minimizing intra-cluster variance and preventing overfitting.

Internal measures: To assess the quality of the clusters produced by the spectral
clustering algorithm across varying cluster counts (no_of_clusters), three internal
validity indices are employed as shown in (Figure 4.12) (silhouette score, Calinski-
Harabasz score, and Davies-Bouldin score). These indices provide insights into the
compactness and separation of clusters, the overall dispersion, and the inter-cluster
similarity, respectively. The analysis is visualized using the Plotly library.

For each internal validity index, scatter plots are generated, where the x-axis cor-
responds to the number of clusters and the y-axis represents the calculated index
score. All the indices are calculated using the scikit-learn library. The silhouette
score quantifies how similar an object is to its own cluster compared to other clusters.
The Calinski-Harabasz score measures the ratio of between-cluster variance to within-
cluster variance. The Davies-Bouldin score evaluates the average similarity between
each cluster and its most similar cluster. By observing the behavior of these indices
across various cluster counts, we can determine the optimal number of clusters for
spectral clustering, ensuring the most meaningful and accurate partitioning of the
data.

Eigengap heuristics: To illustrate the eigengap heuristics for finding optimal k
suggested by [Von Luxburg, 2007], a combination of the NumPy and Plotly Express



60 4. Methodology

Figure 4.12: Internal measures to identify optimal number of clusters : the three-
subplot image shows internal cluster scores (Silhouette Score, Calinski-Harabasz
Score, and Davies-Bouldin Score) across a range of cluster numbers for the Iris
dataset. The analysis aids in determining the optimal number of clusters for the
data.



4.3. Choosing hyperparameters 61

libraries are utilized. The process begins by generating an array of integers from 1 to
15, representing the indices of the eigenvalues to be analyzed. These eigenvalues are
obtained from the eigen decomposition of the Laplacian matrix (see 2.3.4) and are
subsequently sorted and made real for consistency.

The scatter plot as shown in (Figure 4.13) is constructed using Plotly Express, where
the x-axis represents the indices of the eigenvalues, and the y-axis displays the
corresponding eigenvalues themselves. The color-coding of the points is aligned with
the magnitude of the eigenvalues, utilizing a color scale that ranges from low to high
values for better visualization.

Figure 4.13: Eigengap heuristics for the Iris Dataset. The plot displays the eigenvalues
of the graph Laplacian matrix computed from the Iris dataset. The gap, observed
between the third and fourth eigenvalues, indicates the presence of three distinct
clusters in the dataset. The first three eigenvalues are very close to zero, this further
suggests the presence of three connected components within the Iris dataset which
are clusters of Iris.

The significant gap between the eigenvalues 3 and 4 indicates that the Iris dataset
ideally comprises three clusters. Notably, the ideal case of k completely disconnected
clusters is characterized by an eigenvalue of 0 having a multiplicity of k. In the
Iris dataset, the near-zero values of the first three eigenvalues signify that the data
exhibits characteristics close to this ideal scenario, suggesting the presence of three
clusters.

In our case, we leverage the availability of the ground truth of the Iris dataset.
However, it is crucial to note that the efficacy of these methodologies can vary
across different datasets, yielding different optimal solutions. Combining multiple
techniques is essential to ensure consensus among methods to identifying the optimal
number of clusters.

The resulting plot provides insights into the appropriate number of clusters for the
dataset, aiding in informed decision-making during clustering analysis.



62 4. Methodology

4.4 (RQ2): Comparative analysis of spectral cluster-
ing with k-Means clustering

The Research Question (RQ2) centers around a comparative analysis between our
spectral clustering framework and k-Means clustering. Our methodology for address-
ing this question is characterized by a systematic sequence of steps. We finetuned
hyperparameters within our spectral clustering framework, aligning with the proce-
dure previously outlined in section 4.2. Subsequently, leveraging these optimized
configurations, we proceed to perform spectral clustering on our datasets. For the
k-Means execution, the scikit-learn library’s KMeans class is used to execute k-Means
clustering. The parameter n_clusters denotes the number of clusters to form.
Initialization is performed using the ’k-means++’ method to enhance convergence.
The algorithm is run with a maximum of 500 iterations (max_iter = 500), over
10 different centroid seeds (n_init = 10) for result stability. The random_state

parameter is set to 0 for reproducibility. The fit function is then applied to the
dataframe df, resulting in cluster assignments and centroids refined iteratively for
accurate clustering outcomes.

To evaluate the results, we employ six distinct cluster evaluation measures—three
internal measures (Silhouette score, Calinski-Harabasz index, and Davies-Bouldin
index) and three external measures (Accuracy, Adjusted Rand Index, and Normalized
Mutual Information). This comprehensive analysis enables us to objectively compare
the clustering outcomes of our spectral clustering framework against those of the
k-Means approach.

4.5 (RQ3): Comparative analysis of spectral cluster-
ing approaches

In order to address Research Question (RQ3) regarding the comparative analysis
of our framework’s spectral clustering approach with another spectral clustering
method executed by [Somashekara and Manjunatha, 2014], we adopt a systematic
methodology guided by the results obtained in response to Research Question (RQ2).

As established in (RQ2), we conducted an in-depth comparison of our spectral cluster-
ing framework against k-Means clustering on the Iris and CORA datasets. To extend
this analysis, we leverage a similar methodology to execute our spectral clustering
framework, but for the comparative analysis, we substitute the k-Means clustering
outcomes with those obtained using the approach presented by [Somashekara and
Manjunatha, 2014] for the Iris dataset. This substitution allows us to assess the
performance of our framework against an alternative spectral clustering technique.

To perform spectral clustering using our framework, we follow the same procedure
outlined in Section 4.2, carefully fine-tuning hyperparameters for optimized results.
Additionally, we execute the spectral clustering approach by [Somashekara and
Manjunatha, 2014] with their reported performance values to maintain consistency.

For evaluating and comparing the outcomes of these clustering approaches, we
employ six distinct cluster evaluation measures. These measures include three



4.6. Hyperparameters 63

internal measures (Silhouette score, Calinski-Harabasz index, and Davies-Bouldin
index) and three external measures (Accuracy, Adjusted Rand Index, and Normalized
Mutual Information). By quantitatively assessing these metrics for both approaches,
we can objectively compare the effectiveness of the two spectral clustering techniques.

In visualizing the comparative analysis results, we utilize the Plotly library to
create bar plots for each of the evaluation measures. The plots are organized into
three rows, with the measures for Accuracy, Adjusted Rand Index, and Normalized
Mutual Information represented in each respective row. Each bar plot presents
the performance of our spectral clustering framework and the [Somashekara and
Manjunatha, 2014]’s approach side by side, facilitating a direct visual comparison.

4.6 Hyperparameters

Spectral clustering
hyperparameters

Graph construction
Laplacian matrix

construction
Spectral
mapping ClusteringGraph

construction

'k' in kNN graph 

'σ' in fully
connected

graph

'ε' in epsilon-
neighborhood

graph

unnormalized
Laplacian 'L'

normalized
Laplacian
'Lsym'

normalized
Laplacian 'Lrw'

'k' eigenvectors
for low

dimensional
representation

'k' number of
clusters

Figure 4.14: Spectral clustering hyperparameters



64 4. Methodology

4.7 Environment for experiments
In this section, we provide an overview of the experimental setup under which
we deployed our experiments. It is imperative to highlight that the hardware
configurations outlined below are distinct for two key platforms, the university’s
Linux server and the Google Linux server designed to support Google Colaboratory
executions.

• Operating System Ubuntu 22.04.2 LTS

• Processor Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz, 2vCPU Intel(R)
Xeon(R) CPU @ 2.20GHz

• Memory 251 GB RAM, 13GB RAM

• Programming Languages Python (Version 3.10.12)

• Programming Tools Visual studio code (Version 1.81.0), Google Colaboratory

• Libraries Refer Table 4.3

Library Version Library Version
matplotlib 3.7.1 scipy 1.10.1
numpy 1.23.5 seaborn 0.12.2
pandas 1.5.3 sklearn 1.2.2
plotly 5.15.0 - -

Table 4.3: Libraries used for experiments.



5. Framework

This chapter is dedicated to introducing our spectral clustering framework, which
is critical for answering research question 1 (RQ1). This chapter aims to offer a
comprehensive overview of the distinct stages and steps constituting the spectral
clustering process at a higher level.

The spectral clustering framework, as illustrated in (Figure 5.1), encompasses four
pivotal stages denoted as (a), (b), (c), and (d), revealing a systematic approach to
extract meaningful clusters from input data.

At the outset, the framework’s initiation stage (a) involves introducing a .csv file as
the primary data source.

Central to our framework is the preprocessing stage (b). In this stage, a series of vital
steps are performed. The first step, (b1), calculates pairwise distances between data
points using a designated distance metric as discussed in section 2.6.1, contributing
to the construction of the pairwise distance matrix. In section 4.3.1, we provide
a thorough explanation of choosing the best distance function. The subsequent
step, (b2), results in the formation of the weighted adjacency matrix (or similarity
matrix) through three distinct similarity graph construction techniques (kNN graph,
ϵ-neighborhood graph, and fully connected graph) as discussed in section 2.3.2.
Accompanying this, (b3) constructs the degree matrix as discussed in section 2.2.
Finally, (b4) constructs three variants of the Laplacian matrix (L,Lrw and Lsym) as
discussed in section 2.3.3, pivotal for subsequent spectral analysis.

Afterwards, the created Laplacian matrices are eigen decomposed in the next stage
(c). Step (c1) employs an eigen solver to acquire the eigenvectors and eigenvalues of
each Laplacian matrix. Subsequently, step (c2) involves the selection of k eigenvectors,
leading to the creation of a lower-dimensional representation of the original data
via spectral mapping (see section 2.3.4), providing insight into intricate clusters and
communities.

Finally, in the clustering stage (d), the first step, (d1), leverages the widely-adopted
k-means clustering algorithm (see section 2.3.5) to partition the reduced data rep-
resentation into distinct clusters based on proximity within the lower-dimensional



66 5. Framework

space. The last step, (d2), assigns data points to discrete clusters based on the
outcomes of the clustering process (see section 2.3.5), leading to the formation of
groups.

Notably, the framework offers nine unique outputs, each resulting from distinct
combinations of similarity graphs and graph Laplacians, which are compared to
identify the most appropriate cluster results as detailed in section 4.3.2.



67

Eigen-
decomposition

Preprocessing

Clustering

clusters

Eigensolver Spectral mapping

k-means clustering

Input data

construct weighted
adjacency matrix

construct
degree matrix

construct
Laplacian matrix

pairwise distance
matrix

k-nearest
neighbor graph

epsilon-
neighborhood

graph 

Fully connected
graph

(a)

(c)

(b)

(a1)

(b1) (b2) (b3) (b4)

(c1) (c2)

(d1) (d2)

unnormalized
Laplacian (L)

normalized
Laplacian (Lrw) 

normalized
Laplacian (Lsym) 

 distance metric 

(d)

Figure 5.1: A high-level view of spectral clustering framework: The framework is
depicted in four stages: (a) introduces the initial .csv input file. Preprocessing (b)
involves (b1) pairwise distance calculation for the adjacency matrix, (b2) weighted
adjacency matrix (or similarity matrix) construction using three similarity graph
techniques, (b3) degree matrix creation, and (b4) Laplacian matrix construction
with three Laplacian variants. Eigendecomposition (c) includes (c1) eigen solver for
eigenvectors and eigenvalues and (c2) selection of k eigenvectors for lower-dimensional
representation. Clustering (d) involves (d1) k-Means clustering in reduced space and
(d2) assignment of data points to clusters. The framework generates nine diverse
outputs, each resulting from varying selections (kNN graph, ϵ-neighborhood graph,
and fully connected graph) of similarity graphs and graph Laplacians (L,Lrw and
Lsym), and subsequently, these nine outputs are systematically compared to determine
the optimal spectral clustering result.





6. Results and discussion

In this chapter, we are presenting and discussing the outcomes derived from addressing
the three research questions formulated in Section 1. This chapter is divided into
three sections, each section corresponds to one research question and focuses on its
results and discussion.

6.1 (RQ1) Creation and customizability of our spec-
tral clustering framework

To address the first research question (RQ1), we engage in a comprehensive compari-
son between our spectral clustering framework and the spectral clustering implemen-
tation offered by scikit-learn [Pedregosa et al., 2011]. Our investigation centers on
evaluating the flexibility of our framework in enabling users to customize spectral
clustering across diverse similarity graphs and graph Laplacians.

I successfully implemented a new framework for user controlled spectral clustering
to address the limitations of the spectral clustering choices provided by scikit-learn.
The core of our framework’s adaptability lies in its provision of multiple choices
throughout the spectral clustering process. To initiate spectral clustering, our
framework allows for the construction of a pairwise distance matrix by calculating
pairwise distances between data points, employing seven distinct distance metrics
(cosine, Euclidean, sqeuclidean, Braycurtis, Canberra, correlation, and cityblock).
This fulfills the Criteria (i) stated in Chapter 1. Following the construction of
the pairwise distance matrix, our framework introduces three options (kNN graph,
ϵneighborhood graph, and fully connected graph) for creating the weighted adjacency
matrix or similarity matrix. The diversity in our framework arises from the utilization
of three different similarity graphs. A greater variety in the choice of similarity graph
fulfills Criteria (ii) stated in Chapter 1. Another pivotal component is the generation
of the Laplacian matrix. Our framework allows users to choose from three variants
of the Laplacian matrix, the unnormalized Laplacian (L), random walk normalized
Laplacian (Lrw), and symmetric normalized Laplacian ((Lsym). The different choices
of graph Laplacian fulfills criteria (iii) stated in Chapter 1. As a result of these



70 6. Results and discussion

combined choices, our framework yields nine distinctive outputs for spectral clustering,
i.e., all combinations of three different similarity graphs and three different Laplacian
variants.

6.2 (RQ2) Performance comparison of spectral cluster-
ing and k-Means clustering

In this section, we conduct a comprehensive comparison between spectral clustering
and k-Means clustering for both the Iris (section 6.2.1) and CORA (section 6.2.2)
dataset. We evaluate their performances using a range of external and internal cluster
measures to address (RQ2).

6.2.1 Comparison of Spectral clustering and k-Means clustering
performance using Iris dataset

In this section, we present the outcomes of our comparison between spectral clus-
tering and k-Means clustering on the Iris dataset to address (RQ2). We utilized
our optimized hyperparameters (section 4.3) to conduct spectral clustering using
our framework. The obtained results were then compared with those of k-Means
clustering using six different cluster measures, encompassing both external and inter-
nal evaluations. Table 6.1 shows the evaluation of these cluster measures for both
k-Means and spectral clustering.

Method
External measures Internal measures

Accuracy ARI NMI Sil. score CH score DB score
k-Means 0.893 0.730 0.758 0.553 560.400 0.662
SC Lrw kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC Lrw EN 0.906 0.759 0.695 0.430 387.551 0.900
SC Lrw FC 0.366 0.903 0.899 0.486 459.641 0.782
SC Lsym kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC Lsym EN 0.946 0.850 0.830 0.479 451.074 0.808
SC Lsym FC 0.366 0.903 0.899 0.486 459.641 0.782
SC L kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC L EN 0.0.660 0.558 0.720 0.552 252.563 0.377
SC L FC 0.0.660 0.558 0.720 0.552 252.563 0.377

Table 6.1: Comparison of k-Means and Spectral Clustering Performance: the table
compares our framework with k-Means clustering for Iris dataset. The best values
across all the cluster validity measures and the various methods are highlighted in bold.
We use the naming convention, SC-spectral clustering, Lrw-random walk normalized
Laplacian, Lsym-symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k
nearest neighbor graph, EN-epsilon neighborhood graph, and FC-fully connected
graph for our framework.

External cluster measures for Iris dataset: Our spectral clustering framework
consistently surpasses k-Means clustering in terms of external cluster measures
(Accuracy, ARI, NMI) when applied to the Iris dataset (see Figure 6.1). Notably, the



6.2. (RQ2) Performance comparison of spectral clustering and k-Means clustering71

majority of our ARI and NMI results outperform those of k-means. Additionally, in
a specific case involving the symmetric normalized Laplacian (Lsym) in conjunction
with the epsilon neighborhood graph, our approach achieves a remarkable accuracy
of 94.7%, representing a significant 5.4% enhancement over k-Means. Moreover, our
framework demonstrates a noteworthy 12.1% increase in the ARI value, resulting
in a value of 0.851, and a substantial 9.4% improvement in the NMI value, which
reaches 0.831.

Figure 6.1: k-Means clustering and Spectral clustering performance comparison:
the figure compares external cluster validity measures (Accuracy, Adjusted Rand
Index, and Normalized Mutual Information) for the Iris dataset. Subplots contrast
the k-Means approach with nine spectral clustering configurations. We use the
naming convention, SC-spectral clustering, Lrw-random walk normalized Laplacian,
Lsym-symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest
neighbor graph, EN-epsilon neighborhood graph, and FC-fully connected graph for
our framework.



72 6. Results and discussion

These differences in performance can be attributed to the fact that spectral clustering
leverages graph spectral properties to uncover complex data structures, allowing it
to capture inherent relationships and non-linearities that k-Means might overlook.
Spectral clustering’s ability to consider the underlying geometry of the data aids in
forming more accurate clusters that align with the true class labels. The symmetric
normalized Laplacian and epsilon neighborhood graph combination further enhances
this capability by enabling the framework to detect subtle variations and connections
within the data distribution, resulting in improved cluster assignment accuracy.

In contrast, k-Means relies on simple geometric centroids and may struggle with
non-linear or irregularly shaped clusters. It doesn’t take into account the intricate
relationships between data points that spectral clustering captures through the
graph representation. Consequently, k-Means might produce less accurate clusters,
leading to lower values in external cluster measures. The observed improvements in
Accuracy, ARI, and NMI metrics with our spectral clustering framework underline
its effectiveness in identifying meaningful clusters within the Iris dataset.

Internal Cluster Measures for Iris Dataset: When comparing our spectral clustering
framework with k-Means clustering, we observe differences in performance across
internal cluster measures. k-Means clustering demonstrates better results in these
measures (see Figure 6.2). For instance, the silhouette score for k-Means is 0.55,
while for spectral clustering it is 0.48. Similarly, the Calinski-Harabasz (CH) score is
higher for k-Means at 560.4 compared to 451.07 for spectral clustering. Additionally,
the Davies-Bouldin (DB) score is lower for k-Means at 0.66 compared to 0.80 for
spectral clustering.

These differences can be attributed to the nature of the algorithms. k-Means relies on
geometric centroids to form clusters, which can lead to well-defined spherical clusters
that align well with the Euclidean distance metric used in silhouette and CH scores.
On the other hand, spectral clustering considers the underlying graph structure and
relationships between data points. It can capture non-linear and irregularly shaped
clusters, leading to a lower silhouette score and CH score but higher DB score due
to the emphasis on separation between clusters.

In summary, while k-Means performs better in internal cluster measures due to its
simplicity and sensitivity to spherical clusters, spectral clustering excels in external
cluster measures by capturing complex data structures and forming clusters that align
well with true class labels. The differences in performance highlight the trade-offs
between the two approaches and the strengths they bring to cluster analysis.

Visualization of clustering results of Iris data using PCA: For the Iris dataset, we
begin by utilizing Principal Component Analysis (PCA) to reduce the dimensionality
of the data to two components. Total explained variance of 2 components of the
Iris data is 97.8% (component1: 92.4%, component2: 5.3%). This enables visual
representation of the original dataset, k-Means clustering, and spectral clustering
using our framework.

In (Figure 6.3a), the scatter plot visualizes the original Iris dataset. Subsequently, in
(Figure 6.3b), we observe the scatter plot resulting from k-Means clustering. Here, it
is evident that k-Means employs a linear decision boundary, attempting to divide



6.2. (RQ2) Performance comparison of spectral clustering and k-Means clustering73

Figure 6.2: k-Means clustering and Spectral clustering performance comparison:
the figure compares internal cluster validity measures (Silhouette Score, Calinski-
Harabasz Score, and Davies-Bouldin Score) for the Iris dataset. Subplots contrast
the k-Means approach with nine spectral clustering configurations, with naming
convention, SC-spectral clustering, Lrw-random walk normalized Laplacian, Lsym-
symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor
graph, EN-epsilon neighborhood graph, and FC-fully connected graph.

clusters 2 and 3 with a straight line. In contrast, (Figure 6.3c) depicts the scatter plot
from spectral clustering using our framework. Notably, spectral clustering attempts
to mimic the original dataset’s structure in a nonlinear fashion, resulting in a better
representation of the clusters’ natural divisions.

This visualization validates our claim of spectral clustering’s superiority over k-Means
in accurately capturing the underlying cluster structure. The intuitive insight derived
from this visualization reinforces our argument for placing more emphasis on external



74 6. Results and discussion

(a)(a)

(b)

(c)

Figure 6.3: PCA visualization of Iris data: image(a) - reduced Iris data, image(b) -
projection of Iris data after applying k-Means clustering, and image(c) - projection
of Iris data after applying spectral clustering.

cluster measures, especially in the case of the Iris dataset. This is because spectral
clustering more closely mirrors the ground truth, resulting in higher accuracy of
clustering.

6.2.2 Comparison of Spectral clustering and k-Means clustering
performance using CORA dataset

Now shifting our focus to the CORA dataset, we employed the same methodology to
compare the outcomes of spectral clustering and k-Means clustering. Table 6.2 shows
the evaluation of these cluster measures for both k-Means and spectral clustering.



6.2. (RQ2) Performance comparison of spectral clustering and k-Means clustering75

Method
External measures Internal measures

Accuracy ARI NMI Sil. score CH score DB score
k-Means 0.221 0.066 0.102 0.001 20.692 6.704
SC Lrw kNN 0.266 0.179 0.315 -0.023 18.185 6.510
SC Lrw EN 0.104 0.122 0.201 -0.055 19.372 6.896
SC Lrw FC 0.171 0.095 0.158 0.000 22.068 6.443
SC Lsym kNN 0.222 0.236 0.321 -0.018 18.274 6.941
SC Lsym EN 0.195 0.176 0.262 -0.003 14.211 9.402
SC Lsym FC 0.224 0.125 0.155 -0.018 20.997 7.699
SC L kNN 0.266 0.179 0.315 -0.023 18.185 6.510
SC L EN 0.107 -0.000 0.008 -0.195 0.900 6.746
SC L FC 0.110 -o.001 0.003 -0.246 0.301 2.106

Table 6.2: Comparison of k-Means and Spectral Clustering Performance: the table
compares our framework with k-Means clustering for CORA dataset. The best values
across all the cluster validity measures and the various methods are highlighted in bold.
We use the naming convention, SC-spectral clustering, Lrw-random walk normalized
Laplacian, Lsym-symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k
nearest neighbor graph, EN-epsilon neighborhood graph, and FC-fully connected
graph for our framework.

External Cluster Measures for CORA Dataset: When comparing our spectral
clustering framework with k-Means clustering on the CORA dataset, we observe
significant differences in their performance across external cluster measures (see
Figure 6.4). Our spectral clustering framework outperforms k-Means in terms of
two out of three measures. The accuracy values for both clustering techniques
were comparable, with spectral clustering achieving 22.2% accuracy and k-Means
achieving only 22.1%. This slight difference can be attributed to the nature of the
dataset and the challenges in accurately classifying the nodes in a network. However,
when we examine the Adjusted Rand Index (ARI), our spectral clustering framework
outperforms with a value of 0.23, significantly surpassing k-Means’ ARI of 0.06.
This substantial difference indicates that our framework is better at capturing the
similarity between true and predicted cluster assignments. Similarly, the Normalized
Mutual Information (NMI) values highlight the superiority of our framework. Spectral
clustering achieves an NMI of 32.1%, whereas k-Means achieved only 10.2%. This
difference underscores the framework’s ability to identify clusters that align well with
true class labels.

Internal Cluster Measures for CORA Dataset: When comparing our spectral
clustering framework with k-Means clustering on the CORA dataset, the performance
differences are observed mainly in the internal cluster measures is shown in (Figure
6.5). For the silhouette score, k-Means achieved a slightly higher value of 0.001
compared to spectral clustering’s -0.018. This difference indicates that k-Means
was able to create clusters with slightly better separation between them. In terms
of the Calinski-Harabasz (CH) score, k-Means also demonstrated a slightly better
result. The CH score for spectral clustering was 18.27, whereas k-Means achieved
a higher score of 20.69. This suggests that k-Means was able to achieve better
cluster compactness and separation. The Davies-Bouldin (DB) score, which evaluates



76 6. Results and discussion

Figure 6.4: k-Means clustering and Spectral clustering performance comparison: the
figure compares external cluster validity measures (Accuracy, Adjusted Rand Index,
and Normalized Mutual Information) for the CORA dataset. Subplots contrast
the k-Means approach with nine spectral clustering configurations. We use the
naming convention, SC-spectral clustering, Lrw-random walk normalized Laplacian,
Lsym-symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest
neighbor graph, EN-epsilon neighborhood graph, and FC-fully connected graph for
our framework.

the average similarity between clusters, showed minor differences. The DB score
for spectral clustering was 6.94, while k-Means achieved a slightly lower value of
6.70. This implies that k-Means managed to create clusters with slightly better
intra-cluster similarity.

In summary, our spectral clustering framework shows enhanced clustering performance
on the CORA dataset with external measures, as evidenced by superior ARI and



6.2. (RQ2) Performance comparison of spectral clustering and k-Means clustering77

Figure 6.5: k-Means clustering and Spectral clustering performance comparison:
the figure compares internal cluster validity measures (Silhouette Score, Calinski-
Harabasz Score, and Davies-Bouldin Score) for the CORA dataset. Subplots contrast
the k-Means approach with nine spectral clustering configurations, with naming
convention, SC-spectral clustering, Lrw-random walk normalized Laplacian, Lsym-
symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor
graph, EN-epsilon neighborhood graph, and FC-fully connected graph.

NMI values. While accuracy remains comparable due to the nature of the dataset.
However, k-Means exhibited slightly better results in internal cluster measures on
the CORA dataset, these differences are relatively minor. These variations in scores
highlight the nuanced differences in cluster structures achieved by the two methods.

Visualization of clustering results of CORA data using PCA Turning our attention
to the CORA dataset, which is high-dimensional, we again utilize PCA to project the
data into two dimensions for visualization purposes. Figure 6.6a provides a scatter



78 6. Results and discussion

plot of the reduced dataset. Subsequently, (Figure 6.6b) presents the visualization
of k-Means clustering results, and (Figure 6.6c) shows the scatter plot for spectral
clustering using our framework.

(a)

(b)

(c)

Figure 6.6: PCA visualization of CORA data: image(a) - reduced CORA data,
image(b) - projection of CORA data after applying k-Means clustering, and image(c)
- projection of CORA data after applying spectral clustering.

Upon examining Figure 6.6b, it is evident that k-Means clustering struggles with
clusters that have overlapping and closely situated data points. For instance, while
cluster 3 (Neural networks) is well identified, the other clusters exhibit mixed and



6.2. (RQ2) Performance comparison of spectral clustering and k-Means clustering79

blended colors due to overlapping points. However, (Figure 6.6c) highlights a slightly
improved visualization of spectral clustering. This method also distinguishes cluster
3 (Neural network) but apart from that it is quite hard to tell apart the other clusters.
The unclear visualization for both k-Means and spectral clustering can be contributed
by the high dimensionality of the CORA data and a total explained variance of only
3.4% for two principal components, which also explains the low performance across
measures in both dataset.

Insights into visualization of clustering results The visual intuition derived from
these scatter plots aligns with the quantitative results. It demonstrates how spectral
clustering, when combined with our framework, captures intricate cluster patterns
more accurately than k-Means, which relies on linear decision boundaries [Bishop and
Nasrabadi, 2006]. These visual insights support our rationale for prioritizing external
cluster measures over internal measures in this case. However, for both clustering
techniques applied on CORA dataset, it is hard to observe clear and distinct clusters.
The somewhat close resemblance of spectral clustering to the original distribution
underscores its effectiveness, and this alignment with ground truth is observed due
to the external validation.

The visual analysis of clustering results through scatter plots offers intuitive confir-
mation of spectral clustering’s superior performance and justifies our emphasis on
external cluster measures, particularly when ground truth labels are available. It is
essential to recognize that such visual validation complements numerical analyses
and supports the comprehensive understanding of clustering outcomes.

6.2.3 Insight into graph Laplacian and similarity graph choices

An additional advantage of our spectral clustering framework lies in its ability to
provide insight into the optimal Laplacian and similarity graph choices. For the
Iris dataset, the symmetric normalized Laplacian (Lsym) in combination with the
epsilon neighborhood graph emerges as a promising choice after observing all the
performance values as shown in Table 6.1. Notably, both the normalized Laplacians
(Lsym and Lrw) demonstrated improved performance over k-Means (Figure 6.1 for
external measures and figure 6.2 for internal measures), particularly in terms of ARI
and NMI, reinforcing their utility for spectral clustering in this context. As our
framework provides results from multiple Laplacian variants, one can choose the
clustering results that are most appropriate for the desired use case.

For the CORA dataset, the symmetric normalized Laplacian (Lsym) with the k-
Nearest Neighbors (kNN) graph yielded the best results. Furthermore, both normal-
ized Laplacians demonstrated enhanced performance compared to k-Means, indicating
their effectiveness in capturing the underlying patterns in the data. Interestingly, all
three Laplacian options in combination with the kNN graph outperformed k-Means
in terms of external cluster measures (Figure 6.4), suggesting the efficacy of kNN
graph in representing the relationships within the CORA dataset



80 6. Results and discussion

6.3 (RQ3): Comparing our spectral clustering frame-
work with other spectral clustering approach:

To validate the performance of our framework, we conduct a comparison with the
work of [Somashekara and Manjunatha, 2014], utilizing the Iris dataset as shown in
(Table 6.3). We employ six distinct cluster validity measures, encompassing both
internal and external evaluation metrics, for evaluating the performances of both
spectral clustering approaches.

Our approach consistently surpasses the Jordan approach in terms of multiple cluster
validity measures. Notably, our approach exhibits superior performance for both
Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI) across all
nine combinations (refer to Figure 6.7). Furthermore, in the context of internal
measures, our approach consistently achieves improved results (see Figure 6.8). It’s
worth highlighting that our approach consistently outperforms the Jordan approach
across all six measures.

Method
External measures Internal measures

Accuracy ARI NMI Sil. score CH score DB score
Jordan 0.793 0.554 0.600 0.478 417.24 0.683
SC Lrw kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC Lrw EN 0.906 0.759 0.695 0.430 387.551 0.900
SC Lrw FC 0.366 0.903 0.899 0.486 459.641 0.782
SC Lsym kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC Lsym EN 0.946 0.850 0.830 0.479 451.074 0.808
SC Lsym FC 0.366 0.903 0.899 0.486 459.641 0.782
SC L kNN 0.366 0.903 0.899 0.486 459.641 0.782
SC L EN 0.0.660 0.558 0.720 0.552 252.563 0.377
SC L FC 0.0.660 0.558 0.720 0.552 252.563 0.377

Table 6.3: Comparison of Spectral Clustering Performance: the table compares our
framework with spectral clustering by Jordan approach suggested by [Somashekara
and Manjunatha, 2014] for Iris dataset. The best values across all the cluster
validity measures and the various methods are highlighted in bold. We use the
naming convention, SC-spectral clustering, Lrw-random walk normalized Laplacian,
Lsym-symmetric normalized Laplacian, L-unnormalized Laplacian, KNN-k nearest
neighbor graph, EN-epsilon neighborhood graph, and FC-fully connected graph for
our framework.

In a specific instance, focusing on the (SC L sym EN) combination, our approach
showcases remarkable enhancements. This includes an impressive 15.33% increase
in Accuracy, a substantial 53.92% enhancement in ARI, and a notable 38.39%
improvement in NMI. Moreover, for the internal measures, our approach demonstrates
a similar performance in silhouette score with a very slight betterment of about 0.17%
and a significant betterment of approximately 8.07% in the Calinski-Harabasz (CH)



6.3. (RQ3): Comparing our spectral clustering framework with other spectral
clustering approach: 81

Figure 6.7: Spectral clustering performance comparison between Jordan approach
and our framework: the figure compares external cluster validity measures (Accuracy,
Adjusted Rand Index, and Normalized Mutual Information) for the Iris dataset.
Subplots contrast the Jordan approach by [Somashekara and Manjunatha, 2014]
with nine spectral clustering configurations, with naming convention, SC-spectral
clustering, Lrw-random walk normalized Laplacian, Lsym-symmetric normalized
Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor graph, EN-epsilon
neighborhood graph, and FC-fully connected graph.

score. However, it’s important to acknowledge that in terms of the Davies-Bouldin
(DB) score, the approach proposed by [Somashekara and Manjunatha, 2014] exhibits
slightly better performance. Their method achieves a DB score of 0.68 compared
to our approach’s DB score of 0.80. This suggests that their method’s results are
marginally more favorable in terms of the specific measure of cluster similarity
indicated by the DB score.



82 6. Results and discussion

Figure 6.8: Spectral clustering performance comparison between Jordan approach
and our framework: the figure compares internal cluster validity measures (Silhouette
Score, Calinski-Harabasz Score, and Davies-Bouldin Score) for the Iris dataset.
Subplots contrast the Jordan approach by [Somashekara and Manjunatha, 2014]
with nine spectral clustering configurations, with naming convention, SC-spectral
clustering, Lrw-random walk normalized Laplacian, Lsym-symmetric normalized
Laplacian, L-unnormalized Laplacian, KNN-k nearest neighbor graph, EN-epsilon
neighborhood graph, and FC-fully connected graph.

In summary, our approach consistently showcases its ability to yield superior clustering
outcomes across a range of combinations and the majority of the evaluated metrics.
This success can be attributed to the fine-tuning of hyperparameters associated with
different similarity graph options, as well as the flexibility to choose diverse graph
Laplacians. Notably, the approach presented by [Somashekara and Manjunatha, 2014]
does not provide explicit details about the hyperparameters used in their evaluation,
which could potentially contribute to the differences in performance observed.



7. Conclusion and future work

In this chapter, we summarize our findings and contributions in section 7.1 and the
possibilities of extending our framework in section 7.2.

7.1 Conclusion
Through the implementation of our framework, we extend the possibilities of spectral
clustering. In conclusion, this thesis has successfully addressed the research questions
posed, demonstrating the flexibility and adaptability of the proposed ”User Controlled
Spectral Clustering” framework across various aspects of spectral clustering analysis.
We have addressed this thesis by answering the three research questions stated in
the beginning.

The investigation of our first research question (RQ1) centered around the customiza-
tion capability of our framework, has yielded clear and affirmative results. We have
demonstrated how our framework surpasses the customization options offered by
scikit-learn’s spectral clustering. Specifically, we have elaborated on our framework’s
ability to address the limitations associated with distance metric selection, similarity
graph construction, and graph Laplacian choices that are currently offered by the
standard scikit-learn spectral clustering implementation. We addressed these limi-
tations by fulfilling the three criteria stated in the beginning. We fulfill criteria(i)
by enabling the construction of a pairwise distance matrix by calculating pairwise
distances between data points, employing seven distinct distance metrics (cosine,
Euclidean, sqeuclidean, Braycurtis, Canberra, correlation, and cityblock). We fulfill
criteria (ii) by introducing in our framework three options (kNN graph, ϵneighborhood
graph, and fully connected graph) for creating a similarity matrix. Our framework
allows users to choose from three variants of the Laplacian matrix, the unnormalized
Laplacian (L), random walk normalized Laplacian (Lrw), and symmetric normalized
Laplacian ((Lsym). The different choices of graph Laplacian fulfills criteria (iii).

To address (RQ2) we compared the performance of our spectral clustering framework
against k-Means clustering for both Iris and CORA datasets. Our framework
consistently outperforms the k-Means clustering method in terms of external cluster



84 7. Conclusion and future work

measures for both the Iris and CORA dataset. Notably, our framework achieves an
accuracy of 94.7%, demonstrating a substantial 5.4% improvement over k-Means.
Additionally, the Adjusted Rand Index (ARI) shows a remarkable 12.1% increase,
reaching 0.851, while the Normalized Mutual Information (NMI) value improves by
9.4% to 0.831. In the context of the CORA dataset, our spectral clustering framework,
specifically for the ARI and NMI values demonstrated superior performance. The
ARI value for our framework reaches 0.23, displaying a substantial improvement
compared to k-Means’ 0.06. Similarly, the NMI value for spectral clustering is 32.1%,
significantly surpassing k-Means’ 10.2%.

By comparing the performance of our spectral clustering framework with existing
spectral clustering approach (by [Somashekara and Manjunatha, 2014]), we have
answered (RQ3). Our framework has consistently demonstrated substantial en-
hancements across multiple cluster validity measures, both external and internal.
Notably, the combination of the symmetric normalized Laplacian(Lsym) with the
epsilon neighborhood graph exhibits significant improvements, including a 15.33%
increase in Accuracy, a remarkable 53.92% increase in ARI, and a notable 38.39%
increase in NMI. The internal measures also show improvements, with a substantial
8.07% rise in the Calinski-Harabasz (CH) score and a similar silhouette score with a
minor gain of 0.17%.

7.2 Future work
The completion of this thesis opens the door to a multitude of future possibilities
for extending and enhancing the proposed ”User Controlled Spectral Clustering”
framework. While numerous avenues for exploration exist, several ideas stand out as
immediate and promising directions for future endeavors.

1. Incorporation of Graph Input and Utilizing Graph Databases: One notable
extension involves expanding the framework’s input capabilities beyond the current
reliance on CSV files. This could entail graphs with edges that are not solely based on
some kind of similarity. Additionally, the framework could be extended to integrated
with graph databases such as Neo4j, providing a scalable and efficient storage solution
for complex graph data. This advancement would allow the framework to handle
graph data formats and not just CSV files, enhancing its applicability to a wider
range of real-world scenarios such as social networks, recommendations engines, and
healthcare to name a few.

2. Automation of Hyperparameter Tuning: Given the multitude of hyperparameters
(e.g. distance metric, similarity graph choices, hyperparameters within specific simi-
larity graph such as σ, ϵ, and number of nearest neighbor n, graph Laplacian choices,
number of clusters k) involved in the framework’s customization, a natural progres-
sion would be the development of an automated hyperparameter tuning mechanism.
This would alleviate the burden on users, especially those with limited domain knowl-
edge, by dynamically selecting optimal hyperparameter settings. Machine learning
techniques such as grid search, random search, or Bayesian optimization could be
integrated to efficiently explore the hyperparameter space and arrive at the most
suitable configuration, thus assisting the clustering process.



7.2. Future work 85

3. Extension to Multiple Clustering Techniques: While the framework currently
offers the k-Means algorithm as the final clustering step, an intriguing future direction
involves expanding this aspect. The framework could be enhanced to support a
variety of clustering algorithms, e.g. hierarchical clustering, DBSCAN (Density-Based
Spatial Clustering of Applications with Noise.), and more. This expansion would
make the framework a versatile platform where users can choose from a repertoire of
clustering techniques, tailoring their approach to the specific characteristics of their
data and research goals.

4. Development of an Online Tool with Graph Database Backend: As the demand
for user-friendly and accessible data analysis tools continues to grow, the proposed
framework could evolve into a web application. By providing an user-interface, where
users could seamlessly apply spectral clustering by uploading their data to the web
application and configure their choices of hyperparameters using drop down menus.

While there exists a myriad of possible extensions for the ”User Controlled Spectral
Clustering” framework, the aforementioned ideas offer exciting and feasible directions
for future research. By embracing graph inputs, automating hyperparameter tuning,
expanding clustering technique options, and potentially transforming the framework
into an online tool, this thesis can be extended to further impact the field of data
analysis and spectral clustering.





Appendix

A.1 Graph Laplacians and their properties
The various graph laplacian properties/propositions and their proofs in this section
are a direct reference from Von Luxburg [2007].

A.1.1 Unnormalized graph Laplacian
The unnormalized graph Laplacian matrix in the work of Von Luxburg [2007] is
defined as:

L = D −W

Proposition 1 (Properties of L) The matrix L satisfies the following properties:

1. For every vector f ∈ Rn we have

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)
2.

2. L is symmetric and positive semi-definite.

3. The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant
one vector 1.

4. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn.

Proof.
Part (1): By the definition of di,

f ′Lf = f ′Df − f ′Wf =
n∑

i=1

dif
2
i −

n∑
i,j=1

fifjwij

=
1

2

(
n∑

i=1

dif
2
i − 2

n∑
i,j=1

fifjwij +
n∑

j=1

djf
2
j

)
=

1

2

n∑
i,j=1

wij(fi − fj)
2.

Part (2): The symmetry of L follows directly from the symmetry of W and D.
The positive semidefiniteness is a direct consequence of Part (1), which shows that
f ′Lf ≥ 0 for all f ∈ Rn.



88

Part (3): Obvious.

Part (4) is a direct consequence of Parts (1) - (3).

Note that the unnormalized graph Laplacian does not depend on the diagonal
elements of the adjacency matrix W . Each adjacency matrix which coincides with
W on all off-diagonal positions leads to the same unnormalized graph Laplacian L.
In particular, self-edges in a graph do not change the corresponding graph Laplacian.

Proposition 2 (Number of connected components and the spectrum of L) Let G
be an undirected graph with non-negative weights. Then the multiplicity k of the
eigenvalue 0 of L equals the number of connected components A1, ..., Ak in the graph.
The eigenspace of eigenvalue 0 is spanned by the indicator vectors 1A1, ...,1Ak of
those components.

Proof. We start with the case k = 1, that is the graph is connected. Assume that f
is an eigenvector with eigenvalue 0. Then we know that

0 = f ′Lf =
n∑

i,j=1

wij(fi − fj)
2.

As the weights wij are non-negative, this sum can only vanish if all terms wij(fi−fj)
2

vanish. Thus, if two vertices vi and vj are connected (i.e., wij > 0), then fi needs
to equal fj . With this argument, we can see that f needs to be constant for all
vertices which can be connected by a path in the graph. Moreover, as all vertices
of a connected component in an undirected graph can be connected by a path, f
needs to be constant on the whole connected component. In a graph consisting
of only one connected component, we thus only have the constant one vector 1 as
eigenvector with eigenvalue 0, which obviously is the indicator vector of the connected
component.

Now consider the case of k connected components. Without loss of generality, we
assume that the vertices are ordered according to the connected components they
belong to. In this case, the adjacency matrix W has a block diagonal form, and the
same is true for the matrix L:

L =


L1

L2

. . .

Lk


Note that each of the blocks Li is a proper graph Laplacian on its own, namely, the
Laplacian corresponding to the subgraph of the i-th connected component. As it is
the case for all block diagonal matrices, we know that the spectrum of L is given
by the union of the spectra of Li, and the corresponding eigenvectors of L are the
eigenvectors of Li, filled with 0 at the positions of the other blocks. As each Li is a
graph Laplacian of a connected graph, we know that every Li has eigenvalue 0 with
multiplicity 1, and the corresponding eigenvector is the constant one vector on the
i-th connected component. Thus, the matrix L has as many eigenvalues 0 as there
are connected components, and the corresponding eigenvectors are the indicator
vectors of the connected components.



A.1. Graph Laplacians and their properties 89

A.1.2 The normalized graph Laplacians

There are two matrices which are called normalized graph Laplacians. Both matrices
are closely related to each other and are defined in the work of Von Luxburg [2007]
as:

Lsym : = D−1/2LD−1/2 = I −D−1/2WD−1/2

Lrw : = D−1L = I −D−1W

We denote the first matrix by Lsym as it is a symmetric matrix, and the second one
by Lrw as it is closely related to a random walk. In the following, we summarize
several properties of Lsym and Lrw. The standard reference for normalized graph
Laplacians is Chung [1997].

Proposition 3 (Properties of Lsym and Lrw) The normalized Laplacians satisfy the
following properties:

1. For every f ∈ Rn we have

f ′Lsymf =
1

2

n∑
i,j=1

wij

(
fi√
di

− fj√
dj

)2

.

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of
Lsym with eigenvector w = D1/2u.

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the
generalized eigenproblem Lu = λDu.

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an
eigenvalue of Lsym with eigenvector D1/21.

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued
eigenvalues 0 = λ1 ≤ ... ≤ λn.

Proof.

Part (1) can be proved similarly to Part (1) of Proposition 1.

Part (2) can be seen immediately by multiplying the eigenvalue equation Lsymw = λw
with D−1/2 from the left and substituting u = D−1/2w.

Part (3) follows directly by multiplying the eigenvalue equation Lrwu = λu with D
from the left.

Part (4): The first statement is obvious as Lrw1 = 0, the second statement follows
from (2).

Part (5): The statement about Lsym follows from (1), and then the statement about
Lrw follows from (2).



90

As it is the case for the unnormalized graph Laplacian, the multiplicity of the
eigenvalue 0 of the normalized graph Laplacian is related to the number of connected
components:

Proposition 4 (Number of connected components and spectra of Lsym and Lrw)
Let G be an undirected graph with non-negative weights. Then the multiplicity k of
the eigenvalue 0 of both Lrw and Lsym equals the number of connected components
A1, ..., Ak in the graph. For Lrw, the eigenspace of 0 is spanned by the indicator
vectors 1Ai

of those components. For Lsym, the eigenspace of 0 is spanned by the
vectors D1/21Ai

.

Proof. The proof is analogous to the one of Proposition 2, using Proposition 3.

A.2 Algorithms for spectral clustering

Below are three spectral clustering algorithms for the different graph Laplacians,
as highlighted in the work of [Von Luxburg, 2007]. The assumptions are that
our data consists of n data points, x1, ..., xn which can be arbitrary objects. By
using some similarity function we measure their similarities sij = s(xi, xj) , and
S = (sij)i, j = 1...n. represents the corresponding similarity matrix.

It should be noted that the normalized spectral clustering algorithm (Lrw) employs
the generalized eigenvectors of L, which correspond to the eigenvectors of the matrix
Lrw according to Proposition 3 (A.1.2). As a result, the algorithm is known as
normalized spectral clustering because it works with eigenvectors of the normalized
Laplacian Lrw.

The normalized spectral clustering algorithm (Lsym) also employs a normalized
Laplacian, but this time with the matrix Lsym rather than Lrw. This algorithm
requires an additional row normalization step that the other algorithms do not.

Except for the fact that they use three different graph Laplacians, the three algorithms
described above appear to be very similar. The main trick in all three algorithms is
to change the representation of the abstract data points xi to points yi ∈ Rk. This
change in representation is useful because of the properties of the graph Laplacians.
Afterward, clustering algorithms like k-means can detect clusters faster due to reduced
dimensions and easier due to enhanced separation of clusters in the low dimensional
representation [Jordan and Weiss, 2002].



A.2. Algorithms for spectral clustering 91

Algorithm 2 Unnormalized spectral clustering (L = D −W )

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
• Construct a similarity graph by one of the ways described in 2.3.2. Let W be its
weighted adjacency matrix.
• Compute the unnormalized Laplacian L.
• Compute the first k eigenvectors u1, ..., uk of L.
• Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of U .
• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters
C1, ..., Ck.
Output: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

Algorithm 3 Normalized spectral clustering according to [Shi and Malik, 2000]

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
• Construct a similarity graph by one of the ways described in 2.3.2. Let W be its
weighted adjacency matrix.
• Compute the unnormalized Laplacian L.
• Compute the first k generalized eigenvectors u1, ..., uk of the generalized eigen-
problem Lu = λDu.
• Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of U .
• Cluster the points (yi)i=1,...,n in Rk with the k-means algorithm into clusters
C1, ..., Ck.
Output: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.

Algorithm 4 Normalized spectral clustering according to [Jordan and Weiss, 2002]

Input: Similarity matrix S ∈ Rn×n, number k of clusters to construct.
• Construct a similarity graph by one of the ways described in 2.3.2. Let W be its
weighted adjacency matrix.
• Compute the normalized Laplacian Lsym.
• Compute the first k eigenvectors u1, ..., uk of Lsym.
• Let U ∈ Rn×k be the matrix containing the vectors u1, ..., uk as columns.
• Form the matrix T ∈ Rn×k from U by normalizing the rows to norm 1, that is
set tij = uij/(

∑
k u

2
ik)

1/2.
• For i = 1, ..., n, let yi ∈ Rk be the vector corresponding to the i-th row of T .
• Cluster the points (yi)i=1,...,n with the k-means algorithm into clusters C1, ..., Ck.
Output: Clusters A1, ..., Ak with Ai = {j|yj ∈ Ci}.



92

A.3 Different similarity graph construction

(b)(a)

(c) (d)

Figure A.1: Different similarity graph construction from a sample dataset. (a) Sample
dataset with 100 data points that are randomly distributed, which can be visually
partitioned into two groups (bottom left and the top right). The parameters for
the different graph construction techniques are undesired and therefore it does not
replicate the partitioning. (b) kNN graph constructed from the sample with k = 3,
(c) ϵ-neighborhood graph constructed from the sample with ϵ = 0.4, and (d) the fully
connected graph with σ = 0.5.

A.4 Sensitivity analysis

All these metrics are aligned on a shared evaluation scale ranging from 0 to 1 (except
for ARI, which ranges from -1 to 1).

Iris sensitivity analysis:



A.4. Sensitivity analysis 93

Figure A.2: Performance of Spectral Clustering on Iris (k = 3) using L and k nearest
neighbor graph with varying kNN, optimal at 6.

Figure A.3: Performance of Spectral Clustering on Iris (k = 3) using L and ϵ-
neighborhood graph with varying ϵ, optimal at 0.01.

Figure A.4: Performance of Spectral Clustering on Iris (k = 3) using L and fully
connected graph with varying σ, optimal at 0.01.



94

Figure A.5: Performance of Spectral Clustering on Iris (k = 3) using Lrw and k
nearest neighbor graph with varying kNN, optimal at 6.

Figure A.6: Performance of Spectral Clustering on Iris (k = 3) using Lrw and ϵ-
neighborhood graph with varying ϵ, optimal at 0.01.

Figure A.7: Performance of Spectral Clustering on Iris (k = 3) using Lrw and fully
connected graph with varying σ, optimal at 0.01.



A.4. Sensitivity analysis 95

Figure A.8: Performance of Spectral Clustering on Iris (k = 3) using Lsym and k
nearest neighbor graph with varying kNN, optimal at 6.

Figure A.9: Performance of Spectral Clustering on Iris (k = 3) using Lsym and
ϵ-neighborhood graph with varying ϵ, optimal at 0.01.

Figure A.10: Performance of Spectral Clustering on Iris (k = 3) using Lsym and fully
connected graph with varying σ, optimal at 0.01.



96

CORA sensitivity analysis:

Figure A.11: Performance of Spectral Clustering on CORA (k = 7) using L and k
nearest neighbor graph with varying kNN, optimal at 23.

Figure A.12: Performance of Spectral Clustering on CORA (k = 7) using L and
ϵ-neighborhood graph with varying ϵ, optimal at 1.

Figure A.13: Performance of Spectral Clustering on CORA (k = 7) using L and fully
connected graph with varying σ, optimal at 1.



A.4. Sensitivity analysis 97

Figure A.14: Performance of Spectral Clustering on CORA (k = 7) using Lrw and k
nearest neighbor graph with varying kNN, optimal at 23.

Figure A.15: Performance of Spectral Clustering on CORA (k = 7) using Lrw and
ϵ-neighborhood graph with varying ϵ, optimal at 0.8.

Figure A.16: Performance of Spectral Clustering on CORA (k = 7) using Lrw and
fully connected graph with varying σ, optimal at 0.4.



98

Figure A.17: Performance of Spectral Clustering on CORA (k = 7) using Lsym and
k nearest neighbor graph with varying kNN, optimal at 22.

Figure A.18: Performance of Spectral Clustering on CORA (k = 7) using Lsym and
ϵ-neighborhood graph with varying ϵ, optimal at 0.8.

Figure A.19: Performance of Spectral Clustering on CORA (k = 7) using Lsym and
fully connected graph with varying σ, optimal at 0.1.



Bibliography

Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible extensions.
IEEE transactions on knowledge and data engineering, 17(6):734–749, 2005. (cited

on Page 1)

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour
detection and hierarchical image segmentation. IEEE transactions on pattern
analysis and machine intelligence, 33(5):898–916, 2010. (cited on Page 1)

Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model
selection. 2010. (cited on Page 35)

Bernard Aupetit. A primer on spectral theory. Springer Science & Business Media,
2012. (cited on Page 19)

AL Barabási. Network science. cambridge university press, cambridge, 2016. (cited on

Page 10)

Albert-Laszlo Barabasi and Zoltan N Oltvai. Network biology: understanding the
cell’s functional organization. Nature reviews genetics, 5(2):101–113, 2004. (cited

on Page 1)

Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):
87–90, 1958. (cited on Page 18)

Asa Ben-Hur and Isabelle Guyon. Detecting stable clusters using principal component
analysis. Functional Genomics: Methods and Protocols, pages 159–182, 2003. (cited

on Page 35)

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
Journal of machine learning research, 13(2), 2012. (cited on Page 35)

Norman Biggs. Algebraic graph theory. Number 67. Cambridge university press, 1993.
(cited on Page 19)

Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006. (cited on Page 1, 23, 45, 49, and 79)

Katy Börner, Weixia Huang, Micah Linnemeier, Russell Duhon, Patrick Phillips,
Nianli Ma, Angela Zoss, Hanning Guo, and Mark Price. Rete-netzwerk-red:
analyzing and visualizing scholarly networks using the network workbench tool.
Scientometrics, 83(3):863–876, 2010. (cited on Page 9)



100 Bibliography

Yuri Boykov and Gareth Funka-Lea. Graph cuts and efficient nd image segmentation.
International journal of computer vision, 70(2):109–131, 2006. (cited on Page 21)

Ulrik Brandes. Network analysis: methodological foundations, volume 3418. Springer
Science & Business Media, 2005. (cited on Page 19)

J Roger Bray and John T Curtis. An ordination of the upland forest communities of
southern wisconsin. Ecological monographs, 27(4):326–349, 1957. (cited on Page 39)

Markus Brede. Book review: Networks-an introduction by mark ej newman. Artificial
Life, 18(2):241–242, 2012. (cited on Page 9)

Leo Breiman. Classification and regression trees. Routledge, 2017. (cited on Page 1)

AE Brouwer and WH Haemers. Spectra of graphs. 2012. (cited on Page 9)

Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis.
Communications in Statistics-theory and Methods, 3(1):1–27, 1974. (cited on Page 40

and 41)

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie
Elhadad. Intelligible models for healthcare: Predicting pneumonia risk and hospital
30-day readmission. In Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1721–1730, 2015. (cited

on Page 36)

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009. (cited on Page 29)

Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning
(chapelle, o. et al., eds.; 2006)[book reviews]. IEEE Transactions on Neural
Networks, 20(3):542–542, 2009. (cited on Page 51)

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc.,
1997. (cited on Page 19, 21, 26, 34, and 89)

T Cormen, C Leiserson, R Rivest, and Clifford Stein. Book: introduction to
algorithms, 2009a. (cited on Page 17, 18, and 19)

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Computational geometry. Introduction to Algorithms, 3rd ed.; The MIT Press:
Cambridge, MA, USA, pages 1022–1027, 2009b. (cited on Page 7)

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20:273–297, 1995. (cited on Page 1)

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE
transactions on pattern analysis and machine intelligence, (2):224–227, 1979. (cited

on Page 40 and 41)

Edsger W Dijkstra. A note on two problems in connexion with graphs. In Edsger
Wybe Dijkstra: His Life, Work, and Legacy, pages 287–290. 2022. (cited on Page 18)



Bibliography 101

Richard C Dorf and James A Svoboda. Circuit theorems. In Introduction to Electric
Circuits, pages 162–207. Wiley, 2010. (cited on Page 8)

Richard O Duda, Peter E Hart, and David G Stork. Pattern classification, john
willey & sons. Inc., second edition edition, 2001. (cited on Page 29)

Jack Edmonds and Richard M Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. Journal of the ACM (JACM), 19(2):248–264,
1972. (cited on Page 18)

Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In kdd,
volume 96, pages 226–231, 1996. (cited on Page 2)

Brian S Everitt, Sabine Landau, Morven Leese, and Daniel Stahl. Cluster analysis.
John Wiley & Sons, 2011. (cited on Page 39)

Lester Randolph Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8:399–404, 1956. (cited on Page 18)

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,
2010. (cited on Page 21)

Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer
Science & Business Media, 2001. (cited on Page 9)

Michael T Goodrich, Roberto Tamassia, and Michael H Goldwasser. Data structures
and algorithms in Java. John wiley & sons, 2014. (cited on Page 16 and 19)

Jonathan L Gross and Jay Yellen. Graph theory and its applications. CRC press,
2005. (cited on Page 8 and 15)

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The
elements of statistical learning: data mining, inference, and prediction, volume 2.
Springer, 2009. (cited on Page 1)

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their
applications. Bulletin of the American Mathematical Society, 43(4):439–561, 2006.
(cited on Page 9)

Joshua Zhexue Huang, Michael K Ng, Hongqiang Rong, and Zichen Li. Automated
variable weighting in k-means type clustering. IEEE transactions on pattern
analysis and machine intelligence, 27(5):657–668, 2005. (cited on Page 35)

Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,
2:193–218, 1985. (cited on Page 41 and 42)

Anil K Jain. Fundamentals of digital image processing. Prentice-Hall, Inc., 1989.
(cited on Page 19)

Anil K Jain and Richard C Dubes. Algorithms for clustering data. Prentice-Hall,
Inc., 1988. (cited on Page 2, 39, and 40)



102 Bibliography

Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review.
ACM computing surveys (CSUR), 31(3):264–323, 1999. (cited on Page 29 and 36)

Hongjie Jia, Shifei Ding, Xinzheng Xu, and Ru Nie. The latest research progress
on spectral clustering. Neural Computing and Applications, 24:1477–1486, 2014.
(cited on Page 45)

Ian T Jolliffe. Principal component analysis for special types of data. Springer, 2002.
(cited on Page 36)

Michael I Jordan and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in Neural Information Processing Systems: Proceedings of the 2001
Conference, volume 14, page 849. MIT Press, 2002. (cited on Page 90 and 91)

Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction
to cluster analysis. John Wiley & Sons, 2009. (cited on Page 39)

Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–50,
1956. (cited on Page 18)

James Kurose and Keith Ross. Computer networking: A top-down approach, global
edition, 2017. (cited on Page 19)

Godfrey N Lance and William T Williams. Computer programs for hierarchical
polythetic classification (“similarity analyses”). The Computer Journal, 9(1):60–64,
1966. (cited on Page 39)

Serge Lang. Introduction to linear algebra. Springer Science & Business Media, 2012.
(cited on Page 28)

Xin-Ye Li and Li-jie Guo. Constructing affinity matrix in spectral clustering based
on neighbor propagation. Neurocomputing, 97:125–130, 2012. (cited on Page 46)

Dijun Luo, Heng Huang, Chris Ding, and Feiping Nie. On the eigenvectors of
p-laplacian. Machine Learning, 81:37–51, 2010. (cited on Page 46)

James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967. (cited

on Page 2)

Michael W Mahoney and Petros Drineas. Cur matrix decompositions for improved
data analysis. Proceedings of the National Academy of Sciences, 106(3):697–702,
2009. (cited on Page 33)

N Gregory Mankiw. Principles of economics. Cengage Learning, 2014. (cited on

Page 6)

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
Automating the construction of internet portals with machine learning. Information
Retrieval, 3:127–163, 2000. (cited on Page 51)



Bibliography 103

IC Mogotsi. Christopher d. manning, prabhakar raghavan, and hinrich schütze:
Introduction to information retrieval: Cambridge university press, cambridge,
england, 2008, 482 pp, isbn: 978-0-521-86571-5, 2010. (cited on Page 29)

Bojan Mohar. Some applications of Laplace eigenvalues of graphs. Springer, 1997.
(cited on Page 21 and 25)

Bojan Mohar, Y Alavi, G Chartrand, and OR Oellermann. The laplacian spectrum
of graphs. Graph theory, combinatorics, and applications, 2(871-898):12, 1991.
(cited on Page 21 and 25)

Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clustering:
a resampling-based method for class discovery and visualization of gene expression
microarray data. Machine learning, 52:91–118, 2003. (cited on Page 35)

DS Moore, GP McCabe, and BA Craig. Introduction to the practice of statistics
ninth edition, 2017. (cited on Page 6)

Mark Newman. Networks. Oxford university press, 2018. (cited on Page 19)

Mark EJ Newman. Fast algorithm for detecting community structure in networks.
Physical review E, 69(6):066133, 2004. (cited on Page 1)

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Thomas Dietterich, Steve Becker, and Zoubin Ghahramani, editors,
Advances in Neural Information Processing Systems 14, pages 849–856. MIT Press,
2002. (cited on Page 2 and 34)

Daiheng Ni. Traffic flow theory: Characteristics, experimental methods, and numerical
techniques. Butterworth-Heinemann, 2015. (cited on Page 7)

JW Nilsson. Electric circuits author: James w. Nilsson, Susan Riedel, Publisher:
Prentice Hall Pages: 816 Published, 20, 2014. (cited on Page 7)

Peter O Olukanmi and Bhekisipho Twala. K-means-sharp: modified centroid update
for outlier-robust k-means clustering. In 2017 Pattern Recognition Association
of South Africa and Robotics and Mechatronics (PRASA-RobMech), pages 14–19.
IEEE, 2017. (cited on Page 32)

Mercedes Pascual and Jennifer A Dunne. Ecological networks: linking structure to
dynamics in food webs. Oxford University Press, 2006. (cited on Page 7)

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011. (cited on

Page 2 and 69)

Larry L Peterson and Bruce S Davie. Computer networks: A systems approach,
2011. (cited on Page 7)



104 Bibliography

Robert Clay Prim. Shortest connection networks and some generalizations. The Bell
System Technical Journal, 36(6):1389–1401, 1957. (cited on Page 18)

Nicola Rebagliati and Alessandro Verri. Spectral clustering with more than k
eigenvectors. Neurocomputing, 74(9):1391–1401, 2011. (cited on Page 47)

Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook, pages 1–35. Springer, 2010.
(cited on Page 30)

Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 joint conference
on empirical methods in natural language processing and computational natural
language learning (EMNLP-CoNLL), pages 410–420, 2007. (cited on Page 41 and 43)

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987. (cited on Page 35 and 40)

Gerard Salton. Introduction to modern information retrieval. McGraw-Hill, 1983.
(cited on Page 23)

Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. Density-based
clustering in spatial databases: The algorithm gdbscan and its applications. Data
mining and knowledge discovery, 2:169–194, 1998. (cited on Page 35)

Hinrich Schutze, Christopher D Manning, and Prabhakar Raghavan. Introduction to
information retrieval. Cambridge University Press, 2008. (cited on Page 39 and 41)

Andrew J Seary and William D Richards. Spectral methods for analyzing and
visualizing networks: an introduction. na, 2003. (cited on Page 21)

Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
computing surveys (CSUR), 34(1):1–47, 2002. (cited on Page 51)

Robert Sedgewick and Kevin Wayne. Algorithms (4th edn). Google Scholar Google
Scholar Digital Library Digital Library, 2011. (cited on Page 5, 10, 16, 17, and 18)

Shi. Multiclass spectral clustering. In Proceedings ninth IEEE international conference
on computer vision, pages 313–319. IEEE, 2003. (cited on Page 2)

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE
Transactions on pattern analysis and machine intelligence, 22(8):888–905, 2000.
(cited on Page 34 and 91)

MT Somashekara and D Manjunatha. Performance evaluation of spectral clustering
algorithm using various clustering validity indices. International Journal of Elec-
tronics Communication and Computer Engineering, 5(6):1274–1276, 2014. (cited on

Page xiii, xviii, 47, 62, 63, 80, 81, 82, and 84)

Gilbert Strang. Linear algebra and its applications. 2012. (cited on Page 19)



Bibliography 105

Alexander Strehl and Joydeep Ghosh. Cluster ensembles–a knowledge reuse framework
for combining multiple partitions. Journal of Machine Learning Research, 3(3),
2003. (cited on Page 41 and 42)

Richard Szeliski. Computer vision: algorithms and applications. Springer Nature,
2022. (cited on Page 29)

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
Pearson Education India, 2016. (cited on Page 45)

Robert Thorndike. Who belongs in the family? Psychometrika, 18(4):267–276, 1953.
(cited on Page 35)

Richard J Trudeau. Introduction to graph theory. Courier Corporation, 2013. (cited

on Page 12)

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008. (cited on Page 36)

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17:
395–416, 2007. (cited on Page 2, 21, 23, 24, 25, 26, 27, 34, 35, 36, 56, 59, 87, 89, and 90)

Ulrike Von Luxburg et al. Clustering stability: an overview. Foundations and
Trends® in Machine Learning, 2(3):235–274, 2010. (cited on Page 35)

Yong Wang, Yuan Jiang, Yi Wu, and Zhi-Hua Zhou. Spectral clustering on multiple
manifolds. IEEE Transactions on Neural Networks, 22(7):1149–1161, 2011. (cited

on Page 46)

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall
Upper Saddle River, 2001. (cited on Page 6)

Johan C Winterwerp and Walther GM Van Kesteren. Introduction to the physics of
cohesive sediment dynamics in the marine environment. Elsevier, 2004. (cited on

Page 11)

Tao Xiang and Shaogang Gong. Spectral clustering with eigenvector selection. Pattern
Recognition, 41(3):1012–1029, 2008. (cited on Page 46)

Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions on
neural networks, 16(3):645–678, 2005. (cited on Page 39)

Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang Yang, and Stephen
Lin. Graph embedding and extensions: A general framework for dimensionality
reduction. IEEE transactions on pattern analysis and machine intelligence, 29(1):
40–51, 2006. (cited on Page 21)

Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, and Yueting Zhuang. Image clustering
using local discriminant models and global integration. IEEE Transactions on
Image Processing, 19(10):2761–2773, 2010. (cited on Page 46)



106 Bibliography

Zheng Yang, Yi Zhao, and Nasser M Nasrabadi. Scalable spectral clustering using
random graph embedding. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(11):2169–2183, 2012. (cited on Page 33)

Xianchao Zhang and Quanzeng You. An improved spectral clustering algorithm
based on random walk. Frontiers of Computer Science in China, 5:268–278, 2011.
(cited on Page 46)

Xianchao Zhang, Jingwei Li, and Hong Yu. Local density adaptive similarity mea-
surement for spectral clustering. Pattern Recognition Letters, 32(2):352–358, 2011.
(cited on Page 45)

Feng Zhao, Licheng Jiao, Hanqiang Liu, Xinbo Gao, and Maoguo Gong. Spectral
clustering with eigenvector selection based on entropy ranking. Neurocomputing,
73(10-12):1704–1717, 2010. (cited on Page 47)



I herewith assure that I wrote the present thesis independently, that the thesis has
not been partially or fully submitted as graded academic work and that I have used
no other means than the ones indicated. I have indicated all parts of the work in
which sources are used according to their wording or to their meaning.

Magdeburg, 23rd August 2023


	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Graphs
	2.1.1 Types of graphs
	2.1.2 Graph representations
	2.1.3 Graph operations

	2.2 Spectral Graph Theory
	2.3 Spectral clustering
	2.3.1 Similarity measures
	2.3.2 Different similarity graph construction
	2.3.3 Graph Laplacian choices and their properties
	2.3.4 Eigendecomposition
	2.3.5 Clustering 

	2.4 Challenges of spectral clustering
	2.4.1 Choice of similarity measure
	2.4.2 Scalability
	2.4.3 Which is the preferred Graph Laplacian?
	2.4.4 Sensitivity to hyperparameters
	2.4.5 Interpretability

	2.5 A use case for spectral clustering
	2.6 Metric
	2.6.1 Distance metric
	2.6.2 Internal cluster validity indices
	2.6.3 External cluster validity indices


	3 Related Work
	3.1 Research in spectral clustering development
	3.2 Comparison of Spectral clustering and k-means clustering
	3.3 Evaluation of spectral clustering performance

	4 Methodology
	4.1 Datasets
	4.1.1 Iris
	4.1.2 CORA

	4.2 (RQ1): Creation and customizability of the spectral clustering framework
	4.3 Choosing hyperparameters
	4.3.1 Choosing a distance function
	4.3.2 Choosing hyperparameters for similarity graphs
	4.3.3 Choosing the optimal number of clusters

	4.4 (RQ2): Comparative analysis of spectral clustering with k-Means clustering
	4.5 (RQ3): Comparative analysis of spectral clustering approaches
	4.6 Hyperparameters
	4.7 Environment for experiments

	5 Framework
	6 Results and discussion
	6.1 (RQ1) Creation and customizability of our spectral clustering framework
	6.2 (RQ2) Performance comparison of spectral clustering and k-Means clustering
	6.2.1 Comparison of Spectral clustering and k-Means clustering performance using Iris dataset
	6.2.2 Comparison of Spectral clustering and k-Means clustering performance using CORA dataset
	6.2.3 Insight into graph Laplacian and similarity graph choices

	6.3 (RQ3): Comparing our spectral clustering framework with other spectral clustering approach:

	7 Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	Appendix
	A.1 Graph Laplacians and their properties
	A.1.1 Unnormalized graph Laplacian 
	A.1.2 The normalized graph Laplacians 

	A.2 Algorithms for spectral clustering
	A.3 Different similarity graph construction
	A.4 Sensitivity analysis

	Bibliography

