
TECHNISCHE UNIVERSIT�AT BRAUNSCHWEIG

INFORMATIK�BERICHTE

�����

Revised Version
of the Modelling Language

Troll

�Troll Version ����

Thorsten Hartmann

Gunter Saake

Ralf Jungclaus

Peter Hartel

Jan Kusch

Abt� Datenbanken
Techn� Universit�at Braunschweig

Postfach ����
D���	�� Braunschweig
 Germany

Braunschweig

April ����

Revised Version

of the Modelling Language

Troll
z

�Troll Version ��	�

Thorsten Hartmann�

Gunter Saakex

Ralf Jungclausy

Peter Hartel�

Jan Kusch�

April ����

�Abt� Datenbanken� Techn� Universit�at Braunschweig� Postfach ����� D��	
�� Braunschweig�
Germany� E�mail� fhartmann�hartel�kuschg�idb�cs�tu�bs�de

xInstitut f�ur Technische Informationssysteme� Otto�von�Guericke�Universit�at Magdeburg� Post�
fach
��
� ��
�� Magdeburg� E�mail� saake�iti�cs�TU�Magdeburg�DE

yTelekom� Technical IP�Systems TD
�a� Postfach �

� D����
� Bonn� Germany� E�mail�
jungclau�u����mst�nez�telekom�de

zThis work was partially supported by CEC under ESPRIT�III Basic Research Action Working
Group No� �
�� IS�CORE II �Information Systems � COrrectness and REusability�� The work
of Thorsten Hartmann� Ralf Jungclaus �until ������� and Jan Kusch is supported by Deutsche
Forschungsgemeinschaft under Sa
������� The work of Peter Hartel is supported by OBLOG
Software SA� Lisbon�

Abstract

Conceptual modelling
 sometimes in conjunction with requirements acquisition
 is
widely accepted as the
rst formal step in information system speci
cation and
design� Since knowledge about the world to be modelled is often vague in early
development phases
 formalisms for conceptual modelling must support a wide va�
riety of concepts for describing real entities� Furthermore a conceptual modelling
language must be declarative so that later implementation is not restricted� A large
amount of features often hinders learnability and applicability of such languages
whereas restriction to few basic features may result in unreadable speci
cations� In
this report we introduce the revised version of the conceptual modelling language
Troll that provides a suitable set of declarative concepts that are orthogonal and
tailored to description of real world contexts� To support the acceptance of the lan�
guage
 the notation is as near as possible to accepted formalisms like object oriented
programming languages without leaving the way of high level speci
cations� The
version of Troll presented here is suited especially for the conceptual modelling
and later design phase for information systems speci
cation� As main abstractions
Troll supports classes
 roles and derived roles �specializations�
 composite objects

views
 and relationships�

Acknowledgements

For many fruitful discussions on the language we are grateful to all members of
IS�CORE
 especially to Hans�Dieter Ehrich
 Jos�e Fiadeiro
 Gerhard Koschorreck

Udo Lipeck
 Am��lcar Sernadas
 and Cristina Sernadas� The colleagues in Braun�
schweig have been of great help
 too� Special thanks to� Stefan Conrad
 Grit Denker

Martin Gogolla
 Rudolf Herzig
 Perdita L�ohr�Richter
 Karl Neumann
 and Nikolaos
Vlachantonis� Thanks also to Scarlet Schwiderski for discussions on example speci�

cations written in a preliminary language version�

Thanks are also due to the students working �or having worked� with us� Espe�
cially Cesar Ortiz provided valuable comments on various language features�

Contents �

Contents

� Introduction �

��� Features of Troll �

��� A Concept of Objects �

��� Structure of this Report �

� Language features for Troll�Templates ��

��� Sublanguages ��

����� Data Terms ��

����� Logic Sublanguage ��

����� Process Speci
cation Language � � � � � � � � � � � � � � � � � ��

��� Template Structure ��

��� Declarations ��

����� Data Types ��

����� Local Classes ��

����� Variable and Parameter Declarations � � � � � � � � � � � � � � ��

��� Attributes and Events ��

����� Attributes ��

����� Events ��

��� Constraints �	

��� Life Cycle Speci
cation ��

����� Speci
cation of Processes ��

����� Process Features ��

��� Interaction ��

��� Parameterized Templates ��

� Class and Components Speci�cation ��

��� Speci
cation of Object Classes ��

����� Object Identities and Object Identi
cation � � � � � � � � � � � ��

����� Referencing Objects using Key Attributes � � � � � � � � � � � ��

� Contents

����� Referencing Objects using Identities � � � � � � � � � � � � � � � ��

����� Identi
cation of Single Objects � � � � � � � � � � � � � � � � � ��

��� Speci
cation of Components �	

����� Description of Components �	

����� Single vs� Set Valued Components � � � � � � � � � � � � � � � � ��

����� List valued Components ��

����� Implicit Signature for Components � � � � � � � � � � � � � � � ��

����� Composition Constraints ��

����� Derived Composition ��

����� Composition Initialization ��

����� Local Classes and Components � � � � � � � � � � � � � � � � � ��

��� Interaction between Components ��

� Class Objects and Roles 	�

��� Class Objects vs� Object Classes ��

����� Implicit Class Objects ��

����� Object Creation and Destruction � � � � � � � � � � � � � � � � ��

����� Key Attribute Change ��

��� Objects and Object�Roles ��

����� Structuring Object Speci
cation � � � � � � � � � � � � � � � � � ��

����� Dynamic Roles ��

����� Derived Roles ��

����� Re
ned Base Object Properties � � � � � � � � � � � � � � � � � ��

� System Speci�cation
�

��� View Classes ��

����� Projections ��

����� Selections ��

��� Relationships ��

����� Global Constraints ��

����� Global Interactions ��

��� Society Speci
cation ��

� Conclusions and Outlook

��� Tool Support for Troll �		

��� Speci
cation Support �	�

��� Prototyping Support for Validation �	�

��� Outlook �	�

Contents �

Bibliography ���

The Troll�Syntax ���

A�� Sublanguages ���

A���� Formula Sublanguage ���

A���� Data Sublanguage ���

A���� Process Sublanguage ���

A�� Terms ���

A�� Data Types and Declarations ���

A�� Template Structure ���

A�� Template Signature ���

A���� Components ���

A���� Attributes ���

A���� Events ���

A�� Behaviour ���

A���� Constraints ���

A���� Processes and Life Cycles ���

A���� Interaction ���

A�� Abstractions ���

A���� Classes ���

A���� Society Speci
cation ���

Operations for Constructed Data Types ��	

Index ��

� Introduction �

Chapter �

Introduction

The languageTroll
 Version ��	 we describe in this report is a language designed for
the conceptional modelling phase of information systems� It is the successor version
of the language Troll
 Version 	�	� introduced in �JSHS���� We will henceforth
call the new version just Troll
 if necessary referring to the old version as Troll��
Since a survey of related approaches and previous work can be found in �JSHS��

Jun��
 Saa��� we will concentrate on language issues in this report�

��� Features of Troll

A basic feature of Troll� and Troll is that the description of static and dynamic
properties of conceptual entities is integrated in object descriptions� These object
descriptions are the basic building blocks of system speci
cations� The concept of
object employed by Troll is di�erent from the notion of object in object oriented
programming languages in several aspects� In the next chapters we will try to make
these di�erences clear�

The roots of Troll can be found in earlier work mainly devoted to semantics of
object oriented speci
cation respectively a common formal model of objects �SSE��

ESS��
 ESS��
 SFSE��
 SFSE��
 ESS�	�� These articles have been the starting point
for several language dialects based upon this common model of objects� The di�erent
dialects are focused on several paradigms as for example the early version OBL�
�� �CSS��� for speci
cation of real world entities �but quite close to the semantic
models�
 or the diagrammatic version OBLOG �SSG���� that is the root for a more
pragmatic
 high level programming language directed version�

Troll� �JSHS��� is a dialect mainly based on early textual OBLOG versions
like OBL��� and was formerly known as Oblog� �see for example �SJ��
 JSS��

SJ����� The main goal of Troll is the support for declarative speci
cation of
conceptual models mainly by means of temporal logic and a variety of concepts
backing �hopefully� natural and intuitive speci
cations� The language TROLL light
�CGH��� is a simpli
ed version of Troll without a class concept
 inheritance
 and

� � Introduction

temporal logic but with an operational process language for object life cycles� It is
tailored towards veri
cation �Con��� and direct execution purposes�

The revised version of Troll introduced here is focused on more operational
aspects and prototyping issues without leaving the way towards high level
 declara�
tive speci
cation as introduced with the predecessor version� It is our opinion that a
language for the purpose of conceptual modelling has to be as intuitive for the user
as possible �a main goal for the graphical versions of OBLOG and the transition
from OBL��� to Oblog�
 too�� The predecessor version lacks this requirement in
several aspects� Furthermore the language was not as orthogonal as possible which
leads to a long learning phase for newcomers�

We therefore
rstly decided to introduce a more traditional notation as known
from object oriented programming languages� The basic ideas however remain un�
changed� Secondly we got rid of several restrictions of Troll� that made speci
�
cations unreadable and counter�intuitive� The main changes to the last version are
summarized as follows�

� Speci
cation formulae for a concept like e�g� attributes
 events
 or components
were scattered over the speci
cation text for one object in Troll�� We now
decided to group formulae that describe one concept � A concept like an at�
tribute is now introduced with features� a name
 parameters
 initialization
rules
 local constraints
 and possibly derivation rules� A concept like an event
is described by a name
 parameters
 an enabling condition
 a set of attribute
changing rules
 a set of calling rules
 etc� This view is more natural in the
sense that speci
cation parts that belong to one concept are grouped together
in a concise description of the concept��

� The class and type concept of the former version was based on a static identi�
�cation concept that led to problems when describing highly dynamic objects
�often we do not
nd constant properties of objects that can easily be used for
object naming purposes�� The solution to this problem is to use the widely
accepted concept of object identity �unchangeable and unprintable internal id�s
of objects� and combining this concept with a notion of identi�cation �object
properties �attribute tuples� that uniquely identify objects in real world con�
texts such as name and birthdate of a person�� In the database community
identi
cation is usually called a key � To manage keys
 class container objects
are introduced as
rst class �speci
cation� entities in an object society speci
�
cation� Class container object speci
cations are not speci
ed by the user of the
language but are implicitly generated for a class speci
cation� In a more op�
erational view these implicit object speci
cations can serve as implementation
aids as well�

�These are only changes in representation and do not change what is sometimes called abstract

syntax � There are however some features newly introduced in Troll� that could not be expressed
in the last version�

��� A Concept of Objects �

� Troll� introduced various concepts of part�of relationships �HJS��� as for
example the including concept based on semantic issues of the underlying ob�
ject �aggregation� model
 subtemplates as a means to �syntactically� structure
object speci
cations
 and components as a dynamic counterpart of the includ�
ing concept that is based on static aggregation of objects� These concepts
were not orthogonal to each other� For example the naming of components
was based on object identities whereas the naming of instances generated from
subtemplates was based on parameters of subtemplate symbols� In Troll as
it is now there are only components that can be local or global respective�
ly non�sharable or sharable� Furthermore components may be declaratively
described by aggregation predicates �derived components��

� In Troll� we distinguished between specialization and roles
 the former a
static the latter a dynamic concept to structure the speci
cation of objects
�and classes� by inheritance� Both concepts can be described by the concept
of roles� We decided to syntactically support roles as the only mechanism for
Troll
 introducing a declarative specialization feature by means of derived
roles�

For derived components and derived roles we can also give an operational
description with predicate based birth and death�

��� A Concept of Objects

Before we introduce the language Troll let us have a short look at the underlying
ideas� For a detailed description the reader may refer to �JSHS��
 JSS��
 HJS��

HS���� The basic concept of object�oriented design is the concept of objects as units
of structure and behaviour �SE���� This way
 objects are the inseparable design
units� An object has an internal state of which certain properties can be observed�
The state can be manipulated exclusively through an event interface�

In contrast to object�oriented programming languages that emphasize a function�
al manipulation interface �using methods�
 object�oriented database approaches put
emphasis on the observable structure of objects �through attributes�� For the task of
specifying information systems
 we propose to support both views in an equal man�
ner for the design of objects
 i�e� object structure may be observed through attributes
and the object state may be manipulated through events
 which are abstractions of
methods�

The behaviour of an object is then de
ned as a linear process consisting of the set
of possible traces of event occurrences� More particular we regard sets of concurrent
events �snapshots�� We need snapshots for the modelling of communication �see
below�� In terms of this process de
nition the internal state of an object is de
ned
as a
nite pre
x of a possible snapshot trace
 whereas an observation is de
ned as
a mapping from such traces to a set of attribute�value pairs� In this sense
 objects

	 � Introduction

are observable processes� An example event trace can be expressed pictorially as
follows�

birth
�

hbi ��

event
snapshot

�� e�
� � �

en

�
�� � � � �� heki

� �z �
Life cycle pre�x

��

death
�

hdi

Up to now we only talked about single objects� Often we observe
 that a set of
entities are of the same kind
 in other words we can classify objects� We distinguish
between classes and class types� The former denote a collection of existing objects

the extensional classi
cation
 the latter describes the possible instances of an object
description
 the intensional description�

For the modelling of real world entities
 an important topic is the description of
objects composed of part objects� Since objects are de
ned as observable processes

we must de
ne object composition as a combination of processes and observations�
Aggregated objects are regarded as subprocesses embedded in a composite process�
The observation of a composite object is the sum of the observations of the parts
where observations of the parts calculated in isolation are maintained� The latter
requirement plays the role of encapsulation in our model� although the composite
entity can be observed as a whole
 changes to observations of the parts may be
performed only locally�

Real world entities somehow communicate with each other� This is equally true
for the system objects representing the real world entities in a computer� Whereas
object�oriented programming languages realize communication with message pass�
ing
 we use the more abstract concept of event calling
 characterized as synchronous

directed communication between processes� Here sets of concurrently occurring
events � the already mentioned snapshots � come into consideration again� For
details on these issues see �HS����

Description of objects and object classes may be structured with a notion of
inheritance� We distinguish two sorts of inheritance relations
 syntactic inheritance
denotes inheritance of structure and behaviour de�nition and is de
ned on the type
level� Semantic inheritance denotes inheritance of the objects themselves and is
therefore de
ned on the instance level� The latter kind of inheritance is known from
semantic data models
 where it is used to model one object that appears in several
roles or aspects in an application�

��� Structure of this Report

��� Structure of this Report

As the basic ideas are described in �JSHS��� we will mainly concentrate on language
and syntactical issues in this report� Wherever necessary
 we will provide references
to recent papers�

The report is structured as follows� In the second chapter we will introduce the
basic language features for Troll templates as the basic items for object speci�

cation� In this chapter we will only talk about object descriptions by means of
necessary sublanguages
 declarations
 attribute and event speci
cations
 constraints
for attribute observations
 life cycle descriptions
 and parameterized templates�

In the third chapter we will then go on to use templates to describe objects as
instances of classes including single objects as the sole instance of a class� Closely
related to classes are composite objects or object aggregations� We decided to intro�
duce components in this chapter because components are later on used to describe
the already mentioned class container objects� The end of Chapter � is devoted to
object interaction in composite objects�

In Chapter � we will introduce the above mentioned implicit class object speci��
cations
 the operational speci
cation of object creation and destruction
 and some
issues concerning the now dynamically changeable keys of objects� The second part
of the chapter is used to depict the role concept of Troll� Roles are the only way
to describe inheritance relations between object speci
cations and between objects�

In Chapter � we will
rstly introduce mechanisms to describe views on objects
and object classes� These views �and objects as well� are then used by an explicit re�
lationship construct describing global communication and global constraints between
separately speci
ed objects�

Chapter � describes accompanying work on tool support for specifying object
systems with Troll and
nally draws some conclusions and points out further
work on implementation of the tools�

� Language features for Troll�Templates ��

Chapter �

Language features for

Troll�Templates

In this chapter we will introduce the sublanguages Troll is based on� The sublan�
guages are then used to describe the various features of Troll templates� Through�
out the rest of this report we will introduce the syntactical patterns by means of
grammar productions� A comprehensive grammar is given in Appendix A�

��� Sublanguages

Speci
cations in the language Troll are based on a number of sublanguages
 i�e�
speci
cation of concepts like attributes etc� are sentences of sublanguages� The basic
sublanguages of Troll are the following�

� Data terms for data values and expressions �involving signatures of constant
symbols and operation symbols as well as terms over such signatures��

The speci
cation of data types is considered external to Troll� We only
import data type signatures�

� First order logic for a variety of assertions that can be formulated for objects�

� Temporal logic dialects for dynamic constraints on attribute evolution �future
tense� and enabling conditions for event occurrences �past tense��

� A language for process speci�cation to specify fragments of life cycles explicitly�

The sublanguages de
ne the basic formalisms underlying the language Troll
and are described in detail in �JSHS���� For the revised version of Troll described
here
 we will concentrate mainly on language issues� The sublanguages remain the
same as introduced in �JSHS��� except for the process language� However
 some
comments about temporal logic and process speci
cation are in order here�

�� � Language features for Troll�Templates

Temporal logic is a special logic that provides a system for describing and reason�
ing about how the truth values of assertions change over time� Thus
 temporal logic
is well suited to describe behaviour of objects
 processes
 computations etc� In partic�
ular
 temporal logic is useful for describing and reasoning about the behaviour of non�
terminating or continuously operating concurrent systems �Pnu��
 Saa��
 Eme�	��

We use two di�erent temporal logic dialects for constraints on object evolution�
The
rst one
 directed to the future
 describes possible attribute evolutions� We
may for example state properties about future values of attributes like sometime in
the future the value of attribute xyz must be greater than �� � The second dialect

directed to the past
 describes possible enabling conditions for event occurrences
depending on previous observations �attribute values� and event occurrences like
sometime after event e� occurred event e� may occur � Note that the last assertion
has nothing to do with activity
 i�e� e� is not forced to occur�

The logic sublanguages of Troll are used to state properties of objects
 de�
termine the applicability of certain rules in certain states etc� The semantics of
data terms and the logic sublanguages in terms of algebras and state sequences is
described in �JSHS���� We will not elaborate this issue here�

����� Data Terms

Data terms are used throughout a speci
cation in many di�erent places as for de�
scribing the change of attribute values
 event parameters etc� Data terms are typed
so that we have an additional criteria for their correct construction�

We take the practical assumption that only a framework for the denotation of
data values via data terms is integrated into the language� That is
 data terms
may be constructed out of sub�data terms connected with in
x or unary operators
or as function applications denoted by a function name and a list of parameter
�sub�data terms� The semantics of such constructions must be described in a suitable
framework for data type speci
cation� Nevertheless we introduce the basic numerical
operators in the syntax� For enumeration data types that can be constructed with
the data type constructor enum operation symbols without parameters may be used
denoting constants of data types �see below��

Data terms denoting values of the data type bool serve a special purpose in that
they may be used in formulae �and vice versa
 see also the grammar production
for formulae� as well as formulae may be used as data terms of type bool� The
equality predicate ��� as well as the comparison operators are prede
ned as already
mentioned are some basic arithmetic operators�

We introduced the connection between the data sublanguage and the formula
sublanguage for convenience�

Syntax

�inf op� ��� � j � j � j � j div j mod

��� Sublanguages ��

�compare op� ��� � j �� j � j � j �� j ��

�unary op� ��� � j �

�post op� ��� ��data term�� j ��tuple sel id�

�const symbol� ��� �nat const� j ��oat const� j �bool const�

j �char const� j �string const�

�data term� ��� �data term� �inf op� �data term�

j �data term� �compare op� �data term�

j �unary op� �data term�

j �data term��post op�

j �op id����data term list�	�
j ��data term�	

j if �formula� then �data term� �else �data term��

j �var id� j �parameter id� j �const symbol� j �att term�

j unde
ned j �formula�

A data term is recursively constructed out of �sub�data terms and operators�
The leaves of the so de
ned syntax trees consist of attribute terms
 variable id�s

parameter id�s
 or constant symbols� The special value unde�ned is considered as
available in all data types� Furthermore we assume that all operations applied to
the value unde�ned yield unde
ned and that comparisons with the value unde�ned

yield false� The predicate undef �see again production for formula below� is used to
test if for example an attribute is not de
ned i�e� unde�ned �

The if then else operator is assumed to have an implicit else unde�ned part if the
else part is missing�

The only post�x operators used in Troll are the tuple selector and the list
selector � Data terms of type tuple have special post
x operators de
ned with their
declaration�� For example a variable declaration like�

variables xpto�tuple�itemA�nat�itemB�bool�

de
nes the post
x operators �selection functions� 	itemA and 	itemB
 i�e� we may
write xpto	itemA to denote a value of type nat
 the
rst position of the tuple etc�

The list selector
		� can be used for data types of type list�

variables xpto�list�string�

We can write xpto
�� to denote the third element of the list xpto provided the
length of the list is � �� Note that tuple selectors and list selectors are written
without separating blanks�

�For the introduction of declarations refer to Section ����

�� � Language features for Troll�Templates

A special treatment must be devoted to attribute terms� As we will see in the
next sections
 attributes may be locally de
ned in a template
 be included by means
of components
 or be inherited from another template speci
cation� So we possibly
have to supply pre�xes denoting the paths to such attribute symbols�

Syntax

�att term� ��� ��selector���att id� ���data term list�	�

�selector� ��� �selector��select id�� j �select id��

�select id� ��� �class id� j �ovar id� j �cmp term�

�cmp term� ��� �cmp id����data term list�	� ��obj ref��

�obj ref� ��� ��data term�	 j �	

For the various identi
ers we may only use symbols that can be found following
the inheritance chain or resp� components chain� This will be made clear in the
sections on inheritance respectively composite objects�

����� Logic Sublanguage

As in the previous language version we basically introduce three logical sublanguages
for specifying properties of states ��rst order logic�
 properties of state sequences of
the past and future object life �past directed temporal logic	 PDTL and future directed
temporal logic	 FDTL�� In contrast to Troll� however
 the keywords are clearly
separated using always and sometime for the past directed version and henceforth

and eventually for the future directed counterparts�

For past formulae we introduce special predicates after and occurs that have
an event term as parameter� The predicate after
evt� is true in states reached
by occurrence of an event denoted by event term evt whereas occurs
evt� is valid
in a state where the event denoted by event term evt occurs� We included both
� an after and an occurs predicate in Troll although we will often only use the
after predicate� Occurs is necessary for special applications as for example integrity
monitoring for past temporal enabling conditions �SHS���� In that context it is
necessary to restrict events from occurring in snapshots relative to other events of
the snapshot� In general
 the occurs predicate can be used to restrict events that
must not occur together in a snapshot�

Syntactically all sublanguages are introduced by means of a general production

��� Sublanguages ��

for formula��

Syntax

�formula� ��� �formula� �bool op� �formula�

j not �formula� j �bool const�

j ��formula�	

j �quanti�er� ��var decl list��� �formula� 	

j �data term�

j undef��data term�	

�� predicates for past tense ��

j after��evt term�	 j occurs��evt term�	

�� past tense temporal logic ��

j always �formula� j sometime �formula�

j previous �formula�

�� bounded past predicates ��

j always �formula� sincelast �formula�

j sometime �formula� sincelast �formula�

�� future tense temporal logic ��

j henceforth �formula� j eventually �formula�

j next �formula�

�� bounded future predicates ��

j henceforth �formula� until �formula�

j eventually �formula� before �formula�

�var decl� ��� �var id list� � �domain�

�bool op� ��� implies j and j or

�bool const� ��� true j false

�quanti�er� ��� forall j exists

We can decide syntactically to which sublanguage a speci
c formula belongs� The
latter property is necessary
 since we want to restrict the use of certain temporal
dialects to clearly de
ned parts of a Troll speci
cation� For example we do not
want to use FDTL as enabling conditions �see Section �������� for events�� A past
formula thus may only contain past predicates and boolean connectives
 a future
formula only future predicates and boolean connectives
 and a simple formula may
only contain boolean connectives� The occurrence of after and occurs predicates is
restricted to past formulae�

�Note that this de�nition is introduced for convenience� Formally we have to distinguish between
the di�erent logical sublanguages�

�Although semantically possible for a declarative speci�cation language� for Troll it is not
desired to restrict state transitions depending on the future object behaviour� This way we would
introduce implicit obligations for an objects life in enabling conditions�

�� � Language features for Troll�Templates

In this report we will not go into details of the semantics of the temporal logic
languages but refer the reader to �JSHS��� or a textbook like �MP��� Part II� Note
that there are some di�erences in operator names to Troll�� To give a �avour
of the meaning of the temporal operators we will give some short descriptions� As
usual temporal formulae are evaluated in state sequences�

��� ��� ��� ��� � � � � �j��� �j� �j��� �j��� � � �

�for details see �JSHS����� In the following we assume p and q to denote formulae of
the �right� sublanguage
 i�e� if we describe past operators
 p and q are past formulae
etc�

Past Temporal Operators

always p holds at position j i� p holds at position j and all preceding positions�

sometime p holds at some position in the sequence from position 	 to position j�

previous p holds at position j � 	 if p holds at position j � �� It also holds at
position 	��

always p sincelast q holds at position j i� q held in state i and p held continuously
between states i and j �exclusively i
 inclusively j�� The state i is de
ned as
the maximum state where q held in the past
 or as i � �� if q did not hold in
the past�

sometime p sincelast q holds at position j i� q held in state i and p held in some
state between states i and j �exclusively i
 inclusively j�� The state i is de
ned
as the maximum state where q held in the past
 or as i � �� if q did not hold
in the past�

Future Temporal Operators

henceforth p holds at position j i� p holds at position j and in all successive states
��from now on���

eventually p holds at position j i� p holds at some future state
 or at position j�

next p holds at position j i� p holds at position j � ��

henceforth p until q holds at position j i� p holds at position j and in all successive
states until the �rst state i where q holds �i � j��

eventually p before q holds at position j i� p holds at some future state or at
position j before the
rst state i where q holds �i � j��

�We do not introduce existprevious and existnext operators in Troll as in Troll� �JSHS����

��� Sublanguages ��

For a formal de
nition see �JSHS���� Note that we changed the names of the
operators from alwaysf to henceforth
 and from sometimef to eventually and that
the bounded operators for the future look like the bounded operators for the past�

����� Process Speci�cation Language

The de
nition of processes is a little bit more subtle� A process de
nition is intu�
itively seen as a sequencing schema for event occurrences� That is
 with a process
de
nition we can describe �parts of� life cycles of objects�

As usual in process description languages we introduce �operators� for sequenc�
ing
 choice and guarded processes
 loops
 parallel�
 and for recursion presented in a
human readable syntax�

�
�
�
� Process Event Terms and Process Terms

Basic ingredients for a process de
nition are process event terms� Process event
terms consist of an event symbol
 optionally of a preceding selector
 and a list of
process parameters denoted by data terms� The use of selectors is motivated the
same way as for attributes�

Syntax

�evt term� ��� ��selector���evt id� ���proc param list�	�

�process term� ��� ��selector���process id� ���proc param list�	�

�proc param� ��� � ����var id� j �data term� j � ����param id�

Event terms are special for processes in that they may contain optionally �

preceded parameters� These parameters are set during the course of the process
executing� Operationally these parameters are bound somewhere during execution
and henceforth refer to this value�

A similar role play process terms that are place holders for a process declared
elsewhere� Like for process event terms we may pre
x some parameters with a
� � The meaning of such parameters is the property to be set during the process
associated with the identi
er� Note that for process event terms and process terms
parameters with a � can only be variables or parameters
 i�e� local to the process�

�
�
�
� Process Speci�cation

The process sublanguage de
nes sequences of events that are considered as allowed
�parts of� object life cycles� Additional to the operators sequencing
 choice
 parallel

and guarded processes we provide a for each construct for �nite iterations� Recursion

�The parallel operator here implies synchronization�

�	 � Language features for Troll�Templates

is introduced via usage of process terms that is described in Section ������ The
following productions generate the syntactically possible process descriptions�

Syntax

�process� ��� �process� �� �process unit� j �process unit�

�process unit� ��� �process term� j �evt term�

j �choice� j �parallel� j �foreach� j nil

�choice� ��� � �choice alternative� 	

�choice alternative� ��� �guarded process� j �choice alternative� ���guarded process�

�guarded process� ��� �ff �formula� gg� �process�

�parallel� ��� � �parallel events� 	

�parallel events� ��� �evt term� j �parallel events� ����evt term�

�foreach� ��� foreach �var id���data term� do �process� od

Troll does not only introduce a pure process language since we may refer to
state dependent parts of objects via formulae and terms build over attributes�

Process sequencing schemata are constructed out of process units� A process
unit is�

� A process term constructed from a process identi
er �see Section ������ and a
list of parameters referring to attributes
 constants
 variables etc� A variable
can be preceded with a � � denoting that this variable is not free but must
be bound to a value in the course of the process associated with the process
identi
er�

� A process event term constructed from an event identi
er and a list of param�
eters like for process terms� � � preceded variable parameters are bound to
values during �execution� of the process
 i�e� they are set by other objects�

� Nil to denote the empty process�

� A set of guarded �sub�processes grouped with round brackets and separated
with vertical bars �� denoting a choice� A guarded process is a process �op�
tionally� preceded with a �past� formula in curly brackets� Such an alternative
or choice is a valid continuation of a process if its guard is valid in the state
reached so far� To describe a process that uses neither of the alternatives we
can supply the process unit nil to the set of alternatives�

� A for each construct as a
nite iteration depending on the state of the object�
A foreach is de
ned with a reference to a set valued data term� The semantics
of foreach is a nondeterministic sequence of subprocesses for all values of the

��� Template Structure �

set �the data term denoting the set is evaluated in the state before the foreach

unit starts�� Usually the variable declared with foreach is used in the process
itself� We do not introduce a co�routine facility into the process language�
In other words� concurrency must be modelled at the object level or in a
restricted way by means of the parallel operator�

� The parallel operator is used to describe events that occur at the same time
in the course of a process execution� The semantics of a parallel construct is
synchronization of events
 i�e� all events mentioned as parallel have to occur in
one snapshot� We will see later on that this object behaviour resembles calling
of events� Here however such synchronization is only done for a particular
process� In another process speci
ed for an object the mentioned events may
be unrelated again�

In Section ��� we will describe how process speci
cations can be further re
ned
and how they are used to describe the long term behaviour of objects� For the time
being
 we will provide a simple example of a process describing the user interaction
with an automatic teller machine�

A sample process speci�cation �not real Troll text�

variables Bal�money� A�money� Valid�bool�

arrival �� enterCard�MyCard� ��

enterPINCode�MyPIN� �� � checkPinCode�	Valid�

 recordPinCode � ��

� fValidg
readBalance�	Bal� �� enterAmount�	A� ��

throwOutCard �� removeCard ��

throwOutMoney �� getMoney�A�

fnot Validg throwOutCard �� removeCard

� �� leave

On arrival at the machine the user enters his!her card �MyCard�
 enters the PIN
code �MyPIN�
 the PIN code is checked and recorded in parallel� Depending on this
check two di�erent alternatives can be executed� normal operation or an exit by the
machine� MyCard and MyPIN are assumed to be attributes of the object speci
ed
�see below� whereas Valid
 A
 and Bal are variables set during execution� of the
process� For illustration this example may be enough� We will return to process
descriptions in Section ����

��� Template Structure

In this section
 we present the components of templates before we describe the
speci
cation of objects based on templates and object identi�cation� In the course

�
 � Language features for Troll�Templates

of discussion we will often talk about objects meaning objects that behave like
speci
ed in templates� This way templates are generic descriptions of properties of
objects� They de
ne the shape of objects in terms of observable attributes as well
as their possible behaviour in terms of possible events and event sequences� Objects
then are introduced by means of classes
 collections of objects behaving like speci
ed
in their associated templates�

Templates in Troll have the following structure�

template Name

� Imports and Declarations �

� Component� Attribute� and Event Specification �

� Object Behaviour Specification �

end template Name

Although the structure is not
xed due to the syntax rules �see below� the
sequence shown above should be used as a convention� A template name must be
introduced if we specify a template for later reuse in one or more class descriptions�
All template speci
cation parts mentioned above are optional
 but of course there
are some constraints on the existence of some concepts depending on other ones�

Syntax

�template spec� ��� template �template id� ���dt param id list�	�
�template desc items�

end template �template id�

�template desc� ��� local classes �class spec items�

j components ��var spec�� �cmps spec items�

j attributes ��var spec�� �atts spec items�

j events ��var spec�� �evts spec items�

j constraints ��var spec�� �constr seq�

j process declaration ��var spec�� �process decl items�

j processes ��var spec�� ��process use items��
j interaction ��var spec�� �c interaction seq�

In a template speci
cation the description entities components
 attributes
 and
events describe the signature of a template� As such
 their names must be unique
in the template at hand� The same is true for names of local classes that also de�

ne local signature elements� As we will see later on
 �instances of� local classes
can be referenced only via components� Since parameters are allowed for compo�
nents
 attributes
 and events
 uniqueness is de
ned for the identi
er together with
its parameter sorts�

Optionally we can use parameterized templates where we introduce a template
parameter that is later on substituted by a data type when the template is used in

��� Declarations ��

a class description� We will elaborate issues concerning parameterized templates in
Section ����

In the following sections we will describe most of the beforehand mentioned
template features in detail� Some parts will be sketched only and discussed more
deeply later on�

��� Declarations

����� Data Types

Data types are not speci
ed in the Troll framework� Nevertheless data types
are necessary to describe the data storage of objects
 the transfer of data during
communication and not at least changes of the observable states of objects� Data
types are once incorporated into a speci
cation by means of the society speci
cation
data type part and can then be used in templates as domains for attributes
 etc� �see
Section ����� As for a variety of programming languages we assume the following
data types as prede
ned for the speci
cation language Troll
 i�e� they do not have
to be imported�

bool� nat� integer� real� char� string

For the boolean and arithmetic data types we also introduced the basic oper�
ators like and
 or
 ���
 �
 �
 etc� into the Troll�syntax �see the relevant grammar
productions in Appendix A�� Additionally we may construct data types applying
the data type constructors�

set
 list
 tuple
 and enum�

to one of the prede
ned data types or an incorporated �externally speci
ed� data
type� For operations de
ned for data types declared with these constructors see
Appendix B�

Data type domains are introduced by means of the following grammar produc�
tions�

Syntax

�domain� ��� �data type id� j ���class id� ��
j tuple��domain item list�	

j list��domain�	 j set��domain�	

j enum��enum id list�	

�domain item� ��� �tuple sel id���domain�

For the tuple constructor we introduce tuple selector identi
ers to refer to com�
ponents of a tuple by means of symbolic names� The tuple selector identi
ers can
be post
xed to data terms using the traditional dot notation�

�� � Language features for Troll�Templates

For an explanation of the possible operations on the data types constructed
with type constructors see �JSHS���� Special treatment is necessary for identi
er
data types� As we will see
 identi
er data types are used as
handles� to objects�
Together with class names they are thus something like references� However
 the
only operation on identi
er data types visible for Troll users is the equality test�
The most important feature in this context is that identi
er types can be stored as
attribute values etc�

����� Local Classes

As brie�y mentioned in the previous section classes are abstraction mechanisms
above templates� Classes are collections of similar objects� As such objects can be
visible to the whole society
 i�e� being components in several other objects
 or be
visible for only one object� The local class section makes it possible to de
ne such
local classes�

Syntax

local classes �class spec items�

Local classes basically have the same representation as global classes that are
introduced in Section ���� For the time being
 we refer the reader to Section ������

����� Variable and Parameter Declarations

To describe various properties of objects we introduce several kinds of formulae
all based on sorted
rst order predicate calculus� Variables used in these formulae
must be declared� Variable declaration are expressed according to the following
syntactical rules�

Syntax

�var spec� ��� variables �var decl seq�

�var decl� ��� �var id list� � �domain�

The meaning of such variable declaration is a universal quanti
cation for each
formula in a given block
 e�g� a constraint or interaction description etc� �see below��

Parameters on the other hand may be used to describe attributes
 events and
components in more detail� Syntactically they are declared similar to variables�

Syntax

�param decl� ��� ��parameter id����domain�

��� Attributes and Events ��

One reason to introduce the second form of variable declaration is the possibility
to declare parameters locally to attributes
 events
 and components together with
their data types and to refer to them locally� The use of symbolic names for pa�
rameters locally in attribute
 event and component descriptions is thus supported
to enhance the readability of a speci
cation document� Another reason for such pa�
rameter declaration is to be closer to traditional notations �e�g� formal parameters
of procedures etc���

��� Attributes and Events

The attribute and event speci
cation de
nes the observable properties of objects
respectively the state changing operations� They de
ne the local signature of an ob�
ject� Attributes and events are speci
ed with names and named parameters together
with properties further re
ning the speci
cation� Although parameters need not be
named
 names will enhance the readability of a speci
cation text� In most cases
names are necessary to refer to parameters �see below�� In the next two sections we
will introduce these properties in more detail�

����� Attributes

The attribute section of a template speci
cation de
nes the observable properties of
objects� Attributes inTroll can be compared to instance variables of languages like
e�g� Smalltalk� However there is a di�erence in that attributes in Troll are visible
at the object interface� Encapsulating attributes and only providing access methods
is considered an implementation related concept that seems not to be useful for
semantic data modelling �for an overview of the mechanisms supported by semantic
data models see also �BMS��
 UD��
 HK��
 PM�����

Attributes in Troll are speci
ed with a name and type� Optionally attributes
may have parameters
 thus introducing attribute sets� Attribute parameters are
speci
ed with an optional name
 which is considered as a formal parameter declara�
tion similar to a variable declaration� Parameterized attributes de
ne one attribute
for each possible value of the parameter sorts �data types��

Syntax

�For� attributes ��var spec�� �atts spec items� �

�atts spec� ��� �att id����param decl list�	� ��data type�

�att desc items��

�param decl� ��� ��parameter id����domain�

�� � Language features for Troll�Templates

�att desc� ��� inherited from �class id�

j hidden j constant
j restricted �formula�

j initialized �data term� �default�
j derived �data term�

The naming of parameters is needed to make it possible to refer to them in the
description part of attributes� In the next paragraphs we will introduce the various
options of an attribute speci
cation in more detail� The inherited from clause is
explained in the section on inheritance �Section ������� There we describe how
features of attributes can be re�ned in role classes�

�
�
�
� Attribute Constraints

Attributes in Troll are typed� Additional to this simple form of attribute con�
straint we may specify constraints on the possible values attributes can take� For
example an attribute Age of type integer in a Person object may take values in the
range � to ��� �to be optimistic�� For such constraints
 attributes can be speci
ed
as being restricted � A formula after the keyword restricted must hold for every value
that is to be stored with this attribute� For example�

���

attributes

Age�nat restricted Age �
 � and Age �
 ����

���

The formula may be constructed out of the attribute name
 names of attribute
parameters
 constants
 and suitable operators� For this kind of constraint it is not
allowed to specify dependencies among attributes� See the section on constraints
below �Sec� ����� One minor deviation from this rule is introduced in an example
below�

Another kind of constraints on attributes that must be considered local are
constraints on possible attribute parameter values� Attribute parameters are used
to describe sets of attributes of the same kind� As an example see attributes
IncomeInYear of type money that record the earnings of an employee object for
each year�

���

attributes

IncomeInYear�Year�nat��money

restricted Year � ���� and Year �
 ���� �

���

��� Attributes and Events ��

This time
 not the possible values of the attribute de
ned are restricted but the
possible set of attributes de
ned by the parameterized attribute speci
cation� Since
this constraint is also local to one attribute speci�cation
 it can be formulated with
the restricted option for attributes�

The semantics of such a restriction is explained as follows� The formula has to
be valid for a given attribute and its value� For variable substitutions where the
formula is invalid
 the value of the attribute denoted by IncomeInYear
Year� has
to be unde�ned � The value unde�ned is a value of all data types in Troll� The
following formula describes this formally�

forall
Year�nat ��
Year����� and Year�������

or undef
IncomeInYear
Year�� �

where the predicate undef is de
ned as yielding true if the attribute has value
unde�ned else false� We have to use the build in predicate undef because comparison
with the value unde�ned always leads false as all data type operations that take at
least one actual parameter value that is unde�ned yield unde�ned �

Above we mentioned the rule �attribute restrictions can only refer to the at�
tribute itself
 parameter values and constants�� Formally
 an attribute term with
di�erent parameter values denotes di�erent attributes� We allow one deviation from
this rule as depicted in the following example�

���

attributes

IncomeInYear�Year�nat��money�

restricted IncomeInYear�Year��� �
 IncomeInYear�Year��

���

Here di�erent attributes can be used in a restricted clause� The example shows that
we may introduce restrictions that are considered not local to one attribute but local
to an attribute speci�cation�

�
�
�
� Initializations and Defaults

Attributes as observable object properties may change their values upon occurrence
of state changing operations �events
 see below�� The
rst state plays a special role
in the life of an object� By default attributes have the value unde�ned upon birth
of an object� In contrast to the default case we may specify attribute values for the

rst object state� This can be done in two di�erent ways�

Firstly we can provide a data term constructed in similar ways like the formulae
in attribute restrictions
 namely constructed out of names of attribute parameters

constants
 and data type functions� The initialization now is speci
ed as a data

�� � Language features for Troll�Templates

term after the keyword initialized � Furthermore an initial value can be strict or may
be overridden� The latter case is marked with the keyword default��

As example see the following speci
cation�

���

attributes

Age�nat initialized � default �

HasBooks�set�
LibBook
� initialized emptyset �

���

The
rst initialization rule assigns � to the attribute Age upon birth of an object�
Default is used to state that a special birth event �see below� may override this value�
This does not hold for the second rule describing HasBooks� HasBooks is initialized
to an empty set of identi�ers like �LibBook� for LibBooks� Overriding of the initial
value emptyset is not possible� Object identi
ers will be introduced in the section
about classes� For the time being
 identi
ers are simple data type values�

Secondly as already mentioned we may introduce birth events with initialization
parameters �for examples see below�� If this variant is used in conjunction with the

rst initialization
 the initialization rule must be classi
ed as default�

With the speci
cation of initialized ���default rules the speci
er states that he!she
wants to have the possibility of supplying another initial value for some objects�
Omitting the default keyword states that it is forbidden to supply another value
upon birth� This feature can thus be used as a hint for the reader of a speci
cation
and to document the semantics of a certain initialization rule�

In the next example
 we introduce initialization of attributes with parameters�
Now we have to supply initial values for all attributes de
ned this way�

���

attributes

IncomeInYear�Year�nat�

restricted Year � ���� and Year �
 ���� �

initialized � �

Xpto�N�nat�

initialized N�� �

����

���

The attribute �set� IncomeInYear is initialized to zero for all parameter values
that do not violate the restriction speci
ed whereas the value of the attributes Xpto
depends on its parameter� Thus the semantics of this speci
cation can be illustrated
as follows �pseudo code notation��

�We used the word default further classifying initialization to stress that the initialization rules
become invalid for object creation events that want to provide di�erent initial values�

��� Attributes and Events ��

�� upon birth of an object �

variables Year�N�nat�

IncomeInYear�Year� �

if Year����� and Year�
����

then �

else unde�ned

� �

Xpto�N� �
 N � � �

In principle we can also de
ne initialization rules like the following�

attributes

F�N�nat� initialized if N
� then � else N�F�N��� � �

Clearly this is an interesting issue for a speci
cation language like Troll� For
executing such a speci
cation we have to provide some kind of lazy evaluation� As
mentioned earlier we want to leave this point open in the syntactical representation�

In Section ����� we will introduce birth events that describe object creation and
in Section ������� we will introduce initialization of attribute values based on birth
events that is introduced for convenience�

�
�
�
� Attribute Derivation

Attributes of an object may be either stored or computed � Latter attributes are
named derived attributes in Troll� A Person template may specify the Birthdate

or the Age property of a person and derive either of them in terms of the current
date� The value of a derived attribute is thus determined by a data term over the
observable properties of an object� This data term is written after the keyword
derived �

For example see the following speci
cation�

���

attributes

BirthYear�nat

derived YearOf�Today� � Age �

���

The BirthYear attribute is calculated from the current date �assuming Today

is another attribute of the object at hand�	 and the Age attribute of the person�
YearOf is an operation of the data type date
 namely extracting the year part of a
date value�

Attribute derivations must be speci
ed carefully� As an example look at the
following derivation rule�

�In a real example this would be an attribute of an object Calendar that has to be referenced
somehow�

�	 � Language features for Troll�Templates

���

attributes

xpto�n�nat��nat

derived

if n�� then n � xpto�n��� else � � �

���

Regarding only attribute names without parameters this de
nition contains cy�
cles� Nevertheless it is a consistent speci
cation of the factorial function described
with parameterized attributes� To avoid such situations that may not always be ob�
vious at
rst reading of such speci
cation we may restrict the derivation data term
to contain only stored attributes or perform tests on the circularity of de
nitions�
The syntax is liberal so that analyzer tools can warn the speci
er depending on the
current strategies�

�
�
�
� Interfacing

As mentioned in the beginning of the attribute description section attributes are
visible inTroll� In other words attribute values can be observed from other objects�
In contrast to other languages
 mainly programming languages
 state information
is not completely encapsulated� To obtain privacy for some speci
cation details

attributes can be speci
ed as being hidden� Hidden attributes are used inside the
template at hand like ordinary attributes� For another object hidden attributes
cannot be accessed� For example we may specify some attributes as hidden �with
stored values� and some others as derived attributes with values determined via the
hidden attributes�

As an example for derived and hidden attributes we provide the following spec�
i
cation fragment describing persons�

template person

attributes

Likes�set�
Person
� hidden�

Birthdate�date hidden �

Age�nat derived YearOf�Today� � YearOf�Birthdate��

���

end template person

where the Likes and Birthdate attributes are not made public but can be used in
local formulae�

�In general we avoided to restrict the syntactical rules too far so that tools supporting the
speci�cation process can be adjusted to the features that can be handled in a given phase of
development of a speci�cation document� For example in early phases of speci�cation we may use
arbitrary temporal formulae� In later phases we may want to prototype such speci�cation but the
prototyping tool can handle only a restricted set of temporal formulae� Then the tool has to insist
that such formulae must be transformed to simpler ones� The language however must be open�

��� Attributes and Events �

Since hiding or interfacing in this sense is useful for specifying private properties
of objects
 the keyword hidden can be used also in the events and components speci�

cations �see below� that de
ne the operation and composition interface of template
speci
cations�

We will provide examples for the encapsulation property for events in the fol�
lowing sections� The feature hidden can be used for events and components similar
as for attributes�

����� Events

An important part of an object behaviour description is the speci
cation of events
that can take place in an objects life� According to approaches of object oriented
languages in general we identify three di�erent aspects of events�

�� An event can be allowed in a given object state or be forbidden in a given state�
In terms of functional speci
cation we speak of necessary preconditions
 safety
rules
 or enabling conditions�

�� An event can have e�ects on the local state of an object� In other words we
observe a new state after an event occurs� In more traditional terms events
change state variables �attributes��

�� An event can involve other events in di�erent objects or in the object at
hand� To achieve the desired functionality an event of an object triggers
communication with other objects�

These aspects are among others grouped together into an event description for
a given event and a given list of formal parameters� In former Troll versions
the description of the three di�erent aspects mentioned above where introduced in
di�erent sections of the template� For Troll we propose an integrated view where
an event is described by the necessary conditions that must be ful
lled �enabled�

the local change of state �changing�
 associations with other events �calling�
 and
return values �binding� of events �see below�� A derivation feature is not introduced
for events�

The description of events has the following syntactical representation�

Syntax

�For� events ��var spec�� �evts spec items� �

�evts spec� ��� �evt id����df param list�	� �evt desc items� �

�df param� ��� �����param decl��

�
 � Language features for Troll�Templates

�evt desc� ��� inherited from �class id�

j birth j death j active j hidden
j enabled �formula�

j changing �c changing seq�

j calling �c calling seq�

j binding �c binding seq�

This concrete syntax is a merge between the logic based view of speci
cation
languages � a speci
cation is a set of formulae�� and the operational view of object
oriented programming languages � methods de
ne state changes��� The semantics of
most of the sections introduced so far however is not changed compared to former
Troll�versions�

The head of an event speci
cation is an event description build from an event
name and a list of �typed� formal parameters with optional binding responsibilities�
A �� preceding a parameter denotes parameters that are instantiated by the speci
ed
event itself
 that is
 they must not be instantiated by the caller � The instantiation or
binding of parameters to values is in the local responsibility of the event respectively
object speci
ed�

In the next paragraphs we will introduce the various options of an event speci�

cation in more detail� Again
 the inherited from feature for events is explained in
Section ������

�
�
�
� Activity

Troll speci
cations describe some Universe of Discourse �UoD� in its whole �ac�
cording to some abstraction level�� In such UoD some events may be observed as
passive
 i�e� events that only occur if they are triggered from some other events�
Other events may occur spontaneously
 i�e� there is no causal dependency� speci�

ed� In a UoD of a library for example we may specify Users with events like the
following�

template User

���

events

borrowBook�
LibBook
� active �

���

end template User

Such events � although causally dependent on other events �the need for reading
a book� � must be classi
ed as active if we abstract away this dependency� This
declaration is performed with the keyword active�

	Causal dependency must not be confused with causality � Causality usually means reactions

on stimuli later on in the objects life�

��� Attributes and Events ��

Active events are not events which are driven by the running system itself in
other words certain events that are given cpu resources in the sense of method
execution� For implementation and design purposes such an initiative concept is
necessary because describing implementation
 we have to model event sequences
that are more than active events in the sense that there is additionally a driving
force for their occurrence� A method execution or the execution of a sequence of
statements in a program is an example for such a notion of initiative�

Active events are events that are not forced to occur by events speci
ed in a
Troll document� They are thus the interfaces to the real world� they describe the
boundary to real objects and abstract away a causal dependency to parts of the real
world that are not speci
ed�

�
�
�
� Birth and Death

Two special classes of events are provided that mark the creation and destruction
of objects �keywords birth and death�� According to the life cycle of an object
 birth
events may only occur as the �rst event in an objects life whereas death events are
the ultimate events in a life cycle� Person objects may be speci
ed with events like
the following�

events

born birth �

die death �

to denote the
rst event in a Person objects life �born� and the last event in a
Person objects life �die��

Birth events are obligatory for an object speci
cation� Death events on the other
hand are optional� Objects without death events are supposed to live forever � For
example a Book may be considered an ever lasting entity that once written and
published will never be destroyed �in technical terms� we forbid to remove the book
info from a database��

As mentioned in the attributes section
 birth events with parameters can be used
to initialize attributes
 too� We will elaborate this topic in Section ��������

�
�
�
� Enabling Conditions

One way to restrict event occurrences in an object is by means of enabling conditions
mentioned after the keyword enabled � Enabling conditions state conditions that
must be ful
lled in order to allow an event to occur
 i�e� the other way round
 they
ensure that something must not happen �Lam��� if the condition is not valid in a
given state� Enabling conditions in Troll are formulae build over state variables
�attributes� and parameters of events�

The meaning of an enabling condition can informally be described as follows� An
event
 instantiated with actual parameters
 can only occur if the condition holds in

�� � Language features for Troll�Templates

the current state� Inside the condition the event parameters can be used to refer to
the actual parameter values when the event occurs� In a bank context a withdraw

event in an Account object may for example only occur if the current Balance

attribute of the object is greater or equal to zero�

events

withdraw�Amount�money�

enabled Balance �
 ��� �

To be more general
 we may not only refer to the current state of an object
in de
ning enabling conditions� To describe more complex life cycles
 we can also
use a past directed temporal logic to refer to the current history of an object� The
special predicate after frequently used in this context is true in the state after the
mentioned event took place� Together with the temporal quanti
ers
 conditions refer
to object histories� We may for example specify that a withdraw event can only
occur if a deposit event has occurred with an arbitrary parameter value sometime
in the past�

events

variables m�money�

withdraw�Amount�money�

enabled sometime after�deposit�m�� �

The enabling condition remains valid after the
rst occurrence of a deposit event
that occurs in an objects life�

Positively speaking
 enabling conditions only state that an event may occur �is
enabled�
 not that it occurs in a given state� The validity of a general past formula
can be evaluated with knowledge of the whole history of an object� For a given
formulae we can reduce the necessary information about the history� Therefore we
have to collect information about attribute values and event occurrences in the past
�according to the point in time where the formula is evaluated� that are used in the
formula� First steps to investigate the derivation of this information are reported in
�Sch��
 SS��
 SHS����

Conditions in past temporal logic thus may be used to describe the possible oc�
currences of events depending on other events that occurred in the former life of an
object� To describe more complex life cycles we may specify further conditions with
the process description feature of templates� Often the conditions used as enabling
conditions will be relatively simple involving only
rst order logic or unnested tem�
poral formulae with an after predicate� Nevertheless the syntax allows arbitrary
past temporal logic conditions�

�
�
�
� State Change Speci�cation

An important part of an event description are state change rules� Here we describe
how the values of attributes changes with the occurrence of events� State change

��� Attributes and Events ��

rules are de
ned by a restricted form of sentences of a positional logic �FS�	�� Sen�
tences in this logic refer to positions in the life of objects
 namely event occurrences
and describe formulae valid in the state after the event occurrence�

In case ofTroll these formulae are restricted to equalities with a single attribute
term on the left hand side
 i�e� assignments� We allow for conditional rules that are
only valid if the given condition holds in the current state� For convenience we allow
lists of assignments for a given condition�

Such assignment rules in event descriptions have two parts�

� An optional condition formulated in
rst order logic� The condition describes if
the assignment has to be applied in the current state of the object� In contrast
to the last Troll version we only allow
rst order conditions because past
temporal logic should be reserved to describe possible life cycles via enabling
conditions�

� A change list consisting of a list of assignments that become observable after
the event occurred� An e�ect is denoted by an attribute term �left hand sides
of the assignment� and an arbitrary data term on the right hand side�

Syntax

�c changing� ��� �f�formula�g� �changing list�

�changing� ��� �att term� �� �data term�

State change rules are expressed as changing rules as the following example taken
from the speci
cation of a book in a library shows�

���

attributes

OnLoan�bool initialized false�

Due�date �

Borrowers�list�
Person
� initialized emptylist �

BadGuys�list�
Person
� initialized emptylist �

events

borrow�From�
Person
�At�date�Days�nat�

changing

OnLoan �
 true�

Due �
 AddToDays�At�Days��

Borrowers �
 insertfirst�From�Borrowers��

return�From�
Person
�At�date�

changing

OnLoan �
 false�

f At � Due g BadGuys �
 insertfirst�From�BadGuys��

��� �

���

�� � Language features for Troll�Templates

The event borrow changes attributes OnLoan
 Due
 and Borrowers
 whereas the
return event changes OnLoan but the attribute BadGuys is only changed if the return
date is to late� An alternative form of the last rule is the following�

return�From�
Person
�At�date�

changing

���

BadGuys �
 if At � Due

then insertfirst�From�BadGuys�

else BadGuys

� �

���

The data type sublanguage contains an if then else operation for all prede
ned
data types� In this example the former conditional changing rule is more natural
since we need not specifying that nothing is changed if the condition is not valid�
In fact there is a frame assumption in Troll that attribute values can only be
changed by occurrence of events if and only if there is a changing rule for a particular
event!attribute pair �JSHS��
 Saa��
 Jun����

The general form of the change speci
cation allows lists of attribute changes
for one condition and several such conditional change lists� The if then else form
is semantically di�erent in that a new value is assigned in every case �maybe the
old value� whereas the general form allows for no assignments at all �if there is no
condition valid�� For the latter case the mutual exclusion of arbitrary conditions
cannot be proven syntactically�

�
�
�
� Compound State Changes

The causal relationship to other events is described using so called calling rules�
A calling rule consists of two parts� a condition determining if the calling should
be performed in the current state
 and a list of event terms denoting the events
participating in the calling for the given conditions� Since di�erent conditions can
be speci
ed for di�erent event term lists
 it is possible to specify several conditional
calling rules�

Syntax

�c calling� ��� �f�formula�g� �evt term list�

�evt term� ��� ��selector���evt id� ���proc param list�	�

The meaning of the sequence of calling rules can be depicted as follows� An
occurrence of the event at hand causes the occurrence of the events denoted after
the keyword calling � However
 this is only the case if the corresponding conditions
are ful
lled� If one of the caused events is not allowed �for example it violates its

��� Attributes and Events ��

enabling condition or after its occurrence a constraint is not ful
lled any more� all
participating events cannot occur� Conceptually
 all events caused this way occur
at the same time �HS����

This means also
 that there is no direct correspondence to procedure calling or
message transmission in other object oriented languages� Calling thus describes no
control
ow in the original sense of this term� Calling describes only the causal
dependency between di�erent events��� The events listed are forced to occur if the
originating event occurs
 but not vice versa� All events called together
 precisely
the transitive closure of the
rst event triggered
 describe the state change of the
system�

As an example for a calling rule we provide the following speci
cation fragment

a slightly modi
ed return event for LibBooks as introduced above�

���

attributes

BadGuys�list�
Person
� initialized emptylist �

Due�date �

events

insertBadGuy�Person�
Person
�

changing

BadGuys �
 insertfirst�From�BadGuys� �

return�From�
Person
�At�date�

changing

OnLoan �
 false

calling

f At � Due g insertBadGuy�From� �

���

Here the changing of the attribute BadGuys is performed using an auxiliary event
insertBadGuy �just for the sake of the example�� In a more realistic example such
events will be introduced only if there are more e�ects to be described�

The concept of calling as it is used here is a way to structure a state change
using di�erent events� Later on we will see that event calling can be generalized
for synchronous communication between parts of a composite object and between
separately de
ned objects of an object society �interaction and relationship��

�
�
�
� Parameter Binding

The occurrence of an event may be triggered by the environment of an object for
example by means of event calling or interaction �see below�� Responsibility to
provide parameter values is not limited to the caller� Some parameters may be left

�
Again� causal dependency should not be understood as causality � The term causality is some�
times used to describe reactive behaviour of systems� i�e� an event causes an object to react later
on in its life cycle�

�� � Language features for Troll�Templates

unknown on behalf of the caller
 whereas the callee is responsible to provide values
if the event occurs�

In traditional terms a data
ow against the causal relationship between the caller
and the callee is speci
ed� Data �ow on the other hand is often used to describe
data exchange between procedure calls with input and return values� In Troll

the relationship between the caller and the callee is more subtle� Conceptually
both events occur at the same time �see above�� Thus there is no data �ow in the
traditional sense but more or less a uni�cation process takes place where exactly
one value is substituted� Syntactically
 the binding rules are formulated similar to
attribute updates but with an equality sign instead of the assignment �operator��

Syntax

�c binding� ��� �f�formula�g� �binding list�

�binding� ��� �parameter id� � �data term�

In the former Troll version this process of returning a value to he caller was
modelled with in and out parameters together with enabling conditions for events
selecting suitable values for these parameters� This property induces the following
problem� The enabling condition must select exactly one data value for a given
parameter� Otherwise the e�ects of such a speci
cation interferes with the intuitive
semantics of the calling relationship namely the callee event will be disallowed �no
value selected� or several events take place �something like a multicast�� To avoid
such problems
 parameter binding is speci
ed explicitly�

As an example we may return a value to the caller of a borrow event in a LibBook

object modelled as a binding rule in the following manner�

attributes

MaxBorrowDays�nat initialized �� �

events

borrow�From�
Person
�At�date��ReturnAt�date�

binding

ReturnAt
 AddDaysToDate�At�MaxBorrowDays� �

���

Upon calling this event
 the parameter ReturnAt is equal to the value calculated
by adding the current date At and the maximal time allowed for this library book�

This language feature re�ects the idea of a speci
cation of an atomic state tran�
sitions that is supposed to return a value that is calculated with the knowledge of
another object � How such a speci
cation is implemented in later design steps is irrel�
evant at this stage� It should be noted that enabling conditions or calling conditions
of other events calling for events with binding responsibilitiy must not refer to the
 returned� parameters� Although this feature would be possible from a semantics

��� Attributes and Events ��

point of view
 it is counterintuitive to refer to a value that is returned� in some
sense by a calling�

�
�
�
	 Hidden Events

As for attributes
 also events may be declared as being hidden for other objects�
Remember the example of the insertBadGuy event of library books�

���

events

insertBadGuy�Person�
Person
�

hidden

changing

BadGuys �
 insert�rst�Person�BadGuys� �

return�From�
Person
�At�date�

changing

OnLoan �
 false�

calling

f At � Due g insertBadGuy�From� �

���

Clearly this event is only local to the library book speci
cation� It must not be
called from outside the object because all necessary information for its occurrence
is available inside the object� Otherwise other objects would have the possibility to
call this event
 thus inserting persons into the bad borrowers list without returning
a book late� The hidden feature is thus not used to hide implementation details but
as documentation that a special event makes sense only locally�

Another example for the use of hidden events is relevant for later design steps�
In Troll we may start specifying a NatStack�object template providing only the
signature and some initial constraints and enabling conditions
rst�

template NatStack

attributes

Top�nat initialized undefined �

Empty�bool initialized true �

events

Create birth �

Push�Elem�nat� �

Pop enabled not Empty �

end template NatStack

Later on in the design process we decide to implement the stack on top of an internal
�array and pointer structure� that should be hidden at the external interface of the
NatStack object�

�	 � Language features for Troll�Templates

template NatStack

attributes

Top�nat

derived

if not Empty then Array�Pointer��� � �

Empty�bool

derived �Pointer
 �� �

Array�No�nat��nat

restricted No �
 �

hidden

initialized Array�No�
 undefined �

Pointer�nat

hidden

initialized � �

events

Create birth �

Push�Elem�nat�

changing

Array�Pointer� �
 Elem�

Pointer �
 Pointer � � �

Pop

enabled not Empty �

changing

Pointer �
 Pointer � � �

end template Stack

Although this is a rather simple example of hiding information inside an object
it shows the basic concepts� It is also a very simple form of rei�cation that deals
only with snapshots of events �HS��� as implementation of event behaviour not with
event sequences as needed in more general settings �ES�	
 EDS��
 FM���� Later
on we will see that the concept of hiding information about objects is orthogonally
extended to part objects� Then we may reformulate the stack example in terms of
�pointer and array objects� not visible outside the stack �see Section �����
 Page �	��

�
�
�
� Initialization with Birth Events

As discussed in the attribute speci
cation section we may override attribute initial�
izations if the initialization rule for a given attribute is classi
ed as default� The
default classi
cation must therefore be used if we want to introduce speci
c birth
events parameterized so that they may deliver initial values�

For example a speci
cation for a bank application may contain an account tem�
plate speci
cation that has birth events providing a di�erent set of parameters �the
account number
 the id of its holder
 an initial balance etc��

��� Attributes and Events �

template account

attributes

No�nat �

Holder�
BankCustomer
 �

Balance�money initialized ��� default �

events

open�No�nat� Holder�
BankCustomer
� birth �

openWithMoney�No�nat� Holder�
BankCustomer
�Balance�money� birth �

end template account

Parameters of these events are named after the name of attributes� This is an ab�
breviation of changing rules for these attributes
 that is
 introduced for convenience�
Without this abbreviation we would have to specify�

template account

attributes

No�nat �

Holder�
BankCustomer
 �

Balance�money initialized ��� default �

events

open�InitNo�nat� InitHolder�
BankCustomer
�

birth

changing

No �
 InitNo �

Holder �
 InitHolder �

openWithMoney�InitNo�nat�

InitHolder�
BankCustomer
�

InitBalance�money�

birth

changing

No �
 InitNo �

Holder �
 InitHolder �

Balance �
 InitBalance �

���

end template account

thus inventing new names for the parameters and specifying the state update rules
for the initialization parameters� For attributes that are initialized with a special
initialization rule �like Balance� the classi
cation as default makes possible the
overriding of the initial value�

We introduce this abbreviation for birth events only� For other events the chang�
ing rules have to be speci
ed explicitly even for such simple events that only provide
a new value for an attribute� For birth events as a special class of events such ini�
tializations are frequently found in a speci
cation� They are for example used to
initialize key attributes �see below��

�
 � Language features for Troll�Templates

��� Constraints

In a constraints speci
cation we may impose restrictions on the observable states
�attributes� and on the evolvement of attribute values over time� Constraints that
restrict the possible observable states are called static constraints or invariants�
Constraints that restrict attribute evolution are called dynamic constraints�

Static constraints are formulae of
rst order logic whereas dynamic constraints
are formulae of Future Tense Temporal Logic as described in Section ����� �Ser�	

Lip��
 SL��
 Saa���� Constraints implicitly also restrict the admissible behavior of
objects in that certain state transitions �i�e� event occurrences� are not permitted�

Syntactically
 constraints are expressed as a sequence of FDTL formulae op�
tionally preceded with the keyword initially � Initial constraints have to be ful
lled
relatively to the initial state whereas general constraints are valid for the whole life
of an object
 that is
 they must be valid in each state�

Syntax

constraints ��var spec�� �constr seq�

�constr� ��� �initially� �formula� �

As an example for an initial constraint we may specify
 that a new Account

object sometime must contain at least �		 " before it can be overdrawn �
rst rule�

that an account in the red condition must be in non red condition sometime in the
future �second rule�
 and that an account can only be overdrawn up to �						�	 "�

constraints

initially �eventually Balance � ��� before Red� �

Red
� eventually�not Red� �

not �Red and Balance � ���������� �

���

Balance can only be positive in this example� Debts are modeled with the attribute
Red�

In contrast to restrictions formulated for attributes with restricted rules
 con�
straints allow for arbitrary dependencies between attributes respectively their pos�
sible values� Moreover the attributes mentioned in constraints can be incorporated
into the object by means of components or be inherited from a parent object� For
a discussion on components and inheritance see Sections ��� and ������

Restrictions can be formulated as constraints as well� We introduced restrictions
because from a modelling and documentation viewpoint it is more natural to group
such local properties of attributes in the attribute speci
cation and de
ne general
constraints as a di�erent concept�

��� Life Cycle Speci�cation ��

��� Life Cycle Speci	cation

The speci
cation of life cycles of an object is the main part of the overall behaviour
speci
cation and describes the possible evolution of objects� An event description
merely describes the conditions and e�ects local to event occurrences� To describe
entire life cycles we have to talk about sequences of events and dependencies among
events that occur sequentially�

Modelling real world entities
 we have to deal with a variety of di�erent be�
haviours� Some objects may be highly deterministic and their behaviour should be
described by an explicit process� For example a clock or a part of simple robots
often follow a static sequence of events� This kind of objects can be described by a
pattern of behaviour �

Other objects sometimes can be described by their restrictions on event occur�
rences �enabling conditions in event descriptions� in di�erent states of their life
namely if there possible life cycles underlie only minor restrictions� Since Troll
does not contain an extra construct to describe obligations or liveness properties re�
spectively commitments as Troll�
 the process language introduced here provides
mechanisms to describe such properties without being too operational�

����� Speci�cation of Processes

The process part of an object description is used to de
ne the long term behaviour of
objects in terms of sequences of events� Such sequences can be speci
ed with various
options that de
ne the dependencies on events not mentioned in a particular process
description� Such dependency can for example describe which events may interleave
the speci
ed process
 when a speci
c sequence is in e�ect �start mode�
 or to which
extend a sequence must be executed�

An object life cycle description is separated into two parts the declaration part
and the usage part � With the former
 processes are declared that can be composed
of other processes also declared there or being �syntactically� inherited from parent
object speci
cations� In the usage part
 processes that describe the behaviour are
listed up and are further re
ned with respect to the above mentioned dependencies
on other events�

Syntactically processes are de
ned with the process declaration feature of a tem�
plate description�

Syntax

�For� process declaration ��var spec�� �process decl items��

�process decl� ��� �process id����df param list�	� � �process� �

�df param� ��� �����param decl��

�param decl� ��� ��parameter id����domain�

�� � Language features for Troll�Templates

�process� ��� �process� �� �process unit� j �process unit�

�process unit� ��� �process term� j �evt term�

j �choice� j �parallel� j �foreach� j nil

�choice� ��� � �choice alternative� 	

�choice alternative� ��� �guarded process� j �choice alternative� ���guarded process�

�guarded process� ��� �ff �formula� gg� �process�

�foreach� ��� foreach �var id���data term� do �process� od

�evt term� ��� ��selector���evt id� ���proc param list�	�

�process term� ��� ��selector���process id� ���proc param list�	�

�proc param� ��� � ����var id� j �data term� j � ����param id�

The composition of particular process patterns uses the process combination
operators sequencing
 choice
 parallel
 and for each that were described in the sub�
language section on processes� Now we can give names to processes and have the
possibility to also describe recursive processes�

The top level processes for an object are de
ned with the process feature for tem�
plates� Syntactically we write down the process terms used to de
ne the behaviour
of objects after the keyword processes as a template description feature�

Syntax

For� processes ��var spec�� ��process use items��

�process use� ��� �process term� �process desc items� �

�process desc� ��� initiative j weak j start �formula�

interleaving �interleave mode�

�interleave mode� ��� none j free j excluding �event term list�

Object life cycles are correct if they respect all listed processes
 that is
 the
possible life cycles are de
ned as the intersection of the possible life cycle sets de
ned
by each particular process listed�

����� Process Features

Similar to attribute
 event
 and component speci
cations process declarations are
speci
ed with a set of features relating the process at hand to other events and
further re
ning its properties� The possible options include�

��� Life Cycle Speci�cation ��

� a mode for encapsulation against other events that in various degrees restricts
other events to occur during the �execution� of the process speci
ed

� a start mode that declaratively describes when a speci
c process sequence
becomes valid in an objects life

� a weak or strict mode that describes to which extend a process has to be
executed or can be interrupted by a death event �thus de
ning some kind of
normative behaviour�
 and

� an activity mode describing initiative behaviour of an object�

In the sequel
 we will describe these options in more detail�

�
�
�
� Degrees of Encapsulation

With the interleaving mode speci
cation we describe the various possibilities events
may interleave the speci
ed sequence� Interleaving can be classi
ed as none
 free

and excluding �

The normal� case� A natural way to regard processes is to assume all events
mentioned in a process declaration have to obey the speci
ed sequencing schema�
This means that there may be events interleaving the process but they must not
be mentioned in its declaration� The events explicitly mentioned in a description
must exactly respect the sequencing conditions� For example we may specify that
an object locally has to behave in a speci
c manner but there may be events of part
objects that are independent and may interleave�

None� Sometimes an interleaving of other events cannot be allowed because of
interferences with the task of the process speci
ed� A process that is speci
ed with
the interleaving mode none behaves in some sense as a transaction� Note that
this classi
cation has the same e�ect as locking the object for the time of process
execution� An access in terms of other events cannot take place� The object can be
observed however
 it is not read locked�� This feature has to be used with care� it
describes an object that can only execute one task for a speci
c time span �until the
process in e�ect ends��

Free � The most liberal behaviour is de
ned as a free process� In this case we
are not interested in any restrictions concerning interleaving� For example we can
specify that a product object must su�er from increasePrice events as long as there
is sometimes a decreasePrice event in its life cycle� Here we allow an event like
increasePrice to occur several times
 that is to �interleave� the sequence �pseudo
notation��

ProductLife � increasePrice �� decreasePrice �� 			

a normal object behaviour requires a decreasePrice event after an increasePrice

with no multiple increasePrice events interleaving� Other events are free to do

�� � Language features for Troll�Templates

so however� Several increasePrice events do not force additional decreasePrice
events in the ongoing process� The semantics of such a process is intuitively de
ned
as follows� A life cycle respects the speci
cation if the sequence speci
ed is at least
one subsequence of the life cycle�

Excluding � For this mode �extending the normal mode� we can identify some
events besides the ones mentioned in the description that are also not allowed to
interleave� These can be listed with the excluding option�

The default for a process description is to assume that events mentioned in
a process speci
cation have to follow the sequence speci
ed �the normal� case��
The free
 none
 and excluding features thus denote more liberal respectively more
restrictive behaviour�

�
�
�
� Start Mode

Sequencing speci
cations may depend on the situation an object has reached so
far� A situation in this sense is a particular point in time after a given sequence
of events has occurred �a state�� A particular situation is the state after the birth
of an object� Other situations are classi
ed using predicates over state variables�
To refer not only to observable properties of objects �attributes� but also to events
that occurred so far
 Troll supports past formulae to describe situations to be
the �start� of a particular process� After the keyword start we write down a PDTL
formula that denotes a state of an object where the process de
nition becomes valid�
Frequently we will provide formulae with an after predicate at this position� The
initial situation after the birth event is the default start of a speci
ed process�

�
�
�
� Weak and Strict Mode

To describe some form of normative behaviour of objects
 i�e� a sequencing schema
that is usual but may be violated by the object at hand is necessary to describe for
example representations of human objects� A user of an automated teller machine
�ATM� can be depicted writing down the normal way of interacting with such ma�
chine�
rst he!she puts his!her card in
 enters his!her PIN code selects the amount
of money
 etc� and
nally draws out the money� If for some circumstances he!she
forgets to get the money this behaviour is unusual but not forbidden
 the process
can be classi
ed as being weak ��� The weak feature thus models the distinction
between an obligation that must occur in an objects life and a commitment that
should occur in an objects life �compare commitments and obligations in Troll�
�JSHS�����

��Although we are able to specify this behaviour without a weak mode using guarded processes �
the former way of specifying is more abstract and avoids low level speci�cations� It must be noted
� as we have sketched above � that the introduced options and the process operators are not
completely orthogonal to another� We may express some of them in terms of others�

��� Life Cycle Speci�cation ��

If no weak feature is given
 the process is assumed to de
ne a strict behaviour
that has to be executed eventually�

�
�
�
� Initiative Mode

A process can be classi
ed as being initiative to describe an internal force of an
object to execute a process� An initiative process describes a behaviour of an object
that need not be triggered from other objects� Such behaviour can be compared
to an imperative program given CPU resources� In more concrete terms we de�
scribe this behaviour as an object entering a special role �see Section ���� where
the events mentioned in the initiative process become at least active events in the
sense described in the section on events� The reason to introduce a new keyword
is the di�erence between active events that model an abstraction from real world
dependencies and initiative events that occur if they are enabled�

The default initiative mode is no initiative� Declaring a process with initiative

means all its events become active as long as the speci
ed process is executed���

�
�
�
� Recursion

A usual operator for process languages is the recursion operator � Up to now we
only talked about the process items event terms
 choice
 for each
 parallel
 and
process terms� Using the identi
er of a process declaration
 i�e� a process term in
the declaration itself de
nes a recursive process� Thus we may specify the famous
swiss�� Clock process as follows�

���

process declaration

ClockProcess
 Tic �� Tac �� ClockProcess �

processes

ClockProcess initiative �

Such a clock has initiative
 i�e� its events occur by own initiative without being
called from elsewhere� We abstract from the fact that later in the design process
such a clock is integrated into the concrete implementation by means of an interface
to low level system resources managing time� Interleaving of other events is allowed
so that we may use the clock as a part in other objects
 it cannot die and must tic
forever� Interleaving must not be free because free would make possible sequences
as for example�

Tic �� Tac �� Tic �� Tic �� Tic �� Tac �� Tic �� ������

��Again� the notion of process execution is operational� Declaratively we can talk about a period
of abstract time during a life cycle where the process speci�ed is valid�

��The clock must be from Switzerland because it cannot cease to tick �CSS	���

�� � Language features for Troll�Templates

with several Tic events in a row which is not desired for a clock object�

Another example showing the possible use of process de
nitions and process
usage is the description of the factorial function in terms of an object� The recursive
process FAC is formulated accumulating the temporary results using attributes of
the object� An object description incorporating most of the beforehand mentioned
concepts and features is thus the following�

object Factorial

attributes

ResOut�nat

hidden derived if ResultOK then Result else unde�ned � �

Result�nat

hidden initialized ��

ResultOK�bool

hidden initialized false �

events

create birth �

calcFac�n�nat�

enabled not ResultOK �

readFac��n�nat�

enabled ResultOK

binding n
 ResOut

changing ResultOK �
 false �

init hidden

changing Result �
 � �

ready hidden

changing ResultOK �
 true �

step�n�nat� hidden

changing Result �
 Result � n �

process declaration

STEP�n�nat�
 � fn��g step�n� �� STEP�n���
 fn�
�g nil ��

CALC�n�nat�
 init �� STEP�n� �� ready �

processes

variables n�nat�

CALC�n�

interleaving none

start after�calcFac�n��

initiative �

end object Factorial

This example is meant to illustrate the use of a recursive process de
nition in
a well known example� In the process declaration section we de
ne two processes
STEP and CALC where CALC is the top level process that uses the STEP �calculation�
process� CALC inits the object and then executes� the STEP process with a natural
number supplied as parameter� STEP then executes the event step and recursively
itself with decreasing parameter until the parameter becomes lower or equal than ��

��� Life Cycle Speci�cation ��

Until now we used only a very simple process de
nition language with well known
operators like sequencing
 choice
 and recursion� In the processes section of the
template speci
cation we are embedding this process into the object described here
by specifying

� when it is valid �start after event calcFac�

� that it may not be interrupted by other events �no interleaving�

� that it has to be executed until it has ful
lled its speci
cation

� and that it is an initiative process that is performed without intervention from
outside�

We are aware that this is a rather operational example but it shows features of
Troll that cannot be described easily in half page� �real world� examples� It should
be mentioned here
 that the speci
cation of this process as interleaving none prevents
further calcFac events during the execution of CALC� The enabling condition for
calcFac is thus redundant� Note that � just as an example � only the event interface
is visible for this object�

�
�
�
� Parallel Events

In process languages we have usually an operator to combine processes to execute
concurrently� InTroll parallel processes usually are speci
ed on the level of objects

i�e� objects are the units of concurrency� Nevertheless objects may be composed of
part objects �see Section ���� and we may sometimes want to describe events of such
part objects that are synchronized�

For the process description language of Troll we introduce a restricted parallel
operator ���� for events with the following semantics� The speci
cation�

���

enterPINCode�MyPIN� ��

� checkPinCode�	Valid�

 recordPinCode � ��

���

taken from the ATM�user interaction from Section �������
 Page �� states that the
events checkPinCode and recordPinCode are synchronized
 they occur during one
state change� This means they can only occur in one snapshot of the objects life
if the process speci
ed is executed� We see that this synchronization can also be
modelled with mutually calling of both events themselves� With the speci
cation
above however we specify synchronization only for this process occurrence whereas
calling is speci
ed globally for an object� Firstly we have to encode process states
into the object description to model the above mentioned problem completely with
calling and secondly we scatter knowledge about the properties of these events over
the speci
cation� Both points are not desired for a readable Troll text�

�	 � Language features for Troll�Templates

�
�
�
	 Scope of Parameters

As noted above we may introduce ��� pre
xed parameters in process descriptions�
Operationally speaking
 the value of such parameters is not known when the process
is executed� Usually a value is provided by means of communication
 i�e� the event
with such a parameter is speci
ed with an output parameter or it is called from
another object with a suitable value for the parameter� As an example see the
following speci
cation�

process declaration

variables p�aType�

ProcX
 E������ �� ���� �� En�����	p����� �� ��� �� Ek �

For such a process we assume the following restrictions to be valid�

� There must not be a reference to the variable p before the event En� We
may assume that the process is embedded into an environment with a set of
variables bound to values
 the value of p is hidden for all events before En�
This condition guarantees that we may not refer to a value that is intuitively
not known� Operationally the variable is bound to a value with En occurring�

� All event terms Ei with i�n may refer to the value bound to p by event En�
The same is true for conditions used �after� En�

� After the process has been executed
 e�g� in the state where after�Ek� holds

the value of p is lost� In other words we assume a strict block concept �see
next item��

� The value referred to by p can only be transferred to other subprocesses by
means of process parameters� Note that a process unit can also be a subprocess
�by means of a process identi
er and suitable parameters�� Thus together with
the last item these parameters are strictly local variables for the process at
hand�

� The last item mentioned can also be applied to recursive processes� In pro�
gramming language terms we may say that parameter transfer is only value
based �

� If a process unit is a process term with ��pre
xed parameters we have another
form of value transfer
 namely from a subprocess to the surrounding process�
Like for events the same rules as stated above apply� Additionally
 the subpro�
cess must be speci
ed with a binding responsibility for the parameter transfer

i�e� it must have a ���pre
xed parameter declaration �similar as for events��

The last point mentioned is exempli
ed with the following arti
cial process pat�
tern�

��� Interaction �

process declaration

variables p�r�aType�

ProcX
 E������ �� ���� �� Pn�	p� �� ��� �� Ek����� �

Pn��r�
 Ep������ �� ��� �� Epi�����	r����� �� ��� �� Epj����� �

In this arti
cial example the process ProcX contains a process term Pn in its de
ni�
tion� This process term contains a ��pre
xed variable p that delivers a value to be
used similar as in the former example� For this purpose the process Pn has the re�
sponsibility to deliver this value� It therefore has to be speci
ed in the same manner
as an event with a return value� Here however the value is determined during the
execution of the process� Again
 only a value transfer is modelled � the variable is
lost at the end of the process however�

��
 Interaction

Besides calling speci
cation in an event description we may also specify interaction
in a similar way as in Troll�� Since we have to introduce composite objects
before we can introduce such interaction rules
 we refer the reader to Section ��� for
interaction speci
cation�

��� Parameterized Templates

As we have seen in the stack example we sometimes have to introduce templates that
can be described as primarily representing data structures� The behaviour of these
data structures in terms of possible operations etc� is
xed whereas the contents
in terms of data values may vary in data types� For example we can use a generic
description of a queue to describe queues that can store values of di�erent data
types�

Symbols of data type signatures �operation symbols and to some extend formulae
that are used throughout the speci
cation of a template� are the building blocks of
data terms� Thus a template speci
cation has to be checked for type safetyness�
If we parameterize templates with data types
 the data terms and formulae used
in such a template determine the possible parameter data types� To keep things
simple we consider parameterized templates as a derived feature of Troll that can
be described by transformation to a simpler language version without parameterized
templates�

Syntactically parameterized templates have the following form �see also Sec�

�
 � Language features for Troll�Templates

tion ���
 Page �	��

Syntax

�template spec� ��� template �template id� ���dt param id list�	�
�template desc items�

end template �template id�

For example if we specify a template for stacks storing arbitrary data values�

template Stack�EntryType�

attributes

Top�EntryType

initialized undefined �

Empty�bool

initialized true �

���

events

Push�Elem�EntryType� �

Pop enabled not Empty �

���

end template Stack

and use this template in another object speci
cation �The concept of object classes
is introduced in the next section��

object class InputStack

template Stack�nat�

end object class InputStack

then we can derive object speci�cations for all uses of Stack object speci
cations
where the formal data type parameter is substituted by the real parameter� In this
example we have to construct the following �derived� speci
cation�

template Stack nat

attributes

Top�nat initialized undefined �

Empty�bool initialized true �

���

events

Push�Elem�nat� �

Pop enabled not Empty �

���

end template Stack nat

that can now be checked formally on type correctness� Of course we have to rewrite
the speci
cation of InputStack according to this derived speci
cation
 namely by
substituting the template de
nition by�

��	 Parameterized Templates ��

object class InputStack

template Stack nat

end object class InputStack

This way we have at our disposal a very simple language feature for parameterization
that can be described on a lower language level� The parameterization feature can
be handled easily because it is described as a syntactic reuse of a template speci
ca�
tion without having in mind the objects that are generated from such speci
cation
later on using classes� For future developments of the language Troll further pa�
rameterization is planned but is not incorporated into this version� For a discussion
on parameterization see also �Saa����

� Class and Components Speci�cation ��

Chapter �

Class and Components

Speci�cation

��� Speci	cation of Object Classes

To come from prototype descriptions of objects �templates� to the objects them�
selves
 we must introduce a naming mechanism� A template itself only de
nes the
shape of an object
 its structure and possible behaviour�

For the speci
cation of objects and object classes we use a template speci
cation

introduce a set of possible identi
ers �a carrier set of a special data type
 an object
identi
er data type� and end up with a set of �possible� object instances henceforth
called objects de
ned by a template� Furthermore we introduce the notion of a class
as a container for similar objects that behave as de
ned in their corresponding
template�

In Troll there is a distinction between the description of a class �its class type�
and the class itself �the extension
 class container object or shortly class�� A class
is thus regarded as an actual set of objects with a structure de
ned by its class type�
A class container object
 being an object in its own right contains the objects of the
class as components �see Section ��� for components and Chapter � for a possible
speci
cation of classes as containers��

����� Object Identities and Object Identi�cation

Each object has associated an unchangeable unique identi
er� So it is possible to
distinguish between di�erent objects� In Troll this identi
er is conceptually a
value of an object identi�er data type� The identi
er data type is denoted by the
class name surrounded by vertical bars� We only assume that object identi
er data
types have an unbounded set of values
 i�e� there must be enough identi
ers��

Apart from object identities we talk about object identi�cation as a means to

�For a discussion on concepts like object identi�ers� keys� and surrogates see also �Wd����

�� � Class and Components Speci�cation

describe externally meaningful names� In other words object identities denote un�
printable values associated to objects whereas object identi
ers denote names that
have semantics in the context of the world modelled� As an example see the following
speci
cation�

object class Person

identi�cation ByName��Name� BirthDate�

attributes

Name�string �

BirthDate�date �

���

end object class Person

Person objects have identities
 in this case values of the data type �Person�� We
say that for a particular person object the value x � �Person� is the identity of
this object� The value x is abstract in the sense that it has no meaning in the world
modelled � For speci
cation purposes
 each object of a class has an implicit attribute
OID� In the case of the example above�

attributes

OID�
Person
 �

This attribute can be used as an ordinary attribute and can for example be trans�
ferred to other objects during communication etc �see again �Wd��� where oid�s are
considered visible�� In other languages this reference to the object itself often is
called self� Smalltalk �GR��� uses self to send messages locally� Note that self

in Smalltalk is a reference which is di�erent to an identity in Troll�

On the other hand the person object associated with identity x has attributes like
Name and BirthDate that together constitute an identi�er
 the identi�cation in the
UoD at hand� Object identi
ers are the interface to the real world whereas object
identities are used throughout the speci
cation to refer to objects � thus the latter
are considered arti
cial and internal to the speci
cation document �unprintable��

Identities can be stored as attribute values and can be used to refer to objects�
However
 identities are not references to objects as in other object oriented �pro�
gramming� languages� In Troll identities must be used in conjunction with the
class name to refer to objects� As we will see later on
 an identity value may be
used to refer to di�erent aspects �ES��� of an object if it is used together with role
classes� With the speci
cation of an object class �for example Person� semantically
a function

Person � �Person� �� PERSON�OBJECTS

is implicitly de
ned taking an identi
er and yielding the corresponding object
 that
is PERSON�OBJECTS denotes the set of all possible person objects� Consequently

��� Speci�cation of Object Classes ��

Person
x� denotes the object associated to x itself� We use this pseudo formalization
here to describe the mapping from identities to objects in an intuitive way�

For identi�cation of objects there exist several ways� We have objects that have
a clearly de
ned externally meaningful name �like persons�
 objects that are the
only object of their corresponding class �single objects like a system clock�
 abstract
entities that have no identi
cation but identity �a formula in the modelling of a
software repository� or derived objects that inherit an identi
cation from some base
class speci
cation �an employee that is�a person��

In more detail we identify the following possibilities for object identi
cation�

�� An identi�cation can be de�ned as a list of observable properties�

Such a list
 denoted by attribute symbols
 is speci
ed as a conceptually mean�
ingful name for objects �see the person class above�� In the case of the example

tuples of �string�date� serve as identi
cation if we declare the key ByName

as shown above� Key tuples must be introduced with a name�

In contrast to the example there may possibly exist several keys� For persons
there may be another attribute SocialSecNo�nat that serves the same purpose
as the tuple
Name�string�BirthDate�date��

�� Objects without identi�cation�

Sometimes it is not quite natural to
nd an observable property that can be
used to externally identify objects� As an example suppose we describe a
class Formula with objects used in class Template �for example in a Troll�
repository speci
cation�� What is an external name for a formula# Another
example is the speci
cation of an Engine object� What is the identi
cation of
a Bolt or a Screw used as parts of this Engine#�

�� The keyword class is omitted from the speci�cation�

This case may be used to describe single objects
 i�e� not real classes with
several objects but a single object of the corresponding template� Semantically

such objects can be treated like objects of a class if we assume that we speci
ed
an object class that has an identity space with only one value� This viewpoint
is necessary for a uniform treatment of single objects and objects of real classes�
The syntactic notation stresses that there is only a single object speci
ed by
omitting class�

�� There is no identi�cation given but a class is de�ned as being a role class�

A role class inherits the properties of its base class�es�
 i�e� also the identi
ca�
tion of the base class� In case of multiple inheritance this implies that there
must be one class at the root of the particular part of the inheritance hierarchy�

�Several other properties of real world objects can be considered in this example too� the con�
struction of composite objects� only locally visible classes etc� Often the question of identi�cation
spaces is closely related to the question of when to use classes with a local identi�cation space�

�� � Class and Components Speci�cation

Role speci
cation is introduced in Section ����

�� There is no identi�cation given but a class is de�ned as being a view class�

A view class is a means to describe restricted access to the set of objects of
the class �selection
 see Section ������ or to the set of properties of objects
�projection
 see Section �������

As for role classes the identi
cation is derived from the base class�es�� View
speci
cation is introduced in Section ����

Syntactically
 a class is introduced with a name
 a class description and a tem�
plate description similar as already described for templates� We can either introduce
the template speci
cation directly or specify a template separately and provide its
name for the class speci
cation� In case of a parameterized template we also have
to supply the parameter data type�s�� Then we can only use the latter case�

Syntax

�class spec� ��� object �class� �class id�

�class desc items�

��template desc items��
end object �class� �class id�

�class desc� ��� identi
cation �key spec list�

j role of �class item list� �derived �formula��
j view of �class item� �derived �formula��
j template �template id� �� �data type id list� 	�

�key spec� ��� �key id� � � �att id list� 	

If a template is introduced together with a class speci
cation
 we may refer to this
template with the class name
 i�e� if we want to reuse the template speci�cation for a
di�erent class� As sketched above the class name is used throughout a speci
cation
to refer to objects of a class �in conjunction with identities and identi
cations��

In the next sections we will introduce examples for the above mentioned pos�
sibilities for object identi
cation �list no� � to no� ��� After introducing object
components in Section ��� we will be able to have a closer look on classes as
rst
class entities containing objects�

As already mentioned
 classes are speci
ed with templates� When specifying
templates
 usually one will have classes or at least single objects in mind� Thus the
distinction between templates and classes is not always obvious� A template is a
static description of object structure and behaviour� Classes however are dynamic
in the sense that there is a time varying set of objects in them �although their
description is also static$ for possible future evolution of this model see �SH�����

��� Speci�cation of Object Classes ��

We distinguish classes and templates to stress such a di�erence� A template in
this sense is an entity to be stored in a library of reusable components and can
be used when specifying classes� A class speci�cation can also be stored in such a
library but has a closer correspondence to the real world by virtue of its identi
cation
mechanism� A class container however is an �abstract� dynamic entity and contains
a varying set of objects� As a
rst class object the class container has a speci
cation
that is derived from the user speci
cation of a class� We will provide an example
later on�

����� Referencing Objects using Key Attributes

Attributes used in key descriptions have to obey special constraints� These con�
straints must be valid in the actual set of objects of a class type at a certain point
in time
 i�e� the actual class population� Objects have associated a unique identity�
This way it is possible to distinguish objects that have the same attribute values�
Attribute tuples that are mentioned in identi
cation clauses however must be unique
in the set of currently existing objects� Recall the speci
cation of the class Person�

object class Person

identi�cation

ByName��Name� BirthDate��

BySSN��SocialSecurityNo�

attributes

Name�string �

BirthDate�date �

SocialSecurityNo�nat �

���

end object class Person

Apart from referencing objects of class Person via their object identities
 that
is
 writing

Person
x� for an x � �Person�

we may also supply a tuple consisting of a string and a date and get back the
object with the appropriate values for its Name and BirthDate attributes� The
above mentioned constraints for key attributes guarantee
 that at most one object
quali
es for such a query � Now we are able to motivate the existence of named keys

here ByName� ByName denotes the �partial� function

ByName� string � date �� �Person�

�	 � Class and Components Speci�cation

taking a tuple consisting of a string and a date and yielding an identity of class
Person that is in turn used to refer to an object�� ByName is local to the class
Person� The syntactic expression�

Person
ByName
Thorsten����������� or Person
BySSN
������������

thus refers to the object with the appropriate attribute values� As an abbreviation
for objects that only de
ne one key group we can � as syntactic sugar � even omit
the map�name for references as above� Assuming we have only speci
ed the key
ByName for Person we can write�

Person
Thorsten����������

provided we have a tool that expands these expressions to the original one� Addi�
tionally we have to detect ambiguities that arises with such kind of abbreviations�
For Troll as it is now it is safe to use only the longer forms that additionally help
the reader of a speci
cation� In fact the abbreviation is not de
ned in the concrete
syntax �see appendix��

The conditions necessary to guarantee the key constraint �only one object for a
given identi
cation tuple�
 and the existence of this particular object in the current
class population etc� are managed in explicit class container objects �see Section �����
The function ByName changes during the life of a class container object� Changing
key attributes and creation and deletion of objects have to be re�ected in changing
the function mapping� We will elaborate this in Section ����� and ������

����� Referencing Objects using Identities

As already mentioned it is sometimes di%cult or impossible to supply externally
meaningful names for objects� This is often the case for abstract entities like e�g� a
Formula in a speci
cation document or a Bolt in a car manufacturing environment�
Both entities are identi
able only in the context of another object �

A bolt object may be identi
able via the special role it has in the engine object
e�g� connecting the body of the engine and the starter� Outside this context it
has an identity
 we may distinguish it from other bolts of the same shape but no
identi�cation other than
a bolt�� From the viewpoint of the engine the bolt is a
component �

A similar observation is made for abstract entities like formulae in e�g� a reposi�
tory speci
cation� Although we may
nd an identi
cation for a formula for example
build out of its recursive structure
 this is not quite natural or obvious� Changing
the formula will induce changing this identi
cation which is not desirable in this

�Compare also the notion of KeyMaps in �Jun���� Here we de�ne alternative key maps and
therefore need names for these functions�

��� Speci�cation of Object Classes �

case� It seems to be more natural to identify such formula by its role in the overall
design � as for the bolt � now to be a component of another object� For example a
formula can be identi
ed as being an enabling condition for an event speci
ed with
class Event�

Object classes without an identi�cation are thus used to specify anonymous ob�
jects� As for ordinary classes there may be potentially in
nitely many objects of
such classes� Objects may also be shared between di�erent objects �see below� by
means of components if knowledge of their identity is available
 e�g� for the above
example the only possible reference to a bolt is�

Bolt
b� where b��Bolts�

this bolt may be used in a car as a BodyToStarterBolt and be �transferred� to
another car to be a BodyToSomethingElseBolt by a mechanic� Thus the only
mechanism to refer to such objects as described in this section are identities� Since
identities are �nearly� ordinary data values in Troll
 they can be transferred be�
tween objects
 too� The only di�erence is that identities are not printable in the
sense that they have meaning to people� They are as abstract as the objects they
identify�

����� Identi�cation of Single Objects

A special case of a class is a class with only one object as class population� single
objects� Single objects are represented the same way as classes are� The only
di�erence is the missing keyword class� Here the condition that identity sets have
to be su%ciently large is dropped� The framework for identi
cation and identities
is the same as for classes however� So classes and single objects �as classes with
exactly one object� can be handled with equal rights�

Suppose we want to specify a world containing an object Clock� We do not want
to specify the variety of clocks available but only one object counting time units�

object Clock

attributes

Seconds�nat initialized ��

Minutes�nat initialized ��

events

Create birth �

Count ����

���

end object Clock �

Referring to Clock attributes can be done the same way as for classes
 namely using
the function taking object identities and yielding the object� To refer to the Seconds
attribute of the Clock as an abbreviation for Clock
x�	Seconds where x is the only

�
 � Class and Components Speci�cation

element of �Clock� we write Clock
�	Seconds� The identi
cation thus is the class
name itself
 the identity is redundant and confusing at the language level �� It is
needed only to formally integrate classes and single objects�

��� Speci	cation of Components

Component speci
cation are a means to describe the part�of relationship between
objects� Parts may be local to an object or shared between objects� The former can
only be accessed in the context of the enclosing object and are thus closely related to
the composite object
 the latter can be components in di�erent objects in a society�

In Troll we may describe single and set valued components� Both concepts
are closely related to the concept of object classes and single objects� We provide
also a construct to specify list valued� components that are handled similar to set
valued components plus additional access to objects at the head or tail of the list as
well as indexed access�

����� Description of Components

The component speci
cation has a similar notation as the attribute and event speci�

cation� In fact a component speci
cation enriches the signature of an object in that
we may use the attribute and event symbols �and as we will see also the component
symbols� of the component objects in the enclosing object�

But there is an important di�erence to attributes� Components do not describe
object valued attributes that are often called references in popular object oriented
�programming� languages� Attributes of an object describe data values whereas
components describe part objects which describe a stronger relationship than object
references� Nevertheless
 through component symbols we may refer to the compo�
nent objects itself�

But also the component objects being part of a composition can be in�uenced
by the embedding object� For example we can specify conditions � i�e� constraints
� that directly inhibit attribute changes in components� Furthermore not only a
communication relationship to the components
 but also a relationship from the
components to the embedding object is implied by the use of components� The
latter includes communication that is however speci
ed in the embedding object�
We may not specify such communication in the part objects since the part objects
have no knowledge of their use in other objects on the speci
cation level� there is no

�The brackets �	 are necessary to distinguish between referencing the object itself �with the
brackets�� and referring to the class object itself� The di�erence will be more clear when we discuss
class containers and referencing components�

�Do not take the word �valued� too seriously in this context� We are talking about objects here
that are di�erent from values in Troll�

��� Speci�cation of Components ��

reference from the components to the embedding object on this level if not explicitly
speci
ed�

The syntactic representation of component speci
cation is similar to attributes�
we may specify properties or special features of components in a similar way� The
di�erence is that we have to handle objects and object populations and no data
values�

Syntax

�For� components ��var spec�� �cmps spec items� �

�cmps spec� ��� �cmp id����param decl list�	���class item�

�cmp desc items� �

�cmp desc� ��� set j list
j inherited from �class id�

j hidden
j restricted �formula�

j initialized �formula� �default�
j derived �formula�

�param decl� ��� ��parameter id����domain�

�class item� ��� �class id� ��ovar id��

����� Single vs� Set Valued Components

Component speci
cations describe aggregations of objects� Similar to object valued
references in conceptual data models �see for example �EGH�����
 they provide
access to parts of the object society� As such
 component speci
cations can be seen
as locally visible populations of classes� On the global level
 classes can be restricted
to contain only one object thus modelling single objects� Likewise components may
also be depicted as being
single valued� or
set valued��

As an example for component speci
cation we model a Bank class containing a
single Manager component and a set of Account objects
 that are speci
ed in the
following way�

object class Account

identi�cation AcctID��No��

template accountTemplate

end object class Account

We have not speci
ed the template for accounts here to keep the example small�
Accounts should have usual attributes like Balance etc�

�� � Class and Components Speci�cation

object class Bank

identi�cation BankID��Name�No�

attributes

Name�string �

No�nat restricted No��������� and No��������� �

���

components

Manager�Person �

Acct�Account set �

end object class Bank

In the speci
cation of Bank we may refer to the components with the well known

dot notation�� For example the age of the manager of the bank can be referred to
writing�

Manager
�	Age

provided during the life of the Bank object the component has been set to a speci
c
Person object� As we will see in the next section
 this can be done using implicitly
generated events like

Manager	Insert
P��Person��

If it was not set in this way the component object can be considered as not being
existent in the sense of an object that is not yet born� Now we can also motivate
the di�erence in notation between�

Manager
�	Age and Manager	Insert
			�

The
rst form refers to an object � Consequently we can use only signature elements
from Person� The second form refers to the component collection and we may use
implicitly generated signature for a single valued component�

The second component of the beforehand introduced example �Acct� describes
a set of objects as part objects �set valued component�� To refer to objects of this
component it is not su%cient to supply the component name� We also have to supply
an identi�er for Account objects resembling the notation for access to objects of
global classes in general� Than we may write�

Acct
acc�	Balance for acc � �Account�

Alternatively we can also use the identi
cation for Account objects
 for example if we
supply a customer�bank interface to transfer money from one account to another� In
this case we typically have to describe some kind of a translation between real account

��� Speci�cation of Components ��

numbers and abstract identities of accounts�� As we have seen in the discussion of
classes
 this translation can be performed using the key maps implicitly de
ned
with classes� To refer to the Balance attribute of account number ������ we have
to write�

Acct
AcctID
��������	Balance

implicitly using the fact that the function AcctID is a translation of natural numbers
to account identities of the class Account� The function AcctID is visible due to
the class Account being visible in the Bank object by means of the component
speci
cation �Acct�� In the section on interaction �Section ���� of components we
will introduce some more examples for object referencing�

����� List valued Components

Additionally to set valued components we may also specify �list valued� components�
Compared to set valued components
 list valued components are ordered with respect
to insert and delete operations and may contain duplicates� Additionally there exist
more implicitly generated attributes and events and also derived components for list
components�

In the following example we model a queue of persons waiting for service in a
bank�

object class Bank

���

components

ServiceQueue�Person list �

����

events

Arrival�P�
Person
�

calling ServiceQueue�InsertLast�P� �

Service�P�
Person
�

enabled ServiceQueue�IDFirst
 P

calling ServiceQueue�RemoveFirst �

���

end object class Bank

The events Arrival and Service � parameterized with the identi
er of a person
� trigger the occurrence of insert and remove operations in the service queue of the
bank� Another implicitly generated component ServiceQueue	First denotes the
currently serviced person �not shown in the example above�� A complete list of
generated attributes
 events
 and components is given in the following section�

�In later speci�cation steps we should use a view class AccountToCustomers with events
like LocalTransfer�Source
nat�Dest
nat�Amount
money	 where natural numbers as real world
identi�cation for accounts are used�

�� � Class and Components Speci�cation

����� Implicit Signature for Components

To summarize and extend the examples of the last section
 Figure ��� lists the

Single Components Sets Components Lists Components

attributes Empty�bool Empty�bool Empty�bool
Card�nat Card�nat Card�nat
IDSet�set��CN�� IDSet�set��CN�� IDSet�set��CN��
In��CN���bool In��CN���bool In��CN���bool
Exists��CN���bool Exists��CN���bool Exists��CN���bool

IDList�list��CN��
IDFirst��CN�
IDLast��CN�
Length�nat
Pos��CN���set�nat�

events Insert��CN�� Insert��CN�� Insert��CN��
Remove��CN�� Remove��CN�� Remove��CN��

InsertFirst��CN��
InsertLast��CN��
RemoveFirst
RemoveLast
Change�nat
�CN��

components First�CN
Last�CN
Element�nat��CN
Elements�CN set

Figure ���� Generated Symbols for Component Manipulation and Observation

signature generated for components� A component speci
cation of the form�

Comp�CN list

thus makes available e�g� an attribute Comp	Empty denoting the status of the compo�
nent �true meaning that there is no object assigned�
 an event Comp	RemoveFirst

for removing an object from the
rst list position
 and a component Comp	Last

denoting the object at the last list position etc� Semantically a component speci
�
cation is regarded as a local collection of visible objects just as a class collection is
globally visible if we have access to a class collection�

The generated signature is developed having uniformity in mind� This means

that the generated symbols are the same for single valued
 set valued
 and list valued
components
 taking into account that single objects are treated globally as classes

��� Speci�cation of Components ��

with at most one object contained� The same uniformity for list valued components
is introduced for convenience plus some list speci
c signature� So for example there
is an attribute for single objects Card�nat that can have values � or � only�

�
�
�
� Implicitly Generated Attributes

The following attributes are generated for a component speci
cation�

Empty�bool Is true if there is no component de
ned
 i�e� the component set or lists
are empty�

Card�nat Denotes the count of elements in sets and lists
 in the latter without
duplicates� For single components Card is 	 if Empty�true else ��

IDSet�set
�CN�� Denotes the identi
er sets for set and list valued components as
well as for single valued components where this set can contain at most one
element�

In
�CN���bool Takes an identi
er and yields true if the associated object is as�
signed
 respectively is in the set or in the list�

IDList�list
�CN��� IDFirst��CN�� IDLast��CN� Only for lists� Denotes the list
of identi
ers
 the identi
er of the
rst resp� last object in the list�

Length�nat Only for lists� Denotes the length of a list� In other words we can derive
this attribute also as� Comp	Length � length
Comp	IDList� using the data
type operation length that is de
ned for list�

Pos
�CN���nat
nat� Only for lists� Denotes the position�s� of an element in a list�
Is an emptyset of naturals if argument is not member of the list�

�
�
�
� Implicitly Generated Events

The following events are generated for a component speci
cation�

Insert
�CN��� Remove
�CN�� Inserts respectively removes elements from single

set
 or list valued components� For lists the event Remove works as for sets
 i�e�
all component objects for a given identi
er are removed from a list� Insert

for lists work for the head and is similar to InsertFirst �see below��

InsertFirst
�CN��� RemoveFirst Insert and remove events that are used only
for lists and work at the head of a list �the
rst position��

InsertLast
�CN��� RemoveLast Insert and remove events that are used only for
lists and work at the tail of a list�

�� � Class and Components Speci�cation

Change
nat��CN�� Changes the element at the position speci
ed with the
rst
parameter�

If we refer to list positions for example with event Change
 than an explicit
enabling condition must be taken into account that allows such events only for
index values between � and CN	Length inclusively�

�
�
�
� Implicitly Generated Components

The following components are generated for a component speci
cation�

First� Last� Element
nat�� Elements Denotes the
rst respectively the last ob�
ject of a list� Element
i� denotes the object at the i�th list position
 and
Elements is the transformation to a set valued component�

There are no derived components for single and set valued components since
access is performed similar to access to object classes
 namely by providing the
component name and an identi
cation or an identity� As for classes the key map
functions can be used for components
 too�

����� Composition Constraints

Constraints that may restrict objects from being components in another object can
be formulated in a restricted clause� As an example for a composition constraint
the relationship between a bank and accounts respectively a clerk is speci
ed in the
following way�

object class Bank

���

components

Acct�Account A set

restricted A�No������� and A�No������� �

Clerk�Person P set

restricted P�Age�
�� �

end object class Bank

The object variable introduced here is a short form to denote an arbitrary object
of class Account
 i�e� only objects of class Account respecting the constraint can be
components of Bank� The restricted clause describes conditions that must be ful
lled
by Account respectively Person objects incorporated into the composition Bank� Of
course these condition can also be formulated as a general constraint � To stress the
belonging of this restriction to the component
 we make this rule available similar
to attribute restrictions that state conditions for the range of possible values� Here

��� Speci�cation of Components ��

it is the �range� of possible objects with respect to their attribute values and the
restricting formula�

There is an important di�erence to data values in that the interpretation of data
values is
xed whereas attribute values change� For objects incorporated into a
composition a restricted clause of this form �and alternatively equivalent constraints�
de
ne additional constraints that must be ful
lled in the life of Account objects
that currently are members of the composition� As already mentioned
 this feature
�among others� distinguishes components from object valued attributes� Users of
the language must be aware of this �export� of conditions to components� It models
the fact
 that an object � becoming part of an enclosing entity � may not behave as
free as before�

����� Derived Composition

As composition constraints are analog to attribute constraints we de
ne derived
components analog to attribute derivations� In contrast to attributes where we have
to specify a data term that describes the derived value we provide a formula as a
selection condition for a single object or a set of objects� Such condition is thus a
simple form of a query �

As an example we can use the constraint of the previous section that restricted
the possible set of accounts in a bank to describe a derived set of components�

Acct�Account A set

derived A�No������� and A�No������� �

As for attributes such derivation rule is also a constraint in the sense that there
cannot be accounts in the composition that do not satisfy the formula given� Here
however
 changes of attributes involved in the formula have to be re�ected in auto�
matically provided inserts and removes for the component �set�� Thus a derivation
is not a constraint for the component object in the sense described in the last section�
The connection between part and whole is weaker than for composition constraints�

As we cannot specify changing rules for derived attributes we cannot specify
insert and delete operations for derived components nor we can specify restrictions
for such components� Insert and delete events are hidden from the speci
er and
may only be used as an operational description how derived components may be
semantically described on top of real components�

A di�erent but equivalent description for this semantics is to include all possible
accounts by default and to check the derivation formula in case of an access to such
a component which shows the close relationship between restrictions and derivations
of components� The analog strategies for derived attributes are calculation on access
and storing on change the latter as an additional changing rule if properties used in
the derivation conditions change�

�	 � Class and Components Speci�cation

Some remarks are in order here� The classi
cation set vs� single valued used
in the example is optional
 it cannot be proven syntactically anyway� Often the
condition will be constructed over key attributes of the component objects� Since
attributes including keys are not constant
 the composition may change if these
attributes change� Keys are however not subject to frequent change�

����	 Composition Initialization

Again in analogy to attributes
 Troll provides a construct that allows for ini�
tialization of components� The initial component is selected similar to a derived
component using a formula �a simple query�� The formula is evaluated in the state
where the birth event of the enclosing object occurs� To give an operational charac�
terization
 the population of the class where the component objects are drawn from
is searched� for all objects qualifying
 and for these objects implicit insert event oc�
currences are triggered �called from the birth event�� Again we provide the example
bank and accounts
 now with the selection of account objects as an initialization
rule�

Acct�Account A set

initialized A�No������� and A�No������� �

Note that the Account class cannot be a local class �local classes are introduced
in the next section�� Instances of local classes do not exist upon creation time of
the enclosing object although their creation can be triggered with the birth event�
We face the problem
 that the formula has to be evaluated in the context of a class
population that becomes visible for the
rst time after the birth event took place�

As for attribute initialization
 Troll provides a default classi
cation of initial�
ization rules for components� In contrast to attributes however
 we do not introduce
a short notation for initialization with birth event parameters� Components are
objects and cannot be transferred as data values during communication� Neverthe�
less we can specify birth events with parameters from identi�er data types together
with application speci
c calling of component insertion events if an initialization
rule exists for a component that is classi
ed as default�

����
 Local Classes and Components

As already mentioned in the local class section �cf� ������ it is possible to describe
classes that are only local to objects� The key di�erence is the de
nition of a
local identi�cation space for local classes
 that means a local key constraint � A
globally speci
ed class de
nes a globally visible identi�cation space in terms of a key
de�nition� The key constraint implicitly derived with such a key de
nition speci
es
that there is at most one object for a given key tuple�

Suppose now we want to specify companies�

��� Speci�cation of Components �

object class Company

identi�cation CompanyID��Name�

attributes

Name�string �

���

components

Deps�Department D set

restricted D�InCompany
 OID�

���

end object class Company

relying on the speci
cation of departments�

object class Department

identi�cation DepID��Name�InCompany�

attributes

Name�string�

InCompany�
Company
 �

���

components

Emps�Employees set �

���

end object class Department

Thus departments are dependent on their surrounding companies� In the identi
ca�
tion of Department this dependency is explicitly encoded
 the company includes a
constraint stating that only the departments having a suitable InCompany attribute
value �an object id for companies� may be components� Such �backward pointers�
are also needed to distinguish between Departments of di�erent companies� A glob�
al identi
cation space for Departments only containing their name is not su%cient
here�

From a modelling point of view � regarding departments as entities in their own
right � it is more natural to separate their properties like Name and their usage in
terms of objects incorporating them� The concept of local classes supports this view
in that a class is locally speci
ed in the following way�

object class Company

identi�cation CompanyID��Name�

local classes

object class Department

identi�cation DepID��Name�

attributes

Name�string�

���

end object class Department

�
 � Class and Components Speci�cation

attributes

Name�string �

���

components

Deps�Department set �

���

end object class Company

In this speci
cation the identi
cation space of departments is localized to objects
of class Company� This means
 that there may be di�erent objects of class department
with the same name but belonging to di�erent companies� Moreover this concept
reveals the strong dependency between a class and its local class in that objects of
the latter cannot exist without their surrounding objects�

As we have seen in the introduction of this section
 the concept of local classes
introduced so far can be modelled with global classes as well if we provide a suitable
identi
cation space for objects� We introduce local classes in Troll to support a
more natural way of modelling abstracting from the concrete identi
cation space
that is needed� A speci
cation like the latter one can then be used to derive global
classes with an identi
cation space similar to the one used in the former version that
are transparent for the speci
er and only used for implementation or prototyping
issues�

An example for the use of local classes is the speci
cation of stack objects intro�
duced in Section �������
 now however not implemented via attributes pointer and
array but via components pointer and array�

object class Stack

identi�cation ByName��Name�

local classes

object class Entries identi�cation ByIndex��No�

template EntryTemplate

end object class Entries

object PointerObject

template PointerTemplate

end object PointerObject

components

Array�Entries set hidden �

Pointer�PointerObject hidden �

attributes

Name�string �

Top�nat

derived if not Empty then Array�ByIndex�Pointer�Current�����Val � �

Empty�bool derived Pointer�Current
 � �

EntryExists�No�nat��bool derived Array�Exists�ByIndex�No��

events

��� Speci�cation of Components ��

variables NewPointer�
PointerObject
� NewEntry�
Entries
�

Create

calling

PointerObject�Create�NewPointer��

Pointer���Insert�NewPointer� �

Push�Elem�nat�

calling

f EntryExists�Pointer�Current� g
Array�ByIndex�Pointer�Current���Set�Elem� �

f not EntryExists�Pointer�Current� g
Entries�Create�NewEntry�Pointer�Current�Elem� �

Array�Insert�NewEntry� �

Pointer�Increment �

Pop

enabled not Empty

calling Pointer�Decrement �

end object class Stack

The class Entries uses the following template de
ning attributes No and Val de�
scribing the position in an �array� respectively the �value� stored at this position�
Entries can be created with initialization values and the value stored can be changed
later on�

template EntryTemplate

attributes

No�nat �

Val�nat �

events

Create�No�nat�Val�nat� birth �

Set�N�nat� changing Val �
 N �

end template EntryTemplate

The following template just de
nes a single natural number �attribute Current�

that can be incremented and decremented after the creation of an object that uses
this template�

template PointerTemplate

attributes

Current�nat initialized � �

events

Create birth �

Increment changing Current �
 Current � � �

Decrement

enabled Current � �

changing Current �
 Current � � �

end template PointerTemplate

�� � Class and Components Speci�cation

The example seems to be very complicated but it is in fact not rather natural
to de
ne stacks on such a low level with components� Here it is only used as
a well known example that uses various concepts� Note that there are a lot of
di�erent possibilities to de
ne for example the storage for values� We may also
specify the Array component as a list component
 insert elements at the end of the
list if necessary
 and can avoid the necessity of an identi�cation in the Entries class�
The reader may experiment with this example to explore further possible modellings
of this design problem�

��� Interaction between Components

The signature of an object is composed of the local signature and the signature
of all part objects �by pre
xing with component names and id�s�� For events of
part objects there are no event descriptions since event descriptions concern the
local behaviour of objects� Communication between the embedding objects and the
embedded objects can naturally be described with the events of the embedding
object� They are the cause or the origin of the communication�

object class Bank

���

components

Acct�Account set �

events

LocalTransfer�Source�nat�Dest�nat�Amount�money�

calling

Acct�AcctID�Source���withdraw�Amount��

Acct�AcctID�Dest���deposit�Amount� �

end object class Bank

Nevertheless event occurrences in the components of a composite object can
trigger event occurrences of the object incorporating the parts as well as components
may communicating among themselves� Thus we need not only calling rules de
ned
locally in event descriptions but also interaction rules for events between part objects
and the embedding object� A template feature called interaction serves this purpose�
In Chapter � we will see a similar concept used to describe communication between
global objects that are not related by part�of relationship�

Syntactically
 interaction rules are build from event terms� Event terms can
be speci
ed with a selector denoting the path to the relevant component objects�
Optionally calling rules can be speci
ed with an application condition formulated
as a
rst order formula� Again we forbid past temporal logic formulae that should
be used only in enabling speci
cations�

Syntax

�For� interaction ��var spec�� �c interaction seq� �

��� Interaction between Components ��

�c interaction� ��� �f�formula�g��interaction rule list�

�interaction rule� ��� �evt term� �� �evt term list� �

�evt term� ��� ��selector���evt id� ���proc param list�	�

As an example we specify events of account objects that trigger events in the
bank incorporating the account�

object class Bank

attributes

Transactions�nat initialized ��

components

Acct�Account set �

events

CountTransaction

changing Transactions �
 Transactions � � �

interaction

variables x�
Account
� m�money �

Acct�x��withdraw�m� �� CountTransaction �

Acct�x��deposit�m� �� CountTransaction �

end object class Bank

The advantage not to specify the CountTransaction event as being called from
the LocalTransfer event �see above� is a more concise speci
cation of e�ects� Now
all withdraw and deposit events
 regardless how they are triggered
 are counted�
We may specify di�erent kinds of money transfer inside the bank without having to
specify calling to the CountTransaction events� The underlying execution model
for event executions �HS��� guarantees that only one CountTransaction event is
executed for bank transactions like LocalTransfer in this case�

� Class Objects and Roles ��

Chapter �

Class Objects and Roles

In this chapter we introduce implicit class objects as containers for instances and
roles as di�erent aspects of objects� The speci
cation of implicit class objects given
here is just one possible solution for an operational de
nition of object creation
 class
population management
 etc� Furthermore it is only sketched and has to be worked
out for more realistic prototyping issues� It should be seen as part of the design of
an implementation of a prototyping system� Additionally the object speci
cations
introduced here should be regarded as some more examples�

��� Class Objects vs� Object Classes

In the next sections we will introduce various aspects of class objects as containers
for objects of a given class� Class objects are thus the basic ingredients to describe
features like key constraints
 object creation and deletion etc� in an operational
way� Object classes on the other hand are a logical concept on an abstract level
that are used to group objects with similar structure and behaviour� As for other
features of Troll like e�g� parameterized templates
 we consider class objects as
being derived from a speci
cation and not directly visible for the speci
er� They
are used to describe the semantics of Troll features like keys and object creation
operationally �

In this section we will introduce implicit class objects �Section ������
 an op�
erational description of object creation and destruction �Section ������
 and sketch
necessary operations that must be performed in case of key attribute changes �Sec�
tion ������� The description of such an implementation respectively prototyping
related feature is nevertheless formulated on a level that abstracts from implemen�
tation�

Since this version of Troll is directed towards design and prototyping
 the
approach with implicit class objects makes sense here� It is in no way a deviation
from the property of a speci
cation language to be declarative� We introduce implicit
features that are hidden in logical frameworks but have to be implemented in some

�� � Class Objects and Roles

way� As an example we mention key constraints that can be stated easily on the
conceptional level �see for example the KeyMaps in �Jun���� but we have to check
this constraint somewhere� The features introduced by means of an example here
seem to be a suitable way�

����� Implicit Class Objects

Class objects as containers for objects are introduced as objects in their own right�
Such collections of objects of a given class type are used to manage the extension of
a class type
 e�g� the set of all currently existing objects
 the identi
cation space
 etc�
For Troll we do not introduce user de�ned class properties� Such properties of
collections as for example the average income of a class of employees must therefore
be explicitly speci
ed as composite objects and derived attributes�

Class container objects are only means to describe the necessary mechanisms to
deal with key constraints
 object creation and deletion� We will introduce such class
container objects by means of an example class
 the familiar class Person� Persons
are speci
ed in the following way�

object class Person

identi�cation

ByName��Name� BirthDate��

BySSN��SocSecNo�

attributes

OID�
Person
 � �� implicit attribute� not user specified ��

Name�string �

BirthDate�date �

SocSecNo�nat �

Age�nat initialized � �

���

events

born�Name�string� BirthDate�date� SocSecNo�nat� birth �

die death �

���

end object class Person

having two key groups ByName and BySSN� Note that the birth event of this object
class speci
cation initializes all attributes that are part of the keys de
ned� This
property is necessary
 since otherwise we would have objects that have unde�ned
key values which is known to be impossible if we want to use keys as access points
to objects� In this example we exempli
ed the implicitly generated attribute OID

that was already mentioned in the last chapter�

As already mentioned
 such a speci
cation induces an identi
cation data type
�Person� with values used as handles to person objects� For a given x � �Person�

we can refer to the object with the expression Person
x�
 provided that we got this
identi
er x sometime in the past and that there is an object associated to it�

��� Class Objects vs� Object Classes ��

Alternatively we can refer to objects of class Person with their real world id�s for
example Person
ByName
�John������������ Here it is also implied that there is
a person with this name� However we need not know the identity of the associated
object in terms of the identi
er data type value�

Another situation arises if we want to trigger the event born of a person� We
only know its real world name
 there is no identity up to now and moreover there
is no object existing as a representation of the real world entity� If there exists
such an object
 we
rstly cannot trigger the event born since this violates the key
constraint � �There exist no two objects with equal identi�cation�� Secondly the
born event would be forbidden because an object can only execute one creation
event � Thus we face �at least� three problems that can be solved with implicit class
objects�

� Managing the population of currently existing objects of a class �the class type
extension�� For example to refer to the set of objects currently existing�

� Managing the mapping between identi
cation �real world names� and identities
�identity values associated to object instances� including the management of
the key constraint�

� Providing means to create and destroy objects�

In the section on composite objects we have introduced components that play the
role of local populations of objects visible in the enclosing object� For component
symbols we introduced derived signature �attributes
 events
 and components�� For
implicit class objects we also derive an implicit signature for the component set
of objects of a given class
 attributes that manage the mapping between keys and
identities
 and events that model the creation and deletion operations on the class
level � Constraints de
ne the possible combinations of parameters and component
object properties�

object Class Person

components

Objs�Person set �

attributes

NextID�
Person

initialized initialValue �

ByName�Name�string�BirthDate�date��
Person
 �

BySSN�SocSecNo�nat��
Person
 �

Empty�bool derived Objs�Empty �

Card�nat derived Objs�Card �

IDSet�set�
Person
� derived Objs�IDSet �

In�OID�
Person
��bool derived Objs�In�OID� �

Exists�OID�
Person
��bool derived In�OID� �

�	 � Class Objects and Roles

constraints

variables x�y�
Person
� N�string� B�date� S�nat�

�Objs�x��Name
Objs�y��Name and

Objs�x��BirthDate
Objs�y��BirthDate� implies �x
y� �

�Objs�x��SocSecNo
 Objs�y��SocSecNo� implies �x
y� �

�BySSN�S�
 x implies Objs�x��SocSecNo
 S� �

�� ���etc �����

end object Class Person

The component Objs is a set valued component that maintains the current set
of objects that are alive� It is left open up to now how objects are created and
destroyed and how identities for new objects are determined�

The attributes ByName and BySSN are used to describe how tuples of data values
�identi
cations� are mapped to identity values� The speci
cation as attribute gen�
erators automatically guarantees that there is at most one value for a given data
tuple� However we need some additional constraints to guarantee that values of
object attributes are identical to the parameters of the key maps etc�

����� Object Creation and Destruction

In the last section we have introduced the structure of implicit class objects in terms
of attributes
 components and constraints by means of an example speci
cation of
an implicit class object for class Person� We will now introduce also part of the
event interface of such a class object�

object Class Person �� ���continued��� ��

events

PersonClassCreate �� ��� creates the class object ��� ��

birth �

born��OID�
Person
�Name�string�BirthDate�date�SocSecNo�nat�

enabled

undef �ByName�Name�BirthDate�� and

undef �BySSN�SocSecNo��

changing

ByName�Name�BirthDate� �
 OID �

BySSN�SocSecNo� �
 OID �

NextID �
 calculateNextID�NextID�

binding OID
 NextID

calling Objs�Insert�OID��Objs�OID��born�BirthDate�date�SocSecNo�nat��

die�OID�
Person
�

enabled Exists�OID�

calling Objs�Remove�OID� �

���

end object Class Person

��� Class Objects vs� Object Classes �

Such a class object is created with the event PersonClassCreate initializing the
attribute NextID to a value determined by the data type operation initialValue�
We will not elaborate this operation but consider identi
er data types to have the
operations initialValue and calculateNextID available� These operations are
considered invisible for the normal user of Troll but are necessary for the intro�
duction of the basic features of class objects introduced here�

For class container objects we generate special events for all birth events of the
original speci
cation� These events are enlarged by one additional parameter� The
parameter is named OID and has type �Person� in this example� OID is a parameter
bound on calling this derived event�� The class container object is responsible to
generate a new
 up to now unused identity using the operation calculateNextID

of �Person�� The key map attributes are changed to the appropriate value of OID�
Needless to say that these events are only enabled if there is no object with the same
key attribute values�

We left open how objects of this class are created physically since this is a matter
of implementation �allocation of storage etc�� Conceptually
 the generated event
then calls for the birth event of the object instance and inserts the new instance
into the component Objs�

Up to now we have introduced the minimal �and partial� speci
cation of class
container objects necessary to understand the basic concepts of classes as sets of
objects with similar structure and behaviour including the mechanism for naming
objects on the abstract level of the world modelled �identi
cation� together with
the mechanism to
internally� identify objects �identity�� The mechanism to create
objects is thereby de
ned to rely on these class container objects� Whereas we
trigger events in objects by means of calling them directly
 for example writing�

Person
x�	birthday for a suitable value of x

we have to explicitly refer to the class container object if we want to create objects�
We can assume that a notation like above is an abbreviation for�

Class Person	Objs
x�	birthday

A similar abbreviation is also supported for birth events� For birth events we use
the class name alone to denote the implicit class container object� For example�

Person	born
OID��Jack���������������������������

triggering the creation of an object with name Jack and suitable parameters� Again
this is an abbreviation of�

�Note that in the the binding expression OID�NextId the data term NextID is evaluated before

the state change� In other words� the attribute NextID always holds a new� unused id�

	
 � Class Objects and Roles

Class Person	born
OID��Jack���������������������������

omitting the Class pre
x for the class container name� Since this object does not
exist when the event should occur
 we have to trigger the event of the class container
object� This in turn creates the new object
 and delivers its identity back to the
caller via the parameter OID of the implicitly generated object creation event�

The explicit reference to the creation events that deliver the identity back to
the caller� sometimes is useful if we want to insert the newly created object into
a component� In this case we need the new identity� It would require two state
changes to refer to it via the new key map that can be observed earliest after the
birth event� See for example the following speci
cation of a company containing
houses that may be build by the initiative of the company�

object class Company

identi�cation ByName��CompanyName�

components

Employees�Person set �

Houses�Buildings set �

Manager�Person �

���

attributes

CompanyName�string �

���

events

variables OID�
Buildings
 �

buildHouse�Position�Coordinates�

calling

Buildings�create�OID�Position� �

Houses�Insert�OID� �

���

The class container Class Buildings is referenced �using the short form Buildings�
to perform the creation of an object with the suitable birth event create
			�

for Buildings� With the same state change
 i�e� in the same snapshot
 the new
identi
er is used to insert this object into the component set Houses� The somewhat
complicated construction with two events called is only necessary because the object
to be incorporated has to be created at the same instant of abstract time� Often we
will need only the Insert event to incorporate an already existing object�

As we mentioned at the beginning of this chapter this is only one way to oper�
ationalize object classes� Here we may not create several objects at the same time
for example�

�Be aware that this operational� procedure call like terminology is not quite correct since callee
events and called events conceptually occur at the same time�

��� Class Objects vs� Object Classes 	�

����� Key Attribute Change

To conclude the section on implicit class containers we will sketch another mecha�
nism relevant for the management of key attributes and key maps� In the former
Troll version key values of objects had to be constant � This property led to un�
natural speci
cations
 namely di%culties to de
ne suitable identifying attributes��

With this version of Troll the key attribute values may be changed if this is not
explicitly forbidden� The key maps de
ned in the last section must be updated to
re�ect such a change� Moreover class wide con�icts concerning the key constraints
must be detected and are used to forbid such changes� It is natural to derive events
for class container objects that are to be called from all object events that change
key attributes� For the mentioned person class we may have speci
ed an event
changeName
New�string��

events

changeName�New�string�

changing Name �
 New �

In the class container objects the following events and interaction rules have to
be generated to control the implications of such key attribute changes�

object Class Person

��

events

changeName�OID�
Person
�New�string�

hidden

enabled undef �ByName�New�Objs�x��BirthDate��

changing

ByName�New�Objs�x��BirthDate� �
 OID �

ByName�Name�Objs�x��BirthDate� �
 unde�ned �

interaction

variables N�string� x�
Person
 �

Objs�x��changeName�N� �� changeName�x�N� �

���

Occurrences of events that change key attributes are thus re�ected in the class
container objects by means of interactions between the objects of a class and the
class container object� Calling of checking events manages the necessary changes
for the key maps� In case of con�icts in terms of the various constraints speci
ed
in the class container objects
 such events may be forbidden due to the underlying
execution model for event snapshots and the key attribute semantics�

�In general it is di�cult to identify object properties that are constant�

	� � Class Objects and Roles

��� Objects and Object�Roles

Constructing an object oriented model of some UoD using Troll
 we begin with
general observations about some basic properties of objects� Object speci
cations
can become rather large if we introduce more and more properties in one class
speci
cation only� A way to structure such speci
cation is the use of inheritance� In
Troll
 a notion of inheritance is introduced that goes one step further as inheritance
in �most� programming languages� Troll introduces roles as inheritance of object
speci
cations �code reuse� and inheritance of the objects itself �see also �JSHS�����

����� Structuring Object Speci�cation

For example in a model of the real world containing persons we begin with specifying
their general properties like age
 living place etc� Than we go on to more speci
c
properties like the ones of employees having an income
 an employer
 and so on�
Employees however are persons
 particularly they are an aspect of persons played
during a speci
c time span in the life of an object �ES���� A role thus de
nes an
is�a�relationship factoring out speci
c properties of objects that belong together
�Per�	
 Wie�	
 Wd����

From the standpoint of conceptual modelling
 we identify two possible kinds of
such is�a�relationships� derived and dynamic relationships� The
rst kind �derived�
is sometimes called specialization where the belonging of an object to some class
is determined with its birth� For example a person can be specialized to belong to
class male or class female� A later change should be possible as this example shows
but it is not very frequently found for such objects� The second kind �dynamic� is
dynamic in the sense that the belonging to a special class changes during the lifetime
of an object due to occurrence of events� The previously mentioned employee is a
possible candidate for such a dynamic is�a relationship�

The dynamic kind is more general in that it can simulate the derived is�a re�
lationship� Objects from a derived object class are created and destroyed together
with their base� objects� A role however starts at some point in time in the life of
the root object and ends at some later point in time before �or latest with� the death
of the root object� We will describe these two kinds of is�a relationships starting
with the more general dynamic concept�

����� Dynamic Roles

Specifying a role
 we extend the possible observation and operation interface of an
object� An object starts playing a role with a special event
 the birth event of the
role� A role is introduced as a new class introduced as a role of �class list�� A
role class inherits the properties of the classes in the class list� As long as there are
no name con�icts
 the root of a property can be determined following all inheritance

��� Objects and Object�Roles 	�

chains� If there are name clashes
 it is necessary to qualify the name of the property
with the appropriate class name�

A role not only inherits the signature of the base class�es� but also the objects
themselves in terms of values of attributes
 occurring events and so on� For example
in an object of class employee we can observe an attribute Age of the associated
person
 and events like Birthday in case they occur�

Another problem that arises with the speci
cation of roles is the problem of
identi�cation� On the one hand it is natural that we require the role objects to
have the same identi�cation as the original objects
 i�e� they inherit not only the
properties in terms of attributes but also the mapping that relates identi�cation with
identities� This feature is motivated from the viewpoint of modelling real world
entities� For example a Person usually does not change its name if it starts playing
the role of an Employee� In other words
 we consider the role to represent a certain
aspect of the original object� On the other hand
 a role object is considered to be
an object in its own right that incorporates the properties of the base object�

For a speci
cation like�

object class Student

role of Person ���

we can refer to the age of the person with Age or explicitly writing the origin of
the property Person	Age�� For convenience the second form need to be used only if
the origin of the Age attribute is ambiguous� The introduction of more observable
properties and behaviour thus is handled in separate objects described by separate
classes embedded in a class hierarchy� The underlying semantics of such kind of
inheritance is delegation �Ste���� Requests for properties not de
ned locally are
answered by the original objects� Moreover this view nicely re�ects the idea of an
is�a�relationship being a special kind of a part�of�relationship in the sense that the
original object is a part of the derived object� Semantically
 role objects exists from
the birth of their parent objects but their properties are not observable nor are any
events enabled except for role birth events �see for example �EDS��
 Jun�����

Syntactically role classes are introduced with the class feature role of �

Syntax

�class desc� ��� identi
cation �key spec list�

j role of �class item list� �derived �formula��
j view of �class item� �derived �formula��
j template �template id� �� �data type id list� 	�

�class item� ��� �class id� ��ovar id��

�It is an abbreviation of Person�OID	�Age denoting the parent object of the role object�

	� � Class Objects and Roles

For the time being let us forget about the optional parts in this production as
well as the other class features like identi
cation
 views
 and templates� We only
note that the following combinations of features are allowed for a class description�

� Templates may be combined with roles
 views
 and an identi
cation� This
means
 that all abstractions can have their own templates�

� An identi
cation can be combined with a role� This means
 that role objects
can de
ne their own keys �see below��

� Views can only be combined with a template� Moreover this template is strong�
ly dependent on the base class �see below��

These rules not only apply for the reuse of a template speci
ed elsewhere
 but
also for a template directly speci
ed for the class at hand�

Roles are characterized by their base classes as de
ned in the class item list �
Class items with the introduction of object variables are necessary for options like
e�g� derivation conditions�

As an example for roles consider again a Person class that has two role classes�
Employee and Student�

object class Student

role of Person

���

events

becomeStudent birth �

���

object class Student

object class Employee

role of Person

���

events

becomeEmployee birth �

���

object class Employee

As mentioned earlier
 in Troll we are working with two closely related forms
of inheritance
 the class and class type inheritance� The di�erence between these
two forms of inheritance can be depicted as follows� With class inheritance sub�
classes conceptually are related to subsets of the original class populations for a
given point in time whereas with class type inheritance subtypes describe additional
properties of objects� The latter can be compared to the inheritance hierarchy in
object oriented programming languages� We speak of semantic inheritance in the
former and syntactic inheritance in the latter case� Semantic inheritance also means

��� Objects and Object�Roles 	�

that dependent objects like employees as roles of persons include their base objects
together with their identi
cation and identity as sketched above�

The inheritance of the naming mechanism implies that given an identity or iden�
ti
cation of a base object
 we may refer to the specialized objects using the identity
respectively the identi
cation of the base class and the role class name� A role class
thus has not necessarily a private identi
cation
 i�e� the class header only mentions
the root classes which in turn have a single predecessor class somewhere above in
the hierarchy� An additional identi
cation �a new key� can be de
ned however� An
employee may have an attribute PersonalID valid in the context of the employer
that can be used to de
ne a new identi
cation for Employees

object class Employee

role of Person

identi�cation ByPID��PersonalID�

attributes

PersonalID�nat �

���

events

becomeEmployee�PersonalID�nat� birth �

Note that the event that creates this role �becomeEmployee� must initialize the
attributes used in the new key� We may now refer to Employees with the expression�

Employee
ByPID
���������

As for other classes we have an implicit class object
 say Class Employee that
manages the population in the role class and that can also manage the translation
of external names of objects to identities of objects�

In the inheritance hierarchy we have to
nd a most general class for a given
role
 i�e� the base class� In this base class also the basic identi
cation mechanism
is de
ned� To continue the last example we can specify a class WorkingStudent

as being a role of persons and employees �multiple inheritance�� This example is
only valid if Student and Employee are roles of one class somewhere above� in the
inheritance hierarchy�

object class WorkingStudent

role of Student� Employee �

���

A speci
cation of this kind has several properties �also summarizing some of the
already mentioned cases��

�� We can refer to the base class objects qualifying inherited properties with
the class name of the base classes� Note that the name Person de
ned as
an abbreviated reference to the base class of employees and students in these
classes is also inherited by WorkingStudent�

	� � Class Objects and Roles

�� Referring to objects of the role class can be done by providing the role class
name together with an identi�er or identi�cation of the base class� The trans�
lation of these identi
ers to identities of objects is done in the role classes class
objects�

�� Name con�icts must explicitly be resolved by the speci
er� If there are lo�
cally speci
ed properties that have the same name as inherited properties

the inherited properties can only be referred to quali
ed with the class name
where the property is de
ned� There is not a notion of overriding in the sense
that the semantics of attributes
 events
 or components is completely changed�
We may only enlarge the speci
cation� This means that additional restric�
tions for observations and life cycles are possible� We will discuss this topic in
Section ������

�� Name con�icts resulting from properties inherited from di�erent classes must
also be resolved by the speci
er
 i�e� such names can only be used in the role
classes if they are quali
ed with the appropriate name�

For a conceptual modelling language it is reasonable not to use built in features
to resolve name con�icts� This way the speci
er is forced to identify the root of
a property� Generally we want to avoid hidden
 built in semantics such as class
precedence lists for inherited properties as in CLOS for example �Moo����

����� Derived Roles

The second form of inheritance is described by static or derived roles� The belonging
of an object to a static role class is determined by the value of properties of the base
class� From a conceptual as well as from an operational viewpoint
 objects of the
static role classes are implicitly created with the creation of an object of the base
class depending on the constant properties of the base class object�

Syntactically
 static role classes are distinguished from role classes by the pres�
ence of a derived clause in the role de
nition specifying the specialization condition�
As mentioned above
 the general de
nition of �dynamic� role classes allows a sim�
ulation of static role classes� The part of a life cycle that an object spends as a
role is just extended to the whole life cycle of the parent object� With the birth of
a more general object
 the derived clause determines the creation of objects of the
static role classes�

The formerly sketched mechanism can be formulated as conditional calling claus�
es in the role class speci
cations that trigger the creation of the specialized objects�
Similarly the destruction is performed if the base object is destroyed� See for exam�
ple the following speci
cation fragment�

object class Person

identi�cation ByName��Name�Birthdate�

��� Objects and Object�Roles 	�

attributes

Name�string �

Birthdate�date �

Sex� enum�male�female� constant �

� � �

events

birth born�Sex�enum�male�female�� �

���

and the specialized class�

object class FemalePerson

role of Person derived Person�Sex
 female

attributes

NoOfChildren� nat initialized � �

events

born�Sex�enum�male�female��

inherited from Person

birth �

���

with an additional attribute NoOfChildren that is initialized to zero upon birth
of the role object� For this specialized class an implicit calling clause must be
incorporated into the class container speci
cation of Person�

interaction

variables x�
Person
� s�enum�male�female�� id�
FemalePerson
�

f s
 female g
Objs�x��born�s� �� Class FemalePerson�born�x�s�

Conceptually
 if an object of class Person is created
 the calling speci
ed with
this rule automatically creates an object of the specialized class FemalePerson that
is a role object of Person� Events that change attributes mentioned in the derivation
condition must also trigger birth and death events of possibly di�erent role classes
if necessary� In this case there cannot be such events since the only property used in
the derivation condition is a constant property� Some comments on this construction
are in order here�

� The general mechanism is easily described on the conceptual resp� logical level�
Since birth events are involved
 the appropriate events to create objects must
be triggered in the class objects�

� The role concept must be de
ned on top of the language kernel by means of
appropriate components� and calling clauses� The above mentioned example
describes the basic idea�

�Recall that inheritance is modelled as delegation �Ste	��� so we may provide components that
can be forwarded requests to inherited properties�

		 � Class Objects and Roles

� Events of the parent objects that change properties used in specialization
conditions may be restricted if the triggered birth and death events in case of
a role class change are not allowed�

The specialization or role hierarchy de
nes aspects of objects in the sense of
�ES��� thus we may look at di�erent facets of one conceptual object � For implement�
ing or animating this concept we have to deal with di�erent physical objects that
provide an interface as if they were one object�

����� Re�ned Base Object Properties

Since Troll clusters the speci
cation of properties around the speci
cation of the
signature symbols �event
 attribute
 and component symbols�
 we must also be able
to describe various additional �constraints� for inherited events
 attributes and com�
ponents� For this purpose
 the description of attributes
 events
 and components
provides a feature inherited from not mentioned up to now� Inherited from is used to
tag properties that are inherited and that are to be further re
ned in a role� Such
property
 e�g� an attribute
 may be listed in the attributes part of the role speci
ca�
tion but tagged as inherited from �a base class�� For example we can specify�

object class Employee role of Person �

���

attributes

Age�nat

inherited from Person

restricted Age �
 �� �

further restricting the range of values for attribute Age� Such re�nement� can only
be done in a conservative style� Conservative means
 that we are only allowed to
further restrict the possible life cycles and possible observations of the base class
objects�

Overriding however often means change of behaviour � We will not deal with
overriding as it can be found in most of the popular object oriented programming
languages� Since role objects in Troll contain their base objects that are encapsu�
lated in the sense that only local events can change their states
 a notion of a more
restricted behaviour is possible �additional restriction rules imply less possible life
cycles and observations�� A notion of overriding however implies that the behaviour
can be changed completely
 that is
 we would have to add life cycles which contradict
the speci
cation of the base objects� In the sequel
 we will therefore only describe
possible conservative re
nements�

�The word re�nement used here has nothing to to with re�nement of speci�cations or processes
in the sense of transformations towards implementing speci�cations�

��� Objects and Object�Roles 	

�
�
�
� Re�nement of Attributes

In this section we will list the possible attribute features that can be re
ned� At�
tribute speci
cations can be further re
ned in a role object if we respect the following
conditions� Note that we only talk about inherited properties� The rules do not ap�
ply for newly de
ned properties of a role speci
cation that can be introduced as
usual�

� Hidden� An attribute cannot be newly hidden in a role object�

� Constant� To be constant is just a special constraint on the attribute evolution

namely a temporal constraint valid from the
rst state of the object �initially�
stating that the initial value of the attribute is not allowed to change�

� Restricted � Is also just a special constraint� Note that additional constraints
can prevent the entry event for a role if the condition does not hold after the
birth event �which will be rejected in this case��

� Initialized � Makes no sense for dynamic roles� We cannot initialize� an at�
tribute that has already a value� Even in the case of a static role that starts
its life together with the base object
 an initialization must be de
ned locally
in the base object speci�cation because an initialization rule is a shorthand for
a special changing rule of a birth event�

� Derived � Derivation is a kind of constraint allowing only one value for a given
attribute� On the other hand
 attributes of base class objects are changed dur�
ing the life of the object by means of events and changing rules� Thus re
ning
such a normal attribute to a derived attribute is possible if the derivation rule
directly corresponds to the original changing rules which normally makes no
sense� We therefore forbid the re
nement to a derived attribute�

�
�
�
� Re�nement of Events

Like attributes
 events may be re
ned in di�erent ways� Most of the event features
can be speci
ed more particularly in subclasses�

� Birth� An event that is inherited from a parent object can serve as a local birth
event of the role object� This property is local to the role speci
cation� It is not
re�ected directly in the parent object� A closer look on this property reveals

that being the birth event of a role is re�ected indirectly in the base class
object in the sense that this object is incorporated into the role object which
has an e�ect on the base class object too� there may be further restrictions on
life cycles of the base object in the sense described with composite objects�

� Death� An inherited event can be the death event of a role object� Like for
birth events this means not that the event is a death event of the parent object�

 � Class Objects and Roles

� Active� An inherited event can become active in a role object� For example
we can describe initiative processes where the role object shows a particular
initiative during its lifetime�

� Hidden� Same as for attributes�

� Enabled � An event can be further restricted in a role object� This implies
 that
the set of admissible life cycles of the parent object becomes smaller when the
parent object plays a role� It should be noted here that additional enabling
conditions can lead to inconsistent speci�cations if we further restrict events
that are speci
ed to be necessary for a life of some parent object by means of
explicit process speci
cations�

� Changing � We may specify changing rules for local attributes
 but the inherited
attributes can only be changed by explicitly calling events of the parent object
�locality principle for updates
 encapsulation of object behaviour��

� Calling � Inherited events may call for additional events� This is also a further
restriction on possible life cycles because called events may not be enabled and
therefore the original events can be forbidden also� In this sense a calling rule
is an enabling condition for an event because it is only enabled if all events
called are also enabled� Additional calling thus is a strengthened enabling
condition�

� Binding � Additional binding is not allowed since parameters marked � have
to be set locally � A binding for not � marked parameters implies a signature
change which is not desirable �also some kind of overriding��

�
�
�
� Re�nement of Components

For components that are structurally similar to attributes
 the same conditions as
for attributes apply� This means that inherited components may not be classi
ed
as hidden� A restriction however is possible and this may prevent a role entry as is
the case for attribute restrictions� As for attributes an initialization or derivation is
not possible�

�
�
�
� Re�nement of other Features

We may re
ne the template speci
cation of the base class templates in that we intro�
duce additional attributes
 events
 components
 constraints
 interactions
 processes
etc� All these rules further restrict the possible attribute values
 event sequences
etc� in a conservative manner respectively de
ne new properties�

� System Speci�cation
�

Chapter �

System Speci�cation

The mechanisms described so far are not su%cient for the description of systems
of interacting objects� Classes provide means to structure a society in terms of
grouping similar objects
 components are a means to describe closely related objects
that may communicate
 and roles are used to factor out common behaviour in super
and special behaviour in subclasses� In system speci
cation however
 we have to
deal with relationships between objects and with views or interfaces to objects�

For specifying whole systems of objects we must be able to describe relations be�
tween separate objects that do not correspond to some composite real world entity�
For example the interconnection between customers and banks should not be de�
scribed on the conceptual level by means of a composite object containing instances
of Customer and Bank nor by references speci
ed in Customer or Bank�

Troll therefore introduces the concept of relationships between objects� Rela�
tionships serve two purposes� Firstly and most important they are used to describe
communication relations between separately speci
ed objects� The concept of call�
ing events is extended to such communication relations� Secondly
 relationships may
specify integrity constraints between objects� Relationships are a structuring concept
orthogonal to classes and have thus no attributes
 events
 and a life cycle de
nition
of their own �cf� LCM �FW��� where relationships are introduced as a special kind
of class��

Object and class speci
cations introduce an event
 attribute
 and component
signature �their basic interface� used to refer to properties of objects� Modelling
real world entities we often have to specify di�erent degrees of privacy for objects�
As we have already seen
 events
 attributes and components may be declared as
hidden for observers of objects� The hiding concept alone is not su%cient however
to describe specialized interfaces of objects and classes� To make such interfaces
explicit
 Troll introduces views for objects and object classes�

De
ning these interfaces we can identify di�erent kinds of such views� Sometimes
we want to provide only a subset of properties of objects to other objects� Then we
talk about projection views� Another possible interface makes visible a certain subset
of a class extension� Then we speak of selection views� Both concepts are similar to

� � System Speci�cation

relational views and have an obvious semantics in this sense� Other possible views
are views related to several objects respectively classes� join views or to di�erent
classes� union views or generalizations� We will not deal with the latter in this
report� They are not currently part of Troll�

��� View Classes

For reasons of orthogonality in language design
 views are introduced as a special
kind of class resembling the de
nition of role classes� Whereas role classes de
ne
a particular behaviour for a certain time interval in the life of objects and are
fully �edged class speci
cations
 view classes only have a restricted template� This
template declares the properties of the base class objects to be used from other
classes respectively the subset of objects that are visible for other objects�

����� Projections

Projection views restrict the possible properties of objects that can be observed
�attributes
 components� or triggered �events�� Syntactically a projection view is
introduced as a class being a view for another list� For the time being let us assume
that we specify a view for a single class only��

Associated to such a view class is a template� This template however is restricted
in that it may not use all features normally available� For a view class we have to
explicitly specify the attribute
 event and component signature that should be visible
in the view�

For example a book copy speci
cation in a library can look like follows�

object class BookCopy

identi�cation ByNo��DocumentNo�

attributes

DocumentNo�tuple�Branch�string�No�nat� �

Title�string �

Authors�list�string� �

OnLoan�bool initialized false �

LastCheckOut�date �

MaxCheckOutTime�nat initialized �� �

Borrowers�list�
Person
� initialized emptylist �

BadGuys�list�
Person
� initialized emptylist �

���

events

buy�DocumentNo�tuple�Branch�string�No�nat��

Title�string�Authors�list�string�� birth �

�The language is open however to de�ne views for several classes � i�e� join and union views� We
will not deal with the latter in this report�

��� View Classes
�

throwAway death �

borrow�From�
Person
�At�date�Days�nat�

changing

OnLoan �
 true�

LastCheckOut �
 At �

Borrowers �
 InsertFirst�From�Borrowers��

return�From�
Person
�At�date�

changing

OnLoan �
 false�

f At � AddDaysToDate�LastCheckOut�MaxCheckOutTime� g
BadGuys �
 InsertFirst�From�BadGuys� �

��� �

end object class BookCopy

For a user of a library we may only provide information about the book� its
title
 authors
 and its status as well as the operations to borrow and return it� Then
we provide a view in the following way�

object class BookCopyToUser

view of BookCopy

identi�cation ByNo��DocumentNo�

attributes

DocumentNo�tuple�Branch�string�No�nat� �

Title�string �

Authors�list�string� �

OnLoan�bool �

events

borrow�From�
Person
�At�date�Days�nat� �

return�From�
Person
�At�date� �

end object class BookCopyToUser

Since we only de
ne a view on other objects we may not specify further features
of attributes
 events and components already in the base objects� We may only write
down the visible signature� An identi
cation can be selected from the base class�
In this case there is no choice between di�erent identi
cations and we used ByNo

as visible for clients� of this view class� Note that the attributes used to construct
the identi
cation �key attributes� are also visible� Here the attribute DocumentNo

is visible to clients of this view� By default we can access objects via a view using
their identities � in other words identities cannot be encapsulated�

For attributes and events however we may additionally introduce new symbols
that are closely connected to attributes and events of the base class� For example
we want to provide information about the current borrower of a book and the date
where the book must be returned� Then we may specify new derived attributes for
example�

� � System Speci�cation

attributes

���

CurrentBorrower�
Person

derived if OnLoan then First�Borrowers� � �

���

For an interface to a �real world� user we have to provide more information than
only the identi
er of the current borrower since this identi
er is unprintable but this
is not in the scope of this example� Here we only want to introduce some kind of
encapsulation�

Events may be introduced newly using calling�� The event speci
ed must have
a set of called events that de
ne its behaviour in terms of events of the original
objects�

����� Selections

Additional to the projection feature for views we may not only describe a visible
subset of attributes
 events
 and components for a given base class but we can also
restrict the population that is visible� In this case we have to provide a suitable
selection condition that is used similar to the selection condition for �static� role
classes� If we want to make visible only the documents with a branch identi
cation
�B� in their document number we have to write�

object class BookCopyFromBranchB

view of BookCopy derived DocumentNo�Branch
 �B�

identi�cation ByNo��DocumentNo�

attributes

DocumentNo�tuple�Branch�string�No�nat� �

Title�string �

Authors�list�string� �

OnLoan�bool �

events

borrow�From�
Person
�At�date�Days�nat� �

return�From�
Person
�At�date� �

end object class BookCopyFromBranchB

providing only objects in this view that respect the derivation condition mentioned�

For projection and selection views the identi
cation mechanism is obtained from
their base classes� This means
 that we may use object identities as well as object

�Event derivation is thus introduced by means of calling as the simplest form of derivation� We
do not allow an event derivation consisting of a process of events taken from the base class� called
rei�cation in �ES�
� EDS��� FM���� In general if we specify an event just by its name and calling
to other events �no further features� this can be seen as a very simple derivation facility� mostly a
change of names and translation of parameters�

��� Relationships
�

identi
cation via key attributes at the view level� We must however indicate which
key groups are visible�

��� Relationships

Now that we have described views as specialized interfaces to objects and object
classes we have to describe how separately speci
ed objects can be put together to
make up a society speci
cation of interacting objects�

Whereas the concept of composite objects de
nes communication and integrity
constraints between objects of a composition
 yet we have no means to describe
communication and constraints between separate objects so far� The use of compos�
ite objects for the general description of communication should not be used on the
society speci
cation level since communication relationships are buried in the object
speci
cations of the interacting objects this way �JHS���� Troll � as its predeces�
sor Troll� � propose to use an explicit relationship construct that is orthogonal to
classes
 roles
 and views�

In Troll there are two possible relationships� global constraints and global
interactions� The former concept is used in early stages of design when we do not
want to decide where constraints have to be formulated
 the latter concept is used
in later stages of design when we put together objects from di�erent classes�

Global constraints are a means to relate objects depending on their observable
properties �attribute values� whereas global interactions relate objects with respect
to communication� Syntactically
 relationships i�e� global constraints and interac�
tions are de
ned as follows�

Syntax

�rel spec� ��� relationship �rel id� between �class item list�

� constraints ��var spec�� �constr seq� �
� interaction ��var spec�� �c interaction seq� �

end relationship �rel id�

We may introduce an object variable for each class participating so that we can
refer to properties of the objects associated through the global constraint respectively
global interaction�

����� Global Constraints

The only inter object constraints that we have introduced so far were key constraints�
They are special in that they relate di�erent objects from one class� To do this we
introduced class container objects to have a context containing objects for which
the constraint has to be formulated�

� � System Speci�cation

Just as an example for the use of global constraints we may want to specify the
key constraint for person objects �see Page ����

relationship PersonKeyConstraintSSN between Person P�� Person P�

constraints

�P��SocSecNo
 P��SocSecNo� implies �P��OID
 P��OID�

end relationship PersonKeyConstraintSSN

Here we have a the special case that we want to refer to related objects of one class
which further motivates the use of object variables to distinguish between objects
mentioned in this speci
cation� The condition expresses
 that an equal value for the
SocSecNo attribute of objects of class Person implies that the objects are the same�
This is a rather special global constraint and is only introduced here because of the
well known example�

����� Global Interactions

Similar to interaction between parts of a composite object we may also specify in�
teraction relationships between objects from di�erent classes� An interaction is a
constraint for possible life cycles of the communicating objects� they must synchro�
nize� For example we may specify the interaction between a bank and a customer
by means of a relationship as follows�

relationship BankCustomer between Bank B� Customer Cus

interaction

variables Amount�money� Acc�
Account
�

Cus�sendMoneyTo�Amount�Acc�B�OID� ��

B�getMoneyFor�Amount�Acc�Cus�OID�

end relationship BankCustomer

The Customer speci
cation de
nes an event sendMoneyTo with parameters denoting
the amount of money �Amount�
 the destination account number �Acc�
 and the bank
identi
cation �BID� whereas the Bank speci
cation de
nes an event getMoneyFrom

with the amount
 the destination
 and the source of the money� The expres�
sions B	OID and Cus	OID de
ne the relevant objects that communicate
 i�e� if a
sendMoneyTo event occurs in a customer object with the speci
c Bank id value
 in
the corresponding bank object the getMoneyFrom event occurs� As for interactions
in composite objects interaction rules may be conditional
 i�e� communication only
takes place if the associated condition holds�

��� Society Speci	cation

The speci
cation of a society groups the various speci
cation items together and
introduces a name for it� An object society is speci
ed as follows�

��� Society Speci�cation
�

object society XPTO

including a list of data types to be imported from elsewhere

followed by data type declaration�

template�

class�

role�

view� and

relationship specifications

To be more particular we introduce object society speci�cations with implicit�
ly generated speci�cations for class container objects� The class container objects
possibly generated from such speci
cation manage the real instances in the sense
of a running �prototyped� system� the object society itself� On the language level
however there is a clear distinction between the speci�cation in terms of templates

class types
 roles
 views
 and relationships and the instances that may be generated
from the speci
cation of classes� In this report we introduced some ideas how theses
issues can be combined using implicit class containers� There is a clear separation
between these issues however�

Syntactically an object society speci
cation is represented as follows�

Syntax

�society spec� ��� object society �society id�

�society desc items�

end object society �society id�

�society desc� ��� including �domain list�

j data types �dt decl list�

j �template spec� j �class spec� j �rel spec�

�dt decl� ��� �dt id� � �domain�

The data type declaration feature is used to introduce short names for constructed
data types� This is especially useful if we use enumerations� For example we may
introduce an enumeration like the following�

object society XPTO

data types

SexType
 enum�Female� Male�

���

and can henceforth use the data type SexType as if it is included as e�g� data type
nat�

� Conclusions and Outlook

Chapter �

Conclusions and Outlook

In this report we have presented the revised version of the language Troll� Major
enhancement is done to make the language more usable than the previous version�
The result is a more practical syntax
 i�e� properties are speci
ed beneath their re�
lated concepts� Language features are made orthogonal which o�ers a more intuitive
way of speci
cation�

Troll as an object�oriented speci
cation language allows for a declarative de�
scription of information systems� The basic concepts of Troll can be characterized
as follows�

� Basic building blocks of information systems are objects�

� Objects are observable processes that may interact�

� Objects encapsulate an internal state�

� Objects have a unique identity and can be classi
ed�

� An object interface is described through a set of attributes and events�

� Object evolution is speci
ed by the possible sequence of event occurrences�

� Speci
cations can be structured by using the concepts of classes
 object com�
position �aggregation�
 inheritance and relationship that together make up the
society speci
cation�

Di�erent formalisms like
rst order logic
 temporal logic
 and process speci
ca�
tions similar to CSP �Hoa��� are integrated into Troll�

The speci
cation elements of the Troll language are divided into concepts and
features� Concepts are the basic language elements� They either describe the society
structure �e�g� classes
 relationships
 data types�
 class structure �e�g� attributes

components
 events
 processes� or the interconnection structure �e�g� interactions

global constraints��

�

 � Conclusions and Outlook

Features specify concepts more detailed �e�g� enabling condition for events
 value
constraints for attributes
 � � � �� The distinction between concepts and features is
not important for the understanding of the language but provides a taxonomy for
the supporting tools�

��� Tool Support for Troll

The need for tool support in information system modelling is widely accepted
�Wij���� This support should be facilitated by an integrated software engineering
environment �SEE� rather than by loosely coupled tools �SB���� A SEE enables the
use of certain methods and languages� Many informal as well as formal modelling
and speci
cation languages have been proposed in the past �RBP���
 SM�	�� The
advantages of the latter over the former are well identi
ed� Although the area of
SEEs is still dominated by the informal approaches� Most tools supporting formal
speci
cation languages are developed in research institutions� They are rather pro�
totypes than robust tool sets which can be used in serious project development or
by non�experts�

We believe that formal speci
cation and modelling languages open a variety of
opportunities for tool support which can hardly be achieved by informal approaches�

� Formal languages allow for language sensitive editors
 which can check at spec�
i
cation time syntactic correctness as well as completeness and consistency�

� The conceptual system model should be understandable for the domain spe�
cialist who has to validate the model against the problem domain� Spec�
i
cation animation either in an interpretative way or through a generated
prototype is well suited for validation�

� Tool assisted veri
cation of speci
cation properties is another important as�
pect of formal speci
cations� It enables the user to prove the absence or the
existence of certain facts in a speci
cation�

Besides these aspects of tool support which are directly related to the formality
underlying the model
 we have to support many other activities related to the engi�
neering of large systems
 e�g� project management
 multi�user support
 versioning

traceabilitiy
 etc�

Last but not least tool support will make formal methods accessible to a much
larger community than it is the case nowadays� It will allow us to show the usability
and the opportunities of such approaches�

Many informal modelling languages gain a lot of attraction due to their intuitive
and convenient syntax� OMT �RBP���� is currently among the most popular ap�
proaches and we adapted partially the OMT notation to represent Troll concepts
�WJH����� We use the object model notation to specify the structural relationships

��� Speci�cation Support �
�

between objects� For the process speci
cation a variation of state diagrams
 the
dynamic model of OMT
 is proposed� The speci
cation of expressions over data
values stays textual� The usage of the functional model did not seem appealing
to us� Additionally to the OMT models we introduced new graphical features to
represent object communication in an adequate way

Our current e�ort is on building such an integrated tool set based on Troll

which is called the Tbench� The
rst phase in developing the SEE Tbench em�
phasizes on the aspects of tool supported creation and manipulation of speci
cation
documents�

��� Speci	cation Support

The software process consists of peoples �or roles of people�
 various products �or
documents�
 activities performed by people or performed automatically and long
term processes� These components could be supported by means of notation
 proce�
dure and several mechanisms� Especially in the early phases of the software process
tool support for maintaining documents of conceptual modelling is mandatory�

Troll models information systems as object societies� Each object society
speci
cation consists of classes
 aspects of classes �roles� interfaces for classes �views�
and relations between them �relationships�� Each class consists of structural and
behavioural aspects which could be partitioned into concepts and features� The tool
support for speci
cation re�ects the structure of object societies� It is separated in
two levels �society level and object level� and provides one society at a time�

A Troll speci
cation describes a society entirely but an adapted popular�
graphical notation on top of a formal object�oriented speci
cation language helps
to make Troll more usable in practice� Graphical notations are advantageous in
giving overviews� Detailed information is speci
ed more concise textual�

For the above mentioned reasons
 the Tbench support is split up in two tools�
The change between this tools within the speci
cation process is not strictly pre�
scribed� Depending on the currently necessary information during the speci
cation
process we identify two levels�

Level �� Graphical speci�cation of global information of a society

The graphical notation used for the depiction of overviews is omTroll �OMT�
notation adapted toTroll �WJH������ Di�erent graphical elements represent
speci
cation of templates
 classes
 relationships and connections of role
 view

relationship and component of Troll�

On this level of speci
cation
 classes
 aspects of classes and connections be�
tween them could be created or deleted� Public o�ered services of the Tbench
can be applied with the displayed elements as parameters
 e�g� export and edit�
ing of classes are performed this way�

�
� � Conclusions and Outlook

The tool TGSM �Tbench Graphical Speci
cation Manager�
 which is fron�
tend of the Tbench
 provides the needs of the
rst level of speci
cation�

Level �� Textual re�nement of one object speci�cation document

One object speci
cation selected from the TGSM is depicted textually

The structure of editing is generic �simpli
es language variants� and re�ects
the structure of one class which is partitioned into concepts and their features�
Only features of the selected concept are o�ered for modi
cation� This is pro�
vided via feature�dependent dialogues which also perform online syntax check�
It has to be possible to maintain erroneous or incomplete information to be
able to specify only parts of classes at a time� Automated re
nement helps
to keep up afterwards at position of next error or next incomplete� Object
structure driven schedules guide to perform next� in sense of the actual con�
cept �e�g� return parameter speci
cation of events involve parameter binding
speci
cation�� Additionally session related annotations and feature related
comments are supported�

The tool TED �Tbench Editor� provides the needs of the second level of
speci
cation�

Our approach has several advantages against general purpose editors�

� only selected information is represented �confusing details are hidden�

� more formal information is depicted if desired

� only syntactically correct information is maintained

� speci
cation text is automatically parsed for posterior access

� identi
ers
 suitable concepts
 and features are visualized and suggested for
speci
cation�

��� Prototyping Support for Validation

The prototyping process
 which will be supported by the
rst prototype of the
Tbench
 pictures the connection from graphical modelling of conceptual aspects of
the universe of discourse to independently executable applications� It is partitioned
into the following phases� Each of them requiring the e�ect of its previous phase to
be performed�

Con�guration
 The prototyping process starts and is accompanied by con
guring
the environment
 ie� the society to be edited
 location of the necessary services
and speci
cation documents
 etc�

��� Outlook �
�

Speci�cation
 As sketched in the previous section
 the speci
cation support is a
cycle of� global society arrangement as creation and deletion of parts of the
society �classes
 relationships
 etc�� and its connections �components
 roles

views
 etc�� and syntax controlled re
nement of textual representations�

Consistency check
 A set of consistency checkers controls di�erent aspects of con�
sistency of one society�

Transformation
 A set of transformators map high level Troll concepts into
operational Troll�kernel�

Generation
 Di�erent generation tools map operational Troll speci
cations to
each di�erent available programming languages �C��
 Prolog
 etc��

Execution
 Generated prototypes can be executed to validate speci
cations against
user needs �HJS����

Each phase is supported by a set of tools� The schedule within the mentioned
phases is interactive and not strictly prescribed� Parts of it can be speci
ed by the
process concepts of Troll�

Centralized communication within the Tbench enables logging of all kind of
information� Versioning support submits speci
cation document evolution control�
This accumulated information about habits of developers helps e�ecting case studies
and improving the method of speci
cation�

��� Outlook

Our main emphasis for the future is to instantiate a straightening way from graph�
ical speci
cation of Troll object societies to executable applications �prototypical
information systems�� It is appointed to support the phase of conceptual modelling
in the area of education� Project management aspects are secondary�

To be as �exible as possible the environment is developed with respect to the
following claims�

Integrated
 The integration frame of the environment is developed by ourselves to

t precisely our needs� data integration on syntactical level
 control integration
on semantical level and presentation integration on lexical level �Sof���� The
aspects of integration are brie�y described by the following topics�

Open and Extensible
 The environment consists of a set of tools and a reposito�
ry� The repository maintains speci
cation and administration data which are
both represented as Troll speci
cations� The data access is performed via
enhanced data structures of the tools� Explicit database binding for each tool
could be dropped�

�
� � Conclusions and Outlook

Tool services are grouped into completed applications managed by a cen�
tralized supervisor tool
 the Tbench Integration Manager which implements
transparent distribution� Each tool is exchangeable because of component
independence� Needed functionality could by plugged in� as a new service�
Available services are dynamically o�ered and used� Uni
ed interfaces with
public descriptions �speci
ed in Troll� of all services of the Tbench enable
the possibility to utilize reuse on application level�

Portable
 Depending on our appointment of use
 the environment is build of and
uses only common spread tools and languages �Tk!Tcl
 RPC
 SQL
 C!C��

Lex and Yacc��

Intuitive
 Unitary clear arranged graphical user interfaces �window based
 mouse
driven� with a widget�oriented helpsystem support the use of the environment�

A prototyping environment based on an object�oriented speci
cation language
supports validation
 veri
cation
 consistency control of the modeled universe of dis�
course� We concentrated on the phase of speci
cation strategy which is twofold�
Graphical support for speci
cation of global information with textual syntax con�
trolled re
nement� The integrated environment framework enables the extensibility
and exchangeability in the direction of needs for the future �e�g� other graphical
notations on top��

Bibliography �
�

Bibliography

�BMS��� Brodie
 M�$ Mylopoulos
 J�$ Schmidt
 J� W�� On Conceptual Modelling
� Perspectives from Arti�cial Intelligence	 Databases	 and Programming
Languages� Springer�Verlag
 Berlin
 �����

�CGH��� Conrad
 S�$ Gogolla
 M�$ Herzig
 R�� TROLL light � A Core Language for
Specifying Objects� Informatik�Bericht ���	�
 TU Braunschweig
 �����

�Con��� Conrad
 S�� On Certi
cation of Speci
cations for TROLL light Objects�
In� Orejas
 F� �ed��� Proc� �th Workshop on Abstract Data Types � �th
Compass Workshop �WADT�Compass���� Springer
 LNCS
 �����

�CSS��� Costa
 J��F�$ Sernadas
 A�$ Sernadas
 C�� OBL��� User�s Manual �Ver�
sion ����� Internal report
 INESC
 Lisbon
 �����

�EDS��� Ehrich
 H��D�$ Denker
 G�$ Sernadas
 A�� Constructing Systems as Ob�
ject Communities� In� Gaudel
 M��C�$ Jouannaud
 J��P� �eds��� Proc�
TAPSOFT���� Theory and Practice of Software Development� LNCS
���
 Springer
 Berlin
 ����
 pp� ��������

�EGH���� Engels
 G�$ Gogolla
 M�$ Hohenstein
 U�$ H�ulsmann
 K�$ L�ohr�Richter
 P�$
Saake
 G�$ Ehrich
 H��D�� Conceptual modelling of database applications
using an extended ER model� Data � Knowledge Engineering	 North�
Holland
 Vol� �
 No� �
 ����
 pp� �����	��

�Eme�	� Emerson
 E� A�� Temporal and Modal Logic� In� Leeuwen
 J� van �ed���
Formal Models and Semantics� Elsevier Science Publishers B�V�
 ���	

pp� �����	���

�ES�	� Ehrich
 H��D�$ Sernadas
 A�� Algebraic Implementation of Objects
over Objects� In� deBakker
 J� W�$ deRoever
 W��P�$ Rozenberg
 G�
�eds��� Proc� REX Workshop
Stepwise Re�nement of Distributed Sys�
tems� Models	 Formalisms	 Correctness�� LNCS ��	
 Springer
 Berlin

���	
 pp� ��������

�ES��� Ehrich
 H��D�$ Sernadas
 A�� Fundamental Object Concepts and Con�
structions� In� Saake
 G�$ Sernadas
 A� �eds��� Information Systems �

�
� Bibliography

Correctness and Reusability� TU Braunschweig
 Informatik Bericht ���
	�
 ����
 pp� �����

�ESS��� Ehrich
 H��D�$ Sernadas
 A�$ Sernadas
 C�� Abstract Object Types
for Databases� In� Dittrich
 K� R� �ed��� Advances in Object�Oriented
Database Systems
 Bad M�unster am Stein
 ����� LNCS ���
 Springer

Berlin
 ����
 pp� ��������

�ESS��� Ehrich
 H��D�$ Sernadas
 A�$ Sernadas
 C�� Objects
 Object Types

and Object Identi
cation� In� Ehrig
 H�$ Herrlich
 H�$ Kreowski
 H��
J�$ Preu&
 G� �eds��� Categorical Methods in Computer Science� LNCS
���
 Springer
 Berlin
 ����
 pp� ��������

�ESS�	� Ehrich
 H��D�$ Sernadas
 A�$ Sernadas
 C�� From Data Types to Object
Types� Journal on Information Processing and Cybernetics EIK
 Vol� ��

No� ���
 ���	
 pp� ������

�FM��� Fiadeiro
 J�L�$ Maibaum
 T�� Actions are Objects� Re
nement in
the temporal Logic of Objects� In� Lipeck
 U�W�$ Koschorreck
 G�
�eds��� Proc� Intern� Workshop on Information Systems � Correctness
and Reusability IS�CORE ���	 Technical Report	 University of Hannover
No� �����
 ����
 pp� ��������

�FS�	� Fiadeiro
 J�$ Sernadas
 A�� Logics of Modal Terms for System Speci�

cation� Journal of Logic and Computation
 Vol� �
 No� �
 ���	
 pp�
��������

�FW��� Feenstra
 R�$ Wieringa
 R�� LCM ��	� A Language for Describing
Conceptual Models ' Syntax De
nition� Report ir����
 Faculteit der
Wiskunde en Informatica
 Vrije Universiteit
 Amsterdam
 �����

�GR��� Goldberg
 A�$ Robson
 D�� Smalltalk���� The Language and Its Imple�
mentation� Addison�Wesley
 Reading
 MA
 �����

�HJS��� Hartmann
 T�$ Jungclaus
 R�$ Saake
 G�� Aggregation in a Behav�
ior Oriented Object Model� In� Lehrmann Madsen
 O� �ed��� Proc�
European Conference on Object�Oriented Programming �ECOOP�����
Springer
 LNCS ���
 Berlin
 ����
 pp� ������

�HJS��� Hartmann
 T�$ Jungclaus
 R�$ Saake
 G�� Animation Support for a Con�
ceptual Modelling Language� In� Ma(r��k
 V�$ La(zansk�y
 J�$ Wagner
 R�R�
�eds��� Proc� �th Int� Conf� on Database and Expert Systems Applications
�DEXA�	 Prague� LNCS ��	
 Springer
 Berlin
 ����
 pp� ������

�HK��� Hull
 R�$ King
 R�� Semantic Database Modeling� Survey
 Applications

and Research Issues� ACM Computing Surveys
 Vol� ��
 No� �
 ����
 pp�
�	����	�

Bibliography �
�

�Hoa��� Hoare
 C� A� R�� Communicating Sequential Processes� Prentice�Hall

Englewood Cli�s
 NJ
 �����

�HS��� Hartmann
 T�$ Saake
 G�� Abstract Speci
cation of Object Interaction�
Informatik�Bericht ���	�
 Technische Universit�at Braunschweig
 �����

�JHS��� Jungclaus
 R�$ Hartmann
 T�$ Saake
 G�� Relationships between Dy�
namic Objects� In� Kangassalo
 H�$ Jaakkola
 H�$ Hori
 K�$ Kitahashi

T� �eds��� Information Modelling and Knowledge Bases IV� Concepts	
Methods and Systems �Proc� �nd European�Japanese Seminar	 Hotel El�
livuori �SF��� IOS Press
 Amsterdam
 ����
 pp� ��������

�JSHS��� Jungclaus
 R�$ Saake
 G�$ Hartmann
 T�$ Sernadas
 C�� Object�
Oriented Speci
cation of Information Systems� The TROLL Language�
Informatik�Bericht ���	�
 TU Braunschweig
 �����

�JSS��� Jungclaus
 R�$ Saake
 G�$ Sernadas
 C�� Formal Speci
cation of Object
Systems� In� Abramsky
 S�$ Maibaum
 T� �eds��� Proc� TAPSOFT���	
Brighton� Springer
 Berlin
 LNCS ���
 ����
 pp� �	����

�Jun��� Jungclaus
 R�� Modeling of Dynamic Object Systems�A Logic�Based
Approach� Advanced Studies in Computer Science� Vieweg Verlag

Braunschweig!Wiesbaden
 �����

�Lam��� Lamport
 L�� Specifying Concurrent Program Modules� ACM Transac�
tions on Programming Languages and Systems
 Vol� �
 No� �
 ����
 pp�
��	�����

�Lip��� Lipeck
 U� W�� Zur dynamischen Integrit�at von Datenbanken� Grund�
lagen der Spezi�kation und �Uberwachung� Informatik�Fachbericht �	��
Springer
 Berlin
 �����

�Moo��� Moon
 D�A�� The Common Lisp Object�Oriented Programming Stan�
dard� In� Kim
 W�$ Lochovsky
 F�H� �eds��� Object�Oriented Concepts	
Databases	 and Applications� ACM Press
 Frontier series
 ����
 pp� ���
���

�MP��� Manna
 Z�$ Pnueli
 A�� The Temporal Logic of Reactive and Concurrent
Systems � Vol� �� Speci�cation� Springer�Verlag
 New York
 �����

�Per�	� Pernici
 B�� Objects with Roles� In� Proc� ACM�IEEE Int� Conf� on
O�ce Information Systems
 Boston
 ���	� Special Issue of SIGOIS Bul�
letin
 Vol� ��
 No� �)�
 ACM Press
 New York
 ���	
 pp� �	������

�PM��� Peckham
 J�$ Maryanski
 F�� Semantic Data Models� ACM Computing
Surveys
 Vol� �	
 No� �
 ����
 pp� ��������

�
	 Bibliography

�Pnu��� Pnueli
 A�� Application of Temporal Logic to the Speci
cation and Ver�
i
cation of Reactive Systems� A Survey of Current Trends� In� Bakker

J� de$ Roever
 W� de$ Rozenberg
 G� �eds��� Current Trends in Concur�
rency� LNCS ���
 Springer�Verlag
 Berlin
 �����

�RBP���� Rumbaugh
 J�$ Blaha
 M�$ Premerlani
 W�$ Eddy
 F�$ Lorensen
 W��
Object�oriented modeling and design� Prentice�Hall
 �����

�Saa��� Saake
 G�� On First Order Temporal Logics with Changing Domains for
Information System Speci
cation� Informatik�Bericht ���	�
 Technische
Universit�at Braunschweig
 �����

�Saa��� Saake
 G�� Descriptive Speci
cation of Database Object Behaviour� Data
� Knowledge Engineering
 Vol� �
 No� �
 ����
 pp� ������ North�Holland�

�Saa��� Saake
 G�� Objektorientierte Spezi�kation von Informationssystemen�
Teubner
 Stuttgart!Leipzig
 ����� Habilitationsschrift�

�SB��� Schefstr�om
 D�$ Broek
 G� van den� Tool Integration� Wiley Professional
Computing
 �����

�Sch��� Schulze
 J�� Vereinfachung von dynamischen Objektspezi
kationen�
Diplomarbeit
 TU Braunschweig
 �����

�SE��� Sernadas
 A�$ Ehrich
 H��D�� What Is an Object
 After All# In� Meers�
man
 R�$ Kent
 W�$ Khosla
 S� �eds��� Object�Oriented Databases� Anal�
ysis	 Design and Construction �Proc� �th IFIP WG ��� Working Confer�
ence DS��	 Windermere �UK��
 Amsterdam
 ����� North�Holland
 pp�
����	�

�Ser�	� Sernadas
 A�� Temporal Aspects of Logical Procedure De
nition� Infor�
mation Systems
 Vol� �
 ���	
 pp� ��������

�SFSE��� Sernadas
 A�$ Fiadeiro
 J�$ Sernadas
 C�$ Ehrich
 H��D�� Abstract Ob�
ject Types� A Temporal Perspective� In� Banieqbal
 B�$ Barringer
 H�$
Pnueli
 A� �eds��� Proc� Colloq� on Temporal Logic in Speci�cation� LNCS
���
 Springer
 Berlin
 ����
 pp� ������	�

�SFSE��� Sernadas
 A�$ Fiadeiro
 J�$ Sernadas
 C�$ Ehrich
 H��D�� The Basic
Building Blocks of Information Systems� In� Falkenberg
 E�$ Lindgreen

P� �eds��� Information System Concepts� An In�Depth Analysis
 Namur
�B�
 ����� North�Holland
 Amsterdam
 ����
 pp� ��������

�SH��� Saake
 G�$ Hartmann
 T�� Modelling Information Systems as Object
Societies� In� von Luck
 K�$ Marburger
 H� �eds��� Management and
Processing of Complex Data Structures	 Proc� �rd Workshop on Infor�
mation Systems and Arti�cial Intelligence	 Hamburg� Springer
 Berlin

LNCS ���
 ����
 pp� ������	�

Bibliography �

�SHS��� Schwiderski
 S�$ Hartmann
 T�$ Saake
 G�� Monitoring Temporal Pre�
conditions in a Behaviour Oriented Object Model� Informatik�Bericht
���	�
 TU Braunschweig
 �����

�SJ��� Saake
 G�$ Jungclaus
 R�� Konzeptioneller Entwurf von Objektgesell�
schaften� In� Appelrath
 H��J� �ed��� Proc� Datenbanksysteme in B�uro	
Technik und Wissenschaft BTW���� Informatik�Fachberichte IFB ��	

Springer
 Berlin
 ����
 pp� ��������

�SJ��� Saake
 G�$ Jungclaus
 R�� Views and Formal Implementation in a Three�
Level Schema Architecture for Dynamic Objects� In� Gray
 P�M�D�$
Lucas
 R�J� �eds��� Advanced Database Systems � Proc� ��th British Na�
tional Conference on Databases �BNCOD ���	 July ���	 ����	 Aberdeen
�Scotland�� Springer
 LNCS ���
 Berlin
 ����
 pp� ������

�SL��� Saake
 G�$ Lipeck
 U�W�� Using Finite�Linear Temporal Logic for Spec�
ifying Database Dynamics� In� B�orger
 E�$ Kleine B�uning
 H�$ Richter

M� M� �eds��� Proc� CSL��� �nd Workshop Computer Science Logic�
Springer
 Berlin
 ����
 pp� �����		�

�SM�	� Shlaer
 S�$ Mellor
 S�J�� Object Lifecycles� Modeling the World in States�
Prentice�Hall
 ���	�

�Sof��� Software
 IEEE� Integrated Case� IEEE Computer Society
 March �����

�SS��� Schwiderski
 S�$ Saake
 G�� Monitoring Temporal Permissions using
Partially Evaluated Transition Graphs� In� Lipeck
 U�$ Thalheim
 B�
�eds��� Proc� �th International Workshop� Modelling Database Dynam�
ics	 Volkse ����� Workshops in Computing
 Springer
 Berlin
 ����
 pp�
��������

�SSE��� Sernadas
 A�$ Sernadas
 C�$ Ehrich
 H��D�� Object�Oriented Speci
cation
of Databases� An Algebraic Approach� In� Stoecker
 P�M�$ Kent
 W�
�eds��� Proc� ��th Int� Conf� on Very Large Databases VLDB���� VLDB
Endowment Press
 Saratoga �CA�
 ����
 pp� �	������

�SSG���� Sernadas
 A�$ Sernadas
 C�$ Gouveia
 P�$ Resende
 P�$ Gouveia
 J��
OBLOG � Object�Oriented Logic� An Informal Introduction� Internal
report
 INESC
 Lisbon
 �����

�Ste��� Stein
 L�A�� Delegation is Inheritance� SIGPLAN Notices	 Special Issue
OOPSLA��
 Vol� ��
 No� ��
 ����
 pp� ��������

�UD��� Urban
 S� D�$ Delcambre
 L�� An Analysis of the Structural
 Dynamic

and Temporal Aspects of Semantic Data Models� In� Proc� Int� Conf�
on Data Engineering
 Los Angeles
 ����� ACM
 New York
 ����
 pp�
��������

��
 Bibliography

�Wd��� Wieringa
 R�$ de Jonge
 W�� The Identi
cation of Objects and Roles �
Object Identi
ers Revisited� Technical Report IR����
 Vrije Universiteit

Amsterdam
 �����

�Wie�	� Wieringa
 R� J�� Algebraic Foundations for Dynamic Conceptual Models�
PhD thesis
 Vrije Universiteit
 Amsterdam
 ���	�

�Wij��� Wijers
 G� M�� Modelling Support in Information Systems Development�
Thesis Publisher Amsterdam
 �����

�WJH���� Wieringa
 R�$ Jungclaus
 R�$ Hartel
 P�$ Hartmann
 T�$ Saake
 G��
omTroll � Object Modeling in TROLL� In� Lipeck
 U�W�$ Koschorreck

G� �eds��� Proc� Intern� Workshop on Information Systems � Correctness
and Reusability IS�CORE ���	 Technical Report	 University of Hannover
No� �����
 ����
 pp� ��������

Appendix A� The Troll�Syntax ���

Appendix A

The Troll�Syntax

The following symbols are meta�symbols for the grammar�

� terminal symbols and �non�terminal symbol�

� optional �terminals� and ��non�terminal symbols��

� alternatives are separated by j

To clearly distinguish terminal symbols from non terminals we use a boldface sans

serif font whereas the examples in the text use sans serif font�

The following abbreviations are used to simplify production rules for repeating oc�
currences of nonterminals� Let x be a non�terminal�symbol�

�x list� ��� �x list� � �x� j �x�

Commalists are used to separate closely related speci
cation items as for example
changing speci
cations or called events for one associated application condition and
for example parameter lists�

�x seq� ��� �x seq�
 �x� j �x�

Sequences are used to separate speci
cation formulae that further describe for ex�
ample features of events above the level of the commalists�

�x items� ��� �x items� �x� j �x�

We need no separators between parts of a speci
cation that start with keywords�

��� Appendix A� The Troll�Syntax

A�� Sublanguages

A���� Formula Sublanguage

�bool op� ��� implies j and j or

�bool const� ��� true j false

�quanti�er� ��� forall j exists

�formula� ��� �formula� �bool op� �formula�

j not �formula� j �bool const�

j ��formula�	

j �quanti�er� ��var decl list��� �formula� 	

j �data term�

j undef��data term�	

�� predicates for past tense ��

j after��evt term�	 j occurs��evt term�	

�� past tense temporal logic ��

j always �formula� j sometime �formula�

j previous �formula�

�� bounded past predicates ��

j always �formula� sincelast �formula�

j sometime �formula� sincelast �formula�

�� future tense temporal logic ��

j henceforth �formula� j eventually �formula�

j next �formula�

�� bounded future predicates ��

j henceforth �formula� until �formula�

j eventually �formula� before �formula�

A���� Data Sublanguage

�inf op� ��� � j � j � j � j div j mod

�compare op� ��� � j �� j � j � j �� j ��

�unary op� ��� � j �

�post op� ��� ��data term�� j ��tuple sel id�

�const symbol� ��� �nat const� j ��oat const� j �bool const�

j �char const� j �string const�

A�� Terms ���

�data term� ��� �data term� �inf op� �data term�

j �data term� �compare op� �data term�

j �unary op� �data term�

j �data term��post op�

j �op id����data term list�	�
j ��data term�	

j if �formula� then �data term� �else �data term��

j �var id� j �parameter id� j �const symbol� j �att term�

j unde
ned j �formula�

A���� Process Sublanguage

�process� ��� �process� �� �process unit� j �process unit�

�process unit� ��� �process term� j �evt term�

j �choice� j �parallel� j �foreach� j nil

�choice� ��� � �choice alternative� 	

�choice alternative� ��� �guarded process� j �choice alternative� ���guarded process�

�guarded process� ��� �ff �formula� gg� �process�

�parallel� ��� � �parallel events� 	

�parallel events� ��� �evt term� j �parallel events� ����evt term�

�foreach� ��� foreach �var id���data term� do �process� od

A�� Terms

�att term� ��� ��selector���att id� ���data term list�	�

�evt term� ��� ��selector���evt id� ���proc param list�	�

�process term� ��� ��selector���process id� ���proc param list�	�

�proc param� ��� � ����var id� j �data term� j � ����param id�

�selector� ��� �selector��select id�� j �select id��

�select id� ��� �class id� j �ovar id� j �cmp term�

�cmp term� ��� �cmp id����data term list�	� ��obj ref��

�obj ref� ��� ��data term�	 j �	

��� Appendix A� The Troll�Syntax

A�� Data Types and Declarations

�domain� ��� �data type id� j ���class id� ��
j tuple��domain item list�	

j list��domain�	 j set��domain�	

j enum��enum id list�	

�domain item� ��� �tuple sel id���domain�

�var spec� ��� variables �var decl seq�

�var decl� ��� �var id list� � �domain�

�param decl� ��� ��parameter id����domain�

�dt decl� ��� �dt id� � �domain�

A�� Template Structure

�template spec� ��� template �template id� ���dt param id list�	�
�template desc items�

end template �template id�

�template desc� ��� local classes �class spec items�

j components ��var spec�� �cmps spec items�

j attributes ��var spec�� �atts spec items�

j events ��var spec�� �evts spec items�

j constraints ��var spec�� �constr seq�

j process declaration ��var spec�� �process decl items�

j processes ��var spec�� ��process use items��
j interaction ��var spec�� �c interaction seq�

A�� Template Signature

A���� Components

�cmps spec� ��� �cmp id����param decl list�	���class item�

�cmp desc items� �

�cmp desc� ��� set j list
j inherited from �class id�

j hidden
j restricted �formula�

j initialized �formula� �default�
j derived �formula�

A�� Behaviour ���

A���� Attributes

�atts spec� ��� �att id����param decl list�	� ��data type�

�att desc items��

�att desc� ��� inherited from �class id�

j hidden j constant
j restricted �formula�

j initialized �data term� �default�
j derived �data term�

A���� Events

�evts spec� ��� �evt id����df param list�	� �evt desc items� �

�df param� ��� �����param decl��

�evt desc� ��� inherited from �class id�

j birth j death j active j hidden
j enabled �formula�

j changing �c changing seq�

j calling �c calling seq�

j binding �c binding seq�

�c changing� ��� �f�formula�g� �changing list�

�changing� ��� �att term� �� �data term�

�c binding� ��� �f�formula�g� �binding list�

�binding� ��� �parameter id� � �data term�

�c calling� ��� �f�formula�g� �evt term list�

A�� Behaviour

A���� Constraints

�constr� ��� �initially� �formula� �

A���� Processes and Life Cycles

�process decl� ��� �process id����df param list�	� � �process� �

�process use� ��� �process term� �process desc items� �

�process desc� ��� initiative j weak j start �formula�

interleaving �interleave mode�

��� Appendix A� The Troll�Syntax

�interleave mode� ��� none j free j excluding �event term list�

A���� Interaction

�c interaction� ��� �f�formula�g��interaction rule list�

�interaction rule� ��� �evt term� �� �evt term list� �

A�
 Abstractions

A�	�� Classes

�class spec� ��� object �class� �class id�

�class desc items�

��template desc items��
end object �class� �class id�

�class desc� ��� identi
cation �key spec list�

j role of �class item list� �derived �formula��
j view of �class item� �derived �formula��
j template �template id� �� �data type id list� 	�

�key spec� ��� �key id� � � �att id list� 	

�class item� ��� �class id� ��ovar id��

A�	�� Society Speci�cation

�rel spec� ��� relationship �rel id� between �class item list�

� constraints ��var spec�� �constr seq� �
� interaction ��var spec�� �c interaction seq� �

end relationship �rel id�

�society spec� ��� object society �society id�

�society desc items�

end object society �society id�

�society desc� ��� including �domain list�

j data types �dt decl list�

j �template spec� j �class spec� j �rel spec�

�dt decl� ��� �dt id� � �domain�

Appendix B� Operations for Constructed Data Types ���

Appendix B

Operations for Constructed Data

Types

The following generic or parameterised sorts are assumed to be prede
ned �where
elem is an arbitrary prede
ned sort
 sel a selector
 and sym a symbol��

set
elem� �Sets�
list
elem� �Lists�
enum
sym��� � ��symn� �Enumeration�
tuple
sel��elem��� � ��seln�elemn� �Tuples or records�

� For sets
 we have the following operations�

emptyset � � set �set constructor�
in � elem�set � bool �element of#�
empty � set � bool �emptypset#�
insert � elem�set � set �insert element into set�
remove � elem�set � set �remove element from set�
card � set � nat �cardinality�

� For tuples
 we have only selectors and constructors�

tuple � � � � elem��� � ��elemn � tuple �tuple constructor�
	sel� � tuple � elem� �selector�

			
���

	seln � tuple � elemn �selector�

� For enumeration
 we have only the symbols as constructors�

sym� � � enum �symbol ��
			

���
symn � � enum �symbol n�

��	 Appendix B� Operations for Constructed Data Types

� For lists
 we have the following operations�

emptylist � � list �list constructor�
in � elem�list � bool �element of#�
empty � list � bool �list empty#�
pos � elem�list � nat �position of elem�

 � � list�nat � elem �selection�

insert � elem�list � list �insert element into
rst list position�
remove � elem�list � list �remove elements�*� from list�
insertlast � elem�list � list �insert element into list
 last position�
removelast � elem�list � list �remove element from last position�
insert�rst � elem�list � list �like insert�
remove�rst � elem�list � list �remove element at
rst position�
delete � nat�list � list �delete i�th element�
length � list � nat �length�
card � list � nat �count without duplicates�

Index ��

Index

active
 �	
 ��
 �	
activity

of a process
 ��
after
 ��
 ��
aggregation
 ��
always
 ��
 ��
always���sincelast���
 ��
aspect
 ��
attribute

computed
 ��
derived
 �����
hidden
 �����
implicitly generated
 ��
 ��
Card
 ��
Empty
 ��
IDFirst
 ��
IDLast
 ��
IDList
 ��
IDSet
 ��
In
 ��
Length
 ��
Pos
 ��

initialized
 �����
key
 ��
object valued
 �	
parameter
 ��
restricted
 �����
stored
 ��
term
 ��

attributes
set of
 ��
speci
cation of
 �����

attributes
 �	
 ��
 ��

behaviour pattern
 ��
between
 ��

binding
 ��
 ��
 �	
birth
 ��
 ��
bool
 ��

calling
 ��
calling
 ��
 ��
 �	
calling rule
 ��
causal dependency
 ��
changing
 ��
 ��
 �	
changing rule
 ��
char
 ��
choice
 ��
 ��
class

container object
 ��
container
 ��
container object
 ��
 ��
 ��
local
 �����
type
 ��
view
 �����

class inheritance
 ��
class item list
 ��
class object
 ��

implicit
 ����	
class property

user de
ned
 ��
class type inheritance
 ��
CLOS
 ��
communication
 �	

synchronous
 ��
communication
 ��
communication relation
 ��
component

delete operation
 ��
implicitly generated
 ��
Element
 ��
Elements
 ��

��
 Index

First
 ��
Last
 ��

insert operation
 ��
list valued
 �	
 ��
local
 �	
selection condition
 ��
set valued
 �	
 ��
shared
 �	
single
 �	
single valued
 ��

components
implicitly generated
 ��
speci
cation of
 �	���

components
 �	
 ��
composition

constraints for
 �����
derivation of
 �����
initialization of
 ��

composition path
 ��
concurrency
 ��
concurrent system
 ��
conservative
 ��
constant
 ��
 ��
 ��
constraint

composition
 ��
dynamic
 �	
key
 ��
static
 �	

constraints
 �	
inter object
 ��
speci
cation of
 �	

constraints
 �	
 ��
control �ow
 ��

data �ow
 ��
data structure
 ��
data terms
 �����
data type

constructor
 ��
prede
ned
 ��

death
 ��
 ��
declaration

of data types
 �����
of parameters
 �����

of processes
 ��
of variables
 �����

default
 ��
 ��
 ��
delegation
 ��
derived
 ��
 ��
 ��
 ��
 ��
 ��
 ��

role
 ��
derived
 ��
derived role
 ��
dot notation
 ��
dynamic

role
 is�a
 ��

enabled
 ��
 ��
 �	
enabling condition
 ��
enabling conditions
 ��
end object
 ��
end object class
 ��
end relationship
 ��
enum
 ��
equality predicate
 ��
event

active
 �	���
 ��
birth and death
 ��
calling
 �����
changing rule
 �����
e�ect
 ��
enabling
 �����
hidden
 �����
implicitly generated
 ��
 ��
 �����
Change
 ��
Insert
 ��
InsertFirst
 ��
InsertLast
 ��
Remove
 ��
RemoveFirst
 ��
RemoveLast
 ��

initialization with birth
 �����
parameter binding
 �����

event term
 ��
 ��
events

speci
cation of
 �����
events
 �	
eventually
 ��
 ��
eventually���before���
 ��

Index ���

excluding
 ��
excluding
 ��
 ��
extension

of a class type
 ��
 ��

factorial function
 ��
FDTL
 ��
for each
 ��
 ��
Free
 ��
free
 ��
 ��

global constraint
 �����
global interaction
 �����
guarded process
 ��
 ��

handle
to objects
 ��
 ��

henceforth
 ��
 ��
henceforth���until���
 ��
hidden
 ��
 ��
 ��
 ��
 ��
 �	
hidden
 ��
human

representation of
 ��

identi
cation
 �����
 ��
of base class
 ��

identi�cation
 ��
 ��
identi
cation space

global
 ��
local
 �	

identi
er
 ��
of base class
 ��

identi
er
 ��
identi
er data type
 ��
 ��
identity
 ��
 ��
 ��
if then else
 ��
implementation
 ��
inheritance
 ��
 ��
 ��

semantic
 ��
syntactic
 ��

inheritance
 ��
inheritance hierarchy
 ��
inheritance path
 ��
inherited from
 ��
 ��
 ��
inherited properties
 ��

initial value
 ��
initialization

of attributes
 ��
of components
 ��

initialized
 ��
 ��
 ��
 ��
initialized���default
 ��
 ��
initially
 ��
initiative
 ��
instance variable
 ��
integer
 ��
integrity constraint
 ��
interaction
 �	
 ��
 ��
 ��
interface
 ��
interleaving

of a process
 ��
interleaving
 ��
is�a
 ��
is�a�relationship
 ��
 ��
iteration
 ��

key attribute
 ��
 ��
change of
 ��

key constraint
 ��
 ��
 ��
global
 ��
local
 ��

key constraint
 ��
key group
 ��
key map
 ��
 ��
key tuple
 ��
KeyMaps
 ��

list
 ��
 ��
 ��
 ��
list selector
 ��
local classes
 �����
local classes
 �	
 ��
local identi
cation space
 ��
logic

rst order
 ��
future temporal
 ��
past temporal
 ��
temporal
 ��

logic sublanguage
 �����
FDTL
 ��
PDTL
 ��

��� Index

loop
 ��

message transmission
 ��

name con�ict
 ��
naming mechanism
 ��
nat
 ��
next
 ��
NextID
 ��
nil
 ��
none
 ��
none
 ��
 ��
normative behaviour
 ��

object
abstract
 ��
creation
 ��
creation and destruction
 ����	
creation event
 �	
deletion
 ��
derived
 ��
embedding
 �	
evolution
 ��
identi
cation
 �����
identity
 �����
reference
 �	
single
 ��
 ��

object
 ��
object class
 ��
object instance
 ��
object referencing

single objects
 ����	
with identities
 �����
with key attributes
 �����

object society
 ��
object variable
 ��
 ��
occurs
 ��
OID
 ��
overriding
 ��
 ��

parallel
 ��
 ��
parallel operator
 ��
parameter
 ��

binding responsibility
 �	
of process event terms
 ��

scope of
 �����
parameterized attribute
 ��
part object
 �	
part�of
 �	
part�of�relationship
 ��
PDTL
 ��
post
x operator
 ��
preconditions
 ��
predicate

equality
 ��
previous
 ��
procedure call
 ��
 ��
process

identi
er of a
 ��
parallel events
 ��
recursive
 �����

process declaration
 �	
process event term
 ��
process language
 ��
process speci
cation
 �����
process term
 ��
processes

declaration of
 ��
speci
cation of
 �����
usage of
 ��

processes
 �	
prototyping
 ��

query
 ��

real
 ��
recursion
 ��
recursion operator
 ��
recursive processes
 ��
reference
 ��
 ��
re
ned properties

attributes
constant
 ��
derived
 ��
hidden
 ��
initialized
 ��
restricted
 ��

events
active
 �	

Index ���

binding parameters
 �	
birth
 ��
calling
 �	
changing attributes
 �	
death
 ��
enabled
 �	
hidden
 �	

re
nement
 ��
rei
cation
 ��
relationship
 ��
 �����
relationship
 ��
 ��
restricted
 ��
 �	
 ��
 ��
 ��
 ��
role
 ��
 ��

class change
 ��
identi
cation of
 ��

role class
 ��
role of
 ��
 �����
roles
 ��

derived
 �����
dynamic
 �����

safety rules
 ��
selector
 ��
self
 ��
semantic inheritance
 ��
sequencing
 ��
set
 ��
 ��
signature
 ��
Smalltalk
 ��
sometime
 ��
 ��
sometime���sincelast���
 ��
specialization
 ��
specialization condition
 ��
Stack
 ��
start

of a process
 ��
start
 ��
state sequence
 ��
static role
 ��
strict
 ��
string
 ��
sublanguages
 ��
syntactic inheritance
 ��
system speci
cation
 �����

template
parameterized
 �	
 �����

template
 ��
 ��
term

attribute
 ��
constant
 ��
data
 ��
event
 ��
parameter
 ��
process
 ��
process event
 ��
variable
 ��

tuple
 ��
 ��
tuple selector
 ��
tuple selector
 ��

unde�ned
 ��
 ��
uni
cation
 ��

variable
 ��
variables
 ��
view
 ��

projection
 ��
 �����
relational
 ��
selection
 ��
 ��
 �����

view

derived
 ��
view class
 ��
view of
 ��
 ��
 ��
views
 ��

weak
 ��
weak
 ��
 ��

