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Abstract. The combination of agile methods and formal methods has
been recognized as a promising field of research. However, many formal
methods rely on a refinement-based development process which poses
problems for their integration into agile processes. We consider redun-
dancies within refinement hierarchies as a challenge for the practical
application of stepwise refinement and propose superimposition-based
modularization of refinement steps as a potential solution. While tradi-
tionally, each model in a refinement hierarchy must be developed and
maintained separately, our concept allows developers to specify the re-
finement steps that transform a model into a refined one. We have devel-
oped tool support for the language AsmetaL and evaluated our approach
by means of a case study. The results indicate a reduction of complex-
ity for the development artifacts in terms of their overall size by 48.6%
for the ground model and four refinements. Furthermore, the case study
shows that superimposition-based refinement eases the development of
alternative refinements for exploratory development and to cope with
changing requirements. Thus, we consider this work as a step towards
agile formal methods that are tailored to support iterative development,
facilitating their incorporation into agile development processes.
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1 Introduction

Despite the potential benefits of applying formal methods to increase the quality
of software and a growing number of success stories, facilitating their industrial
adoption has been recognized as an important research challenge [46]. Tradi-
tional formal methods and techniques have mostly been developed assuming a
waterfall-like development process in which all requirements are known from the
beginning and do not change during the development process [36]. For decades,
research has focused on developing techniques to prevent errors when transform-
ing a set of well-known requirements into an implementation that faithfully ful-
fills them [19]. However, researchers and practitioners increasingly recognize the
need to adapt and develop formal methods to be incorporated into agile develop-
ment processes in which requirements are expected to change frequently [13, 24].
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In this paper, we contribute to agile formal methods by investigating concepts
to ease the integration of refinement-based formal methods into agile processes.

Stepwise refinement is an essential concept in formal methods and has been
integrated into many popular methods such as Event-B, ASM, or Z [1, 17, 42].
The idea of stepwise refinement is that the developer starts by specifying a
high-level model of the system that is derived from the requirements and easy
to understand, but still accurate regarding all relevant system properties [16].
Such a high-level model can already be subject to verification and validation,
which helps to prevent errors early in the development process [16]. Once the
developer is satisfied with the initial model, it is refined by adding more details
or additional functionality. This refinement process continues until a satisfying
level of abstraction has been reached, eventually leading to executable code.

While the general idea of model-based refinement (i.e., to postpone design
decisions as long as possible during the development process) seems to be com-
patible with agile processes such as iterative development, its practical appli-
cation poses several challenges. Researchers have identified the development of
reusable modules for model-based refinement as a challenge for their integration
into agile processes [23]. In particular, iterative development becomes difficult
because of the inherent redundancies between the different representations of the
system in the refinement hierarchy. When requirements change, the model of the
system needs to be adjusted on several levels of refinement. Every modification
potentially needs to be performed on all succeeding levels, each typically main-
tained as a separate development artifact. This overhead is especially a problem
for agile processes, in which changes are expected to occur frequently and must
be synchronized between all levels of refinement.

We propose to apply superimposition-based modularization to refinement
steps with the goal to avoid redundancies within refinement hierarchies and to
ease the replacement and removal of design decisions, making it easier to cope
with changing requirements. We exemplify superimposition-based refinement us-
ing the Abstract State Machine (ASM) method which includes a very general
notion of refinement, subsuming other more restricted refinement concepts used
in other formal methods [16]. That is, we do not aim to define a specific mathe-
matical notion of refinement for ASMs - this has to be done by the engineer for
each project - but to investigate how to describe the required development arti-
facts of a given refinement hierarchy. As such, we expect superimposition-based
refinement to be applicable for other methods than ASM as well.

We have developed tool support based on FeatureHouse, a tool for compo-
sitional development of software based on language-independent superimposi-
tion [5]. We extended it to support modular refinement steps using the language
AsmetaL [28, 27]. To evaluate our approach, we have performed a case study
based on the Landing Gear System [14, 8]. In detail, we make the following con-
tributions:

– We propose to apply superimposition-based refinement, allowing devel-
opers to specify modular refinement steps that can be automatically com-
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posed to derive a model of the system on the desired levels of abstraction,
to facilitate flexibility.

– We exemplify the concept with an extension of AsmetaL that supports
superimposition-based refinement.

– We developed tool support for our extension of AsmetaL. It is integrated
into Eclipse and allows the direct application of the Asmeta toolset to per-
form various analyses to the model on each level of refinement.

– We provide first empirical evidence of the feasibility of our approach by
means of its application to the landing gear case study which indicates a
large reduction of system size due to removed redundancies in the models.

2 Modularization of Refinement Steps

We explain the basic concept of model-based refinement in formal methods and
discuss some of its challenges for the application to agile development in Sec-
tion 2.1. In Section 2.2, we propose to modularize refinement steps based on
superimposition to reduce redundancies within development artifacts.

2.1 Refinement in Formal Methods

In model-based refinement, the developer starts with an abstract model that
is refined stepwise to executable code or a sufficiently detailed model [16]. For
the sake of clarity, we explicitly distinguish between refinements and refinement
steps; A refinement step describes the changes that are applied to transform
the initial model or one of its refinements into a more concrete refinement. The
result of a refinement-based development process is a sequence of refinements.

In Figure 1, we show a sequence of refinements for the Landing Gear System
that we use as a running example. The Landing Gear System has been proposed
by Boniol et al. as a benchmark for formal methods and behavioral verifica-
tion [14]. It describes an airplane landing gear system consisting of three landing
sets. The system controls opening and closing mechanisms of the landing sets
and includes features such as sensors, cylinders, and a health monitoring system.
For a more complete description of the system we refer to the literature [14].

The refinement sequence of the Landing Gear system, presented in Figure 1,
has been adapted from Arcaini et al. who exemplified its stepwise development
from an abstract model to Java code [8]. Each refinement step can be applied
to the model on a previous level of refinement. The initial model, here simply
called Landing Gear, only includes behavior of a single landing set and its most
basic elements, namely doors and gears, and describes their interaction. The first
refinement step Cylinders adds the behavior of cylinders that extend and retract
during the landing sequence. We depict the resulting refinement of the system
model in terms of the involved refinement steps: {Landing Gear, Cylinders}
describes the first refinement of the Landing Gear model. Similarly, the next
refinement steps add details about the behavior of sensors to the landing set,
the two additional landing sets, and a health monitoring system, respectively.
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Fig. 1: Sequence of Refinements for the Landing Gear System

Fig. 2: Concept of modular refinement applied to the Landing Gear System

A sequence of refinements typically leads to development artifacts containing
a high degree of redundancy. The reason is that typically each refinement is
merely an extended version of the previous one and only differs in a specific
aspect. In practice, refinements are typically created manually by duplicating
the initial model and adapting it sequentially by applying refinement steps. This
procedure is known as clone-and-own in the context of software variability and
has been studied on the level of code [38, 21].

Assuming a sequential development process in which all requirements are
known a priori and are not subject to change, the clone-and-own approach would
be feasible. However, it is not suitable for agile practices such as iterative de-
velopment. In particular, the redundancies within the refinement sequence lead
to practical problems, especially for the maintenance of development artifacts.
In the Landing Gear System, changes to the cylinder sub-system may involve
additional adjustments in three succeeding refinement levels. In general, each
modification on a given level of refinement may affect lower levels as well. The
high degree of redundancy makes it difficult to react flexibly to changing require-
ments.

2.2 Superimposition-Based Modularization

We have seen that redundancies between development artifacts in traditional re-
finement hierarchies pose several challenges for the integration of formal methods
into iterative processes. To avoid those redundancies, we propose superimposition-
based modularization of refinement steps, as illustrated in Figure 2. One of the
key ideas is to specify the refinement steps, as partial model representing the
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(c) Refined model

Fig. 3: Superimposition-Based Refinement. The colors indicate that node n2 is
merged using language-specific rules.

delta between the abstract and the refined model. Based on the concept of su-
perimposition, the refinements for each level can be automatically derived from
the modular refinement steps (e.g., for analysis purposes). Developers do not
need to maintain the models on each level of refinement directly. Instead, only
the modular refinement steps have to be maintained manually, allowing the de-
veloper to reduce the degree of redundancy in development artifacts. Thus, if
we perform a change to a modular refinement step (e.g., Sensors) the change
automatically applies to subsequent refinements.

We propose to modularize refinement steps using hierarchical superimposi-
tion as proposed by Apel et al. [5]. As depicted in Figure 3, the base model and
each refinement step are considered as syntax trees, whose nodes represent syn-
tactical elements of the model. When superimposing two trees, their nodes are
merged recursively based on their names, types, and relative positions. Nodes
are merged, if they have the same name and type and if their parents have been
merged. Nodes that cannot be matched this way are added to the tree at the
current position, as is the case for node n4 in the example. Corresponding non-
terminal nodes are merged recursively, by merging their children. When merging
terminal nodes (node n2 in the example), specific composition rules are to be
defined. We propose such composition rules for AsmetaL in Section 3.2.

By applying superimposition-based composition, the developer only needs
to specify the parts of the model that are changed during a refinement step,
the model can be generated automatically for each level of refinement. Thus,
redundancies within the refinement hierarchy can be avoided to a large extent.
As each refinement typically represents a design decision, the modularization
facilitates flexibility by allowing developers to replace or modify functionality to
reflect changing requirements by merely replacing a module. Thus, it may also
become easier to adapt the system or create different variants of the system and
respond to changing requirements quickly.
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1 enum domain HandleStatus={UP |DOWN}
2 enum domain DoorStatus={CLOSED |OPENING |OPEN|CLOSING}
3 enum domain GearStatus={RETRACTED|EXTENDING|EXTENDED|RETRACTING}
4 derived doors : DoorStatus
5 function doors = switch cy l inde r sDoor s
6 case CYLINDER EXTENDED: OPEN
7 case CYLINDER RETRACTED: CLOSED
8 endswitch
9

10 rule r c l o s eDoor = switch doors
11 case OPEN: doors := CLOSING
12 case CLOSING: doors := CLOSED
13 case OPENING: doors := CLOSING
14 endswitch
15
16 function doors = OPEN

Fig. 4: Domain, function and rule definition in AsmetaL

3 Modularization of ASM Refinement Steps

We exemplify superimposition-based refinement for the ASM method, and in
particular for the language AsmetaL for which we provide composition rules.
We introduce ASMs and the language AsmetaL in Section 3.1 and composition
rules for AsmetaL in Section 3.2.

3.1 Abstract State Machines and the Language AsmetaL

Abstract State Machines (ASMs) have been proposed by Gurevich as a means
to describe algorithms on arbitrary levels of abstraction, and made popular by
Börger as the underlying formalism of the ASM method [30, 15]. Besides the
ASM formalism, the ASM method, comprises the idea to describe a system on
any desired level of abstraction (ground model), and refine it stepwise. For a
detailed description of the ASM method we refer to the literature [17].

In this work, we exemplify the proposed concepts using the ASM-language
AsmetaL [28] and our running example. The ASM model for the Landing Gear
System as used for illustration has been proposed by Arcaini et al. [8]. In As-
metaL, a model include domains, functions, and rules.

Domains represent a mathematical specification for named complex structures.
Domains are thereby a combination of either simple predefined types such as
integers or other domains. The type of the combination is defined by a set of
keywords, such as enum, Set, or Map. Line 1-3 of Figure 4 shows an example of
domain definitions from the Landing Gear System.

Functions in ASMs, define the state of the system by their values at a given
point of execution. We mainly distinguish between controlled functions, whose
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value is controlled by the system, and monitored functions, whose values are
given by the environment. An exemplary declaration and definition of functions
from the Landing Gear System is shown in Figure 4, Lines 4-5. The type of
function doors is DoorStatus (i.e., a door can be either closing, closed, opening,
or open). The function definition uses a case term with the obvious semantics as
known from switch statements in programming languages. The doors are open
when cylinders are extended and closed when the cylinders are retracted. Thus,
the value of function doors is determined by the value of other functions, thus
it is considered as a derived function.

Rules in ASMs are sets of updates that, in its basic form, are controlled by con-
ditional statements called guards. In each step, all rules of an ASM are executed
simultaneously and define the update set for the next state transition. Figure 4,
Line 10 shows the definition of rule r closeDoor which handles the opening and
closing of the doors. In AsmetaL, the main rule marks the entry point of the
ASM’s execution, from which further rules can be invoked.

3.2 Composition Rules for Refinement Steps in AsmetaL

We propose an extension of AsmetaL that allows to express refinement steps
modularly and to derive the desired refinement hierarchies automatically. The
composition mechanism is based on superimposition as explained in Section 2.2.
Each refinement step contains a syntactically correct, yet partial, ASM. However,
only those parts that are subject to change during a refinement step have to be
specified in the corresponding module. The developer can introduce new elements
in a refinement step or refine an existing element with the same type and name.
For the automated composition of terminal nodes, specific composition rules are
required, which we will explain in the following.

Refinement Steps in AsmetaL A refinement step may introduce new functions or
refine existing ones. When refining a function, the default behavior is to replace
the previous definition of the function. Nevertheless, it is possible to include
the content of the function from the previous refinement level by using keyword
@original that we have adopted from method refinement in feature-oriented
programming [5]. Figure 5 shows an example of a function refinement and the
result of the composition. It is crucial, that the keyword @original does not
constitute an absolute reference to a particular previous refinement, facilitating
a notion of optional refinements providing more flexibility for agile development.
The refinement of rules and domains follows the same principle as the refinement
of functions as depicted in Figure 6. As our running example does not contain
any refinements of domains, we do not show an example.

Granularity of Refinement To prepare AsmetaL for superimposition-based com-
position, we had to define which language elements should serve as units of
composition by representing them as terminal nodes during superimposition. A
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1 function f l o w r a t e ( va lveS i ze , speed ) = Ground Model
2 v a l v e S i z e ∗ speed

1 function f l o w r a t e Refinement Step (Valves)
2 ( va lveS i ze1 , va lveS i ze2 , speed ) =
3 @or i g ina l ( va lveS ize1 , speed ) + @or i g ina l ( va lveS ize2 , speed )

1 function f l o w r a t e Composed Refinement
2 ( va lveS i ze1 , va lveS i ze2 , speed ) =
3 ( va lv eS i z e1 ∗ speed ) + ( va lv eS i z e2 ∗ speed )

Fig. 5: Refinement of a function in our extension of AsmetaL

1 Ground Model
2 rule r openValve =
3 valve := open
4
5

1 Refinement Step (Valves)
2 rule r openValve
3 i f ( p i p e F i l l = empty ) then
4 @or i g ina l ( )
5 endif

1 rule r openValve = Composed Refinement
2 i f ( p i p e F i l l == empty ) then
3 va lve := open
4 endif

Fig. 6: Refinement of a rule in our extension of AsmetaL

natural choice for rules are to consider rule definitions as non-terminals. How-
ever, our evaluation with the Landing Gear System showed that it might be
useful to consider the possibility to refine specific cases of case rules. The reason
is that it appeared as a common pattern to add cases or elements to a given case.
Thus, we have introduced the keyword extendable that can be used to assign a
unique identifier to a case rule. This identifier can be used during refinement by
referencing it with the keyword extend original. By means of both keywords,
it is now possible to explicitly refine cases rules by adding new cases or modify
existing ones as illustrated in Figure 7.

4 Tool Support and Evaluation

In order to evaluate our concepts, we have developed tool support and performed
a case study based on the Landing Gear System, which already served as a run-
ning example in the previous sections. We give an overview about tool support
in Section 4.1 and present results of our case study in Section 4.2.

4.1 Tool Support for Superimposition-Based Refinement in Eclipse

The core of our tool support is an extension of FeatureHouse [5], a command-
line tool supporting different types of software composition including super-
imposition. We integrated support for the language AsmetaL [28], to enable
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1 Ground Model
2
3 switch ( p i p e F i l l )
4 /∗ extendable ( pipe )∗/
5 case empty :
6 r c l o s e V a l v e ( )
7 case f i l l e d :
8 r openValve ( )
9 endswitch

10
11

1 Refinement Step (Valves)
2 /∗ e x t e n d o r i g i n a l ( p ipe )∗/
3 switch ( p i p e F i l l )
4 case f i l l e d :
5 par
6 @or i g ina l
7 warnLight = ye l low
8 endpar
9 case ove r f l ow ing :

10 warnLight = red
11 endswitch

1 switch ( p i p e F i l l ) Composed Refinement
2 case empty : r c l o s e V a l v e ( )
3 case f i l l e d : par
4 r openValve ( )
5 warnLight = ye l low
6 endpar
7 case ove r f l ow ing : warnLight = red
8 endswitch

Fig. 7: Refinement of a switch statement in our extension of AsmetaL

superimposition-based composition of refinement rules. It is necessary to de-
cide on a granularity for superimposition by choosing which elements should be
considered as terminal nodes during superimposition. For each type of terminal
node, we implemented composition rules supporting the keyword @original() as
explained in Section 3.2. Our extension of FeatureHouse can be used to compose
a set of AsmetaL models representing different refinement steps.

Our extension of FeatureHouse is integrated into FeatureIDE [45], an Eclipse
plug-in integrating numerous tools to develop configurable software. We have
extended existing views to handle ASM models, so that they can be used to
maintain an overview about the refinement hierarchy. The general development
interface can be seen in Figure 8. The Package Explorer, on the left, shows a
FeatureIDE project with the Landing Gear System. The folder refinement steps,
contains for each refinement step a sub-folder containing a set of AsmetaL mod-
els. A configuration describes a sequence of refinement steps and can be created
using the Configuration Editor in the top-right window. The set of selectable re-
finement sequences can be defined in the model.xml file, for which also a graph-
ical editor exists.

The composed models are automatically generated into the refinement folder
and can be used as input for other tools. Our tool is developed as an Eclipse plug-
in, and thus, it easily integrates with the Asmeta toolset, which has been built
around the Asmeta Framework and the language AsmetaL [28]. It incorporates
several tools including support for simulation, model checking, and static analysis
of ASM models. These existing editors, views and analysis tools can be used for
the automatically generated ASM models on each level of refinement.
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Fig. 8: Integration of our tool support into Eclipse including language-specific
editor and views for ASMs in our extension of the language AsmetaL.

4.2 Modularizing Refinement Steps of the Landing Gear System

To evaluate the feasibility of superimposition-based refinement for ASMs, we
have used our tool to perform a case study based on the Landing Gear System.
Arcaini et al. provide an ASM implementation of the system that has been used
as the foundation for our case study [7].

The existing refinement hierarchy by Arcaini et al. describes the AsmetaL
model on each level of refinement in detail [8]. We derived the necessary re-
finement steps, which makes the differences between two subsequent refinement
explicit and by modularizing them manually. We took care that the composed
models for each level of refinement do not differ semantically from the original
models. In addition to syntactical comparisons that were sufficient for large parts
of the model, we applied the Asmeta Simulator, Validator, Model Adviser, and
Refinement Prover of the Asmeta toolset3 and compared the results to ensure
the correctness of our modularization. After defining the refinement hierarchy
and modularizing the refinement steps of the Landing Gear System, we were
able to automatically derive the ASM model for each level of refinement.

As our goal is a reduction of redundancies, we compared the size of the model
on each level of refinement with the size of the modularized refinement steps.
Our results show that it is possible to remove large parts of the redundancy in
the development artifacts. In Table 1, we present the size of the AsmetaL models
in lines of code, i.e., non-empty lines excluding comments. The second column
shows the lines of code of the original refinement step and the third column (the
accumulated) size of the necessary refinement steps. In the third row, we present
the percentage of the reduction in size.

3 http://asmeta.sourceforge.net/
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Refinement Refinement (acc.) [loc] Refinement Step (acc.) [loc] Reduction (acc.) [%]

Ground Model 83 (83) 83 (83) 0.00 (0.00)
Cylinders 170 (253) 154 (237) 9.41 (6.3)
Sensors 187 (440) 131 (368) 29.94 (16.4)

LandingSets 199 (639) 23 (391) 88.44 (38.8)
HealthMonitor 250 (889) 66 (457) 73.60 (48.6)

Table 1: Reduction of system size achieved by modularization of refinement steps
in the Landing Gear case study.

The overall size of the refinement sequence has been reduced by decomposi-
tion into modular refinement steps by 48.6%. In general, it can be seen that the
reduction increases with a growing number of refinement steps. In some cases,
such as Cylinders, the reduction is relatively low while other refinement steps
benefit from larger savings. These results suggest that a relevant reduction of
redundancies is possible, in particular for large refinement hierarchies, but its
degree also depends on the particular design of the modularization, such as the
choice of granularity for superimposition, and possibly on the nature of the given
refinement steps.

Despite being able to derive the original refinement hierarchy from the refine-
ment modules automatically, the modularization of refinement steps allows us
to derive even more variants of the system by composing different combinations
of refinement steps. We considered the development of two alternative refine-
ments (for Cylinders and Sensors) that have been created during exploratory
phases of the original development. With superimposition-based refinement, it
was possible to switch between alternative implementations of individual refine-
ment steps. Changes are implicitly propagated to all generated refined models
by automatically rebuilding them after each change. This was especially helpful,
when considering the impact of changes to subsequent refinements of the original
sequence.

We have experienced that it is possible to omit certain refinement steps,
allowing the generation of completely new variants of the system. For instance, it
would be possible to derive a variant of the Landing Gear System without Sensors
but with HealthMonitor. We explored the idea by considering different optional
refinements. Our results show that it is generally possible, but may require non-
trivial changes to the design of the involved refinement steps or modules to handle
particular combinations of refinement steps. For instance, the refinement step
LandingSets does not depend on a particular refinement, which means that it can
be modified arbitrarily (e.g., by choosing a different number of landing sets). In
contrast, the refinement step HealthMonitor contained syntactical dependencies
to the previous refinement step and cannot be freely combined in other ways
without major changes.

Furthermore, we observed that each iteration in agile development corre-
sponds to identifying a set of desired refinements in the design space, and de-
veloping the necessary refinement steps to generate these refinements. For the
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sake of generality, we do not restrict the particular mapping between refinement
steps and iterations. One the one hand, it is possible to decide on a set of fea-
tures for the next iteration, extend the ground model of the previous iteration
and adapt all refinements accordingly all the way to the implementation. On the
other hand, each iteration could involve the development of a single refinement
step only. In this case, the suitability of ASMs to model a system on arbitrary
levels of abstraction enables early validation and can be used to get early feed-
back from the customer. In this case, the refinement sequence might involve an
arbitrary combination of refinements.

5 Related Work

Researchers increasingly recognize the need to incorporate formal methods into
agile development processes [13, 24]. The use of light-weight formal techniques,
such as static verification, in agile development processes has been shown to be
applicable in practice [36]. However, researchers have identified the integration
of more heavy-weight formal methods typically based on stepwise refinement,
such as Event-B, ASM, and Z, as a promising way to develop safety-critical sys-
tems [36]. In particular, the need for concepts to facilitate reusability in model-
based refinement has been identified as a major challenge [23]. We address this
challenge by investigating the application of superimposition as a technique to
achieve reuse between refined models. Furthermore, to our knowledge, we are
the first to propose the integration of ASM and agile methods.

Formal refinement concepts have been studied intensively [16, 9, 25, 35]. How-
ever, the main focus of this line of research are the theoretical underpinnings of
refinement rather than on ways to facilitate flexibility. In contrast, we aim to ease
development in the presence of refinement hierarchies independent of particular
notions of refinement.

There exist other approaches to avoid redundancies in model-based refine-
ment. In particular, the Rodin tool-suite for Event-B allows developers to express
a refinement by defining only those parts that differ from the abstract model [2].
However, this merely corresponds to a static reference to previous models which
does not facilitate the desired flexibility for agile methods. In contrast, the key-
word @original in our approach facilitates more flexible extensions by omitting
to specify a particular model to which it refers.

Various concepts to modularize features and cross-cutting concerns, such
as feature-oriented programming [39, 12], aspect-oriented programming [33] and
delta-oriented programming [40], have been proposed [43, 4]. In particular, these
approaches build on superimposition (or similar concepts) which has been recog-
nized as a general concept for software composition that can be applied uniformly
to all kinds of software artifacts [10, 5].

Historically, superimposition has been proposed as a concept to extend dis-
tributed programs with parrallel composition [32, 18]. In general, the early work
on superimposition focuses on semantic superimposition of particular models,
typically with the goal to establish a set of desired properties [26].We adopt
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a more general approach from Apel et al., which merely operates on AST-like
representations of development artifacts, facilitating a notion of uniform com-
position for all kind of development artifacts [5]. In this work, we consider this
language-independent notion of superimposition.

Superimposition has already been applied to compose method contracts in
JML [20, 47, 31, 44], Alloy specifications [6], state machines and markov decision
processes [37, 22], and unit tests [34, 3]. We build on this idea by investigating its
application to refinement steps, showing that similar benefits such as reduction
of redundancies and compositionality can be expected. However, we are the first
to apply it to refinement hierarchies. Further, the focus of our work is to leverage
the incorporation of refinement-based formal methods into agile processes.

In this work, we combine techniques from formal methods and software com-
position. Börger and Batory exemplified the modularization of programs, the-
orems, and correctness proofs from the JBook case study in a uniform compo-
sitional way [11]. In our work, we build on their observation that refinements
can be modularized in the same way as features in the context of software prod-
uct lines, but consider the modularization of refinement steps to achieve prac-
tical benefits for applying formal refinements. Gondal et al. have proposed a
feature-oriented extension of Event-B to investigate to which extent the tradi-
tional Event-B composition mechanisms can be used to implement and compose
features [29]. However, the focus is on enabling the correct development of sev-
eral similar variants of a system, but not on the implications of the refinement
hierarchies for the development process itself. Schaefer et al. consider modular-
izing software taxonomies which represent a family of different software variants
in a refinement-based fashion [41]. The authors describe a process how a software
taxonomy can be transformed into a software product line, but do not target the
modularization of the refinement hierarchies themselves as done in this work.

6 Conclusion and Future Work

The introduction of refinement hierarchies to agile development processes poses
several challenges. We have identified the inherent redundancies between refine-
ments as particularly problematic for iterative development in which models on
multiple levels of refinement may need to be changed frequently to respond to
changing requirements. We have proposed superimposition-based modulariza-
tion as a possible solution and exemplified it using ASMs. We have developed
composition-rules and implemented tool support for the language AsmetaL.

To evaluate the concept, we have performed a case study using the well-
known Landing Gear System. Our results indicate a significant reduction of
redundancies, possibly reducing development and maintenance effort. Further-
more, we show that superimposition-based refinement enables a more flexible
refinement hierarchy. While these results are promising, it remains to be seen to
which extent developers benefit from this reduction in practice. Further empiri-
cal studies regarding comprehensibility and maintainability of the development
artifacts would help to better understand the potential advantages.
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The modularization of refinement steps may facilitate agile development by
allowing developers to modify a design decision by merely replacing the corre-
sponding module. In future work, we want to investigate the potential of mod-
ularization of refinement steps to serve as a basis for refinement-based develop-
ment of software product lines and their efficient verification.
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G.: Tool Demo: Testing Configurable Systems with FeatureIDE. In: Proc. Int’l
Conf. Generative Programming: Concepts & Experiences (GPCE). pp. 173–177.
ACM, New York, NY, USA (2016)

4. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Berlin, Heidelberg (2013)
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