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ABSTRACT
Improvements in DNA sequencing technologies allow to se-
quence complete human genomes in a short time and at
acceptable cost. Hence, the vision of genome analysis as
standard procedure to support and improve medical treat-
ment becomes reachable. In this vision paper, we describe
important data-management challenges that have to be met
to make this vision come true. Besides genome-analysis
performance, data-management capabilities such as data
provenance and data integrity become increasingly impor-
tant to enable comprehensible and reliable genome analysis.
We argue to meet these challenges by using main-memory
database technologies, which combine fast processing capa-
bilities with extensive data-management capabilities. Finally,
we discuss possibilities of integrating genome-analysis tasks
into DBMSs and derive new research questions.

1. MOTIVATION
Mutations in organisms’ genomes can trigger diseases such

as cancer or cardiovascular disorders as well as influence the
efficacy of drugs for disease treatment [9]. Hence, genomes
have to be analyzed to detect mutations and to determine
their implications on organisms’ life in order to improve
disease detection and treatment [3].

Foundation for comprehensive genome analysis is DNA
sequencing that makes the genetic information encoded in
genomes readable. In recent years, next generation sequenc-
ing techniques were developed, which sequence complete hu-
man genomes in several days [15]. The improvements in DNA
sequencing facilitate new use cases for genome analysis such
as personalized medicine that tailors disease treatment and
drugs towards patients’ genomes in order to enable tailor-
made treatment for patients [20]. Thus, more and more
genome sequencing data is generated in even shorter time
that must be stored, integrated, processed, and analyzed.

Compared to the performance boost in DNA sequencing,
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Figure 1: Exemplary Genome Analysis Process

processing and analysis of genome sequencing data is still
very time consuming [14]. For that reason, data management,
processing, and analysis techniques for genome data have to
be improved to enable efficient and reliable genome analysis.
Otherwise, the effective use of genome sequencing data will
be limited [23].

In this paper, we contribute a summary of data-management
challenges in genome analysis, which must be met to keep
pace with DNA sequencing, but also to enable effective use
of genome sequencing data. Moreover, we characterize differ-
ent approaches for comprehensive genome analysis systems
regarding their applicability to meet these challenges and
discuss the use of main-memory database technologies as
basis for such genome analysis systems.

The paper is structured as follows. We discuss the basic
steps of genome analysis in Section 2 and describe open
data-management challenges in genome analysis in Section 3.
In Section 4, we motivate the use of main-memory database
management systems as basis for tomorrow’s genome-analysis
systems and identify new research questions in Section 5.

2. BACKGROUND
Genome analysis comprises several steps to detect muta-

tions in organisms’ genomes and to assess their impacts on
organisms’ health and drug efficacy. In Figure 1, we de-
pict an exemplary genome analysis process consisting of four
steps. In the first step, the organism’s genome is transformed
into a digitally readable form via DNA sequencing. With
current DNA sequencing techniques, it is impossible to read
large genomes at once [23]. For that reason, the complete
DNA is duplicated and arbitrarily fragmented into millions
or billions of small overlapping base pair sequences. Then,
the base pair sequence of each fragment is translated into a
string composed of As, Cs, Gs, and Ts, called base calling.
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Thereby, each character encodes one of the bases adenine,
cytosine, guanine, and thymine respectively. Next, the se-
quences are aligned to a known reference sequence in order
to restore the original DNA sequence. Afterwards, in the
variant calling step, differences between aligned genomes and
reference genomes are determined by comparing the genome
sequences site by site. Especially at sites where differences
are detected, further downstream analyses are performed
to assess the impact of mutations (e.g., a mutation has a
cancer-causing characteristic or a negative impact on drug
efficacy). Therefore, additional information from external
data sources such as information on gene coding regions,
known mutations, or protein interactions are needed.

Sequence alignment and variant calling are the most pro-
cessing intensive steps within genome analysis. To effi-
ciently compute them, algorithms are needed that use heuris-
tics as well as index structures to speed up the compu-
tation. In practice, these algorithms operate on flat files
and are implemented within command-line tools (e.g., sam-
tools [11]). Moreover, approaches exist that use MapReduce
frameworks and cloud computing to speed up sequence align-
ment and variant calling by parallelizing the processing [10].
To hide data transfer times to the cloud, stream-processing
approaches are developed that start computation as soon as
the first data items arrive at the processing node [8].

Downstream analyses rely on integrated data sources to
establish relationships between genome mutations and their
impacts on organism’s life [3]. Beside command-line tools, ap-
proaches exist that use relational database management sys-
tems (DBMSs) to facilitate downstream analyses as DBMSs
provide excellent data integration capabilities for hetero-
geneous data sources (e.g., Atlas [22]). Furthermore, ap-
proaches exist that already integrate some of the genome
analysis steps into relational DBMSs [18, 19]. However, an
approach that efficiently integrates all genome analysis steps
into a DBMS does not yet exist.

3. DATA MANAGEMENT CHALLENGES
We now describe open data-management challenges in

genome analysis. Thereby, we compare the applicability of
different platforms to meet these challenges.

3.1 Analysis comprehensibility and reliability
Personalized medicine requires comprehensibility and re-

liability throughout the complete genome-analysis process.
This is especially required because of the omnipresent data
and result uncertainties within the genome analysis [16, 23].
If genome analysis is not comprehensible and reliable, med-
ical assessments based on genome-analysis results are not
transparent and trustworthy and the benefits of personalized
medicine will be limited.

Using data-management capabilities, such as data integrity,
data security, user management, and data provenance, is the
foundation for a comprehensible and reliable genome-analysis
process. Data-integrity and data-security capabilities ensure
reliable analysis by keeping data consistent and valid at any
time. Data-provenance capabilities allow to track what data
contributed how to a certain analysis result. Moreover, user-
management features allow to define roles and responsibilities
of users within the complete genome analysis process making
analyses more transparent and comprehensible.

Flat-file based command-line tools and distributed pro-
cessing approaches for genome analysis are not designed
for comprehensive data management, but for performance.
In contrast, DBMSs are designed to provide comprehensive

data-management capabilities. Thus, matured mechanisms
for integrity control, data security, and user management
exist. Moreover, DBMSs can be effectively used to provide
data-provenance capabilities [6]. Nevertheless, currently,
DBMSs are either used as central data storage for external
tools or for downstream analysis to facilitate data integra-
tion. To provide a holistic approach that guarantees analysis
comprehensibility and reliability throughout the complete
genome analysis process, an integration of all steps of genome
analysis into a DBMS is required.

3.2 Efficient large-scale data processing
Sequence alignment and variant calling are the most pro-

cessing intensive tasks in genome analysis. The runtime of
sequence alignment and variant calling depends on the num-
ber of reads to align and the size of the reference genome.
Next generation sequencing techniques can sequence large
genomes (e.g., the human genome that comprises nearly 3.2
billion base pairs) in several days and generate large amounts
of reads that must be aligned [12].

Hatem et al. show in a recent performance benchmark that
current state-of-the-art sequence alignment tools can align 1
billion base pairs in one hour [7]. In contrast, current DNA
sequencers have already a throughput of 2.5 billion base pairs
per hour [12]. In order to process the increasing amounts of
sequencing data efficiently, approaches were developed that
use distributed processing frameworks such as MapReduce
to speed up the processing (e.g., Crossbow [10]). But with
increasing amounts of data to process, data transfer times to
cloud environments become significant. For example, Lang-
mead et al., the authors of Crossbow, report that transferring
their evaluation dataset to the Amazon cloud lasts over an
hour [10]. Even between local nodes, the transfer of large
amounts of data is significant. For example, CLC bio reports
that pre- and postprocessing tasks, such as index creation
and data transfer between storage and processing nodes, lasts
over 11 hours that is 70% of the overall processing time of
their alignment process [4].

Pavlo et al., show that large-scale data processing with
parallel DBMSs is more efficient than using a MapReduce
framework [17]. Thereby, they explain the speedup with
the use of compression techniques that reduce the data
volume and more sophisticated execution strategies that
perform data transfers between nodes in a distributed pro-
cessing environment only if necessary. Thus, we expect that
the integration of processing-intensive genome-analysis tasks
into DBMSs could improve the processing performance of a
genome-analysis system. Moreover, we argue that the use of
main-memory DBMSs as platform for genome analysis would
further increase the performance potentials (cf. Table 1) as
these systems have already shown their abilities to speed up
database applications [13].

3.3 Extensible high-performance analysis
In order to reveal new insights on genome mutations and

their impacts on organisms, it is necessary to enrich genome
sequencing data with further information [3]. Thereby, the
required information is stored in many heterogeneous data
sources. Thus, matured data-integration capabilities are
needed to integrate these heterogeneous data sources mak-
ing them accessible for comprehensive downstream analysis.
According to Mardis, downstream analysis is the most time
consuming task in genome analysis [14]. Many users partici-
pate in analyses and access the database for various purposes.
Thus, analyses must not only be fast, but also the interface
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Data-management challenge Flat-file based (e.g.,
command-line tools)

Disk-based DBMS Main-memory DBMS

Analysis comprehensibility and reliability − + + + + + +

Efficient large-scale data processing + + ++

Extensible high-performance analysis © © ©

Table 1: Applicability of different platforms for genome analysis to meet data-management challenges
Legend: − = not applicable, © = possible, + = good, ++ = very good, + + + = outstanding

to the database must enable various kinds of analyses.
Currently, approaches exist that let users define work flows

for genome analysis using a fixed set of specialized command-
line tools [2]. The complexity and integration effort of such
approaches increases with a higher number of supported tools.
Thus, extending such approaches, if possible, is associated
with high implementation efforts. Other approaches use
traditional disk-based DBMSs to store data from different
data sources in a homogeneous data schema, but are designed
for specific use cases and provide specialized interfaces beside
the standard SQL interface. To the best of our knowledge,
there is no evaluation of performance and extensibility of
these genome-analysis approaches.

We argue that, in contrast to command-line tools, DBMSs
are the right platform for extensible genome analysis as they
decouple the analysis application from the internal data
representation. Thus, data is accessible via high-level query
languages (e.g., SQL) and analyses can be integrated into the
DBMS (e.g., using stored procedures), whereby the DBMS
manages the efficient data access. Results of Schapranow and
Plattner indicate that main-memory DBMSs enable high-
performance analysis in the field of genome analysis [21].
Nevertheless, the applicability of DBMSs to provide the
extensibility needed for genome analysis must be investigated
in the future (cf. Table 1).

4. OUR VISION
In this section, we present our vision of a future genome-

analysis system that meets the data-management challenges
presented in Section 3. Therefore, we first describe our system
design and then, we describe how to meet the challenges.

4.1 System design
Main-memory DBMSs are the most applicable approach

to meet all open data-management challenges from Section 3
(cf. Table 1). For that reason, we suggest to use a main-
memory DBMS as processing and analysis platform to enable
efficient and reliable genome analysis. In Figure 2, we depict
the system design of such a genome-analysis system.

All data is stored within the main-memory database. Ev-
ery genome-analysis task should directly operate on the
main-memory database. Therefore, we propose to integrate
genome-analysis tasks (e.g., variant calling) into the DBMS.
In case the integration of a genome-analysis task is not
feasible, the DBMS should provide efficient interfaces that
enable existing genome analysis tools to operate on the main-
memory database. For example, sequence alignment could
be implemented as special bulk-load functionality for genome
data that reuses existing sequence-alignment tools.

4.2 Addressing data-management challenges
We now describe how our proposed genome-analysis system

meets the data-management challenges from Section 3.

Figure 2: Genome Analysis using Main-Memory
Database Systems

Extensible high-performance analysis.
Relational DBMSs provide declarative query languages

such as SQL. Moreover, languages exists that allow the defi-
nition of stored procedures that are directly processed inside
the database. Thus, just the analysis result must be trans-
ferred to a client instead of all data needed for the analysis.
Another advantage of using declarative query languages for
analyses is the use of optimized database operators that are
designed to provide efficient data access.

Compared to command-line tools that have many parame-
ters to control their execution, SQL is a more maintainable
way to describe analysis tasks. Furthermore, the integration
of analysis into the DBMS allows easier tracking of data
access and manipulations that is crucial to guarantee data
integrity as well as maintaining data provenance throughout
the complete genome analysis process.

First results on variant calling indicate that an integra-
tion of genome analysis tasks into a main-memory DBMS is
feasible and can be beneficial regarding performance [5].

Efficient large-scale data processing.
Main-memory DBMSs speed up database applications by

orders of magnitudes. The performance boosts of main-
memory DBMSs arise not only from the fact that data is
held in main memory permanently but also from the use
of optimized data structures and hardware-conscious algo-
rithms [13] as well as architectural redesigns [24]. In order to
benefit most from performance boosts due to main-memory
use, genome analysis algorithms must be efficiently integrated
into the DBMS. Therefore, we propose three strategies to
integrate genome-analysis tasks into main-memory DBMSs:
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Reuse of existing main-memory DBMS operators.
This strategy reuses existing DBMS operators to efficiently
implement genome analysis tasks (e.g., via SQL or stored
procedures). Advantage of this strategy is that the used oper-
ator implementations are optimized for different hardware by
DBMS vendors. Major disadvantage is the restricted ability
to express complex algorithms.

Extending functionality of main-memory DBMSs.
To avoid the major disadvantage of the previous strategy, this
strategy implements genome analysis functionality directly
into the DBMS. Certainly, the developer has to care about
optimal and efficient implementation.

Interfaces to internal storage structures. In case
neither the reuse of DBMS operators nor the extension of
the DBMS is possible, the third strategy connects existing
genome analysis tools via efficient interfaces to the main-
memory DBMS. On the one hand, it is possible to reuse
existing and mature genome-analysis tools. On the other
hand, the interfaces must provide efficient access while guar-
anteeing data integrity.

Furthermore, DNA sequencing reads have promising char-
acteristics for compression as the alphabet to describe them
is limited to the four letters A, C, G, and T in best case.
When storing every base of a read separately in one column
instead of the complete string, dictionary encoding can be ef-
fectively applied as the dictionary comprises just four values.
Thus, every single base value can be stored using just two
bits instead of eight. Such dictionary encoding scheme can
be efficiently applied to column-stores [1] that are often used
in main-memory DBMSs. In recent work, we have shown
that DNA sequencing reads can be efficiently compressed
using compression schemes such as dictionary encoding [5].

Analysis comprehensibility and reliability.
DBMSs provide a comprehensive set of data management

capabilities such as data integrity, data integration, data se-
curity, and also data provenance. Thus, a DBMS is the right
platform to fulfill the requirements regarding comprehensive
and reliable genome analysis.

5. CONCLUSION
In this work, we motivate to store and analyze genome

data inside main-memory database systems, because they
do not only provide excellent support for data management,
but also allow fast analysis of large amounts of data. Our
intention of using main-memory database systems for genome
analysis are twofold. First, we want to improve data man-
agement quality of the complete genome analysis process.
Second, we want to benefit from techniques that are already
implemented in database systems, such as compression and
query optimization to accelerate all genome-analysis steps.

In order to realize our vision of efficient and reliable genome
analysis by using main-memory DBMSs, at least the following
research questions need to be answered:

RQ 1 How to integrate processing intensive tasks (e.g., se-
quence alignment) efficiently into main-memory DBMSs?

RQ 2 Are high-level query languages such as SQL sufficient
to express arbitrary genome-analysis tasks?

RQ 3 How to enable external analysis tools to access data
structures of a main-memory DBMS efficiently?

RQ 4 How to guarantee consistency when allowing external
tools to access internal data structures?

RQ 5 How to efficiently integrate, store, and process peta
bytes of genome data in a main-memory DBMS?
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