
FeatureIDE: A Tool Framework for Feature-Oriented Software Development

Christian Kästner, Thomas Thüm, Gunter Saake
School of Computer Science

University of Magdeburg, Germany
{kaestner,thuem,saake}@iti.cs.uni-magdeburg.de

Janet Feigenspan, Thomas Leich
Section Applied Computer Science

METOP GmbH, Magdeburg, Germany
{janet.feigenspan,thomas.leich}@metop.de

Fabian Wielgorz, Sven Apel
Dept. of Informatics and Mathematics

University of Passau, Germany
{wielgorz,apel}@uni-passau.de

Abstract

Tools support is crucial for the acceptance of a new pro-
gramming language. However, providing such tool sup-
port is a huge investment that can usually not be provided
for a research language. With FeatureIDE, we have built
an IDE for AHEAD that integrates all phases of feature-
oriented software development. To reuse this investment for
other tools and languages, we refactored FeatureIDE into
an open source framework that encapsulates the common
ideas of feature-oriented software development and that can
be reused and extended beyond AHEAD. Among others, we
implemented extensions for FeatureC++ and FeatureHouse,
but in general, FeatureIDE is open for everybody to show-
case new research results and make them usable to a wide
audience of students, researchers, and practitioners.

1 Introduction

Tool support, such as integrated development environ-
ments (IDEs), is crucial for the acceptance and adoption of a
new programming language or paradigm, both in academia
and industry. Experience has shown us that programming
languages (or language extensions) implemented as com-
mand line preprocessors are difficult to convey. When teach-
ing such languages and the concepts behind them, students
struggle with using the technology instead of learning the
language concepts; when performing case studies, relying
on a simple text editor is frustrating and limiting compared
to modern IDEs; and finally, when working with industrial
partners, languages without adequate IDE support do not
stand a chance of being considered.

Some observers attribute at least some degree of AspectJ’s
success on the availability of the industrial-strength AJDT

development environment for Eclipse, which makes aspects
easier to use and lets users focus on the language instead of
the compiler or tool infrastructure [15]. For example, when
performing a major case study on aspect-oriented refactor-
ing of the medium sized legacy application Berkeley DB
(84 000 LOC) [8], we learned first-hand the value of such
tool support, in that it helped us to understand the resulting
program and the effects of aspects therein. As stated in [8],
this case study would not have been possible at this scale
without tool support.

However, developing industrial-strength tool support is a
tedious task. The development of AJDT was sponsored by
IBM and other companies. When developing tool support
for proprietary language extensions [11, 9], we required
major effort to release only a basic version, which is still far
away from capabilities modern IDEs provide for mainstream
programming languages. Even worse, this effort has to be
repeated for every language or language extension.

In this paper, we present FeatureIDE1, an open source
framework of an IDE for software product line engineering
based on Feature-Oriented Software Development (FOSD)
[13, 5]. FeatureIDE supports the entire life-cycle of a
product line in a coherent tool infrastructure, starting with
domain analysis and feature modeling [6], but also covering
design, implementation and maintenance with FOSD.

In contrast to earlier versions, FeatureIDE does not only
cover a single language (e.g., Jak from the AHEAD tool
suite [5]), but several languages based on the same foun-
dation: the concept of FOSD. At the point of writing,
FeatureIDE supports a multitude of different tools includ-
ing AHEAD [5], FeatureC++ [3], FeatureHouse [2], and
CIDE [9]; this way FeatureIDE supports FOSD in many
languages, including Java, C++, Haskell, C, C#, JavaCC,

1http://www.fosd.de/featureide/

and XML. As we will show, also other parts of FeatureIDE
are opened up for extensions, which makes it possible to
extend FeatureIDE further, either toward specific needs in
an industrial setting or to showcase research results in a full
IDE and make them quickly available to users in academia
and industry (as in [16]).

Overall, we envision FeatureIDE as open source project
that provides a broad foundation, but that can be used and
extended by different parties to teach and productively use
FOSD. In this demonstration, we give an overview of Fea-
tureIDE’s design and present recent developments on the
background of current software product line projects.

2 Feature-Oriented Software Development

Feature-oriented software development (FOSD) is a
paradigm for designing and implementing applications based
on features. A feature is an end-user visible characteristic or
requirement in a software system. The basic idea of FOSD is
to modularize software into feature modules which represent
features [13, 5]. To create an application, feature modules
are composed. As a side effect, this introduces flexibility
to compose features in different combinations, e.g., omit
certain features or implement alternative features. This way,
FOSD can be used to develop software product lines.

A software product line is a family of related programs tai-
lored to a domain, between which implementation artifacts
are shared. To develop a software product line, a domain
engineer analyzes the domain and identifies the differences
and commonalities between programs in that domain [6].
Domain analysis results in a feature model as depicted in
Figure 1a, which describes the features and their relation-
ships. In a software product line, different programs can be
produced on the basis of different feature selections.

There is a multitude of distinct concepts for implementing
software product lines. With FOSD, each feature is imple-
mented by a distinct feature module. Technically, a feature
module contains classes or class fragments (also called ‘re-
finements’). In Figure 1b, we depict a simple example of
three classes (vertical boxes Table, Storage, and Cursor) and
four feature modules (horizontal boxes). The classes are
divided into class fragments (gray boxes) that can be associ-
ated to different features. A feature module contains all class
fragments of its feature. There are different approaches to
implement class fragments; most extend the syntax for class
declarations with new keywords as feature [13], refines [5],
or partial [in C#]. In order to generate a program, class frag-
ments of the selected features are composed with a tool as
AHEAD for Java [5], Xak for XML [1], or FeatureC++ for
C++ [3]. This way, many different programs can be created
from a set of feature modules.

Putting it all together, the typical process of feature-based
software product line development consists of four phases as

Storage CursorTable

Cursor

NutOS

Symbian

Transactions

Implementation Units (Classes)Embedded Database

Transactions OS Cursor

NutOSSymbian

Mandatory Optional Alternative

(a) (b)

Figure 1. A simple feature model and its im-
plementation

Domain Analysis
(Feature Modelling) Feature Implementation

Requirements Analysis
(Feature Selection) Feature Composition

Problem Space Solution Space

Domain
Engineering

Application
Engineering

Figure 2. Phases of feature-based software
product line development

shown in Figure 2. In the first phase, the domain is analyzed
to identify features of the domain and their relationships.
Next, but still as part of domain engineering, features are
implemented as feature modules. To produce a specific pro-
gram, the requirements of this program are analyzed and the
according features are selected from the feature model. Fi-
nally, based on feature selection and feature implementation,
specific programs can be composed.

3 History: AHEAD Support

FeatureIDE was originally designed in 2004/2005 as an
IDE for the AHEAD tool suite, which integrates activities
of all phases of software product line engineering [11]. It
originated from the observation that all development phases
are connected, and tool support could ensure consistency
and automate certain steps. To give an overview, we outline
FeatureIDE’s support for development with AHEAD:
• Domain analysis and feature modeling are supported

with a graphical feature model editor. Feature models
are saved in a machine-readable form that can be used
for reasoning or analysis in other phases.
• Feature implementation is supported by providing an

editor (with syntax highlighting) for AHEAD’s Java
dialect Jak. Furthermore, feature modules are automati-
cally created for and synchronized with features from
the feature model to ensure consistency. For example,
when a feature is renamed, so is the according feature
module. Finally, views, as in Figure 1b, are provided to
visualize the structure and facilitate navigation.

2

• Requirements analysis is supported with a graphical
editor for selecting features from the feature model. In-
formation of the feature model is used to immediately
validate the feature selection, e.g., to detect conflict-
ing specifications. Furthermore, feature selections are
synchronized with changes of the feature model.
• Feature composition is finally automated with a back-

ground thread that composes feature modules for the
provided feature selections by invoking AHEAD’s tools.
Code structures gathered during this step are used for
visualizations during implementation; errors are prop-
agated back and marked on the according locations
in the implementation, as compiler errors in modern
IDEs. The composition is automatically repeated when
implementation or feature selection are updated.

Since 2006, after the initial prototype presented in [11],
we entirely reimplemented FeatureIDE from scratch to pro-
vide an even closer integration with AHEAD. The feature
model editor builds directly on AHEAD’s format. AHEAD’s
composition tools are included and shipped with FeatureIDE,
and they were even extended to provide access to AHEAD’s
internal data structures for visualizations.

While this created a stable IDE that we could use for
teaching, and for which we received positive feedback from
users around the world who wanted to try FOSD with
AHEAD, the close coupling with AHEAD turned out to
be a limitation. In our research, we designed new languages
and composition tools, e.g., FeatureC++ [3] and Feature-
House [2], and we also developed other facilities such as
automated refactorings [10] or analysis tools for feature
models [16] which would be nice to use in an IDE but did
not fit into the concept of FeatureIDE as an AHEAD front
end. Therefore, we eventually decided to broaden the scope
of FeatureIDE and to design it as an FOSD framework, in
which AHEAD is one of many extensions.

4 Open Framework for FOSD

Eclipse is developed as a framework, that can be used
to develop IDEs for various languages (e.g., JDT for Java,
CDT for C++). Instead of adding FeatureIDE as another
language-extension for AHEAD, we make FeatureIDE an
extensible framework on top of Eclipse that implements only
the part that is common to all feature-oriented languages.

The question remains: What is the common essence of
FOSD? Let’s revisit the four phases:
• Domain analysis and feature modeling is independent

of the language and composition tool. Therefore, func-
tionality to analyze the domain and to edit feature mod-
els can be placed in the common framework.
Nevertheless, because of a large body of research on
feature modeling and reasoning about features models,
we also open up feature modeling for extensions. This

way, we extended FeatureIDE with a graphical fron-
tend for our algorithm reasoning about edits to feature
models [16], instead of providing only command line
tools or writing a new model editor first. Furthermore,
FeatureIDE can be extended to read and write other
formats for feature models (currently AHEAD format
and SXFM format used at University of Waterloo [12]),
enabling it as frontend for other tools and even for con-
versions between formats.
• Feature implementation is language-specific to a high

degree. Editors for feature-oriented languages (or lan-
guage extensions) with syntax highlighting or code
completion are provided as separate plugins, as long as
existing editors in Eclipse cannot be reused (which is
possible for FeatureC++ and many languages in Fea-
tureHouse, but not for AHEAD). Still, synchronization
and visualization can be reused.
Specifically, visualizations as in Figure 1b are largely
language-independent. Visualizations can be based on a
common underlying data model based on the language-
independent structures (called feature structure trees)
found in research on the foundations of FOSD [2].
Only an adapter from each composition tool to this
data model is needed. This way, all languages benefit
from ongoing research on novel visualizations.
• Requirements analysis is independent of the language

or composition tool. Nevertheless, to foster research
on (semi-)automated product derivation as [17, 14], the
implementation supports different file formats and is
open for extensions.
• For feature composition, different composition tools

can be plugged in. FeatureIDE currently integrates
AHEAD [5], FeatureC++ [3], and FeatureHouse [2]
as plugins, supporting FOSD with the following lan-
guages: Java, C#, C, C++, Haskell, JavaCC, and XML.
Still, build automation and collecting underlying struc-
tures for visualizations are common to all extensions.
• Finally, advanced tools as type-checkers [7] or refactor-

ings [10] for specific languages can only be generalized
to a low degree and are plugged in separately. Still, the
benefit remains of integrating in such research in an
existing IDE, instead of offering only command line
tools or having to write an entire IDE each.

This analysis shows that a large percentage of Fea-
tureIDE’s functionality is language-independent and can
be generalized. A generalized framework allows us and oth-
ers to extend FeatureIDE rapidly for new feature-oriented
languages or composition tools. Similarly, new develop-
ments in the field of domain analysis, feature-modeling,
type-checking, or visualizations can be incorporated quickly
and are beneficial for users of all languages.

By refactoring FeatureIDE into a framework, we found a
way to coordinate development efforts by different develop-

3

ers and researchers and can use the same tool in a broader
scope. By making it available as open source, we encourage
others to participate in the project and leverage from existing
implementations. This framework makes it easier to evalu-
ate new ideas in academic and industrial settings, as users –
students and professionals alike – are not discouraged by pre-
processors and command line tools. We hope that others pick
up the framework and build their own extensions, instead of
reimplementing common parts as domain analysis, builders,
or visualizations over and over again. In our research, we are
furthermore planning to use FeatureIDE for own research
on aspectual feature modules [4], novel visualizations, and
virtual separations of concerns [9].

5 Related Work

While FeatureIDE focuses on integrating all phases of
FOSD, there are several IDEs or graphical editors for indi-
vidual phases of FOSD. For example, there are dozens of
implementations of a feature model editor available, e.g.,
Captain Feature2. Furthermore, commercial closed-source
software product line solutions as pure::variants or Gears
provide IDE support, with focus on domain analysis and
less on implementation, so that many integration advantages
of FeatureIDE do not apply. Though they are extensible as
well, their closed-source nature makes extensions difficult,
especially in a research context.

Furthermore, many Eclipse projects are developed in an
open fashion and the Eclipse community often focuses on
building reusable open frameworks (e.g., data tools platform,
open healthcare framework). Closest to our work is ope-
nArchitectureWare3, that provides an Eclipse based open
framework for developing model-driven development solu-
tions and domain specific languages. In this project, also a
common core is defined that can be extended by different
modeling languages. Its goal to integrate several languages
and to provide a reusable tool infrastructure is similar, but
FeatureIDE focuses more specifically on FOSD and software
product lines.

6 Conclusion

Nowadays, tool support, as in the form of an IDE, is
crucial for the acceptance of a new language. However,
providing such tool support is a huge investment that can
usually not be provided for a research language. With Fea-
tureIDE, we have invested several years in providing IDE
support for the AHEAD tool suite, to make research results
easier to adopt for academic projects and also for industry.
To reuse this investment, internally for own recent research

2http://captainfeature.sf.net
3http://openarchitectureware.org

results and externally by other researchers, we restructured
this project as a framework to support multiple languages
and composition tools. FeatureIDE can be extended quickly
to showcase new research results and make them usable to a
wide audience of students, researchers, and practitioners.

References

[1] F. I. Anfurrutia, O. Diaz, and S. Trujillo. On the refinement
of XML. In Int’l Conf. Web Engineering, 2007.

[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-independent, automatic software composition. In
Proc. Int’l Conf. on Software Engineering. 2009.

[3] S. Apel, T. Leich, M. Rosenmüller, and G. Saake. Fea-
tureC++: On the symbiosis of feature-oriented and aspect-
oriented programming. In Proc. Int’l Conf. Generative Pro-
gramming and Component Engineering. 2005.

[4] S. Apel, T. Leich, and G. Saake. Aspectual feature modules.
IEEE Trans. Softw. Eng., 34(2), 2008.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[6] K. Czarnecki and U. Eisenecker. Generative programming:
methods, tools, and applications. ACM Press, 2000.

[7] C. Kästner and S. Apel. Type-checking software product
lines - a formal approach. In Proc. Int’l Conf. Automated
Software Engineering. 2008.

[8] C. Kästner, S. Apel, and D. Batory. A case study implement-
ing features using AspectJ. In Proc. Int’l Software Product
Line Conference, 2007.

[9] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
software product lines. In Proc. Int’l Conf. on Software
Engineering, 2008.

[10] S. Klapproth. Analysis of feature interactions in modular
designs. Master’s thesis, University of Magdeburg, 2008.
(German).

[11] T. Leich, S. Apel, and L. Marnitz. Tool support for feature-
oriented software development: FeatureIDE: an eclipse-
based approach. In OOPSLA workshop on eclipse technology
eXchange, 2005.

[12] M. Mendonca, A. Wasowski, K. Czarnecki, and D. Cowan.
Efficient compilation techniques for large scale feature mod-
els. In Proc. Int’l Conf. Generative Programming and Com-
ponent Engineering, 2008.

[13] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In Proc. Europ. Conf. Object-Oriented Programming.
1997.

[14] N. Siegmund et al. Measuring non-functional properties
in software product lines for product derivation. In Proc.
Asia-Pacific Software Engineering Conf. (APSEC). 2008.

[15] F. Steimann. The paradoxical success of aspect-oriented
programming. In Proc. Conf. Object-Oriented Programming,
Systems, Languages and Applications, 2006.

[16] T. Thüm, D. Batory, and C. Kästner. Reasoning about edits to
feature models. In Proc. Int’l Conf. on Software Engineering.
2009.

[17] J. White, A. Nechypurenko, E. Wuchner, and D. Schmidt.
Optimizing and automating product-line variant selection
for mobile devices. In Proc. Int’l Software Product Line
Conference, 2007.

4

