
Adapter Generation for Extracting and Querying Data
from Web Sources

Kai-Uwe Sattler Michael H¨oding
Department of Computer Science, University of Magdeburg

P.O. Box 4120, D-39016 Magdeburg, Germany
fkus|hoeding g@iti.cs.uni-magdeburg.de

Abstract

Accessing and integrating data from heterogeneous
sources has become a significant challenge. So-called
adaptersprovide the functionality for translating SQL
queries into queries understandable by the source as well
as converting the results into a common model. In this
paper, we present our approach of an adapter for Web
sources, which is configurable by specifying a source-
specific extraction function. We focus on two main tasks:
query modification in order to extend the source capa-
bilities and data extraction. The extraction step bases
on an operational description, that enables an interactive
exploration of the result format during the development
phase. Finally, we present our ideas for semi-automatic
discovery of extraction patterns by analyzing example
documents.

1 Introduction

With the increasing popularity of the Web a wealth of in-
formation from many different domains has become avail-
able on-line. Besides semi-structured documents, numer-
ous sources contain structured information, e.g. product
information, stock exchange information, biographical or
biological data. Therefore, the problem of integration has
become a significant challenge. A number of research
projects is devoted to this problem. The goal of projects
like TSIMMIS [6], Information Manifold [10] or Garlic
[5] is to provide an uniform and integrated access to dif-
ferent sources. Mediators [19] or federation services [16]
play the central role in these integration systems and their
main task is to collect and combine information from the
sources. This involves translating user queries into source
queries as well as extracting and merging the results. Typ-
ically, access to sources is provided by so-calledwrap-
persor adapters, which convert data from the source into
a common model and support a common query language.

Whereas the development of adapters for “real”
databases may be simplified by using standard inter-
faces like ODBC or JDBC [8], the interface of Web
sources is typically formed by HTML forms and CGI
scripts as the calling interface and HTML as format of
results. In addition, Web sources are mostly limited in
their query answering capabilities [12]. Therefore, user
queries have to be modified by the adapter in respect to
the source capabilities. This involves processing of query
operations in the adapter in addition to source queries.

Developing an adapter by hand is impractical for sev-
eral reasons: the number of potential sources can be very
large and the format of sources changes frequently [3].
However, only a small part of the adapter code depends
on the source, the remaining parts are common among a
wide range of sources.

Based on this fact and the analysis of other approaches
[3, 9] for adapter generation we present our approach of
configurable adapters. In this paper, we focus on the tasks
of query modification and data extraction. After present-
ing the data model and the supported query language in
section 2, we discuss in section 3 the modification step
and in section 4 the process of data extraction. Section 5
describes the architecture of the adapter implementation
and section 6 introduces our approach for deriving extrac-
tion patterns. Finally, we conclude the results.

2 Data Model and Query Language

For representing and integrating data from heterogeneous
sources a number of models has been developed in re-
cent years. Apart from relational and object-oriented
data models some special adaptations for semi-structured
data were proposed, e.g. OEM [15] from the TSIMMIS
project. However, because a lot of Web sources base
on relational data or data with fixed structure a object-
relational model [17] might be a suitable solution. By us-
ing object-oriented features (e.g. inheritance) the subse-

1

quent integration may be simplified. Therefore, we have
choosen a simple object-relational model based on the
ideas presented in [13]. The model includes relations and
classes. A relation contains tuples while a class contains
objects. Attribute values of relations or classes may be
atomic values, objects as well as sets of these. Both re-
lations and classes are treated uniformly: every class is
associated with a relation, where the set of tuples corre-
sponds to the class extension. Consider the following ex-
ample schema of an online book-shop:

type book (
title varchar (20), authors set (varchar (20)),
price float , isbn varchar (25),
publisher varchar (30))

The choice of a query language is closely related to
the data model. Beside standard query languages like
SQL or OQL some languages for Web-based sources were
proposed, e.g. Lorel for semi-structured data [1], W3QL
[11] and WebSQL [14] for Web documents or various
proposed XML query languages [7]. In our approach we
have selected a SQL subset extended by thein-predicate
for testing set memberships. An example query for the
book-shop relation introduced above could be defined as
follows:

select title, authors, price from book
where (’Saake, G.’ in authors or

’Heuer, A.’ in authors) and price <= 100

By supporting an object-relational data model and a
SQL-like query language we are able to support the in-
tegration of Web-based sources and (object-)relational
databases as well as an uniform access via standard inter-
faces like JDBC.

3 Query Modification

Typically, Web sources support only a limited set of
queries, for example a selection of only some attributes,
only few comparison operators or conjunctive conditions.
Therefore, queries have to be modified to meet the capa-
bilities of the source. Possibly this involves reordering
operations, performing operations by the adapter or de-
composing the query into sub-queries and merging the
results. The concerned operations include the well-known
relational algebra operations: selection�, projection�,
union[, renaming� etc.

In order to translate a query into a form performable by
a source we need a description of the source capabilities.
In the following we assume a source containing a relation

Rsrc and supporting a set of selection operations. A single
selection is described as a conjunctionc =

V
n

i=1
ci of

atomic conditionsci = a�v, wherea is an attribute of
Rsrc, v is a value and� = f<;>;�;�;=; 6=;2g is an
operator. We call the set of all supported selections�Rsrc

.
A query, represented by the relational algebra expression
qs can be performed (that means, is directly or indirectly
supported by the source), if each operations applied to the
source relation is a supported selection of�Rsrc

: qs is
supported, if for each term!(r) with r = Rsrc : ! �

�c ^ c 2 �Rsrc
.

We have to transform a queryq into a supported query
qs. Consequently not all possible queries can be trans-
formed. At least one supported selection is required or
the source has to enable selections with empty conditions.
In the following, we consider only the transformation of
selections, because projection, renaming and join are per-
formed in the adapter on the results of the source oper-
ations. We decompose and reorder selections that each
source operation is a supported operation of the source.
In detail, query modification is performed by the follow-
ing steps:

(1) Transform the selection conditions into a disjunction
of atomic conditions or conjunctive combinations.
This results in an expression:c0 =

Wn

i=1
ci

(2) For each termci determine a maximal subexpression
cs � ci wherecs 2 �Rsrc

^ cs 6= ;

(3) Transform each termci representing a selection op-
eration with ci 62 �Rsrc

into a nested selection
�cincs(�cs(Rsrc)). The whole selection is now rep-
resented by the union of the transformed terms:

r =

n[

i=1

�cincs(�cs(Rsrc))

(4) Finally, remove redundant selections on temporary
relations by applying the transformation rule:

�c1(R) [�c2(R), �c1_c2(R) for R 6= Rsrc

If successfully, this modification steps result in a query
which is processed by performing one or more sub-
queries. In the book-shop example we assume a source
supporting selections where only the author and/or the
title attribute may be queried. As a result, the query
from section 2 is transformed into the following query
expression:

�(�price�100(�’Saake, G.’ inauthors(Rsrc) [

�’Heuer, A.’ in authors(Rsrc)))

2

This query is answered by performing two source queries
followed by a selection and projection on the union of
both result sets.

4 Query Processing and Data Ex-
traction

For query processing we have to distinct between local
queries (performed by the adapter) and source queries
evaluated in the source. Processing a source query in-
volves two steps: (1) a HTTP request has to be sent to the
source and (2) the received document has to be parsed in
order to extract the result data. This requires an extraction
functionfE, that returns the results for a given selection.
While the step of translating the query into the HTTP re-
quest is straightforward, the extraction step needs more
work.

In contrast to grammar-based approaches [3], where a
parser is constructed from a given grammar for the result-
ing document, our extraction approach bases on an oper-
ational description for defining the extraction function. A
function is composed from predefined utility functions for
extracting substrings and creating result tuples. We have
identified the following utility functions:

� get url (url, params) �! string
returns a string containing the document, which is
addressed byurl andparams.

� extract (s, pattern)�! tuple
extracts a tuple of strings froms, wherepatternspec-
ifies a extraction template. This template is a regular
expression containing HTML tags as special charac-
ters and placeholders $1: : : $n for the tuple elements
which have to be extracted.

� split (s, pattern)�! list
splits a strings into a list of strings at the given de-
limiters.

� map (func, l) �! list
applies a functionfuncon every element of listl and
returns the resulting list of tuples.

� tuple (s1, : : : , sn) �! tuple
constructs a tuple from a list of stringss1 : : : sn.

With the help of these functions we are able to solve most
extraction tasks. In addition, providing these functions
as part of an interpreter language enables the interactive
discovery of extraction steps for new sources.

Adopting this operational approach to our query
adapter requires an execution unit as part of the adapter

and a mapping between selections and the extraction
functions.

5 Adapter Architecture and Imple-
mentation

In our adapter, only the extraction step depends on the
Web source. Query modification and processing are sim-
ilar for all sources. Therefore, we are able to simplify the
adapter development by providing a framework contain-
ing the source-independent functionality, which may be
configured by adding the extraction function.

 RDBS

 Query
Translator

JDBC-
Query

JDBC-
Result

 CGI
 HTML

 JDBC Application

 W
eb

JD
B

C
 W

W
W

 S
er

ve
r

 H
T

M
L

 H
T

M
L

 H
T

M
L

 SQL

 s
ou

rc
e.

py

 CGI
Programs

 Query
Decomposer

 Result
Composer

.....
Query Tree

 Post Processor

.....

 Parser

Figure 1: Adapter architecture

Figure 1 shows the architecture of the approach. A
given user query is processed as follows. First, the query
is decomposed according to the algorithm from section 3
and a query tree is constructed. Every leaf node in the tree
corresponds to a source query, which is translated into a
CGI request. For each resulting HTML document an ex-
traction function has to be called by the parser. The ex-
tracted results of the sub-queries are composed and the re-
maining operations (e.g. selection, projection, union) are
processed. Finally, the post processor performs necessary

3

data conversations by using meta-data.
The presented approach was implemented as a JDBC

driver. The driver supports SQL queries for Web sources,
which provide at least a CGI interface. The execution
environment for the extraction function is implemented
by embedding a Python interpreter into the adapter. An
extraction function is written as a Python [18] script, the
utility function described in section 4 are implemented in
Python, too. As an example, consider the following script
for extracting results from the book-shop web site:

def extract item (s):
title, tmp, price = extract (s,
’$1<dd>$2
$3<p>’)
authors = split (split(tmp, ’/’)[0], ’,’)
price = match (price, ’[0-9]+,[0-9][0-9]’)
return title, authors, price

def extract books (params):
doc = get url (bookshop-url, params)
items = split (extract (doc,
’<html><body><dl>$1</dl>’), ’<dt><a>’)
return map (extract item, items)

In summary, configuring the adapter requires a schema
definition, a description of selections supported by the
source, the mapping between selections and the appropri-
ated HTTP requests as well as Python script for extracting
results. All this information is bundled in a configuration
file, which is evaluated by the adapter at startup time.

6 Derivation of Extraction Patterns

Obviously the definition of extraction patterns might be
one of the most expensive steps in adapter design. For
the human designer it is often quite difficult to find suit-
able patterns for the extraction function by analyzing ex-
ample documents [4]. One reason for that is the coexis-
tence of useful data and a huge volume of other informa-
tion (trash), e.g. headlines, banners for advertising, but-
tons, etc. Therefore, the designer needs supporting tools
for pattern derivation [2]. For that we propose a semi-
automatic approach, according to the following steps:

1. Define one or more example URLs, representing
queries to the data source (interactive)

2. Load example Web pages (automatic)

3. Extract one or more example tuples from the exam-
ple Web pages (interactive)

4. Findprestrings, instrings, poststringsfor all example
tuples in the example Web pages (automatic)

5. Evaluate and unify prestrings, instrings, poststrings;
deriveprefix, infixes, postfix(automatic)

6. Derive extract-functions for adapter configuration
(automatic)

7. Solve multi-valued instrings, derive specific split-
functions for adapter configuration (automatic)

Preconditions for the algorithm are the existence of con-
stant prefixes and postfixes, which determine beginning
and end of data areas (attribute values or tuples) and a suit-
able set of examples. The termsuitableis quite fuzzy. For
instance the example should contain neighbouring tuples.
If the algorithm fails, the structure of tuples in the Web
documents is not homogeneous and can not be parsed by
our adapters. However, we have to point out, that Web
pages generated by CGI programs accessing a database
system generally support the necessary regular structure.

The following set of rules illustrates the main ideas of
the extraction rule derivation1. The algorithm calculated
a unique prefix and postfix for the tuple. Based on this it
derives the following rule representing the structure of a
result Web page containing a set of tuples.

tuple = split(extract(www page,’tuple prefix.$1’),
’tuple postfix’)

This rule defines the outer structure of a tuple. Defining
the inner structure of the tuple one has to take care of set-
valued attributes and not-constant instrings.

Beginning with flat tuples containing only atomic at-
tributes which are separated by constant infixes, that are
calculated by step 5 of the algorithm, the following ex-
traction function is derived:

att1, att2, att3 = extract(s,’$1.infix1.$2.infix2.$3’)

Obviously, separators are not always constant. Often
separators, given by example tuples, contain additional
but unused data. In this case the algorithm derives a con-
stant left side and right side which function as postfix and
prefix. In the following example the separatortmp be-
tweenatt1 andatt2 is variable:

att1, tmp, att2, att3 =
extract(s,’$1.postfix1.$2.prefix1.$3.infix2.$4’)

1For easy read of the rules we separate postfix, placeholders, etc. by
’.’. These dots are not part of the rules in the resulting source.py file.

4

The handling of set-valued attributes is more difficult.
First there are two opportunities to define attribute values
for such attributes in the example tuples. The first is to
instantiate the value with the complete set of example
attributes including separators. In that way the set-valued
attribute can be handled in the same way as an atomic
attribute. Beside this the attribute has to be defined as ’set-
valued’ manually. In an additional step the separator has
to be computed. A disadvantage is, that in numerous cases
the complete string representing the set in the example
is really long. This can be caused by extensive use of
HTML tags (especially links) or additional but unused
information.

Therefore we discuss the use of only one example el-
ement of the set for each example tuple. (In the case of
existence of set-valued first or last attributes, e.g. one au-
thor of a list of more authors, these approach influences
the calculation of tuple prefixes or tuple postfixes.) For
the calculation of prefix and postfix of the set and the sep-
arators the algorithm needs example elements from the
beginning, the middle, and the end of a example set. Sep-
arators can be again constant and variable. In the follow-
ing exampleatt2 is set-valued and the set elements are
separated by a (constant) infix:

att1, tmp, att3 = extract(s,’$1.infix1.$2.infix2.$3’)
a set = split(tmp,’$1,set infix’)

To support variable separators an additional extraction
rule has to be derived as illustrated before.

The algorithm is implemented in Java and supports the
semi-automatic and interactive derivation of extraction
patterns.

7 Conclusion

Recently, there has been an increasing interest in integrat-
ing data from Web sources into databases. The required
functionality is typically provided by adapters. In this pa-
per, we have presented our approach of a configurable
adapter. An adapter framework implements the source-
independent tasks, like query modification and process-
ing as well as data conversion. This framework ist instan-
tiated for a specific source by defining an extraction script.
An operational description of the extraction step enables
the interactive exploration of the result document struc-
ture. Furthermore, we have discussed semi-automatic dis-
covery of extraction patterns by analyzing example doc-
uments. A prototype of the adapter was implemented in
Java as JDBC driver for querying Web sources with a SQL
subset.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The Lorel Query Language for Semistruc-
tured Data. InProceedings of ACM SIGMOD Inter-
national Conference on Management of Data, Tuc-
son, Arizona, 1997.

[2] A. Adelberg. NoDoSE - A Tool for Semi-
Automatically Extracting Structured and Semistruc-
tured Data from Text Documents. In L. Haas and
A. Tiwary, editors,SIGMOD’98, Proc. of the 1998
ACM SIGMOD Int. Conf. on Management of Data,
June 1–4, 1998, Seattle, Washington, USA, vol-
ume 25 ofACM SIGMOD Record, pages 283–294.
ACM Press, June 1998.

[3] N. Ashish and C. Knoblock. Wrapper Generation for
Semi-structured Internet Sources. InWorkshop on
Management of Semistructured Data, Tucson, Ari-
zona, 1997.

[4] S. Brin. Extracting patterns and relations form the
world wide web. In Gianni Mecca, editor,Proc. of
WebDB98 - International Workshop on the Web and
Databases, pages 102–108, Valencia, Spain, March
1998. Springer.

[5] M. Carey, L. Haas, P. Schwarz, M. Arya, W. Cody,
R. Fagin, A. Flickner, A. Luniewski, W. Niblack,
D. Petkovic, J. Thomas, J. Williams, and E. Wim-
mers. Towards Heterogeneous Multimedia Informa-
tion Ssystems: the Garlic Approach. InProceedings
of the 6th International Conference on Data Engi-
neering, pages 123–130, Los Angeles, CA, Febru-
ary 1995.

[6] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ire-
land, Y. Papakonstantinou, J. Ullman, and J. Widom.
The TSIMMIS Project: Integration of Heteroge-
neous Information Sources. InProceedings of 10th
Anniversary Meeting of the Information Processing
Society of Japan, pages 7–18, Tokyo, Japan, 1994.

[7] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. XML-QL: A Query Language for
XML. Submission to the World Wide Web Consor-
tium, August 1998. http://www.w3.org/TR/NOTE-
xml-ql/.

[8] G. Hamilton, R. Cattell, and M. Fisher. JDBC
Database Access with Java – A Tutorial and An-
notated Reference. Addison Wesley, Reading, MA,
1997.

5

[9] J. Hammer, M. Breunig, H. Garcia-Molina,
S. Nestorov, V. Vassalos, and R. Yerneni. Template-
Based Wrappers in the TSIMMIS System. InPro-
ceedings of 23rd ACM SIGMOD International Con-
ference on Management of Data, Tucson, Arizona,
1997.

[10] T. Kirk, A. Levy, Y. Sagiv, and D. Srivastava. The
Information Manifold. InProceedings of the AAAI
Spring Symposium Series, March 1995.

[11] D. Konopnicki and O. Shmueli. W3QS: A Query
System for the World Wide Web. InProceed-
ings of the 21st International Conference on Very
Large Data Bases (VLDB’95), pages 54–65, Z¨urich,
Switzerland, September 1995.

[12] A. Levy, A. Rajaraman, and J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. InProceedings of the 22nd In-
terational Conference on Very Large Databases
(VLDB’96), 1996.

[13] A. Levy, D. Srivastava, and T. Kirk. Data Model
and Query Evaluation in Global Information Sys-
tems. Journal of Intelligent Information Systems,
5(2), September 1995.

[14] A. Mendelzon, G. Mihaila, and T. Milo. Query-
ing the World Wide Web. InProceedings of the
Conference on Parallel and Distributed Information
Syswtems (PDIS’96), December 1996.

[15] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object Exchange Across heterogeneous
Information Sources. InProceedings of Data
Engineering Conference, Taipei, Taiwan, March
1995.

[16] A. Sheth and J. Larson. Federated Database Sys-
tems for Managing Distributed, Heterogeneous, and
Autonomous Databases.ACM Computing Surveys,
22(3):183–236, 1990.

[17] M. Stonebraker and D. Moore.Object-Relational
DBMSs: The Next Great Wave. Morgan Kaufmann,
San Francisco, CA, 1996.

[18] A. Watters, G. van Rossum, and J. Ahlstrom.Inter-
net Programming with Python. M&T Books, 1996.

[19] G. Wiederhold. Mediators in the Architecture
of Future Information Systems.IEEE Computer,
25(3):38–49, March 1992.

6

