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Abstract. Geometric attacks, like the ones performed by the StirMark
Benchmark for Audio (SMBA) evaluation suite for audio watermark-
ing, disturb the detector of a watermark signal w used on the attacked
sequence r. This paper will introduce SMBA and describe how percep-
tual modeling (in this case psychoacoustic modeling) can be used to im-
prove the transparency of geometrical attacks. Furthermore transparency
models and the impact using psychoacoustic methods on the attacked se-
quence and thereby on the correlation between r and all the cyclically
shifted versions of the watermark signal w are discussed. It is shown
that an exhaustive search is complicated by the non-linear behavior of
the transformation performed by the psychoacoustic model.

1 Motivation and Introduction

Today we find a wide variety of geometric watermarking attacks. Most of the
attacks are configured based on a standard parameter set. Using the notation of
the WaCha1 we assume here that the attacker cyclically shifts the marked vec-
tor f ′ (watermarked host feature sequence f with watermarking signal w and
template signal s) by an unknown amount resulting in an attacked sequence r.
This is a kind of blind manner to modify the watermarked vector f ′. To apply
an attack successfully the overall goal is to keep the signal quality by changing
the marked vector f ′ and producing the attacked sequence r. Besides the overall
goal to disable the detector of the watermark signal w the perceptual quality of
the signal has to be ensured, otherwise the attack cannot be seen as a successful
attack. Therefore in accordance to the exhaustive search (ES) the detector needs
to compute the correlation between r and all the cyclically shifted versions of
w with additionally considering all possibly applied perceptual models of such a
geometric attack. The first question of an ES regarding the effectiveness of ES
detection can be extended: apart from complexity issues, a wider scope of geo-
metric attacks has to be considered. The question is if ES can handle perceptual
tuned geometric attacks? Our idea is to describe the overall attacker model if the
attacker uses an attack tuned according to the human perceptual system. In our
1 1st Wavila Challenge, Barcelona 2005



paper we discuss therefore transparency models and their impact to geometric
attacks to show how geometric attacks can be tuned and the attack strength
can be adopted to the demanded signal quality by reducing the attack strength.
Our goal is to motivate what kind of tuned geometric attacks has to be handled
by an ES. On the example of StirMark Benchmarking for Audio (SMBA) we
introduce three approaches of applying perceptual models and their impact on
the overall attack parameter. From this discussion we learn that the exhaustive
search needs to consider perceptually scaled cyclically shifts. Remark: As we do
not consider actual audio watermarking algorithms in this first stage, we also do
not evaluate the overall impact on watermark detection in this first discussion.

This paper is organized as follows: Section 2 introduces SMBA, classifies the ex-
isting geometric attacks of SMBA and introduces audio perceptual models (psy-
choacoustic models). Section 3 introduces our approaches to perceptual attack
tuning (including the three transparency models) and the psychoacoustic mod-
ule for SMBA. In section 4 the test scenario used for transparency evaluations
of the geometric attacks of SMBA using psychoacoustic modeling is described.
In section 5, we discuss our first test results of perceptually tuned attacks by
evaluating the original audio quality, the audio quality after attacks without and
without psychoacoustic modeling. The section 6 summarizes our approach and
impacts to an ES.

2 Attacks of SMBA and Perceptual Models

This section introduces briefly the SMBA architecture, the concept of single
attacks and the attack classification. Furthermore, this section introduces a per-
ceptual model which is the base to improve the audio attack transparency.

2.1 StirMark Benchmark for Audio

This subsection introduces the general SMBA architecture and classifies the
single attacks [1]. The architecture of SMBA consists of four different types of
modules. First, the attack module StirMark for Audio (SMFA) itself, second the
read write stream module to convert audio files into and back into files, which
is needed for input and output of audio signals. The third module SM-Bell is a
wrapper for SMFA and read write to make it easier to use. The fourth module
SM-Bell GUI is a graphical user interface for SM-Bell.

From the overall point of view, a digital audio signal depends on different param-
eters based on the capturing and sampling processes (with the following default
values for SMBA): sampling frequency SampleFrequency = 44.1 kHz, sampling
quantisation 16 bits (MaxQantisation = 216) and NumberOfChannels = 2
(stereo).



Based on the digital audio representation, we differ between time and frequency
domain. The frequency domain representation can be provided by transforming
the time domain audio signal into the frequency domain for example by using
a Fourier transformation [16]. The marked vector f ′, which will be evaluated,
depends on the attack itself, the attack parameters and can be the whole au-
dio signal Si or any particular subset. We describe the audio signal, which is
processed by SMFA as Si = f ′ + remainder, where f ′ is marked vector and
remainder is the untouched part of the audio signal. Depending on the attack,
it is possible, that Si = f ′ and no reminder exists. SMBA evaluates f ′ without
knowledge about the used watermarking algorithm, f , w and s. As notation for
the attacks of SMFA working in time domain, we use Si(x) as input signal for
SMFA and So(x) as output signal from SMFA which is the attacked, modified,
marked audio signal (So = r+remainder′). Depending on the attack and attack
parameters, the attacked sequence r can be the whole audio output signal (So)
or any particular subset. The remainder′ is the unevaluated part of the audio
signal and depending on the attack and attack parameters, remainder′ can be
equal to remainder. The value x is the sample value at a discrete point of time ti
in the input and output stream, we use x = x(ti). As notation for the attacks of
SMBA working in frequency domain, we use Fi(x) to signify the frequency input
signal and Pi(x) to specify the phase of the signal represented in the frequency
domain. Furthermore, we use Fo(x) and Po(x) as the corresponding output sig-
nal in frequency domain.
The motivation for all attacks in SMBA is to destroy or weaken the embed-
ded watermark signal w, as Kutter et. all [17] described for geometric attacks.
From the signal processing point of view, we can classify the SMFA attacks into
three attack classes. The first class adds or removes a signal k to or from Si(x):
So(x) = a ∗ Si(x) + b ∗ k(ti). The value a scales the input audio signal and the
value b scales k(ti) to a specific limit. The second class can be described as fil-
ter attacks: So(x) = FAttack(Si(x)), where FAttack is the corresponding attack
from this attack class. The third attack class can be seen as modification attacks
primary against the watermarking template signal s, by modifying the overall
structure of the signal representation: So(x) = MAttack(Si(x)). Table 1 summa-
rizes all current single attacks of SMBA into these three classes by indicating
time and frequency domain.

Table 1: Classification of SMBA attacks [1]

Add/Remove Attacks Domain Filter Attacks Domain Modification Attacks Domain

AddBrumm Time Amplify Time Invert Time
AddSinus Time Normalizer1 Time FFT Invert Frequency
AddNoise Time Normalizer2 Frequency CopySample Time

AddDynNoise Time Compressor Time FlippSample Time
AddFFTNoise Frequency BassBoost Time CutSample Time

NoiseMax Time RC-HighPass Time ZeroCross Time
Denoise Time RC-LowPass Time ZeroLength1 Time
LSBZero Time FFT HLPassQuick Frequency ZeroLength2 Time

Echo Time Stat1 Time ZeroRemove Time
Stat2 Time PitchScale Frequency

FFT Stat1 Frequency DynamicPitchScale Frequency
Smooth1 Time TimeStretch Frequency

Continued on next page



Table 1 – continued from previous page
Add/Remove Attacks Domain Filter Attacks Domain Modification Attacks Domain

Smooth2 Time DynamicTimeStretch Frequency
Exchange Time

Resampling Time
ExtraStereo Time
VoiceRemove Time

2.2 Overview of Perceptual Models

When discussing perceptual models this paper is focused on psychoacoustic mod-
els like the one introduced by Zwicker et al. ([2], [3], [4], [5]). These models
deal with the relation between measured features of sound (sound pressure, fre-
quency) and their subjective counterparts (loudness, pitch of tone). They link
the physical properties of sound waves and perception. Psychoacoustic analysis
and modeling in combination with compression algorithms is widely used in cur-
rent audio standards for example: MP3, Ogg Vorbis, and the compression used
in SONYs MiniDisc format. Perceptual coding reduces the size of audio data
with rates from one fifth to one twelfth [4] by the removal of all features of the
audio signal which are considered to be imperceptible to human listeners. Gener-
ally the first item defined by any psychoacoustic model is the audible field (also
known as the hearing area). It is defined as the range of pressure changes in the
air perceptible by the human auditory system and is given by a relation between
the pressure level (in dB Sound Pressure Level (dB SPL)) and the frequency (in
Hz, usually ranging from 0 to 20,000 Hz).

Fig. 1: Hearing area. The y-axis is not only expressed in sound pressure level (dB
SPL) but also in sound intensity (in Watt per square meter (W/m2)) and sound
pressure (in Pascal (Pa)). The dotted part of the threshold in quiet stems from

subjects who frequently listen to very loud music. (Taken from [5].)



As can be seen in figure 1 the hearing area is limited by a well defined lower
bound called the absolute threshold of hearing (ATH). Signals below the ATH are
too faint to hear. The ATH changes with increasing age of the subject under test
(see [5] and [6]). The upper bound of the hearing area is not as easy to define as
the ATH. It is generally described by two curves: the limit of damage risk and the
threshold of pain. One of the most important phenomena in human hearing, with
respect to processing and measurement, is the occurrence of masking. When two
signals are located sufficiently close to each other both in time and frequency, the
weaker signal may become inaudible due to the presence of the stronger signal.
The signal component that is masked is called maskee and the signal component
that masks another one is called masker. The signal level up to which signal
components are inaudible due to masking is called the masking threshold or
masked threshold, depending on the side from which a masking is looked at.
Both terms used are equivalent [5].
Masking results from the limited spectral and temporal resolution of the ear in
combination with the non-linear behavior of the human auditory system.

Fig. 2: Characterization of the three regions within which masking (pre-,
simultaneous- and post-masking) occurs. (Taken form [5].)

In the following paragraphs the categories of masking shown in figure 2 (pre-,
simultaneous- and post-masking) are described. As can be seen in figure 2 tem-
poral masking is cut into two separate effects: post-masking and pre-masking. In
post-masking (also known as forward masking), signal components are masked
after termination of the masker. Apart from the location of masker and maskee
in the time-frequency plane, the masking threshold in the case of post-masking
also depends on masker duration.
Pre-masking (also known as pre-stimulus masking, backward masking) is usually
explained by the assumption that loud signals are processed faster than weak
signals and that a masker may therefore overtake the maskee during the pro-
cessing of the signal, either on the auditory nerve or later on in the higher levels
of the auditory system [8]. This covers the phenomenon that a signal can mask
another signal before the former one is actually present. Thus in pre-masking
signal components are masked before the onset of the masker.
Simultaneous masking is sometimes called frequency masking or parallel mask-



ing. It is the most obvious masking effect. [9] gives a nice example for simulta-
neous masking displayed in figure 3.

Fig. 3: Simultaneous masking. (Taken form [9].)

In the figure 3 a sine wave (a pure tone) and a narrow band of noise are presented
simultaneously. The sine wave is at a frequency just below (a) or above (c) that
of the noise band. In the first case (b) the sine tone is heard. In the other case
(d), excitation pattern of the noise swamps the sine wave and the later is not
heard even though their frequency separation remains the same compared to (a).

Fig. 4: Masking curves for simultaneous masking of tones by narrow band noise ([2]).



Figure 4 shows how dominant the effect of masking in the hearing area is. Mask-
ing curves can be approximated by two-sided exponentials when represented as
energies over a frequency scale [8]. The low frequency slope (in figure 4 the slope
belonging to frequencies below 1,000 Hz) is very steep and depends only slightly
on the masker level. The high frequency slope (in figure 4 above 1,000 Hz) is a
lot more shallow and strongly depends on masker level. As shown, it is almost
as steep as the low frequency slope for low masker levels, whereas it becomes
almost flat at very high masker levels.
Among the two categories of masking, simultaneous masking has been examined
in more detail than temporal masking effects [8]. Temporal masking seems to be
of minor importance for perceptual coding (even though transparent perceptual
modeling would be impossible to achieve without the simulation of temporal
masking effects).

3 Approaches of Perceptual Attack Tuning

This section describes the combination of SMBA and psychoacoustic modeling
with the focus on attack transparency improvement. We assume that the cor-
relation between r and all the cyclically shifted versions of w is complicated by
the non-linear behavior of the transformation performed by the psychoacoustic
model.
Attacks, like the ones performed by SMBA, disturb the detector of the water-
mark signal w used on the attacked sequence r. Strong attacks can, of course,
result in strongly modified sequences. Attacks which are perceptible (i.e. lie above
a certain perception threshold like the masking threshold of an audio signal) are
unsuccessful by definition. Therefore the improvement of the transparency of
attacks has to be a main focus to avoid results which are capable of destroying
the watermark but are discarded for quality reasons. The attack transparency
has to have priority over the attack strength.

In [13] are three different approaches introduced, how a psychoacoustic model
can be combined with SMBA. These approaches are also called transparency
models and described in the following:

(A) Pre attack alignment (T1) Uses a psychoacoustic model to pre-compute
the maximal strength and other parameters of the attack, before the attack
itself is performed. In this case the psychoacoustic model is a module or
stand alone application which runs before SMBA launches the attack.

(B) Post attack alignment (T2) After an attack the data is compared by a
psychoacoustic model to a copy of the original. The psychoacoustic model
is not used directly to calibrate or influence the attack, it only makes qual-
ity assessments. The psychoacoustic model in this case is either a module
or stand alone application which runs after SMBA has attacked an audio
signal.



(C) Simultaneous/Iterative alignment (T3) While the attack is running
the attack parameters are adjusted (context aware) by the psychoacoustic
model to guarantee the quality of the data. The psychoacoustic module
used in this case, evaluates the quality after an attack (like in T2 above). If
the attack is considered not successful (i.e. audible distortion) it relaunches
the attack with the parameters set to a lower level. This process runs in
an iteration loop until the psychoacoustic model considers the attack to
be successful. This method is, due to the iterations, the most time and
computation power consuming of the three.

The transparency model chosen has influence on the resulting attacked sequence
r. Especially in the case of T3, were the attack strength is optimized incorporating
a strict transparency policy, the modifications based on the non-linear methods
of a psychoacoustic model will increase the complexity of the ES. Of course, this
is bought with an increased computation power necessary to perform the attacks
using this transparency model.

The FFT-based psychoacoustic module for SMBA introduced in [12] combines
features of T1 and T3. It employs the idea of simultaneousness from T3 without
the iteration, and the pre-computing approach from T1 for an extremely limited
range (the actual window). In general the model used here computes the pa-
rameters of an attack while the attack is running, but not in an iterative way,
like suggested in [13]. Instead the attack processes the audio signal window by
window and the attack parameters are modified depending on the characteristics
of the actual segment.
Two important areas of application for the attacks with psychoacoustic methods
were identified:

– Find optimal parameters for “normal” attacks (where only one or two pa-
rameters are relevant), like in the examples of AddBrumm and AddSinus.

– Multi-parameterize attacks like BassBoost (where every frequency could be
considered independently or context aware).

While the first area of application can be seen as a mere transparency enhance-
ment technique, the second area aims on the safe (under the cover of the mask-
ing threshold and therefore by definition imperceptible) increase of the attack
strength. Given a fixed quality threshold which has to be maintained, from this
second approach a maximal distorted r will result, complicating the correlation
between r and all the cyclically shifted versions of w (and thereby the ES).

The psychoacoustic model utilized in SMBA is capable of simultaneous masking
techniques but so far does not feature any temporal masking methods. The most
important feature of this model is its computation of a simultaneous masking
threshold. The mathematical function of this masking is given with:

M(xHz) = max(ath(xHz), simmask(xHz)) (1)



Where M(xHz) is the masking curve at frequency xHz, max(a, b) (a, b ∈ R) is
the maximum function returning the largest of its input values, ath(xHz) is the
sound pressure level (in dB SPL) of the ATH (computed by a formula derived by
Terhardt [10] from statistical material given by Zwicker et al. [2]) at frequency
xHz, and simmask(xHz) is the masking threshold (in dB SPL) at frequency xHz

provided by simultaneous masking.
For the determination of simmask(xHz) a function for the computation of the
masking threshold provided by pure tones given by [11] was used. It has to be
stated that especially the determination of simmask(xHz) is very computation
power consuming. To get the masking threshold at a certain frequency xHz, the
masking curve of each tone in the spectrum has to be computed. From the re-
sults of these computations the masking threshold for the complete spectrum
has to be derived. Then the masking at the frequency xHz can be read off. Thus
the algorithm used has a complexity of θ(N2) (with N =20,000; this number is
derived from the audible frequency range 0 to 20,000 Hz).
By tuning the SMBA attacks introduced in section 2.1 with psychoacoustic mod-
eling the resulting attacks should become by definition imperceptible.

4 Test Scenario

In this section the complete test environment, used to corroborate the hypothesis
formed in the preceding section, will be introduced. It consists of the test files, the
calibration equipment used, the attacks chosen for a prototypical modification,
and the measure principles utilized. For more details of the testing procedure
see [12].

Test Files
A subset of the SQAM2 files ([14], [15]) is used for evaluation purposes. These
files are tracks from the EBU3 SQAM disc, with the following characteristics:
44.1 kHz sample rate, 16 bit quantization, stereo. The files have been made
available by the EBU on the basis that they are used only for the testing and
evaluation of sound systems. The files used for testing are listed in table 2.

Table 2: SQAM files.

file name duration Description
frer07 1.wav 34.99s Electronic tune (Frère Jacques)
vioo10 2.wav 30.07s Violoncello
trpt21 2.wav 17.86s Trumpet
horn23 2.wav 12.11s Horn
gspi35 1.wav 25.92s Glockenspiel

Continued on next page
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Table 2 – continued from previous page
file name duration Description

gspi35 2.wav 19.03s Glockenspiel
harp40 1.wav 16.39s Harpsichord
sopr44 1.wav 23.66s Soprano
bass47 1.wav 24.87s Bass
quar48 1.wav 22.66s Quartet
spfe49 1.wav 19.02s Female speech English
spme50 1.wav 17.97s Male speech English
spff51 1.wav 16.88s Female speech French
spmf52 1.wav 20.02s Male speech French
spfg53 1.wav 16.56s Female speech German
spmg54 1.wav 16.72s Male speech German

Calibration of the Model
For calibration purposes the AMSL (Advanced Multimedia and Security Labo-
ratory4) was used. The core of this testing facility is an anechoic chamber with
corresponding audio equipment. In this testing facility typical sound pressure
levels for loudspeakers were measured. The knowledge gathered from these mea-
surements was used for calibration of the psychoacoustic model.

Modified Attacks
Out of the attack set of SMBA three attacks (AddBrumm, AddSinus and Bass-
Boost) were selected for a prototypical modification. To cover the two fields of
application (adjusting single attack parameters and multi-parameterization of
attacks) the AddBrumm and BassBoost attacks were chosen. The AddSinus at-
tack was selected for its similarity to the AddBrumm attack to allow for quality
considerations.

Evaluation of Transparency
Two common approaches for the evaluation of modifications on audio material
(like the attacks of SMBA) exist. The first one is the evaluation with listen-
ing tests. This method is very time consuming and requires many human test
subjects. The second approach is the use of so called objective perceptual mea-
surement techniques. As the measure of choice the Objective Difference Grade
(ODG) was chosen, because it is considered to be the only measure directly
verifiable against listening test data [8]. The objective perceptual measurement
techniques do not have the restrictions of the subjective tests with an audience,
but on the other hand still lack acceptance. The reason for this fact is simple:
until a model is found which is capable of simulating all the phenomena of the
human hearing satisfactorily, objective measures will be considered error-prone.

4 Research Group Multimedia and Security, Department of Computer Science, Insti-
tute of Technical and Business Information Systems, Otto-von-Guericke-University
Magdeburg, Germany.



Nevertheless they are a good indicator, which has to be supported by tests with
a human auditory, if necessary.
The values for the ODG range from 0 (imperceptible) to -4.0 (very annoying).

5 Test Results

This section introduces our test results and discusses them in detail. In [12] all
SMBA attacks are discussed in detail whether or not they can be improved by
using psychoacoustic methods. As mentioned in the preceding section, three of
the SMBA attacks (AddBrumm, AddSinus and BassBoost) were modified in a
prototypical implementation using the simple psychoacoustic model introduced
in [12].
In the case of the AddBrumm and AddSinus attacks the psychoacoustic model
is used to determine the maximum value of one out of two attack parameters
(in both cases the parameter strength is modified and the attack parameter
frequency remains unchanged).

Table 3: Evaluation of the modification of AddBrumm and AddSi-
nus.

file name strengthB ODGpB ODGnB strengthS ODGpS ODGnS

frer07 1.wav 1424.65 -3.15 -1.70 1525.88 -3.89 -3.76
vioo10 2.wav 403.7 -0.88 -0.97 3.31 -0.04 -2.27
trpt21 2.wav 403.7 -2.24 -0.95 0.959 0.03 -3.51
horn23 2.wav 1534.97 -1.80 -0.70 1525.88 -3.85 -3.67
gspi35 1.wav 403.7 -2.10 -2.31 1525.88 -3.55 -3.31
gspi35 2.wav 403.7 -1.55 -1.80 727.747 -2.57 -2.57
harp40 1.wav 403.7 -1.67 -0.61 6.54 -0.01 -1.94
sopr44 1.wav 403.7 -1.48 -1.11 1525.88 -0.99 -2.06
bass47 1.wav 403.7 -0.49 -0.80 7.18 -0.78 -1.90
quar48 1.wav 403.7 -0.38 -0.38 938.827 -0.44 -1.76
spfe49 1.wav 403.7 -0.64 -0.88 7.143 -0.56 -2.14
spme50 1.wav 403.7 -0.49 -0.82 3.366 -0.27 -2.03
spff51 1.wav 403.7 -0.71 0 6.397 -0.85 -2.03
spmf52 1.wav 403.7 -0.84 -1.02 7.33 -0.85 -2.31
spfg53 1.wav 403.7 -0.77 -0.02 14.585 -0.22 -2.22
spmg54 1.wav 403.7 -0.66 -0.03 5.822 0.00 -2.03

In table 3 all files under test are listed. The column strengthB contains the max-
imum attack value computed by the psychoacoustic model for the attack param-
eter strength (the default value for this parameter is 2500) of the AddBrumm
attack, ODGpB and ODGnB are the ODG values computed for the files after



performing an AddBrumm attack with (ODGpB) and without (ODGnB) the
psychoacoustic module, strengthS is the maximum attack value computed by
the psychoacoustic model for the attack parameter strength (the default value
for this parameter is 120) of the AddSinus attack and ODGpS and ODGnS are
the ODG values computed for the files after performing an AddSinus attack with
(ODGpS) and without (ODGnS) the psychoacoustic module.
As can be seen in table 3 the results vary, while in the case of the AddSinus
attack the ODG values, computed on the test files attacked with (ODGpS) and
without using psychoacoustic methods (ODGnS), show definitely better results
for attack transparency for the attacks with psychoacoustic methods, the re-
sulting ODG values in the case of the AddBrumm attack show only on 50% of
the test files under consideration an improvement by the use of psychoacoustic
methods (although here strong differences between original and the attacked files
can be seen in visualizations of the audio files - see figure 5), which shows the
the waveform of a file (spfe49 1.wav, chosen by random) before and after the
attacks.

(a) (b) (c)

Fig. 5: AddBrumm: Visualization of the time domain of spfe49 1.wav. Subfigure (a)
is the waveform of the file after attack with the psychoacoustic module enabled;

subfigure (b) is the waveform of the attacked file without the psychoacoustic module,
and subfigure (c) is the original file.

In subfigure (b) (the audio signal after the attack with the psychoacoustics mod-
ule disabled) of figure 5 the distortion by the attack is clearly visible around the
centerline, the distortion in subfigure (a) (the audio signal after the attack with
the psychoacoustics module enabled) is also visible but much weaker.

In the case of the BassBoost attack the modification approach for this attack
was the usage of the psychoacoustic module for the substitution of the BoostDB
parameter. Instead of an equal increasing of all frequencies by BoostDB dB, the
signal was raised to the masking threshold for each frequency. This approach
failed. 15 out of 16 ODG values (all files except trpt21 2.wav) were worse than
the value computed for the attack without the use of psychoacoustic methods.
This is due to high energy values introduced to the signal by raising all frequen-
cies simultaneously (and by a large amount - at very low frequencies the ATH



is, of course, the dominating effect in the masking threshold and the ATH values
for those frequencies lie at 140 dB SPL and higher). After the inverse Fourier
transform, the signal in the time domain suffered clipping and overmodulation
problems resulting from such large energy values in the frequency domain.
A different approach was searched for and found. Experimentally the psychoa-
coustic module was used only in a pre attack alignment (T1) (see section 3). The
maximum for the attack parameter BoostDB is computed by the psychoacous-
tic module. Then SMFA is run with BassBoost and the BoostDB determined
beforehand. As can be seen in table 4 the results from this test are quite as-
tonishing. The worst of the ODG values for all SQAM files under test for this
approach is −0.35 which is on the scale between 0.0 (imperceptible) and −1.0
(perceptible, but not annoying) and the strongest attack value (BoostDB) used
is 5.29 dB, which is only short of the default parameter (BoostDB = 6.123 dB)
for this attack.

Table 4: Evaluation of the modification of BassBoost.

file name attack value (dB) ODG
frer07 1.wav 0 0.04
vioo10 2.wav 1.0405 -0.00
trpt21 2.wav 0.298 0.04
horn23 2.wav 2.594 -0.27
gspi35 1.wav 0.51 0.03
gspi35 2.wav 1.24 -0.02
harp40 1.wav 0 0.00
sopr44 1.wav 1.29 -0.00
bass47 1.wav 0.007 -0.00
quar48 1.wav 0.363 -0.00
spfe49 1.wav 2.767 -0.00
spme50 1.wav 5.29 -0.35
spff51 1.wav 0.69 -0.01
spmf52 1.wav 0.81 0.02
spfg53 1.wav 0.36 -0.02
spmg54 1.wav 0.89 0.01

From the facts presented here it can be concluded that by tuning the SMBA
attacks with psychoacoustic modeling the resulting attacks will become imper-
ceptible, if the underlying psychoacoustic model performs well enough. Negative
results described by [12] can be explained with the limitations of the model used.
As can be seen in tables 3 and 4 an improvement of the transparency results nor-
mally in a lower attack strength. The reduction of the attack strength depends
on the audio data processed, the transparency model and the psychoacoustic
model used. More complex psychoacoustic models will result in more transpar-
ent and stronger attacks, but will consume much more computation power.



Some objective measures obviously get other results than a subjective evaluation
would return. It becomes obvious that subjective testing with an human auditory
is necessary to verify the output of research results in this context. Nevertheless
objective measures are very useful indicators for evaluation purposes.

6 Summary

By tuning geometric attacks like described in this paper with the non-linear
methods found in psychoacoustic models, the modification itself becomes context
aware, this results in attacked sequences r which are the output of a transparent
modification. As a second benefit of the use of psychoacoustic models, attacks
could be maximized by refraining from the use of single attack parameters and
instead using functions like the masking threshold to parameterize the attack.
But the focus of this paper was on the transparency improving results of psy-
choacoustic methods.
Concluding could be stated, that the goal of this paper is reached by showing
the usefulness of psychoacoustic modeling in geometric attacks used in an au-
dio watermark benchmarking environment like SMBA. The exhaustive search
needed by the detector to compute the correlation between r and all cyclically
shifted versions of m becomes far more complicated. A much wider scope of
geometric attacks (resulting from the perceptually scaled cyclical shifts) has to
be considered for the exhaustive search.

An open question arises from this paper: How will a test against a real water-
marking algorithm perform? Which impact will the use of perceptual (trans-
parency) models have on the watermark detection process?
In a next step the results of this paper have to be evaluated by using a real water-
marking algorithm to determine the degree of complexity improvement caused
by the perceptual tuned attacks.
A second open question is based on the results of table 3. This table shows sim-
ilar ODG values for all speech files (spfe49 1.wav, spme50 1.wav, spff51 1.wav,
spmf52 1.wav, spfg53 1.wav and spmg54 1.wav). All ODGpS values are in the
range 0 to -0.85 and all ODGnS values are in the range -2.14 to -2.31. The
question which rises from these facts is: Can a classification of audio signals and
an adjustment of the geometric attacks based on such a classification improve
the results of these attacks?
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