
Toward Autonomic Computing with DB2 Universal Database
Sam S. Lightstone

IBM Canada
Markham, Ontario, Canada

light@ca.ibm.com

Guy Lohman
Almaden Research Laboratory

San Jose, California, USA
lohman@almaden.ibm.com

Danny Zilio
IBM Canada

Markham, Ontario, Canada
zilio@ca.ibm.com

ABSTRACT

As the cost of both hardware and software falls due to
technological advancements and economies of scale, the cost of
ownership for database applications is increasingly dominated
by the cost of people to manage them. Databases are growing
rapidly in scale and complexity, while skilled database
administrators (DBAs) are becoming rarer and more expensive.
This paper describes the self-managing or autonomic technology
in IBM’s DB2 Universal Database® for UNIX and Windows to
illustrate how self-managing technology can reduce complexity,
helping to reduce the total cost of ownership (TCO) of DBMSs
and improve system performance.

1. INTRODUCTION

Database vendors are becoming aware that the human cost of
operating large database systems is growing dramatically. As the
scope of relational database functions has expanded in recent
years, the complexity of database systems has also grown. The
added complexity and the increase in data size (now frequently
into tens of terabytes) have increased the burden on database
administrators. The combination of increased data volumes,
larger systems, and increased function, has motivated the need
for autonomic capability within database management systems
in order to reduce cost of ownership and to enable databases to
operate in environments with limited access to skilled
administration personnel.

Database designers grapple with complex design issues like the
choice of hardware platform; the decision to use a shared-
nothing, shared-everything, or SMP-cluster hardware topology;
the schema design; constraints and referential integrity design;
the choice of primary key and indexes; the design of materialized
views; the clustering model; and the allocation of tables to disks.
Once a database has a physical and logical design, substantial
human attention is required to operate it. The numerous tasks
include table reorganization, data statistics collection, backup
control, security modeling and administration, disaster recovery
planning, performance tuning, problem analysis, and others.

In recent years, several research and industry attempts have
begun to tackle the enormous task of providing intelligent
software tools that reduce the burden on database administrators

by providing expert design systems, performance tuning,
configuration technology, ease-of-use administration interfaces,
and automation tools. A number of early research projects
focused on the selection and design of table indexes and
clustering, with some initial work on optimizing memory
(specifically buffer pool) allocation. More recent projects have
examined summary table design, statistics and reorganization
prioritization, and constraint modeling. Many of the references
in the section 7 contain information on database design
technology [1, 2, 3, 4, 5, 7, 9, 10, 12, 13, 14].

However, these initial areas of interest focused on a small subset
of the larger problem. There is a dearth of research on what has
become one of the most compelling areas of industrial
application in RDBMSs – algorithms to enable self-designing,
self-administering, and self-tuning RDBMSs. In fact, as
databases have become more complex and feature-rich, the
human cost of ownership has risen due to the need for DBAs to
have more skills and the growing salary demands of skilled
DBAs in North America. A 1998 study by the Aberdeen Group
supports this observation, showing that a 5-year 25-user
implementation of a leading industrial RDBMS incurred 81% of
the TCO in human skills for training, maintenance, and
implementation [15].

Another TCO report by D.H. Brown compares the TCO for
two industrial database products [6]. This study classified
database applications, separating database warehouses from
online transaction processing applications. While the human
administration costs varied by product and application class,
they clearly represented a large component of the TCO in all
cases for all users.

Price and Support

Oracle

DB2

Build and Maintain

Oracle

DB2

Total (Purchase & Maintain)

Oracle

DB2

0 100 200 300 400 500 600 700

TCO (Million $)

D.H. Brown Comparative Study on TCO
OLTP

Recognition of the importance of ease of administration and
design tools has spurred renewed interest in research and
development of software that reduces the administrative burden.
The abundance of papers on index and materialized view

(summary table) selection and the development of industrial
applications by leading RDBMS vendors such as Microsoft®,
IBM®, and Oracle®, as well as tools vendors such as Quest®[18],
BMC®[19], DGI®[20], Computer Associates®[21], and others,
attest to the growing corporate recognition of this important area
of investigation.

As data sizes continue to grow, increasing the demand for large
complex systems with more CPUs, more disks, and disk arrays,
the need for simplified administration will grow as well. The
Asilomar Report on Database Research [8] projects that
relational data and unstructured data stored in relational data
servers will continue to grow for the next several years.

To address these problems we propose a reduction in system
complexity and therefore cost of ownership, by introducing
autonomic capabilities into the database management system. In
his recent research manifesto on autonomic computing [17] Paul
Horn notes that autonomic systems are ones which are:

“…capable of running themselves, adjusting to varying
circumstances, and preparing their resources to handle most
efficiently the workloads we put on them. These autonomic
systems must anticipate needs and allow users to concentrate
on what they want to accomplish rather than figuring how to
rig the computing systems to get them there”.

While no commercial DBMS can yet be said to be fully
autonomic, we present below components that currently exist
within DB2 Universal Database for UNIX and Windows that
support autonomic behavior by adding elements of automation
and expert advice.

2. SCOPE OF RESPONSIBILITIES

In this section we briefly describe the scope of tasks for a
database administrator, providing a very cursory view that
serves to illustrate the large scope of tasks and responsibilities
incurred today with typical RDBMS products. The scope of
tasks is easiest to view when imagined along a timeline, as shown
in the following diagram:

Requirements
planning, &
capital
investment

Database &
data
management
design

Database
creation &
tuning

Maintenance
&
administration

t i m e

Change
management

During the initial requirements planning and capital investment,
the DBA must determine a rough understanding of the
performance and storage requirements for the system, and must
purchase products that will support these requirements. This
includes the selection of the DBMS as well as server and storage

devices, a selection process often referred to as “capacity
planning.”

During the second stage of system development, database
designers concentrate on the logical and physical design of the
database (table layout, normalization, referential integrity,
indexes and materialized views, triggers, and so on), as well as
overall process strategy for high availability and disaster
recovery, data distribution, security, and user management.

During the third stage of development the database is created,
populated, and tuned. Generally there is a substantial period of
testing to validate the operation of the new system with
applications, and to ensure integration with other systems and
operational processes.

During the fourth stage, the system goes into production. During
operation, extensive involvement of human operators is needed
to monitor system operational health, perform query tuning,
maintain data statistics, decluster and fragment data, maintain
storage systems, attend to system repairs and outages, modify
system design and configuration to account for new operational
requirements, or to respond to increasing storage needs.
Recovery needs may require management of periodic backup and
archival data. In large distributed systems, data replication
(cloning) across systems, and data integrity checking are
common tasks. Moreover, almost all of the design and setup
operations performed in stages two and three may need to be
revisited during operation to account for new requirements, data
growth, or poor performance. Many systems often require
complex extra-database operations for data extract,
transformation and load, and data replication, with these also
requiring special tuning and management.

During the fifth stage, database logical or physical design may
need to be adjusted for changing application and usage needs.
This can require schema changes and changes to system design
and implementation as defined in stages two and three.

In large, modern DBMSs, these can be daunting responsibilities
as database sizes grow to sizes in terabytes, on systems
containing hundred of CPUs, thousands of storage spindles, and
tens of thousands of database storage objects (relational tables
and their associated access structures, including indexes,
materialized views, and system catalogs).

In the next section we describe existing features within DB2
UDB that are supportive of autonomic computing by providing
either automation of tasks, or expert system advice.

3. SELF-MANAGING FEATURES

The following sections describe some of the autonomic features
and the infrastructure that is in the current version of DB2 UDB
for UNIX and Windows. These features focus predominantly on
stages two and three of the RDBMS timeline described in the
previous section.

3.1 DB2 Query Optimizer

Query optimizers are one of the most autonomic features of
today’s relational database systems, automatically determining
the best way to execute a declarative SQL query. Since its
inception, DB2 UDB’s query optimizer has automatically
optimized even the most complex decision-support queries --
without any of the “hints” from the user required by some
competitors’ optimizers. DB2 UDB’s query optimizer uses a
combination of (1) powerful query rewrite rules to transform
queries written by the user (or, more commonly, a query
generator) into standardized, easier-to-optimize queries [22] [23]
and (2) a detailed cost model to generate and evaluate a rich set
of alternative plans for executing the query [24]. The optimizer
automatically determines whether any existing Automatic
Summary Tables (ASTs, such as materialized views) could
benefit a query, and if so, “routes” the query to use the AST
without having to alter the query in the user’s application
program [25]. It collects statistics on the size of each table and
the distribution of each column to model how many rows must
be processed by any query a user might submit. It adapts its
model to the machine environment in which it is optimizing,
automatically factoring in the speed of the CPU, the storage
devices, and the network connecting machine clusters (in a
shared-nothing environment) and/or sites (in a federated
environment). In most cases, the optimizer minimizes the total
overall resource consumption, but automatically changes the
optimization criterion to be minimal elapsed time in parallel
environments. The cost model includes detailed modeling of the
availability of various memory categories (multiple buffer pools,
sort heap, and so on) versus.the amount needed, hit ratios, the
cost to build temporary tables versus the cost to re-scan them,
various flavors of pre-fetching and big-block I/O, non-uniformity
of data distributions, and so on. [24] The optimizer even has a
“meta-optimizer”, which automatically determines when a query
is too complex to optimize using dynamic programming, and
instead uses a greedy algorithm to save on optimization time and
space.

3.2 Configuration Advisor

The Configuration Advisor configures the major memory areas
of the database as a system configuration task. The configuration
of a database system is critical to system performance, as it
includes allocation of system memory for major database

operations such as data caching, sorting, and networking.
Database configuration also defines a number of database
operational parameters such the number of database server
agents, I/O subagent, logging frequency, and so on. The
Configuration Advisor configures over 35 configuration
parameters. To do this, the Configuration Advisor is designed to
evaluate the setting of each configuration parameter based on
characteristics of the database system. The characteristics used
in the database model include system environment data that the
advisor senses automatically (including system RAM, number of
storage disks, and number of CPUs), and data specified by the
caller. The user-specified information is specifically designed to
make the smallest possible assumption of the user’s skill level.
The combined set of characteristics is then used to derive the
value of each configuration parameter as a weighted function of
each system characteristic.

Note that allocation of the system memory to the database
consumers (data cache, sort, network memory and so on) is
assumed to be a zero sum game, and therefore these parameters
are determined in a combined model taking careful account of
each memory consumer’s limitation for minimal and maximal
allocations based on the database system architecture and the
system memory available.

The advisor can be invoked in DB2 UDB through either a
graphical interface or through a programmable API. A number of
commercial database applications using DB2 UDBfor their
relational store invoke this advisor through the programmable
API.

3.3 Automatic Index Reorganization

As data is inserted, modified, and deleted from database tables
and their corresponding index structures, the index structures can
become fragmented and contain a considerable amount of
partially empty leaf nodes (pages). DB2 UDB’s index
management technology includes an automatic index page
merging mechanism that allows neighboring leaf nodes to be
merged to reduce storage consumption. This allows the freed
pages to become available for use by future tuples, including
tuples in new data ranges.

3.4 The DB2 UDB Design Advisor

Determining the optimal set of indexes to create has been a long-
standing database research problem, and the topic of numerous
papers over the past two decades. The DB2 UDB Design
Advisor, which has been part of DB2 UDB since Version 6
(1999), aids physical database design by recommending indexes
for tables, based upon a workload of one or more SQL queries
(including INSERTs, UPDATEs, and DELETEs) that may be

automatically captured or supplied by the user [5]. The Design
Advisor exploits the detailed performance model of the query
optimizer not only to evaluate candidate indexes [12] [13], but
also to suggest the most promising candidate indexes, thereby
improving the efficiency of the search. Using the query
optimizer code itself not only saves maintaining external code
that redundantly attempts to “model the model”, but also
ensures that the indexes that are recommended will actually be
chosen by the optimizer for the workload. The Design Advisor
is a utility running as a client application that invokes the DB2
UDB compiler in two new special EXPLAIN modes to either
RECOMMEND INDEXES or EVALUATE INDEXES. In
RECOMMEND INDEXES mode, the query optimizer creates
“virtual index” descriptors for various combinations of columns
that can apply predicates, create “interesting” orders, or provide
index-only access for the given query [5]. It then derives
statistics for these virtual indexes, and goes through the normal
process of query optimization to pick the best plan using virtual
as well as real indexes. If the plan chosen references a virtual
index, then it is reported as a candidate index to the client utility,
for consideration in the EVALUATE INDEXES mode. The
Design Advisor not only recommends indexes to create, but it
also provides an estimate on their storage size and their
performance impact on each query in the specified workload,
plus any indexes that are no longer needed. Research and
development at IBM is extending the Design Advisor to also
recommend Automatic Summary Tables (materialized views)
and the best (horizontal) partitioning of tables in a shared-
nothing parallel processor such as the IBM SP2 (see Section 4).

3.5 Automatic query parallelism selection

At run-time, DB2 UDB can automatically determine the most
effective degree of query parallelism to use for query
performance across SMP CPUs as a maintenance task. Parallel
access can prove inefficient for short duration operations by
adding more overhead (in context switching and communication
costs) than benefits. Automatic parallelism selection means that
during execution, complex queries can benefit from parallel
processing, while simple queries can bypass the overhead of the
parallel processing infrastructure. The decision on the degree of
parallelism can be made dynamically during execution. This
dynamic ability to determine a near optimal degree of parallelism
for query execution obviates much of the past literature on load
balancing.

3.6 Load utility automatic tuning

The DB2 UDB Load utility performs mass insertion of data into
a specified target table. To do so, it exploits a series of
concurrent (parallel) sub agents for data pre-fetching, formatting,
and direct write to database system storage. The efficiency of
the load process is heavily dependent on whether optimal

selections are made for memory consumption (used for buffering
and sorting of data), the number of parallel formatting sub
agents, and the number of I/O subagents. The load utility
removes this burden from the user by automatically selecting the
memory consumption, I/O parallelism, and SMP parallelism
degree. This is accomplished by examining the table
characteristics, free memory space, the number of table space
containers (virtual storage devices), and the number of system
CPUs online.

As well, the load utility will maintain table indexes defined for
the target table. These index structures can be maintained in one
of two ways, by either completely rebuilding them, or by
incrementally extending them with the new data tuples. The
choice of maintenance technique is not trivial, given the per-tuple
maintenance cost is generally far more expensive during
incremental index maintenance. The load utility will by default
select the maintenance mode during execution based on an
analysis of the index structure complexity and the ratio of newly
loaded data to existing table data.

3.7 DB2 UDB Query Patroller

The DB2 UDB Query Patroller acts as a “gate-keeper” to DB2,
accepting, analyzing, prioritizing, and scheduling database
requests, and optionally notifying users when their requests
have been processed. Guided by policies established by the
administrator in a profile, the Query Patroller limits surges of
arrivals or long-running queries to the server, preventing its
saturation and ensuring sufficient resources for those that are
executing.

The Query Patroller first determines the relative cost to execute
each query, using the cost estimate provided by DB2 UDB’s
EXPLAIN facility. It then uses this estimated cost to determine
when the query should be run. If the cost exceeds a threshold
established by the user’s profile, the query is held for manual
intervention by the system administrator, and the user is
notified. Otherwise, Query Patroller schedules the query to an
agent for execution, taking into account (a) the current number of
queries executing on the system, (b) the cost of all queries
currently executing, (c) the number of nodes in the system, (d)
individual user priorities, and (e) the number of queries executing
for each user. Once a query has completed execution, the user is
notified via mail and, if job accounting status is active, a row is
added to the Job Accounting table. Information in this table is
used to provide reports and display database usage history.

3.8 Automatic Incremental Restore

Automatic incremental restore allows the user to specify an
incremental image from which he or she wants to restore as a
disaster recovery and availability task. Using the database
history, automatic incremental restore searches for the backup

images needed to successfully complete the restore process.
Automatic incremental restore makes the incremental restore
process less tedious for the DBA, compared to a manual
incremental restore.

3.9 Automatic consistency checking a sector for page I/Os.

DB2 UDB uses a patented technique to automatically protect
the integrity of data by ensuring that DB2 UDB detects any
corrupted data from incomplete I/Os when it reads the disk. The
method exploits consistency bits to verify that a page being read
into the bufferpool from the disk is not a “partial page” or has
not been changed due to some form of corruption.

Consistency bits were introduced in DB2 UDB Version 2. A bit
from each sector of storage on a page is set to the same value
before writing the page. When the page is read in, the DB2 UDB
Data Manager verifies that all of the bits are the same. If some
of the bits are different, it indicates a partial page write or disk
corruption. The net result is continual automatic validation of
storage consistency as pages are read from the disk by the
DBMS.

3.10 db2support serviceability utility

One of the important features of any industrial use middleware
product is its capability to be serviced efficiently. This requires
monitoring and diagnostic capabilities. However, for large
complex systems it may require a large number of varied
diagnostics and control data to be reviewed in order to analyze
and resolve a particular product issue. To simplify this process
of data collection and problem determination, DB2 UDB
includes a utility named “db2support”. db2support collects
system description information including machine specification,
network and storage specification, operating system and
database product levels and configuration. It also captures a
number of database diagnostic files and control structures. The
system description data is stored in HTML for convenient
browsing. The resulting HTML data along with the diagnostic
and control data are compressed and added to a single archive.

Additionally, db2support provides an optional interactive mode
in which the user may describe their problem scenario. During
this mode the user is prompted with questions about the nature
of the problem and based on their responses they are guided
through a decision tree of specific questions. The resulting dialog
between the utility and human operator are captured in an XML
file, and added to the db2support archive mentioned in the
previous paragraph.

By automatically collecting a comprehensive set of system
information and capturing it in a single archive, this utility

simplifies the product support process and reduces time to
resolution for both the customer and the product service team.

4. FUTURE WORK

The current set of features in DB2 UDB only scratches the
surface of the larger goal of complete autonomic computing for
relational databases. Future releases of DB2 UDB will feature
key infrastructure capabilities that will allow DB2 UDB to
evolve to the next level of system automation and self-control by
allowing a large set of operations, configuration changes, and
maintenance utilities to run concurrently with online systems,
and provide enhanced monitoring and reporting of system
activity and resource utilization. These monitoring and online
capabilities have set the stage for research in adaptive resource
control, dynamic tuning, automatic maintenance, and adaptive
query access plan refinement. Development continues as well in
enhanced physical database design technology and self-
protecting and self-healing technology [26].

Although space constraints and intellectual property
considerations restrict a full description of current research
projects, the following subset of projects provides some
interesting insight into DB2 UDB’s future capabilities:

4.1 Learning in query optimization

The cost model used by DB2 UDB’s Query Optimizer depends
directly on estimates of the number of rows to be processed at
each step of the plan. This so-called “cardinality model,” in turn,
depends upon the statistics on the database, which are used to
estimate the selectivity of each predicate in the query.
Updating the statistics after each update would cause a locking
“hot spot ,” so they are instead updated periodically with the
RUNSTATS utility. Hence the statistics may be temporarily
out of date or incomplete. Furthermore, all query optimizers
multiply the selectivities for each predicate together, essentially
assuming that all predicates are independent. This and other
assumptions underlying the Query Optimizer model can, when
violated, occasionally generate errors significant enough to
adversely affect the choice of plan.

As part of the SMART project, we are developing LEO, DB2
UDB’s LEarning Optimizer, which automatically self-validates
the Query Optimizer’s cardinality model. LEO instruments the
execution module to collect the actual cardinalities at each step of
the plan. After the query completes, LEO compares these
actuals to the Query Optimizer estimates, to produce
adjustment factors to be exploited by future optimization of
queries that have similar predicates. In this way, LEO actually
learns from its mistakes over time by accumulating metadata on
the database that augments the statistics indicating where data is
queried the most. Note that LEO’s approach is very general and

can correct the result of any sequence of operations, not just the
access of a single table or even just the application of predicates
[28].

4.2 Advances for the Configuration Advisor

Research and development continues on the Configuration
Advisor, enhancing its modeling for a future release of DB2
UDB. Recent experiments with the remodeled algorithms have
shown dramatic results, particularly with OLTP and batch
database systems. The figure below shows the results of two
experiments using an industry standard OLTP benchmark. The
experiments were performed on two distinct servers. The
diagram illustrates for each experiment how the system
throughput was improved over the default settings after running
the Configuration Advisor. The throughput was then compared
to the performance achieved by a human expert, who was given
an extended period of several days to adjust the database
configuration for improved performance. In the first experiment,
the Configuration Advisor achieved 91.3% of the throughput
performance of the system tuned by an expert. During the
second experiment, the Configuration Advisor achieved 98.4% of
the throughput of the expert-tuned system. In both cases, the
system performance after configuration by the Configuration
Advisor outperformed the performance of the system with
default settings by several factors.

9206

82688403 8136

2023

3297

Workload 1 Workload 2
0

2500

5000

7500

10000

T
ra

ns
ac

tio
ns

 P
er

 M
in

ut
e

Default
Wizard
Expert

These early results suggest that autonomic performance
configuration is an achievable goal in the near future for an
important class of database workloads.

4.3 Autonomic health assessment & Health Center

Problem detection, determination, and resolution are key tasks
for administrators. To address this, an autonomic health
assessment engine works with a companion set of problem
determination and resolution tools. The autonomic health
assessment capability provides a continual monitoring process
of system health that is evaluated by collecting a suite of system
statistics and comparing the observed system metrics against a

predefined policy that defines the health of a system. When
some aspect of the system is found to be not completely
healthy, a warning or error is raised, and depending on the policy
actions an administrator can be notified via e-mail or page of the
system concern. Paired with this capability is a Health Center
that provides a set of command and graphical interfaces to drill-
down into detailed statistics, evaluate the system concerns, and
recommend actions.

These paired features combine to form a methodology named
“management by exception” where multiple large systems can be
managed by requiring intervention only in the event that system
health has fallen into a warning or error range. The user is
provided with APIs and command level interfaces to adjust the
default policies for system health.

In this model, problem determination and resolution follows a
path of i) problem recognition, ii) determination, and iii)
resolution.

The autonomic health monitor and Health Center respectively
monitor and provide determination capability for items such as
system availability and accessibility, storage usage, memory
consumption for caching and sorting, logging behavior, and
application concurrency.

4.4 Extensions to the Design Advisor

As noted earlier, the current Design Advisor only recommends
indexes to create (or drop). But the selection of indexes is only
one of the many design decisions that DBAs must make.
Materialized views (called Automatic Summary Tables, or
ASTs, in DB2) can provide significant performance gains to
queries, but consume disk space and require updates when the
tables from which they are derived are updated. Judiciously
choosing the ASTs to define provides yet another challenge to
even knowledgeable DBAs, and of course ASTs as stored tables
themselves require indexes to perform well [7]. Furthermore, in
a partitioned environment, these ASTs, as well as all base tables,
must be optimally partitioned among the nodes to minimize the
re-partitioning needed by queries performing joins, aggregates,
and so on. Of course, these design decisions interact in ways
that are hard for even seasoned experts to predict.

We are currently developing components of the Design Advisor
to augment the recommendation of indexes with
recommendations similar to those of ASTs and partitionings for
each stored table. Both follow the architecture of the current
Design Advisor, exploiting the DB2 UDB Query Optimizer
detailed cost model to recommend the best candidates for each
query, and to evaluate global solutions efficiently. The AST
component exploits multi-query optimization [28] to find ASTs
that can benefit many queries, rather than simply pre-computing
a few key queries. It also optionally uses sampling of the

candidate ASTs contents to better estimate its ultimate size. In
its RECOMMEND PARTITIONINGS mode, the Partition
Advisor exploits the “interesting partitions” already computed
by the Query Optimizer for each query, generating alternative
plans for each such partition and then letting the Query
Optimizer choose the preferred plan as usual. The EVALUATE
PARTITIONINGS mode then evaluates all queries in the
workload using just one of these candidate partitions for each
table, to find the best global solution [29].

5. CONCLUSIONS

DB2 UDB is on a clear path towards building a truly autonomic
database management system. Several autonomic features exist in
the product available today, particularly in support of system
integrity assurance, physical database design, and database
tuning. A number of additional features are in development that
will expand this technology for physical database design,
problem determination, and system tuning.

6. ACKNOWLEDGMENTS

We would like to thank IBM Corporation for its continued
support of this research and development effort.

7. REFERENCES
[1] S. Chaudhuri, E. Christensen, G. Graefe, V.

Narasayya, and M. Zwilling. “Self-Tuning Technology
in Microsoft SQL Server,” IEEE Data Engineering
Bulletin, 22(2) June 1999, pp. 20-26.

[2] B. Schiefer and G. Valentin. “DB2 Universal Database
Performance Tuning,” IEEE Data Engineering Bulletin
22(2) June 1999, pp. 12-19.

[3] K. Brown, M. Mehta, M. Carey, and M. Livny.
“Towards Automated Performance Tuning for
Complex Workloads,” Proceedings, 20th International
Conference on Very Large Databases , Santiago, Chile,
1994.

[4] G. Weikum, C. Hasse, A. Moenkeberg, and P.
Zabback. “The COMFORT Automatic Tuning
Project,” Information Systems, 19(5), 1994.

[5] G. Lohman, G. Valentin, D. Zilio, M. Zuliani, A
Skelly, “DB2 Advisor: An optimizer smart enough to
recommend its own indexes,” Proceedings, 16th IEEE
Conference on Data Engineering, San Diego, CA,
2000.

[6] D.H. Brown Associates, “DB2 UDB vs. Oracle8i:
Total Cost of Ownership ,” D.H. Brown Associates,
Inc., Port Chester, NY., December 2000.

[7] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R.
Narasayya. “Automated Selection of Materialized

Views and Indexes for SQL Databases,” Proceedings,
26th International Conference on Very Large
Databases, 2000, pp. 496-505.

[8] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M.
Franklin, H. Garcia-Molina, J. Gray, J. Held, J.
Hellerstein, H.V. Jagadish, M. Lesk, D. Maier, J.
Naughton, H. Pirahesh, M. Stonebraker, and J.
Ullman, “The Asilomar Report on Database Research”
September, 1998.
http://www.acm.org/sigs/sigmod/record/issues/9812/asi
lomar.html

[9] M. R. Frank, E. R. Omiecinski, S. B. Navathe,
“Adaptive and Automated Index Selection in
RDBMS,” International Conf. on Extending Database
Technology, Vienna, Austria, 1992, pp. 277­292.

[10] H. Gupta, V. Harinarayan, A. Rajaraman, J. D.
Ullman, “Index Selection for OLAP,” Proceedings,
International Conference on Data Engineering,
Birmingham, U.K., April 1997, pp. 208-219.

[11] A. Silberschatz, S. Zdonik, et al, “Strategic Directions
in Database Systems -- Breaking out of the Box,” ACM
Computing Surveys, 28(4), December 1996.

[12] S. Chaudhuri, V. Narasayya, “AutoAdmin ‘What­if’
Index Analysis Utility,” Proceedings, 1998 ACM
SIGMOD Conference, Seattle 1998, pp. 367­378.

[13] S. Chaudhuri, V. Narasayya, “Microsoft Index Tuning
Wizard for SQL Server 7.0,” Proceedings, 1998 ACM
SIGMOD Conference, Seattle 1998, pp. 553­554.

[14] S. Finkelstein, M. Schkolnick, P. Tiberio, “Physical
Database Design for Relational Databases,” ACM
Transactions on Database Systems, 13(1), March
1988, pp. 91­128.

[15] “Database Cost of Ownership Study,” The Aberdeen
Group 1998.
http://relay.bvk.co.yu/progress/aberdeen/aberdeen.htm

[16] R. Winter, K. Auerbach, “The Big Time: The 1998
Winter VLDB Survey Program winners are bigger,
better, and overwhelmingly relational,” Intelligent
Enterprise Programming and Design Online,
http://www.dbpd.com/vault/9808win.html

[17] P. Horn, “Autonomic Computing: IBM’s Perspective
on the State of Information Technology”,
http://www.ibm.com/research/autonomic, International
Business Machines, Armonk, NY, 2001

[18] “Quest software central for DB2 “
http://www.quest.com/quest_central/db2/

[19] BMCSoftware, Products and Services, SmartDBA.
http://www.bmc.com/ddm/index.html

[20] DGI Achieving Breaktrough Results for DB2,
http://www.breakthroughdb2.com/

[21] Computer Associates, Enterprise Management,
http://www3.ca.com/Solutions/Solution.asp?ID=335

[22] H. Pirahesh, J. M. Hellerstein, W. Hasan,
“Extensible/Rule Based Query Rewrite Optimization

in Starburst”, Procs. 1992 ACM SIGMOD
Conference, 1992, pp. 39-48.

[23] H. Pirahesh, T. Y. C. Leung, W. Hasan, “A Rule
Engine for Query Transformation in Starburst and
IBM DB2 C/S DBMS”, Procs. 1997 IEEE Intl. Conf.
On Data Engineering, 1997, pp. 391-400.

[24] P. Gassner, G. M. Lohman, K. B. Schiefer, Y. Wang.
“Query Optimization in the IBM DB2 Family”, IEEE
Data Engineering Bulletin 16(4), 1993, pp. 4-18.

[25] M. Zaharioudakis, R. Cochrane, G. Lapis, Hamid
Pirahesh, M. Urata, “Answering Complex SQL
Queries Using Automatic Summary Tables”, Procs.
2000 ACM SIGMOD Conference, 2000, pp. 105-116.

[26] D. C. Zilio, S. Lightstone, K. A. Lyons, G. M.
Lohman, “Self-Managing Technology in IBM DB2
Universal Database”, Procs. Of 2001 CIKM, 2000,
pp. 541-543.

[27] M. Stillger, G. M. Lohman, V. Markl, M. Kandil,
“LEO - DB2's LEarning Optimizer”, Procs. 27th Intl.
Conf. On Very Large Databases, Rome, Italy, 2001,
pp. 19-28.

[28] W. Lehner, R. Cochrane, H. Pirahesh, M.
Zaharioudakis, “fAST Refresh using Mass Query
Optimization”, Procs. 2001 IEEE Intl. Conf. On Data
Engineering, 2001, pp. 391-398.

[29] J. Rao, C. Zhang, G. Lohman, N. Megiddo,
“Automating Physical Database Design in a Parallel
Database System”, Proc. 2002 ACM SIGMOD Intl.

Conf. On Management of Data, Madison, WI, 2002
(to appear).

Notices, Trademarks, Service Marks and
Disclaimers

This document contains proprietary information of IBM. The
information contained in this publication does not include any
product warranties, and any statements provided in this
document should not be interpreted as such.

The following terms are trademarks or registered trademarks of
the IBM Corporation in the United States and/or other
countries: IBM, DB2, Universal Database.

Windows and Windows-based trademarks and logos are
trademarks or registered trademarks of Microsoft Corp.

Unix and Unix-based trademarks and logos are trademarks or
registered trademarks of The Open Group.

Other company, product or service names may be the
trademarks or service marks of others.

The furnishing of this document does not imply giving licence to
any IBM patents. References in this document to IBM
products, Programs, or Services do not imply that IBM intends
to make these available in all countries in which IBM operates.

