
Physical Database Design for Data Warehouses
�

Wilburt Juan Labio,Dallan Quass, Brad Adelberg
Department of Computer Science

Stanford University
e-mail:

�
wilburt,quass,adelberg � @cs.stanford.edu

Abstract

Data warehouses collect copies of information from
remote sources into a single database. Since the remote
data is cached at the warehouse, it appears as local re-
lations to the users of the warehouse. To improve query
response time, the warehouse administrator will often
materialize views defined on the local relations to sup-
port common or complicated queries. Unfortunately, the
requirement to keep the views consistent with the local
relations creates additional overhead when the remote
sources change. The warehouse is often kept only loosely
consistent with the sources: it is periodically refreshed
with changes sent from the source. When this happens,
the warehouse is taken off-line until the local relations
and materialized views can be updated. Clearly, the
users would prefer as little down time as possible. Of-
ten the down time can be reduced by adding carefully
selected materialized views or indexes to the physical
schema. This paper studies how to select the sets of sup-
porting views and of indexes to materialize to minimize
the down time. We call this the view index selection (VIS)
problem. We present an A* search based solution to the
problem as well as rules of thumb. We also perform addi-
tional experiments to understand the space-time tradeoff
as it applies to data warehouses.

1. Introduction

Data warehouses collect information from many
sources into a single database. This allows users to
pose queries within a single environment and without
concern for schema integration. Figure 1 shows a typi-
cal warehousing system. Relations �����	� ,
����
� , and �����
� ,
�
This work was supported by Hewlett Packard, by Philips, and

by Rome Laboratories under Air Force Contract F30602-94-C-0237.
This work was also supported by an equipment grant from Digital
Equipment Corporation.

R SRC SRCS SRCT

R S T

R SRC

RST

T = ?SR

Source 1 Source 2 Source 3

Warehouse

Figure 1. Warehouse with primary view.

referred to as source relations, from sources 1, 2, and 3
respectively, are replicated at the warehouse as � ,
 , and
� in order to answer user queries posed at the warehouse
such as ����
���� . We refer to the relations � ,
 , and �
as warehouse relations. Changes to the source relations
are queued and periodically shipped and applied to the
warehouse relations. We call these changes deltas.

Queries posed at a data warehouse are often
complex—involving joins of multiple relations as well
as aggregation. Due to the complexity of these queries,
views are usually defined — a view is a derived relation
expressed in terms of the warehouse relations. Because
the views are defined in terms of the warehouse rela-
tions, we refer to the warehouse relations also as base
relations. For example, referring again to Figure 1, ��
��
represents a view that is the expression ����
���� . Ware-
houses can store large amounts of data, and so in order
to improve the performance of queries written in terms
of the views, the views are often materialized by storing
the result of the view at the warehouse. Unmaterialized
views are called virtual views. Queries written in terms
of materialized views are usually significantly faster than
queries written in terms of virtualviews because the view
tuples are stored rather than having to be computed.

Since materialized views are computed once and
stored, they become inconsistent as the deltas from the
sources are applied to the base relations. In order to
make a materialized view consistent again with the base
relations from which it is derived, the view may be
recomputed from scratch, or incrementally maintained
[6] by calculating just the effects of the deltas on the
view. These effects are captured in view maintenance
expressions [5]. For example, if view ��
�� in Figure 1
is materialized, the maintenance expression calculating
the tuples to insert into ��
 � due to insertions into � is

� ����
 � � , where
� � denotes the insertions into � .

Since the sizes of the views at a warehouse are usu-
ally so large and the changes small in comparison, it is
often much cheaper to incrementally maintain the view
than to recompute it from scratch. Incrementally main-
taining a number of materialized views at a warehouse,
even though cheaper than recomputing the views from
scratch, may still involve a significant processing ef-
fort. To avoid impacting clients querying the warehouse
views, view maintenance is usually performed at night
during which time the warehouse is made unavailable for
answering queries. A major concern for warehouses us-
ing this approach is that the views be maintained in time
to be available for querying again the next morning. An
important problem for data warehousing is thus: Given
a set of materialized views that need to be maintained
due to a set of deltas shipped from the data sources, how
is it possible to reduce the total maintenance time?

Our approach to the problem of minimizing the time
spent maintaining a set of views may seem counter-
intuitive at first: add additional views and/or indexes.
In this paper we will approximate maintenance time by
the number of I/O’s required and then endeavor to min-
imize the number of I/O’s. We start with the number
of I/O’s required for maintaining the materialized views
and the base relations at the warehouse. We then add a
set of additional views and indexes that themselves must
be maintained, but whose benefit (reduction in I/O’s) out-
weighs the cost (increase of I/O’s) of maintaining them.

As an example, let us return to Figure 1. Suppose
that in addition to materializing the primary view, ��
 � ,
another view,
 � , is also materialized. By materializing
view
 � , the total cost of maintaining both ��
 � and

�� can be less than the cost of maintaining ��
 � alone.
For example, suppose that there are insertions to � but
no changes whatsoever to
 and � . To propagate the

insertions to � onto ��
�� , we must evaluate the mainte-
nance expression that calculates the tuples to insert into
��
 � due to insertions into � , which is

� ����
���� . With

�� materialized, it is almost certain that this expression
can be evaluated more efficiently as

� ����
�� , joining
the insertions to � with
�� , instead of with
 and �
individually. Even if there are changes to
 and � , the
benefit of materializing
�� may still outweigh the extra
cost involved in maintaining it. Since the view
�� is
materialized to assist in the maintenance of the primary
view ��
 � , we call the view
�� a supporting view.

In addition to materializing supporting views, it may
also be beneficial to materialize indexes. Indexes may
be built on the base relations, primary views, and on
the supporting views. The general problem, then, is to
choose a set of supporting views and a set of indexes to
materialize such that the total maintenance cost for the
warehouse is minimized. We call this the View Index
Selection (VIS) problem and it is the focus of this paper.

Below we list the primary contributions of this paper.

� We propose and implement an optimal algorithm
based on A* that prunes as much as 99% of the
possible supporting view and index sets to solve
the VIS problem.

� We develop rules of thumb that can help a ware-
house administrator (WHA) find a reasonable set
of supporting views and indexes to materialize in
order to reduce the total maintenance cost.

� We compare the benefit of materializing support-
ing views as opposed to indexes, and discuss which
should be chosen when the total storage space at
the warehouse is constrained.

� We perform experiments to determine how sensi-
tive the choice of supporting view and index sets
are to the input parameters of the optimizer.

The rest of the paper proceeds as follows. Section 2
describes the VIS problem in detail. Section 3 presents
the scope of our results and our approach to view main-
tenance. We describe our A*-based algorithm in Sec-
tion 4. Section 5 presents rules of thumb for choosing
a set of supporting views and indexes to materialize.
In Section 6, we report on additional experiments such
as comparing the importance of indexes and supporting
views when space is constrained. Next, in Section 7, we

discuss how this paper relates to previous work in the
area. Finally, we present our conclusions in Section 8.

2. General Problem

Having introduced the VIS problem, in this section we
describe it fully and present an exhaustive search algo-
rithm to solve it. We also show the worst case complex-
ity of the VIS problem. Lastly, we present an example
schema to illustrate the concepts introduced.

���������	��

����������������������� �"!#�%$'&�
��

An optimal algorithm must minimize the total cost
of maintaining the warehouse. The total cost that we
attempt to minimize is the sum of the costs of: (1) ap-
plying the deltas to the base relations, (2) evaluating the
maintenance expressions for the materialized views, and
(3) modifying affected indexes. The cost of maintaining
one view differs depending upon what other views are
available. It is therefore incorrect to calculate the cost of
maintaining the original view and each of the additional
views in isolation. Moreover, in order to derive the total
cost it is necessary to consider the view selection and
index selection together.

To find the optimal solution, then, we must solve the
optimization problem globally. One approach, proposed
in Ross et al. [13] (although this work does not consider
indices), is to exhaustively search the solutionspace. Al-
though exhaustive search is impractical for large prob-
lems, it illustrates the complexity of the problem and
provides a basis of comparison for other solutions. The
exhaustive algorithm works as follows (each stage is
described below):

for each subset of supporting views

for each subset of indexes

compute total cost and keep track of

the supporting views and indexes that

obtain the minimum cost

2.1.1 Choosing the views

In the first step we consider all possible subsets of the set
of candidate views (. As proposed in [13], we consider
as candidate views all distinct nodes that appear in a
query plan for the primary view. Since the primary view
is already materialized, it is not included in the candidate
view set. For example, given a view)+* ����
���� ,

(,*.- ��
%/ � ��/
���0 . In general, for a view joining 1
relations there are roughly 2"3 2 465 different nodes that
appear in some query plan for the view, one joining each
possible subset of the base relations. Thus, to consider
all possible subsets of (, we need to evaluate roughly
2"3 22 7 5 different view states.

2.1.2 Choosing the indexes

Now we must consider all possible subsets of the set of
candidate indexes, 8 . Candidate indexes, as defined in
Finkelstein et. al. [3], are indexes on the following types
of attributes:

� attributes with selection or join predicates on them.

� key attributes for base relations where changes to
the base relation include deletions or updates.

� attributes in GROUP BY or ORDER BY clauses.

Additional attributes can be candidates depending on the
query optimizer being used.

Since each materialized view will usually have can-
didate indexes, 8 must be recomputed at the beginning
of every inner loop. The cardinality of 8 for a particular
view state is proportional to the number of materialized
views and base relations in that state. Further, a par-
ticular state contains between 1 and 293 2 4�5 materialized
views and base relations, so there can be as many as
2"3 2465 candidate indexes to consider. Since we must
evaluate possible subsets of candidate indexes, the num-
ber of possible index states for a view state can be up to
2"3 22 7 5 . (See Section 7 for an explanation of why stan-
dard approaches for index selection are not appropriate.)

2.1.3 Computing the total update cost

Once a particular view and index state are chosen,obtain-
ing the total cost is a query optimizationproblem in itself
since it involves finding the most efficient query plan for
each of the view maintenance expressions. Thus, the
VIS problem for a single primary view joining 1 base
relations contains roughly 293 22 7 5 query optimization
problems in the most general case.

The query optimization itself is complicated by the
presence of materialized views since the optimizer must
also determine if it can use another materialized view
in the query plan evaluating a maintenance expression.

This problem is known as “answering queries using
views” [10].

To complicate matters, one batch of changes can gen-
erate multiple maintenance expressions that need to be
evaluated. This happens due to different types of changes
to the base relations. The maintenance expressions must
be optimized as a group because of possible common
subexpressions [13]. This problem is known as the
“multiple-query optimization” problem [19].

����� ��� ��� �'&�

Consider the following base relations and view.

R(R0,R1), S(S0,S1), T(T0,T1)

create view V(R0,R1,SO,S1,T0,T1) as

select *

from R, S, T

where R.R1 = S.S1 and S.S0 = T.T0

and T.T1 <= 10

Figure 2 shows an expression dag [13] that includes
all the nodes that could appear in a query plan for) ,
assuming the selection on ��� � 1 is pushed down. The
view ��� is the result of applying the selection condition
to � . Under each view is the set of operations that could
be used to derive the view. For example, the view ��
��
could be derived as the result of ���
 joined with ��� ,
or the result of ����
 joined with the result of
������ ,
and so on. Each of the intermediate results could be
materialized as a supporting view. Following the defi-
nition in Section 2.1.1, the set of candidate supporting
views, (, is - ��
%/
�����/ � ��� /	��� 0 . Assuming) is materi-
alized at a data warehouse (as well as the base relations),
any possible subset of (might also be materialized as
supporting views at the warehouse in order to minimize
the total maintenance cost. In addition, indexes on) ,
the base relations, and the supporting views need to be
considered.

It is useful to think of the expression dag in Figure 2
when considering the different update paths [13] changes
to base relations can take as they are propagated to the
view. An update path corresponds to a specific query
plan for evaluating a view maintenance expression. For
example, the maintenance expression for propagating in-
sertions to � onto) is to insert the result of

� ����
������
into) . The graph depicts seven possible update paths
for this expression, two of which are shown in Figure 2:

1 2

RST’

RS

R S

T

T’

RT’ST’

Figure 2. Example Schema.

(1) 3 � ����
�5 ����� , (2) 3 � ����
 5 � 3�
������ 5 . Notice that
the choice of update path can affect which indexes get
materialized. If update path (1) is chosen, an index may
be built on the join attribute of � � to help compute the
maintenance expression. If path (2) is chosen however
and view
���� is materialized, an index may be built on
the join attribute of
��	� . The implication of using differ-
ent indexes depending upon which update path is chosen
is discussed in Section 7.

Changes to base relations need to be propagated both
to the primary view as well as to the supporting views
that have been materialized. When propagating changes
to several base relations onto several materialized views
there are opportunities for multiple-query optimization.
Results of maintenance expressions for one view can be
reused when evaluating maintenance expressions for an-
other view. For example, suppose view ��
 * ����

is materialized. The result of propagating insertions to
� onto ��
 ,

� ���
 , can be reused when propagating
insertions to � onto) ,

� ����
 � ��� , so that only the join
with ��� need be performed. In addition, common subex-
pressions can be detected between several maintenance
expressions.

3 Problem Studied

As discussed in the previous section, the VIS problem
is very complex. While the algorithm we present is
quite general, we have made simplifying assumptions
to allow us to study the most important effects without
getting lost in irrelevant detail. The resulting problem

is still doubly-exponential and we feel that the insights
we have gained from this study can lead to more general
solutions. Furthermore, our assumptions are very similar
to those made previously in the literature.

� ��� � ��� ��$����
�� ����
6&

We limit our consideration to maintaining a single
select-join (SJ) view. Any combination of selections and
joins in a view definition can be represented in this form.
We assume that the view does not involve self-joins and
that all base relations have keys (to simplify the cost
model). In addition,we assume that all indexes are stored
as B+-trees, that indexes are built on single attributes
only, and indexes are built on relations and views stored
as heaps. We consider the two most common physical
join operators: nested-block joins and index joins.

We assume that the base relations from the source
are replicated at the warehouse. In addition, we assume
that selection conditions are always “pushed down” onto
the base relations. When considering what additional
data structures to materialize, we restrict ourselves to
data structures that are themselves easily maintainable
through SQL update statements. To this end we consider
materializing supporting views and/or indexes. The in-
dexes are on attributes in the base relations, primary
view, and supporting views that are keys or involved in
selection/join conditions.

A materialized supporting view) could thus be the
result of applying selection conditions to a base rela-
tion, or joining two or more base relations, each having
selection conditions pushed down.

� ��� � ������	%
,�"!#�����
	�������� ��� ���
�&

We consider three types of deltas: insertions, dele-
tions, and updates. We distinguish between two types of
updates: Updates that alter the values of key attributes or
attributes involved in selection/join conditions are called
exposed updates; all other updates are called protected
updates. Exposed updates can result in tuples being
deleted from or inserted into the view. For this reason,
we propagate exposed updates as deletions followed by
insertions. Henceforth, all references to ‘updates’ should
be interpreted to mean ‘protected update’. Protected up-
dates can be applied directly to the view since they only
change attribute values of tuples in the view, and never
insert or remove tuples from the view.

We assume for the purposes of determining the cost of
maintaining a view that each type of change to each base
relation is propagated to the view and relevant supporting
views separately. Therefore, the cost of maintaining a
view or supporting view) is the sum of the costs of
propagating each type of change to each of the base
relations involved in) . For example:

� Insertions The cost of propagating insertions to
� onto)+* ���
���� is the cost of evaluating
� ����
 � � , inserting the result into) , and updat-
ing the indexes of) . When propagating insertions
we consider reusing the results of evaluating in-
sertions for one view in evaluating insertions for
another. For instance, the result of

� ����
���� can
be used in evaluating

� ����
���� �
� .

� Deletions The cost of propagating deletions to �
(� �) onto) is the cost of evaluating) ����� �
(��� denotes semijoin), removing those tuples from
) , and updating the indexes of) .

� Updates The cost of propagating updates to �
(� �) onto) is the cost of evaluating) ��� � � and
updating those tuples in) . Assuming protected
updates and that indexes are on attributes that are
keys or involved in selection/join conditions, we
do not have to update the indexes of) .

4 Optimal Solution using A* algorithm

In this section we describe an optimal algorithm to
solve the VIS problem and then show through experi-
mental results that it vastly reduces the number of can-
didate solutions that must be considered.

� ��� � &�	%��! ����������
����#! ��� ����� �

The A* algorithm ([12]) is an improvement over ex-
haustive search because it attempts to prune the parts of
the search space that cannot contain the optimal solu-
tion. In this section we describe how we have used the
A* algorithm to solve the VIS problem.

The algorithm takes as input the set of all possible
views and indexes to materialize, � . � does not in-
clude the base relations (�) nor the primary view) but
includes indexes that can be defined on them. () and
� are constrained to be materialized.) The goal of the
algorithm is to choose a subset � � of � to materialize

such that the total cost, (, is minimized. The total cost
given a particular subset of views and indexes � � can
be expressed as

� 3�� � 5 * �
�������
	���
����������

maint cost 3�� / � � 5

Function maint cost 3�� / � � 5 returns the cost of propa-
gating all changes to view or index � assuming only the
views and indexes in � � are materialized (in addition to
� and)).

Instead of directly searching the power set of � , we
set up the A* search to build the solution incrementally.
It begins with an empty materialization set (� � *��)
and then considers adding single views or indexes. The
algorithm terminates when a solution is found that has
considered every view and index and is guaranteed to
have the minimum total cost. We will call the interme-
diate steps reached in the algorithm partial states. Each
partial state is described by the tuple 3 ���'/ � � 5 where
� � is the set of features from � that have been con-
sidered and � � is the set of features from � � that have
been chosen to be materialized. For convenience, we
will also refer to the set of unconsidered features, � ! ,
which is �#" � � .

Presented with a set of partial states from which to
incrementally search, A* attempts to choose the most
promising. It does so by estimating the cost of the best
solution � � � � �! (� �! is the unconsidered features that
would be chosen) that can be achieved from each state.

The exact cost of the best solution given a partial state
can be decomposed as

(�*%$'&)(
where $ is the maintenance cost for the features cho-
sen so far (� �) and (is the maintenance cost for the
features in � �! . In general, $ also needs � �! for its
computation; that is, it is necessary to know which un-
considered features will be chosen in order to compute
the maintenance cost of features in � � . Fortunately, we
can compute $ using only � � so long as we impose a
partial ordering on the features in � so that we only
consider a feature when a decision has been made on ev-
ery feature that affects its cost. Formally, a partial order
* is imposed upon � such that if a feature � 1 can be
used in a query plan for propagating insertions to view
� 2, then � 1

* � 2. Also, for an index � 1 on a view
� 2, � 2

* � 1.

Input: + , ,
Output: Optimal +.-

Let state set /10325476 , where 4 is a partial state having

+98;:<4>=?0@+9-A:<4>=?0CB , and +EDF:<4>=?03+
(base relations and G are materialized)

Loop
Select the partial state 4IHJ/ with the minimum value of ˆK
If +.8;:<4>=ML3+ , return +.-N:<47=
Let /10C/POQ25476
For each view or index R.HS+9DF:<47= such that
for all R - ,TR : R - HJ+98;:<4>=

Construct partial state 45- such that
+98;:<4 - =?0C+.8;:<4>=<U?2>RJ6 , +EDF:<4 - =M03+EDF:<4>=FOV27RS6 ,
+9-A:<4>-N=W03+98;:<4>=<U?27RS6

Construct partial state 4 - - such that

+98;:<4>- -N=W03+98;:<4>=<UW2>RJ6 , +XD?:<4>- -N=M03+EDF:<47=?OQ27RJ6 ,
+ - :<4 - - =M03+.8;:<4>=

Let /10C/?UM2Y4>-A65UW2547- -A6
Endfor

Endloop

Table 1. A* Algorithm

The exact formula for (is

min� 	Z\[� Z 3
�
���;� 	Z

maint cost 3�� / � � � � �! 5�5

Unfortunately, this formula requires an exhaustive search
to find the � �! that minimizes the equation.

Instead of performing this exhaustive search, we cal-
culate a lower bound on (denoted ˆ(. Using ˆ(, the
A* algorithm can prune some of the partial states while
still guaranteeing an optimal solution. Using ˆ(, for any
partial state we can compute a lower bound on (as

ˆ(�*%$'& ˆ(

Note that if � �
] � then ˆ(* (. We will develop
an expression for ˆ(below but first we present the A*
algorithm for the VIS problem.

The algorithm appears in Table 1. The state set
 con-
tains all active partial states. It initially contains only the
partial state where none of the views and indexes have
been considered. Each time through the loop the algo-
rithm selects the partial state with the minimum lower
bound on the cost. If the selected state has ���] � ,

it is guaranteed to be the optimal choice. If the selected
state is not a complete state, it is removed from the set
of active states and for each view or index that can be
added to the set of considered views and indexes without
violating the partial order, two states are added to the set
of active states: one with the view or index added to the
chosen set (� �), and one without.

The formula for ˆ(computes the cost of maintaining
views and indexes in � ! minus the upper bound of their
benefit toward maintaining other views (including)).

ˆ("* �
� �;� Z

3 h maint cost 3�� / � � 5�" max benefit 3�� / � � 5�5

We guarantee that any overestimation of the actual main-
tenance cost of � is more than compensated for by the
overestimation of the benefit. Note that our function ˆ(,
although it achieves considerable pruning, can be im-
proved.

The function h maint cost 3�� / � � 5 differs depending
on whether � is a view or an index. If � is an index,
the function returns the cost of maintaining � for all
insertions and deletions that will be propagated to the
view that � is on. (The details of our cost model are
found in [9].) If � is a view, the function returns the
cost of propagating onto � insertions to each of the base
relations referenced in � , plus the cost of propagating
onto � deletions and updates to each of the base relations
referenced in � assuming the appropriate index exists.
Note that when � is a view, we might overestimate the
cost for propagating insertions since we are assuming
that all other views in � ! are not materialized (this is
compensated for in max benefit).

The function max benefit 3�� / � � 5 also differs de-
pending on whether � is a view or an index. First
we consider the case where � is an index.

1. If � is an index on a view � for the key attribute
of a base relation � that is referenced in � , the
function returns the cost of propagating deletions
and updates from � to � without � minus the cost
of propagating deletions and updates from � to �

with � .

2. If � is an index on a view � for a join attribute
that joins � to some relation � not referenced in
� , the function sums for each view � � � � ! that
includes � as well as all the relations in � and
for every relation
 in � � but not in � , the cost of

of # of # of states visited %

relations selections exhaustive A* pruned

2 0 32 11 67.7

2 1 192 21 89.1
2 2 960 28 97.1

2 4 960 29 97.0
3 1 2 � 1 � 106 17735 99.2

3 2 1 � 1 � 107 22809 99.8

Table 2. Comparison of A* and exhaustive
algorithms.

scanning � (the maximum savings due to an index
join using � when propagating insertions from �

onto � �).

3. If � is an index for both a key and a join attribute,
the two benefits described are added.

Next we consider the case where � is a view. In-
tuitively, the maximum benefit of � is the cost of ma-
terializing � when propagating insertions to views for
which � is a subview. The max benefit function sums
for each view � � � � ! that includes all the relations in
� and for every relation
 in � � but not in � , the cost of
materializing � given the views and indexes in � � .
� ��� ��� �
 ! ���
�� � ��&�!#

����&�� �

To test the A* algorithm described in the previous
section, we coded both it and the exhaustive algorithm
described in Section 2. We then ran both algorithms on a
variety of sample schemas. A summary of the results are
presented in Table 2. Clearly, the A* algorithm prunes
the vast majority of the search space. As the problems
gets larger, due to more views or selection predicates,
its relative performance increases as well. While it may
still be possible to derive a tighter lower bound on (,
even the algorithm as presented is a vast improvement
over previously proposed algorithms.

5 Rules of Thumb

The A* algorithm presented in the last section yields
optimal solutions while achieving impressive pruning.
Still, due to the doubly exponential nature of the VIS
problem, views that are computed from many base rela-
tions may still be too large to handle. Fortunately, finding
an optimal solution is not critical since there are often

many solutions that are close to optimal ([9]). What is
required, then, is to avoid poor view sets and then to pick
a good index set.

In this section we propose rules of thumb that can
help guide a WHA in choosing a reasonable set of sup-
porting views and indexes without resorting to the full
algorithm. The underlying theme of these rules of thumb
is to materialize a supporting view or index if its benefit
is greater than its cost. These rules of thumb function
similarly to the rule “join small relations first” in query
optimization. These are not hard and fast rules but we
have found that the rules apply in general.

Due to space constraints, we just list the rules in this
section. In [9], we present a full justification of each rule
of thumb through analysis and also through experimen-
tation.

Rule 5.1 Materialize a supporting view) when its size

(in terms of pages) is less than the sum of the sizes of the
views and base relations on which it is derived.

�

Rule 5.2 Materialize a supporting view) having no

deletions or updates.
�

Rule 5.3 In considering whether to materialize a sup-
porting view, the ratio of its size to the size of the memory

buffer does not matter.
�

Rule 5.4 Build an index on a supporting view) for an
attribute ����� that is the key of base relation � involved
in) if (1) there are some deletions and updates to � , (2)

the number of deletions and updates to all base relations
involved in) do not exceed the number of pages in) ,
and (3) the number of insertions and deletions to) does

not exceed the number of pages in) .
�

Rule 5.5 Build an index on a supporting view) for an
attribute ����� that is involved in a join condition � ���,*

 ��� in the primary view when (1)
 is not involved in

) , (2) the number of insertions to base relations not
involved in) but involved in the primary view does not
exceed the number of pages in) , and (3) the number of

insertions and deletions to) does not exceed the number
of pages in) .

�

Rule 5.6 Don’t build an index on a base relation � for
an attribute � ��� involved in a selection condition

�

unless (1) indexes on � for attributes involved in join
conditions have not been built, (2) a view � � *�� � �

has not been materialized, (3)
�

is very selective, and (4)
the number of deletions and updates to � do not exceed
the number of pages in � .

�

Rule 5.7 Build an index on a supporting view) for an
attribute ����� if for any of the above Rules 5.4, or 5.6, all

but the final condition hold, and the index fits in memory.�

6 Experimental Results

In this section, we present results that were borne
directly from experimentation. In particular, we attempt
to answer the following questions:

� Are views or indexes better when space is con-
strained?

� How sensitive is the optimal solution to the WHA’s
estimates of system parameters?

Due to space constraints, we present the results of only
one representative experiment for each question although
many more were performed. In addition, in the full ver-
sion of the paper [9], we also consider whether protected
updates should be treated atomically or split into pairs of
insertions and deletions. The experiments shown in this
section were all run on a view

��� 1 	�
 0 �

 1 	�� 0 � ��3 � 3�� 0 / � 1 5 ��
�3�
 0 /
 1 5 ��� 3 � 0 /
� 1 5�5 /
(1)

where
�

is a condition on � with a selectivity of 10
%. Also, the relative cardinalities of the relations is:
� 3�� 5 * 3 � � 3�
 5 * 9 � � 3 ��5 . (� 3 � 5 denotes the number
of tuples in � .) Although this schema is composed of
only 3 relations,we believe our results to be more general
because we have explored a number of larger schema
with heuristic search algorithms and the results so far
support those reported here.

� ��� � !#
�� ��
�� � ��!���� ��
 �
����
 � �
 !�� �
��
� �����#

� � �	� � � � !#�����

���

In this paper, we have shown how to find the optimal
set of supporting views and indexes to materialize in or-
der to minimize the total maintenance time. Sometimes,
however, the amount of additional storage required is
prohibitive. In these cases, one may ask how much stor-
age is required to attain most of the performance gains

and which structures should be materialized. We con-
sidered these questions for the schema given in Equation
(1) under two different update loads. Due to space con-
straints, we only discuss the results for the high-update
load experiment but the results for the low-update load
experiment were similar. In the experiment, we gradu-
ally increase the available storage from that required to
materialize the primary view (��
��) to that required by
the optimal solution for the unconstrained problem. For
generality, we measure the additional space as a frac-
tion of the space required to store the base relations. At
each point we find the best solution that fits in the avail-
able storage. The cost of this solution relative to the
non-constrained optimum is plotted on the y-axis.

The result of the experiment are shown in Figure 3.
As the graph indicates, the schemas evolve in discrete
steps - only changing when enough storage becomes
available to add a new index or materialized view. The
number of steps in the progression is too large (52 to
be exact) to show every schema change but the results
are summarized in Figure 4. The numbers next to the
features indicate in what order they are added as stor-
age increases. The experiment starts with only the base
relations and primary view materialized – they are num-
bered 0. The next features to be added are indexes on
the keys of the base relations present in the view ��
�� ,
starting with � 0 and then adding
 0 and � 0. Next, the
selection node ��� is materialized and an index built on
its attribute ��� 0. The reason that it takes 52 steps to
add all 10 numbered feature sets is that a new feature is
often added at the expense of an older one. For instance,
when the view ��� is materialized, the index on � 0 in
��
�� is dropped until enough space is available to add it
again. The graph in Figure 3 is also annotated with the
feature numbers to help indicate which features impact
the update performance.

The first important point to note from this experiment
is that a large portion of the total update savings can be
achieved with a reasonably small amount of additional
storage. Note the large drop in I/Os in the experiment
that results from materializing view �	� (feature 3) and
then adding indexes on � 0 and
 0 again (they were
dropped earlier to make space for �	�). The next large
drop occurs after enough space is found to materialize

�� (feature 5). By the time point A (which corresponds
to features 1,2 and 5) is reached, the update cost is within
5% of the optimal cost. This is encouraging for ware-

�

�����

�����

�����

�����

����	

����

�����
� ������� ������	 ������
 �����
� �����
� �����
� �����

!! optimal

������������� 4 ��� ��� � �! ��� � �! �!"$#%� �� ��� ��������� 4 �

�

�

	

&

'

((%) *

+

Figure 3. Effects of space on update cost.

houses that have space constraints. It should be noted
that even though the extra storage required for the views
and indexes does not seem that large compared to the
warehouse relation sizes (, 25%), there will typically
be many views defined over the same relations so the
total storage required by views and indexes can be larger
than that of warehouse relation when the warehouse is
considered in its entirety.

It is interesting to see how Figure 4 is supported by our
rules of thumb. Because ��
�� is such a large relation,
and there are deletions (but relatively few) to warehouse
relations � ,
 , and � , by Rule 5.4, indexes should be
built on ��
�� for the keys of each of the warehouse rela-
tions. Also, because of the selection condition on � , the
materialized view ��� is much smaller than � . Therefore,
by Rule 5.1 view ��� should be materialized. Finally, note
that view
�� is not materialized until near the end. Even
though the number of pages in
�� is less than the sum
of the pages in
 and � and should be materialized by
Rule 5.1,
�� is a relatively large structure to materialize
in comparison to the indexes. Therefore, we find that
the maintenance cost is minimized overall in this case
by materializing several small beneficial structures (i.e.,
indexes) than by materializing one large one (i.e., view

��). It isn’t until the most useful indexes have already
been materialized that view
�� is chosen.

0R R0 R1 0S S0 S1 0T T0 T1

3
3T’ T0 T1

5 6
5ST S0 S1 T0 T1

0
124

RST R0 R1 S0 S1 T0 T1

Figure 4. Evolution of the physical design.

� ��� �
6� ������� � ����� � � ��&�� � � �

This paper has focused on finding an optimal solution
to the VIS problem and also approximate solutions using
rules of thumb. Just how well any solution works on
the actual warehouse depends on how closely the input
parameters, such as relation sizes and delta rates, match
the real values of the system.1 An important question
for the WHA, then, is just how sensitive the optimizer
is to the estimates of the input parameters. Clearly, one
would hope that the optimal solution for the estimates
is at least a good solution for systems with only slightly
different parameters. In this section, we investigate just
how badly optimal solutions decay at neighboring points.
Due to space constraints, we consider only the estimate
of insertion and deletion rates.

In this experiment, we varied the combined insertion
and deletion rates to each base relation such that the ratio� � � ����� � � �	 � 	 * � �
 ����� �
 �	
 	 * � � � ����� � � �	 � 	 increased from
0.001 to 0.1 in five steps. At each step, we found the
optimal solution and then plotted its performance over
the entire range. The results, which are shown in Figure
5, suggest that except for a small region in the middle
of the graph, the choice of optimum in not sensitive
to the combined insertion-deletion rate. For instance,
the optimal solution for an estimated ratio of 0.001 is
still optimal even when the ratio grows to 0.01. The
only area where the optimizer seems sensitive is in the
range shown in the middle of the graph where an order
of magnitude error in estimation can lead to a three-
fold performance hit or worse. This sensitive region

1It also depends on how closely the VIS optimizer’s cost model
follows that of the dbms. This concept is discussed in [3].

�
����	
�

� ��	
�

����	
�

����	
�

�����
� � ����� � �����

!! optimal

� � � ����� � � �	 � 	

���
 � �

� � �

�

���
 �

���
 � &

& & &

&

���
 � �

�

�

���
 � �

�

�

Figure 5. Sensitivity of Optimal Solutions
to Insert/Delete Rates.

corresponds to the point when the insertion-deletion rate
to the base relations becomes large enough that it is no
longer worthwhile to build indexes on their attributes.

This experiment is typical of many sensitivity anal-
yses that we have performed. The optimal solutions
perform well across a wide range of parameter values
except for a few small regions that correspond to major
schema changes. This is reassuring. One must be care-
ful, however, in over-generalizing this result. It is likely
that in schemas with more relations there will be more
frequent shifts in the optimal schema. Whether these
shifts will result in large differences in the maintenance
cost is a subject for future research.

7 Related Work

Previous work related to this paper falls into two cat-
egories, depending on the context in which it was writ-
ten: physical database design and rule condition main-
tenance.

Physical Database Design Three costs must be bal-
anced in physical database design for warehouses: (1)
the cost of answering queries using warehouse relations
and additional structures, (2) the cost of maintaining ad-
ditional structures, and (3) the cost of secondary storage.
We have assumed that the primary view is materialized,
which minimizes the cost of (1), and focused on choos-
ing supporting view and indices such that the cost of (2)

is minimized. We have also considered constraining cost
(3).

This problem was first studied by Roussopoloulos
[14]. The additional structures considered for materi-
alization are view indices, rather than the views them-
selves, to save on storage. A view index is similar to a
materialized view except that instead of storing the tu-
ples in the view directly, each tuple in the view index
consists of pointers to the tuples in the base relations that
derive the view tuple. In our paper we choose to main-
tain the actual views since the cost of secondary storage
is now much lower.

The Roussopoloulos paper presents an elegant algo-
rithm based on A* and the approximate knapsack prob-
lem to find an optimal solution to the view selection
problem. The algorithm, however, works because of
two simplifying assumptions. First, it uses a very simple
cost model for updating a view: the cost is proportional
to the size of the view. But we have shown in Sec-
tion 2 that the cost of maintenance is a complex query
optimization problem and cannot be estimated without
knowing which subviews are materialized. Second, the
Roussopoloulos algorithm does not consider index se-
lection (other than view indices). We have shown in
Section 6.1 that index selection has a significant impact
on choosing which subviews to materialize. Relaxing
either of the above two assumptions invalidates the use
of the Roussopoloulos algorithm. Still, this is a very
good first treatment of the subject.

More recently, Ross et al. [13] examines the same
problem. They describe an exhaustive search algorithm
to solve the VIS problem but without considering in-
dexes. They also propose heuristics for pruning the space
to search. We have extended their work by considering
indexes, developing rules of thumb, and presenting an
improved optimal algorithm. We have implemented our
algorithm and used it to generate experimental results.

Other work has looked at the initialproblem of choos-
ing a set of primary views such that the cost of (1) is
minimized, while ensuring that the costs of (2) and (3)
are not too high. [17] considers this problem in the case
of distributed views. [8] has investigated this problem
for the case of aggregate views. Tsatalos et al. [20] con-
sider materializing views in place of the base relations in
order to improve query response time. Rozen et al. [15]
look at this problem as adding a set of “features” to the
database.

In particular, the index selection part of our VIS prob-
lem has been well-studied [3,1] in the context of physi-
cal database design. Choosing indexes for materialized
views is a straightforward extension. What is trouble-
some, however, is that the previous algorithms require
the queries (and their frequencies) on each base relation
as inputs. In the VIS problem there are no user generated
queries on the base relations or supporting views since
they are all handled by the primary views: The only
queries on base relations or supporting views are gener-
ated by maintenance expressions. Unfortunately, the set
of generated queries depends on the update paths chosen
for each type of delta. However, the choice between two
update paths depends on the indexes chosen, which has
not yet been determined. Thus one cannot determine the
query set on each base relation and supportingview with-
out knowing which indexes are present, which makes the
algorithms proposed in previous work unusable here.

Rule Condition Maintenance Previous work on ac-
tive database and production systems also relates to the
VIS problem we have described. Many authors have
considered how to evaluate trigger conditions for rules.
This can be considered a view maintenance problem
where a rule is triggered whenever the view that satis-
fies its condition becomes non-empty. Wang and Han-
son [21] study how the production system algorithms
Rete [4] and TREAT [11] perform in a database environ-
ment. An extension to TREAT called A-TREAT is con-
sidered in [7]. Fabret et al. [2] considered how to choose
supporting views for the trigger condition view. Using
our terminology, the rule of thumb they developed is to
materialize a supporting view if it is self-maintainable;
i.e., when it can be maintained for the changes to the base
relations by referencing the changes and the view itself,
but without referencing any base relations. We have
found that this is not true for our environment. In gen-
eral, if there are insertions to the base relations, a join
view is not self-maintainable and the Fabret approach
does not materialize such a join view. However, even if
there are insertions the join view may be beneficial (Rule
5.2) because the work for propagating insertions can be
reused.

Segev et al. [16,18] consider a similar problem in ex-
pert systems. They also assume small deltas and ubiqui-
tous indexes. They do not, however, consider maintain-
ing subviews of the primary view, but instead describe
join pattern indexes, which are specialized structures for

maintaining materialized views. Join pattern indexes
are an interesting approach, but require specialized algo-
rithms to maintain.

A major difference between all of these studies and
this one is that they consider a rule environment where
changes in the underlying data are propagated imme-
diately to the view. Hence, the size of the deltas sets
are relatively small, which means that index joins will
usually be much cheaper than nested-block joins. They
therefore assume that indexes exist on all attributes in-
volved in selection and join conditions. However, in
the data warehousing environment studied here, a large
number of changes are propagated at once, and the cost
of maintaining the indexes often outweighs any benefit
obtained by doing index joins.

8 Conclusions

This paper considered the VIS problem, which is one
aspect of choosing good physical designs for relational
databases used as data warehouses. We described and
implemented an optimal algorithm based on A* that
vastly prunes the search space compared to previously
proposed algorithms [13]. Since even the A* algorithm
is impractical for many real world problems, we devel-
oped rules of thumb for the for view and index selection.

By running experiments with the optimal algorithm,
we studied how space can be best used when it is con-
strained: whether for materializing indexes or supporting
views. Our results indicate that building indices on key
attributes in the primary view lead to solid maintenance
cost savings with modest storage requirements.

In the future we plan to develop and compare a num-
ber of heuristics for pruning the exhaustive search space
so that good solutions can be found through limited
search.

References

[1] S. Choenni, H. Blanken, and T. Chang. On the selection
of secondary indices in relational databases. Data and
Knowledge Engineering, 11:207–33, 1993.

[2] F. Fabret, M. Regnier, and E. Simon. An adaptive algo-
rithm for incremental evaluation of production rules in
database. In Proceedings of International Conference on
Very Large Data Bases, pages 455–66, 1993.

[3] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM Transac-
tions on Database Systems, 13(1):91–128, 1988.

[4] C. L. Forgy. Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial Intel-
ligence, 19:17–37, 1982.

[5] T. Griffin and L. Libkin. Incremental maintenance of
views with duplicates. In M. Carey and D. Schneider, ed-
itors, Proceedings of ACM SIGMOD 1995 International
Conferenceon Management of Data, pages 328–339, San
Jose, CA, May 23-25 1995.

[6] A. Gupta, I. Mumick, and V. Subrahmanian. Maintaining
views incrementally. In Proceedings of ACM SIGMOD
1993 International Conference on Management of Data,
Washington, DC, May 26-28 1993.

[7] E. Hanson. Rule condition testing and action execution
in Ariel. In Proceedings of 1992 ACM SIGMOD, pages
49–58, 1992.

[8] V. Harinarayan, A. Rajaraman, and J. Ullman. Imple-
menting data cubes efficiently. In Proceedings of 1996
ACM SIGMOD, 1996.

[9] W. Labio, D. Quass, and B. Adelberg. Physical database
design for data warehouses - the vis problem. Technical
report, Stanford University, 1996. Available by anony-
mous ftp from db.stanford.edu in /pub/labio/1996.

[10] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.
Answering queries using views. In Proceedings of the
Fourteenth Symposium on Principles of Database Sys-
tems (PODS), pages 95–104, San Jose, CA, May 22-24
1995.

[11] D. P. Miranker. Treat: A better match algorithm for ai pro-
duction systems. In Proceedings of AAII 87 Conference
on Artificial Intelligence, pages 42–47, August 1987.

[12] N. Nilsson. Problem solving methods in artificial intelli-
gence. McGraw-Hill, 1971.

[13] K. Ross, D. Srivastava, and S. Sudarshan. Material-
ized view maintenance and integrity constraint checking:
Trading space for time. In Proceedings of 1996 ACM
SIGMOD, 1996.

[14] N. Roussopoulos. View indexing in relational databases.
ACM Transactions on Database Systems, 7(2):258–90,
1982.

[15] S. Rozen and D. Shasha. A framework for automating
physical databasedesign. In Proceedingsof International
Conference on Very Large Data Bases, pages 401–11,
1991.

[16] A. Segev and W. Fang. Optimal update policies for
distribtued materialized views. Management Science,
17(7):851–70, 1991.

[17] A. Segev and J. Park. Updating distributed materialized
views. IEEE Transactions on Knowledge and Data En-
gineering, 1(2):173–184, June 1989.

[18] A. Segev and J. Zhao. Data management for large rule
systems. In Proceedings of International Conference on
Very Large Data Bases, pages 297–307, 1991.

[19] T. Sellis. Multiple-query optimization. ACM Transac-
tions on Database Systems, 13(1):23–52, 1988.

[20] O. Tsatalos, M. Solomon, and Y. Ioannidis. The gmap:
A versatile tool for physical data independence. In Pro-
ceedings of International Conferenceon Very Large Data
Bases, pages 367–78, 1994.

[21] Y. Wang and E. Hanson. A performance comparison
of the rete and treat algorithms for testing database rule
conditions. In Proceedings of International Conference
on Very Large Data Bases, pages 88–97, 1992.

