Physical Database Design for Data Warehouses *

Wilburt Juan Labio,Dallan Quass, Brad Adelberg
Department of Computer Science
Stanford University
e-mail: {wilburt,quass,adelberg} @cs.stanford.edu

Abstract

Data warehouses collect copies of information from
remote sources into a single database. Since the remote
datais cached at the warehouse, it appears as local re-
lationsto the users of the warehouse. To improve query
response time, the warehouse administrator will often
materialize views defined on the local relations to sup-
port common or complicated queries. Unfortunately, the
requirement to keep the views consistent with the local
relations creates additional overhead when the remote
sourceschange. Thewarehouseisoftenkept onlyloosely
consistent with the sources: it is periodically refreshed
with changes sent from the source. When this happens,
the warehouse is taken off-line until the local relations
and materialized views can be updated. Clearly, the
users would prefer as little down time as possible. Of-
ten the down time can be reduced by adding carefully
selected materialized views or indexes to the physical
schema. Thispaper studies howto select the sets of sup-
porting views and of indexes to materialize to minimize
thedowntime. We call thistheview index selection (VIS)
problem. We present an A* search based solution to the
problemaswell asrulesof thumb. Weal so performaddi-
tional experiments to under stand the space-ti me tradeoff
asit appliesto data warehouses.

1. Introduction

Data warehouses collect information from many
sources into a single database. This alows users to
pose queries within a single environment and without
concern for schema integration. Figure 1 shows a typi-
ca warehousing system. Relations R ¢, Ssre, 8Nd Tpe,

*This work was supported by Hewlett Packard, by Philips, and
by Rome Laboratories under Air Force Contract F30602-94-C-0237.
This work was aso supported by an equipment grant from Digital
Equipment Corporation.

Warehouse RST

g N
R SRC S SRC T SRC
Source 1 Source 2 Source 3

Figure 1. Warehouse with primary view.

referred to as source relations, from sources 1, 2, and 3
respectively, arereplicated at thewarehouseas R, S, and
T inorder to answer user queries posed at thewarehouse
such as RXSXT'. We refer totherdlations R, S, and T
as warehouse relations. Changes to the source relations
are queued and periodically shipped and applied to the
warehouse relations. We call these changes deltas.

Queries posed a a data warehouse are often
complex—involving joins of multiple relations as well
as aggregation. Due to the complexity of these queries,
views are usually defined — aview isa derived relation
expressed in terms of the warehouse relations. Because
the views are defined in terms of the warehouse rela
tions, we refer to the warehouse relations also as base
relations. For example, referring againto Figurel, RST
represents aview that isthe expression RXSXT. Ware-
houses can store large amounts of data, and so in order
to improve the performance of queries written in terms
of the views, the views are often materialized by storing
theresult of the view at the warehouse. Unmaterialized
views are caled virtual views. Queries written interms
of materialized viewsare usually significantly faster than
guerieswrittenin termsof virtua viewsbecause theview
tuples are stored rather than having to be computed.

Since materialized views are computed once and
stored, they become inconsistent as the deltas from the
sources are applied to the base relations. In order to
make amaterialized view consistent again with the base
relations from which it is derived, the view may be
recomputed from scratch, or incrementally maintained
[6] by calculating just the effects of the deltas on the
view. These effects are captured in view maintenance
expressions [5]. For example, if view RST in Figure 1
is materialized, the maintenance expression calculating
the tuplesto insert into RST dueto insertionsinto R is
ARMSXT, where AR denotesthe insertionsinto R.

Since the sizes of the views at a warehouse are usu-
ally so large and the changes small in comparison, it is
often much cheaper to incrementally maintain the view
than to recompute it from scratch. Incrementally main-
taining a number of materialized views at a warehouse,
even though cheaper than recomputing the views from
scratch, may still involve a significant processing ef-
fort. To avoid impacting clients querying the warehouse
views, view maintenance is usualy performed at night
duringwhich timethewarehouse ismade unavail ablefor
answering queries. A major concern for warehouses us-
ing thisapproach isthat the views be maintained in time
to be available for querying again the next morning. An
important problem for data warehousing isthus: Given
a set of materialized views that need to be maintained
dueto a set of deltas shipped from the data sources, how
isit possibleto reduce the total maintenance time?

Our approach to the problem of minimizing the time
spent maintaining a set of views may seem counter-
intuitive at first: add additional views and/or indexes.
In this paper we will approximate maintenance time by
the number of 1/O’s required and then endeavor to min-
imize the number of 1/0O’s. We start with the number
of 1/O'srequired for maintaining the materialized views
and the base relations at the warehouse. We then add a
set of additional views and indexes that themsel ves must
bemaintained, but whose benefit (reductionin1/O’s) out-
weighsthe cost (increase of 1/0’s) of maintaining them.

As an example, let us return to Figure 1. Suppose
that in addition to materiaizing the primary view, RST,
another view, ST, isa so materialized. By materializing
view ST, the total cost of maintaining both RST and
ST can beless than the cost of maintaining RST alone.
For example, suppose that there are insertionsto R but
no changes whatsoever to S and T'. To propagate the

insertionsto R onto RST', we must eval uate the mainte-
nance expression that cal culates the tuplesto insert into
RST duetoinsertionsinto R, whichisA RXSXT. With
ST materialized, it isalmost certain that this expression
can be evaluated more efficiently as ARNXST, joining
the insertions to R with ST, instead of with S and T
individualy. Even if there are changesto S and T', the
benefit of materializing ST may till outweigh the extra
cost involved in maintaining it. Since the view ST is
materialized to assist in the maintenance of the primary
view RST, we cal theview ST asupporting view.

In addition to materializing supporting views, it may
also be beneficia to materiaize indexes. Indexes may
be built on the base relations, primary views, and on
the supporting views. The general problem, then, isto
choose a set of supporting views and a set of indexes to
meaterialize such that the total maintenance cost for the
warehouse is minimized. We call this the View Index
Sdlection (VIS) problem and it isthe focus of this paper.

Below welist the primary contributionsof this paper.

e We propose and implement an optimal agorithm
based on A* that prunes as much as 99% of the
possible supporting view and index sets to solve
the VIS problem.

¢ We develop rules of thumb that can help a ware-
house administrator (WHA) find a reasonable set
of supporting views and indexes to materialize in
order to reduce the total maintenance cost.

o We compare the benefit of materializing support-
ing viewsasopposedtoindexes, and discusswhich
should be chosen when the total storage space at
the warehouse is constrained.

o We perform experiments to determine how sensi-
tive the choice of supporting view and index sets
are to the input parameters of the optimizer.

The rest of the paper proceeds as follows. Section 2
describes the VIS problem in detail. Section 3 presents
the scope of our results and our approach to view main-
tenance. We describe our A*-based algorithm in Sec-
tion 4. Section 5 presents rules of thumb for choosing
a set of supporting views and indexes to materialize.
In Section 6, we report on additional experiments such
as comparing the importance of indexes and supporting
viewswhen space isconstrained. Next, in Section 7, we

discuss how this paper relates to previous work in the
area. Finaly, we present our conclusionsin Section 8.

2. General Problem

Having introduced the VIS problem, inthis section we
describe it fully and present an exhaustive search algo-
rithmto solveit. We also show the worst case complex-
ity of the VIS problem. Lastly, we present an example
schema to illustrate the concepts introduced.

2.1. The Optimization Problem

An optima agorithm must minimize the total cost
of maintaining the warehouse. The total cost that we
attempt to minimize is the sum of the costs of: (1) ap-
plying the deltas to the base relations, (2) evaluating the
mai ntenance expressionsfor the materialized views, and
(3) modifying affected indexes. The cost of maintaining
one view differs depending upon what other views are
available. Itisthereforeincorrect to calcul ate the cost of
maintaining the original view and each of the additional
viewsinisolation. Moreover, in order to derive thetotal
cost it is necessary to consider the view selection and
index selection together.

To find the optimal solution, then, we must solve the
optimization problem globally. One approach, proposed
inRoss et al. [13] (although thiswork does not consider
indices), isto exhaustively search the solutionspace. Al-
though exhaustive search is impractical for large prob-
lems, it illustrates the complexity of the problem and
provides a basis of comparison for other solutions. The
exhaugtive algorithm works as follows (each stage is
described below):

for each subset of supporting views
for each subset of indexes
conmpute total cost and keep track of
the supporting views and indexes that
obtain the mni mum cost

211 Choosingtheviews

Inthefirst step we consider all possiblesubsets of the set
of candidate views C. Asproposed in [13], we consider
as candidate views al distinct nodes that appear in a
query planfor the primary view. Since the primary view
isalready materialized, it isnot included inthe candidate
view set. For example, given aview V. = RXSXT,

C = {RS,RT,ST}. Ingenera, for aview joining n
relations there are roughly ©(2™) different nodes that
appear in some query plan for the view, onejoining each
possible subset of the base relations. Thus, to consider
all possible subsets of €, we need to evaluate roughly
0(2%") different view states.

2.1.2 Choosingtheindexes

Now we must consider al possible subsets of the set of
candidate indexes, Z. Candidate indexes, as defined in
Finkelsteinet. a. [3], areindexesonthefollowingtypes
of attributes:

e attributeswith selection or join predicateson them.

o key attributesfor base relations where changes to
the base relation include deletions or updates.

e attributesin GROUP BY or ORDER BY clauses.

Additional attributes can be candidates depending on the
query optimizer being used.

Since each materialized view will usually have can-
didate indexes, Z must be recomputed at the beginning
of every inner loop. The cardinality of Z for aparticular
view state is proportional to the number of materialized
views and base relations in that state. Further, a par-
ticular state contains between n and O(2™) materialized
views and base relations, so there can be as many as
O(2™) candidate indexes to consider. Since we must
evaluate possible subsets of candidate indexes, the num-
ber of possible index states for a view state can be up to
0O(22"). (See Section 7 for an explanation of why stan-
dard approaches for index selection are not appropriate.)

2.1.3 Computingthetotal update cost

Onceaparticul ar view andindex state are chosen, obtain-
ingthetota cost isaquery optimizationprobleminitself
sinceit involvesfinding the most efficient query plan for
each of the view maintenance expressions. Thus, the
VIS problem for a single primary view joining n base
relaions contains roughly @(22") query optimization
problems in the most general case.

The query optimization itself is complicated by the
presence of materialized views since the optimizer must
also determine if it can use another materialized view
in the query plan evaluating a mai ntenance expression.

This problem is known as “answering queries using
views’ [10].

To complicate matters, onebatch of changes can gen-
erate multiple maintenance expressions that need to be
evaluated. Thishappensdueto different typesof changes
to the base rel ations. The maintenance expressions must
be optimized as a group because of possible common
subexpressions [13]. This problem is known as the
“multiple-query optimization” problem[19].

2.2 Example

Consider the following base relations and view.

R(RO, R1), S(SO,S1), T(TO,T1)

create view V(RO, Rl SO, S1, TO, T1) as

select *

from R S T

where RRL = S.S1 and S.SO = T.T0
and T.T1 <= 10

Figure 2 shows an expression dag [13] that includes
all the nodes that could appear in a query plan for V,
assuming the selection on T.7'1 is pushed down. The
view T" isthe result of applying the selection condition
toT'. Under each view isthe set of operationsthat could
be used to derive the view. For example, theview RST
could be derived as the result of RX.S joined with 77,
or the result of RXS joined with the result of SXT",
and so on. Each of the intermediate results could be
materialized as a supporting view. Following the defi-
nition in Section 2.1.1, the set of candidate supporting
views, C,is{RS, ST', RT',T'}. AssumingV ismateri-
alized at adatawarehouse (asswell asthebase relations),
any possible subset of ¢ might aso be materialized as
supporting views at the warehouse in order to minimize
the total maintenance cost. In addition, indexes on V,
the base relations, and the supporting views need to be
considered.

It isuseful to think of the expression dag in Figure 2
when considering the different update paths[13] changes
to base relations can take as they are propagated to the
view. An update path corresponds to a specific query
plan for evaluating a view maintenance expression. For
exampl e, the mai ntenance expression for propagatingin-
sertionsto R onto V' istoinsert theresult of A RXSXT
into V. The graph depicts seven possible update paths
for thisexpression, two of which are shown in Figure 2:

-[‘-1
7
T

Figure 2. Example Schema.

(1) (ARXS)XT, (2) (ARXS)X(SNT"). Notice that
the choice of update path can affect which indexes get
materiaized. If update path (1) ischosen, an index may
be built on the join attribute of T" to help compute the
mai ntenance expression. If path (2) is chosen however
and view ST' is materialized, an index may be built on
thejoin attributeof ST'. Theimplication of using differ-
ent indexes depending upon which update path is chosen
isdiscussed in Section 7.

Changesto base relations need to be propagated both
to the primary view as well as to the supporting views
that have been materialized. When propagating changes
to severa base relations onto several materialized views
there are opportunities for multiple-query optimization.
Results of maintenance expressions for one view can be
reused when eval uating maintenance expressionsfor an-
other view. For example, suppose view RS = RXS
is materiadized. The result of propagating insertions to
R onto RS, ARNXS, can be reused when propagating
insertionsto R onto V', A RXSXT", sothat only thejoin
with T" need be performed. In addition, common subex-
pressions can be detected between several maintenance
expressions.

3 Problem Studied

Asdiscussed intheprevioussection, the VIS problem
is very complex. While the agorithm we present is
quite general, we have made simplifying assumptions
to alow us to study the most important effects without
getting lost in irrelevant detail. The resulting problem

is still doubly-exponential and we fedl that the insights
we have gained from thisstudy can lead to more genera

solutions. Furthermore, our assumptionsarevery similar
to those made previoudly in the literature.

3.1 Database Model

We limit our consideration to maintaining a single
select-join (SJ) view. Any combination of selectionsand
joinsinaview definition can be represented in thisform.
We assume that the view does not involve self-joinsand
that all base relations have keys (to simplify the cost
mode!). Inaddition, weassumethat al indexesare stored
as B+-trees, that indexes are built on single attributes
only, and indexes are built on relations and views stored
as heaps. We consider the two most common physical
join operators: nested-block joins and index joins.

We assume that the base relations from the source
are replicated at the warehouse. In addition, we assume
that selection conditionsare aways “ pushed down” onto
the base relations. When considering what additional
data structures to materialize, we restrict ourselves to
data structures that are themselves easily maintainable
through SQL update statements. To thisend we consider
materializing supporting views and/or indexes. Thein-
dexes are on attributes in the base relations, primary
view, and supporting views that are keys or involved in
selection/join conditions.

A materidized supporting view V' could thus be the
result of applying selection conditions to a base rela
tion, or joining two or more base relations, each having
selection conditions pushed down.

3.2 Change Propagation Model

We consider three types of deltas: insertions, dele-
tions, and updates. We distingui sh between two types of
updates: Updatesthat alter thevaluesof key attributesor
attributesinvolvedin selection/join conditionsare called
exposed updates; al other updates are called protected
updates. Exposed updates can result in tuples being
deleted from or inserted into the view. For this reason,
we propagate exposed updates as deletions followed by
insertions. Henceforth, all referencesto‘ updates’ should
be interpreted to mean ‘ protected update’ . Protected up-
dates can be applied directly to the view since they only
change attribute values of tuplesin the view, and never
insert or remove tuples from the view.

We assumefor the purposes of determining the cost of
maintaining aview that each type of change to each base
relation ispropagated to theview and rel evant supporting
views separately. Therefore, the cost of maintaining a
view or supporting view V is the sum of the costs of
propagating each type of change to each of the base
relationsinvolved in V. For example:

e Insertions The cost of propagating insertions to
R onto V = RXSXT is the cost of evaluating
ARMXSKT, inserting theresult into V', and updat-
ingtheindexesof V.. When propagating insertions
we consider reusing the results of evaluating in-
sertions for one view in evaluating insertions for
another. For instance, theresult of A RXSXT can
be used in evaluating A RXSXTXU .

e Deletions The cost of propagating deletionsto R
(VR) onto V is the cost of evauating VD<\7R
(>< denotes semijoin), removing thosetuplesfrom
V', and updating the indexes of V.

e Updates The cost of propagating updates to R
(wR) onto V isthecost of evaluating VP><u R and
updating those tuplesin V.. Assuming protected
updates and that indexes are on attributes that are
keys or involved in selection/join conditions, we
do not have to update the indexes of V.

4 Optimal Solution using A* algorithm

In this section we describe an optimal algorithm to
solve the VIS problem and then show through experi-
mental results that it vastly reduces the number of can-
didate solutionsthat must be considered.

4.1 Algorithm description

The A* dgorithm ([12]) is an improvement over ex-
haustive search because it attempts to prune the parts of
the search space that cannot contain the optima solu-
tion. In this section we describe how we have used the
A* algorithm to solve the VIS problem.

The agorithm takes as input the set of al possible
views and indexes to materialize, M. M does not in-
clude the base relations (B) nor the primary view V but
includes indexes that can be defined on them. (V' and
B are constrained to be materialized.) The goa of the
agorithmisto choose a subset M’ of M to materidize

such that the total cost, C, is minimized. The total cost
given a particular subset of views and indexes M’ can
be expressed as

c(M') = >

me(M' U B U {V})

maint_cost(m, M")

Function maint_cost(m, M) returns the cost of propa-
gating al changesto view or index m assuming only the
viewsand indexesin M’ are materialized (in additionto
BandV).

Instead of directly searching the power set of M, we
set up the A* search to build the solution incrementally.
It begins with an empty materialization set (M' = ¢)
and then considers adding single views or indexes. The
algorithm terminates when a solution is found that has
considered every view and index and is guaranteed to
have the minimum total cost. We will call theinterme-
diate steps reached in the algorithm partial states. Each
partial state is described by the tuple (M¢, M) where
M isthe set of features from M that have been con-
sidered and M isthe set of features from M ¢ that have
been chosen to be materialized. For convenience, we
will also refer to the set of unconsidered features, My,
whichisM — Mc.

Presented with a set of partial states from which to
incrementally search, A* attempts to choose the most
promising. It does so by estimating the cost of the best
solution M'UM;, (M;, istheunconsidered featuresthat
would be chosen) that can be achieved from each state.

Theexact cost of thebest solutiongivenapartial state
can be decomposed as

C=g+h

where g is the maintenance cost for the features cho-
sen so far (M) and h is the maintenance cost for the
features in My,. In genera, g aso needs M;, for its
computation; that is, it is necessary to know which un-
considered features will be chosen in order to compute
the maintenance cost of featuresin M'. Fortunately, we
can compute g using only M’ so long as we impose a
partial ordering on the features in M so that we only
consider afeature when adecision has been made on ev-
ery feature that affectsits cost. Formally, a partial order
~< isimposed upon M such that if a feature m, can be
used in a query plan for propagating insertions to view
my, then my < myp. Also, for an index m, on aview

mp, My < M1.

Input:
Output:

M, <
Optimal M’

Let state set S = {s}, where s is apartial state having
Mc(s) = M'(s) = ¢, and My(s) = M
(baserelationsand V' are materialized)
Loop
Select the partial state s € S with the minimum value of €
If Mc(s) = M, return M’(s)
LetS =5 — {s}
For each view or index m € My(s) such that
foralm' < m: m' € Mc(s)
Construct partial state s’ such that

Mec(s") = Mc(s)u{m}, Mu(s') = Mu(s) — {m},

M(s") = Mc(s)u{m}
Construct partial state s” such that

Mec(s") = Me(s)u{m}, Mu(s") = Mu(s) - {m},

M'(s") = Mc(s)
Let S = Su{s'}u{s"}
Endfor
Endloop

Table 1. A* Algorithm

The exact formulafor h is

min maint_cost(m, M'UM,
W (1, MUUMY))
u

Unfortunately, thisformul arequiresan exhaustivesearch
to find the M;, that minimizes the equation.

Instead of performing this exhaustive search, we cal-
culate a lower bound on A denoted A. Us ng h, the
A* agorithm can prune some of the partia states while
gtill guaranteeing an optimal solution. Using h, for any
partial state we can compute alower bound on C as

CA:g—{—fAL

Note that if Mc = M then ¢ = C. We will develop
an expression for h below but first we present the A*
algorithm for the VIS problem.
Theagorithmappearsin Table 1. The stateset S con-
tainsall active partia states. Itinitially containsonly the
partia state where none of the views and indexes have
been considered. Each time through the loop the ago-
rithm selects the partiad state with the minimum lower
bound on the cost. If the sdected state has M¢ = M,

it is guaranteed to be the optimal choice. If the selected
dtate is not a complete state, it is removed from the set
of active states and for each view or index that can be
added to the set of considered views and indexeswithout
violating the partial order, two states are added to the set
of active states: one with the view or index added to the
chosen set (M), and one without.

The formulafor A computes the cost of maintaining
viewsand indexesin Mg, minusthe upper bound of their
benefit toward maintaining other views (including V).

h= z (h-maint_cost(m, M")—max_benefit(m, M'))
meMy

We guarantee that any overestimation of theactual main-
tenance cost of m is more than compensated for by the
overestimation of the benefit. Note that our function A,
although it achieves considerable pruning, can be im-
proved.

The function h-maint_cost(m, M) differsdepending
on whether m isaview or an index. If m isan index,
the function returns the cost of maintaining m for all
insertions and deletions that will be propagated to the
view that m ison. (The details of our cost model are
found in [9].) If m is a view, the function returns the
cost of propagating onto m insertionsto each of the base
relations referenced in m, plus the cost of propagating
ontom del etionsand updatesto each of thebaserelations
referenced in m assuming the appropriate index exists.
Note that when m is a view, we might overestimate the
cost for propagating insertions since we are assuming
that al other viewsin My are not materialized (thisis
compensated for in max_benefit).

The function max_benefit(m, M’) also differs de-
pending on whether m is a view or an index. First
we consider the case where m isan index.

1. If m isanindex on aview v for the key attribute
of a base relation R that is referenced in v, the
function returns the cost of propagating deletions
and updatesfrom R to v without m minusthe cost
of propagating deletions and updates from R to v
withm.

2. If misanindex on aview v for ajoin attribute
that joins v to some relation R not referenced in
v, the function sums for each view v’ € My, that
includes R as well as dl the relations in » and
for every relation S in v’ but not in v, the cost of

of # of # of states visited %
relations | selections | exhaustive | A* pruned
2 0 32 11 67.7
2 1 192 21 89.1
2 2 960 28 97.1
2 4 960 29 97.0
3 1 2.1%10° | 17735 | 99.2
3 2 1.1+ 10" | 22809 | 99.8

Table 2. Comparison of A* and exhaustive
algorithms.

scanning v (the maximum savings due to an index
join using m when propagating insertions from s
ontov’).

3. If misanindex for both akey and ajoin attribute,
the two benefits described are added.

Next we consider the case where m isaview. In-
tuitively, the maximum benefit of m is the cost of ma-
terializing m when propagating insertions to views for
which m is a subview. The max_benefit function sums
for each view v’ € My, that includes all therelationsin
m and for every relation S inv’ but not inm, the cost of
meaterializing m given the views and indexesin Me.

4.2 Experimental results

To test the A* agorithm described in the previous
section, we coded both it and the exhaustive agorithm
described in Section 2. Wethen ran both algorithmson a
variety of sample schemas. A summary of theresultsare
presented in Table 2. Clearly, the A* agorithm prunes
the vast majority of the search space. As the problems
gets larger, due to more views or selection predicates,
itsrelative performance increases as well. Whileit may
gtill be possible to derive a tighter lower bound on h,
even the agorithm as presented is a vast improvement
over previously proposed algorithms.

5 Rulesof Thumb

The A* algorithm presented in the last section yields
optimal solutions while achieving impressive pruning.
Still, due to the doubly exponential nature of the VIS
problem, views that are computed from many base rela-
tionsmay still betoolargeto handle. Fortunately, finding
an optimal solution is not critical since there are often

many solutions that are close to optima ([9]). What is
required, then, isto avoid poor view setsand then to pick
agood index set.

In this section we propose rules of thumb that can
help guide a WHA in choosing a reasonable set of sup-
porting views and indexes without resorting to the full
algorithm. The underlying theme of these rules of thumb
isto materialize a supporting view or index if its benefit
is greater than its cost. These rules of thumb function
similarly to the rule “join small relationsfirst” in query
optimization. These are not hard and fast rules but we
have found that the rules apply in general.

Due to space constraints, we just list the rulesin this
section. In[9], we present afull justification of each rule
of thumb through analysis and also through experimen-
tation.

Rule5.1 Materializea supportingview V' whenitssize
(interms of pages) islessthan the sum of the sizes of the
views and base relations on which it is derived. ®

Rule5.2 Materialize a supporting view V' having no
deletionsor updates. ®

Rule5.3 In considering whether to materialize a sup-
porting view, theratio of itssize to the size of thememory
buffer does not matter. ®

Rule5.4 Build an index on a supporting view V' for an
attribute R. A that isthe key of baserelation R involved
inV if (1) there are somedeletionsand updatesto R, (2)
the number of del etionsand updatesto all baserelations
involved in V' do not exceed the number of pagesin vV,
and (3) thenumber of insertionsand deletionsto V' does
not exceed the number of pagesin V. ®

Rule5.5 Build an index on a supporting view V' for an
attribute R. A that isinvolved inajoin condition R. A =
S.B in the primary view when (1) S is not involved in
V, (2) the number of insertions to base relations not
involved in V' but involved in the primary view does not
exceed the number of pagesin V', and (3) the number of
insertionsand del etionsto V' does not exceed the number
of pagesinV. ®

Rule 5.6 Don't build an index on a base relation R for
an attribute R.A involved in a sdection condition C
unless (1) indexes on R for attributes involved in join
conditions have not been built, (2) aview R’ = o¢R

hasnot been materialized, (3) C isvery selective, and (4)
the number of deletions and updatesto R do not exceed
the number of pagesin R. ®

Rule5.7 Build an index on a supporting view V for an
attribute R. A if for any of theabove Rules5.4, or 5.6, all
but thefinal conditionhold, and theindex fitsin memory.
©

6 Experimental Results

In this section, we present results that were borne
directly from experimentation. In particular, we attempt
to answer the following questions:

e Are views or indexes better when space is con-
strained?

e How sensitiveistheoptimal solutiontothe WHA's
estimates of system parameters?

Due to space constraints, we present the results of only
onerepresentativeexperiment for each question athough
many more were performed. In addition, in thefull ver-
sion of the paper [9], we a so consider whether protected
updates should betreated atomically or split into pairs of
insertions and deletions. The experiments shown in this
section were al runon aview

O ri=sonsi=Torc (R(RO, R1)XS(S0, S1)XT(T0, T1)),

D
where C is a condition on T' with a sdlectivity of 10
%. Also, the relative cardinalities of the relations is:
T(R) = 3«T(S) = 9+T(T). (T(R) denotesthenumber
of tuplesin R.) Although this schema is composed of
only 3relations, webelieveour resultsto bemoregenera
because we have explored a number of larger schema
with heuristic search agorithms and the results so far
support those reported here.

6.1 Are Views or Indexes Better When
Space is Constrained?

In this paper, we have shown how to find the optimal
set of supporting views and indexesto materializein or-
der to minimize thetotal maintenance time. Sometimes,
however, the amount of additional storage required is
prohibitive. In these cases, one may ask how much stor-
age is required to attain most of the performance gains

and which structures should be materialized. We con-
sidered these questionsfor the schema givenin Equation
(2) under two different update loads. Due to space con-
straints, we only discuss the results for the high-update
load experiment but the results for the low-update load
experiment were similar. In the experiment, we gradu-
ally increase the available storage from that required to
materialize the primary view (RST) to that required by
the optimal solution for the unconstrained problem. For
generality, we measure the additional space as a frac-
tion of the space required to store the base relations. At
each point we find the best solution that fitsin the avail-
able storage. The cost of this solution relative to the
non-constrained optimum is plotted on the y-axis.

The result of the experiment are shown in Figure 3.
As the graph indicates, the schemas evolve in discrete
steps - only changing when enough storage becomes
available to add a new index or materialized view. The
number of steps in the progression is too large (52 to
be exact) to show every schema change but the results
are summarized in Figure 4. The numbers next to the
features indicate in what order they are added as stor-
age increases. The experiment starts with only the base
relationsand primary view materialized — they are num-
bered 0. The next features to be added are indexes on
the keys of the base relations present in the view RST,
starting with 70 and then adding SO and RO. Next, the
selection node T” is materiaized and an index built on
its attribute 7"0. The reason that it takes 52 steps to
add al 10 numbered feature sets isthat a new festureis
often added at the expense of an older one. For instance,
when the view T" is materiaized, the index on RO in
RST isdropped until enough space isavailableto add it
again. The graph in Figure 3 is aso annotated with the
feature numbers to help indicate which features impact
the update performance.

Thefirst important point to note from this experiment
isthat alarge portion of the total update savings can be
achieved with a reasonably small amount of additional
storage. Note the large drop in I/Os in the experiment
that results from materidizing view T" (feature 3) and
then adding indexes on 70 and SO again (they were
dropped earlier to make space for T'). The next large
drop occurs after enough space is found to materiaize
ST (feature5). By thetime point A (which corresponds
tofeatures 1,2 and 5) isreached, the update cost iswithin
5% of the optimal cost. Thisis encouraging for ware-

Uoptimal

A
1 | | | | | |
0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

additional space
space of base relations

Figure 3. Effects of space on update cost.

houses that have space constraints. It should be noted
that even though the extra storage required for the views
and indexes does not seem that large compared to the
warehouse relation sizes (=~ 25%), there will typicaly
be many views defined over the same relations so the
total storage required by views and indexes can belarger
than that of warehouse relation when the warehouse is
considered initsentirety.

Itisinterestingto seehow Figure4issupported by our
rules of thumb. Because RST is such a large relation,
and there are deletions (but rel atively few) to warehouse
relations R, S, and T', by Rule 5.4, indexes should be
built on RST for thekeys of each of thewarehouserela
tions. Also, because of the selection conditionon 7', the
materialized view T ismuch smaller than T'. Therefore,
by Rule5.1view T" shouldbematerialized. Finaly, note
that view ST isnot materialized until near theend. Even
though the number of pagesin ST isless than the sum
of the pagesin S and T' and should be materialized by
Rule5.1, ST isardatively large structureto materialize
in comparison to the indexes. Therefore, we find that
the maintenance cost is minimized overal in this case
by materializing several small beneficia structures (i.e.,
indexes) than by materializing one large one (i.e., view
ST). Itisn’t until the most useful indexes have aready
been materialized that view ST is chosen.

4 2 1
RST |Ro|Rr1[so([s1|T0{T1]0

5 6
sT [so[st|To]T1]5

3

R [Ro|R1|0 s[so[st]|o T [To|T1]O

Figure 4. Evolution of the physical design.
6.2 Sensitivity Analysis

This paper hasfocused on finding an optimal solution
totheVIS problem and al so approximate solutionsusing
rules of thumb. Just how well any solution works on
the actual warehouse depends on how closely the input
parameters, such as relation sizes and deltarates, match
the real values of the system.> An important question
for the WHA, then, is just how sensitive the optimizer
isto the estimates of the input parameters. Clearly, one
would hope that the optimal solution for the estimates
isat least agood solutionfor systems with only dightly
different parameters. In this section, we investigate just
how badly optimal solutionsdecay at heighboring points.
Due to space constraints, we consider only the estimate
of insertion and del etion rates.

In this experiment, we varied the combined insertion

and del etion rates to each base rel ation such that theratio

I(R)+D(R) _ I(S)4+D(S) _ I(T)+D(T) :
IRI - = — st~ =y nereased from

0.001 to 0.1 in five steps. At each step, we found the
optimal solution and then plotted its performance over
the entirerange. The results, which are shownin Figure
5, suggest that except for a small region in the middle
of the graph, the choice of optimum in not sensitive
to the combined insertion-deletion rate. For instance,
the optimal solution for an estimated ratio of 0.001 is
gtill optima even when the ratio grows to 0.01. The
only area where the optimizer seems sensitive isin the
range shown in the middle of the graph where an order
of magnitude error in estimation can lead to a three-
fold performance hit or worse. This sensitive region

11t also depends on how closely the VIS optimizer’s cost model
follows that of the dbms. This concept is discussedin [3].

3.5

2.5

Uoptimal

1.5

0.5

0.001 0.01 0.1

I(R)+D(R)
[E]

Figure 5. Sensitivity of Optimal Solutions
to Insert/Delete Rates.

corresponds to the point when the insertion-deletionrate
to the base rel ations becomes large enough that it is no
longer worthwhileto build indexes on their attributes.

This experiment is typica of many sensitivity anal-
yses that we have performed. The optimal solutions
perform well across a wide range of parameter values
except for afew small regions that correspond to major
schema changes. Thisisreassuring. One must be care-
ful, however, in over-generaizing thisresult. It islikely
that in schemas with more relations there will be more
frequent shifts in the optimal schema. Whether these
shiftswill result in large differences in the maintenance
cost isasubject for future research.

7 Redated Work

Previouswork related to this paper fallsinto two cat-
egories, depending on the context in which it was writ-
ten: physical database design and rule condition main-
tenance.

Physical Database Design Three costs must be bal-
anced in physical database design for warehouses: (1)
the cost of answering queries using warehouse relations
and additional structures, (2) the cost of maintaining ad-
ditiona structures, and (3) the cost of secondary storage.
We have assumed that the primary view is materialized,
which minimizes the cost of (1), and focused on choos-
ing supporting view and indices such that the cost of (2)

isminimized. We have also considered constrai ning cost
@)

This problem was first studied by Roussopoloulos
[14]. The additiond structures considered for materi-
alization are view indices, rather than the views them-
selves, to save on storage. A view index is similar to a
materialized view except that instead of storing the tu-
ples in the view directly, each tuple in the view index
consistsof pointersto thetuplesin the base rel ationsthat
derive the view tuple. In our paper we choose to main-
tain the actual views since the cost of secondary storage
is now much lower.

The Roussopol oulos paper presents an elegant algo-
rithm based on A* and the approximate knapsack prob-
lem to find an optimal solution to the view selection
problem. The agorithm, however, works because of
two simplifyingassumptions. Firgt, it usesavery smple
cost model for updating aview: the cost is proportional
to the size of the view. But we have shown in Sec-
tion 2 that the cost of maintenance is a complex query
optimization problem and cannot be estimated without
knowing which subviews are materialized. Second, the
Roussopoloulos algorithm does not consider index se-
lection (other than view indices). We have shown in
Section 6.1 that index selection has a significant impact
on choosing which subviews to materialize. Relaxing
either of the above two assumptions invalidates the use
of the Roussopoloulos agorithm. Still, thisis a very
good first treatment of the subject.

More recently, Ross et d. [13] examines the same
problem. They describe an exhaustive search agorithm
to solve the VIS problem but without considering in-
dexes. They a so propose heuristicsfor pruning the space
to search. We have extended their work by considering
indexes, developing rules of thumb, and presenting an
improved optimal agorithm. We have implemented our
algorithm and used it to generate experimental results.

Other work haslooked at theinitial problem of choos-
ing a set of primary views such that the cost of (1) is
minimized, while ensuring that the costs of (2) and (3)
are not too high. [17] considers thisproblem in the case
of distributed views. [8] has investigated this problem
for the case of aggregate views. Tsatalos et al. [20] con-
sider materializing viewsin place of thebaserelationsin
order to improve query response time. Rozen et al. [15]
look at this problem as adding a set of “features’ to the
database.

In particular, theindex sel ection part of our V1S prob-
lem has been well-studied [3,1] in the context of physi-
cal database design. Choosing indexes for materialized
views is a straightforward extension. What is trouble-
some, however, is that the previous algorithms require
the queries (and their frequencies) on each base relation
asinputs. IntheVISproblem there are no user generated
gueries on the base relations or supporting views since
they are all handled by the primary views: The only
gueries on base relations or supporting views are gener-
ated by maintenance expressions. Unfortunately, the set
of generated queries depends on the update paths chosen
for each type of delta. However, the choice between two
update paths depends on the indexes chosen, which has
not yet been determined. Thus one cannot determinethe
guery set on each baserel ation and supporting view with-
out knowingwhichindexesare present, which makesthe
algorithms proposed in previous work unusable here.

Rule Condition Maintenance Previous work on ac-
tive database and production systems al so relates to the
VIS problem we have described. Many authors have
considered how to evauate trigger conditionsfor rules.
This can be considered a view maintenance problem
where a rule is triggered whenever the view that satis-
fies its condition becomes non-empty. Wang and Han-
son [21] study how the production system agorithms
Rete[4] and TREAT [11] performin adatabase environ-
ment. An extension to TREAT called A-TREAT is con-
sideredin[7]. Fabret et d. [2] considered how to choose
supporting views for the trigger condition view. Using
our terminology, the rule of thumb they developed is to
materialize a supporting view if it is self-maintainable;
i.e., whenit can be maintained for the changesto thebase
relations by referencing the changes and the view itsdlf,
but without referencing any base relations. We have
found that thisis not true for our environment. In gen-
eral, if there are insertions to the base relations, a join
view is not self-maintainable and the Fabret approach
does not materialize such ajoin view. However, even if
thereareinsertionsthejoin view may bebeneficia (Rule
5.2) because the work for propagating insertions can be
reused.

Segev et d. [16,18] consider asimilar problemin ex-
pert systems. They a so assume small deltas and ubiqui-
tousindexes. They do not, however, consider maintain-
ing subviews of the primary view, but instead describe
join pattern indexes, which are specialized structuresfor

maintaining materialized views. Join pattern indexes
are an interesting approach, but require specialized algo-
rithmsto maintain.

A major difference between al of these studies and
thisone is that they consider a rule environment where
changes in the underlying data are propagated imme-
diately to the view. Hence, the size of the deltas sets
are relatively small, which means that index joins will
usually be much chesper than nested-block joins. They
therefore assume that indexes exist on all attributesin-
volved in selection and join conditions. However, in
the data warehousing environment studied here, alarge
number of changes are propagated at once, and the cost
of maintaining the indexes often outweighs any benefit
obtained by doing index joins.

8 Conclusions

This paper considered the VIS problem, whichisone
aspect of choosing good physical designs for relational
databases used as data warehouses. We described and
implemented an optima agorithm based on A* that
vastly prunes the search space compared to previously
proposed agorithms[13]. Since even the A* agorithm
isimpractical for many rea world problems, we devel-
oped rules of thumb for the for view and index selection.

By running experiments with the optimal agorithm,
we studied how space can be best used when it is con-
strained: whether for materializingindexesor supporting
views. Our resultsindicate that building indices on key
attributesin the primary view lead to solid maintenance
cost savings with modest storage requirements.

In the future we plan to devel op and compare a num-
ber of heuristicsfor pruning the exhaustive search space
so that good solutions can be found through limited
search.

References

[1] S. Choenni, H. Blanken, and T. Chang. On the selection
of secondary indices in relational databases. Data and
Knowledge Engineering, 11:207-33, 1993.

[2] F. Fabret, M. Regnier, and E. Simon. An adaptive algo-
rithm for incremental evaluation of production rules in
database. In Proceedingsof International Conferenceon

Very Large Data Bases, pages 455-66, 1993.
[3] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical

database design for relational databases. ACM Transac-
tions on Database Systems, 13(1):91-128, 1988.

[4] C.L. Forgy. Rete: A fast algorithm for the many pat-
tern/many object pattern match problem. Artificial Intel-
ligence, 19:17-37, 1982.

[5] T. Griffin and L. Libkin. Incremental maintenance of
viewswith duplicates. In M. Carey and D. Schneider, ed-
itors, Proceedingsof ACM SIGMOD 1995 International
Conferenceon Management of Data, pages328—-339, San

Jose, CA, May 23-25 1995.
[6] A.Gupta, I. Mumick, and V. Subrahmanian. Maintaining

views incrementally. In Proceedings of ACM SIGMOD
1993 International Conference on Management of Data,

Washington, DC, May 26-28 1993.
[7] E. Hanson. Rule condition testing and action execution

in Ariel. In Proceedingsof 1992 ACM SIGMOD, pages

49-58,1992.
[8] V. Harinarayan, A. Rajaraman, and J. Ullman. Imple-

menting data cubes efficiently. In Proceedings of 1996

ACM SIGMOD, 1996.
[9] W. Labio, D. Quass, and B. Adelberg. Physical database

design for data warehouses - the vis problem. Technical
report, Stanford University, 1996. Available by anony-

mous ftp from db.stanford.edu in /pub/labio/1996.
[10] A. Levy, A. Mendelzon, Y. Sagiv, and D. Srivastava.

Answering queries using views. In Proceedings of the
Fourteenth Symposium on Principles of Database Sys-
tems (PODS), pages 95-104, San Jose, CA, May 22-24
1995.

[11] D.P Miranker. Treat: A better match algorithmfor ai pro-
duction systems. In Proceedingsof AAll 87 Conference

on Artificial Intelligence, pages42—47, August 1987.
[12] N. Nilsson. Problemsolving methodsin artificial intelli-

gence. McGraw-Hill, 1971.
[13] K. Ross, D. Srivastava, and S. Sudarshan. Material-

ized view maintenance and integrity constraint checking:
Trading space for time. In Proceedings of 1996 ACM

SIGMOD, 1996.
[14] N. Roussopoulos. View indexing in relational databases.

ACM Transactions on Database Systems, 7(2):258-90,

1982.
[15] S. Rozen and D. Shasha. A framework for automating

physical databasedesign. In Proceedingsof International
Conference on Very Large Data Bases, pages 401-11,

1991.

[16] A. Segev and W. Fang. Optimal update policies for
distribtued materialized views. Management Science,
17(7):851-70, 1991.

[17] A. Segev and J. Park. Updating distributed materialized
views. |EEE Transactions on Knowledge and Data En-
gineering, 1(2):173-184, June 1989.

[18] A. Segev and J. Zhao. Data management for large rule
systems. In Proceedings of International Conference on

Very Large Data Bases, pages 297-307, 1991.
[19] T. Sellis. Multiple-query optimization. ACM Transac-

tions on Database Systems, 13(1):23-52, 1988.
[20] O. Tsatalos, M. Solomon, and Y. loannidis. The gmap:

A versatile tool for physical data independence. In Pro-
ceedingsof International Conferenceon Very LargeData

Bases, pages 367—78, 1994.
[21] Y. Wang and E. Hanson. A performance comparison

of the rete and treat algorithms for testing database rule
conditions. In Proceedings of International Conference
on Very Large Data Bases, pages 88-97, 1992.

