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Abstract

The result size of a query that involves multiple
attributes from the same relation depends on these
attributes’ joint data distribution, i.e., the frequen-
cies of all combinations of attribute values. To
simplify the estimation of that size, most com-
mercial systems make the attribute value indepen-
dence assumption and maintain statistics (typically
histograms) on individual attributes only. In real-
ity, this assumption is almost always wrong and the
resulting estimations tend to be highly inaccurate.
In this paper, we propose two main alternatives to
effectively approximate (multi-dimensional) joint
data distributions. (a) Using a multi-dimensional
histogram, (b) Using the Singular Value Decom-
position (SVD) technique from linear algebra. An
extensive set of experiments demonstrates the ad-
vantages and disadvantages of the two approaches
and the benefits of both compared to the indepen-
dence assumption.

1 Introduction

There are several components in a database management
system (DBMS) that require reasonably accurate estimates
of the result sizes (or selectivities) of operators. Cost-based
query optimizers use them to obtain estimates of the costs
of subsequent operators and eventually of complete query
execution plans. Also, query profilers use them to pro-
vide quick feedback to users as a means to detect some
forms of semantic misconceptions before queries are ac-
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tually executed. Selectivity estimation typically relies on
some approximate knowledge of the database contents.

For a query involving a single attribute of a relation, its
result size depends on the data distribution of that attribute
in the database. Proposals to approximate single-attribute
data distributions include histogram-based techniques [9]
(the adoption of the uniform distribution assumption [18]
being a special case of them), sampling [11], and parametric
techniques [19]. The main advantages of histograms are that
they incur almost no run-time overhead, they do not require
the data to fit a probability distributionor a polynomial and,
for most real-world databases, there exist histograms that
produce low-error estimates while occupying reasonably
small space (in the order of a few hundred bytes in a catalog).
Hence, they are the most commonly used form of statistics
in practice (e.g., they are used in DB2, Informix, Ingres,
Microsoft, Oracle, Sybase), and have been studied quite
extensively in the literature [4, 5, 6, 9, 13, 14, 16]. Our own
earlier work has resulted in a taxonomy that includes both
the old and several new classes of histograms, some of the
latter being far more accurate than the former [16].

For a query involving two or more attributes of the same
relation, its result size depends on the joint data distribu-
tion of those attributes, i.e., the frequencies of all com-
binations of attribute values in the database. Due to the
multi-dimensional nature of these distributions and the large
number of such attribute value combinations, direct approx-
imation of joint distributions can be rather complex and ex-
pensive. In practice, most commercial DBMSs adopt the
attribute value independence assumption [2, 18]. Under this
assumption, the data distributions of individual attributes in
a relation are independent of each other and the joint data
distributioncan be derived from the individual distributions
(which are approximated by one-dimensional histograms).

Unfortunately, real-life data rarely satisfies the attribute
value independence assumption. For instance, functional
dependencies represent the exact opposite of the assump-
tion. Moreover, there are intermediate situations as well.
For example, it is natural for the salary attribute of



the Employee relation to be ‘strongly’ dependent on the
age attribute (i.e., higher/lower salaries mostly going to
older/younger people). Making the attribute value indepen-
dence assumption in these cases may result in very inaccu-
rate approximations of joint data distributions and therefore
inaccurate query result size estimations with devastating ef-
fects on a DBMS’s performance [2]. We are aware of only
one proposal to replace this assumption, which involved the
construction of multi-dimensional equi-depth histograms
[12]. But, in light of the new and far more accurate his-
togram classes, this proposal seems limited and the heuristic
technique proposed for the partitioning of two-dimensional
spaces is often ineffective.

Motivated by the above problems, we have investigated
several ways to approximate joint data distributions in rel-
atively accurate fashion. This paper contains the results of
this effort and makes the following contributions:

1. All histograms in our earlier, one-dimensional, tax-
onomy [16] are generalized to multiple dimensions.
The newer classes of histograms that we have intro-
duced prove to be much more accurate in capturing
joint data distributions than the traditional equi-depth
histograms.

2. A novel technique is provided for partitioning a multi-
dimensional space into a given number of partitions
while satisfying various mathematical constraints.
This technique is compared with a technique based on
Hilbert-numbering and a generalization of the tech-
nique of Muralikrishna and DeWitt [12] and shown
to result in significantly better multi-dimensional his-
tograms.

3. The Singular Value Decomposition (SVD) technique
from linear algebra [10] is introduced as a mechanism
to approximate two-dimensional joint data distribu-
tions by a small number of individual data distribu-
tions.

An extensive set of experiments demonstrates the advan-
tages and disadvantages of various approaches and their
benefits compared to the independence assumption.

2 Problem Formulation

We provide definitions in the context of a set of � real-
or integer-valued attributes

� �
(� � 1 � � � ) in a relation�

. These definitions can be extended to non-numerical
attributes by first converting values in their domains into
floating point numbers.

2.1 Data Distributions
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is the number of tuples in
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that contain 	 � 
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in attribute
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, for all � . The joint

data distribution � 1 � � � � � of
�

1
� � � � � �

is the entire set of
(value combination, joint frequency) pairs. Often we refer
to the individual data distributions of each of the attributes
as their marginal distributions. A natural way to repre-
sent joint data distributions is using multi-dimensional fre-
quency matrices (tensors). The frequency matrix � 1 � � � � � for� �

’s is a � 1
� � � � � �

matrix (tensor) whose � �
1

� � � � � �  
entry is equal to � 
 �

1
� � � � � � �

. We refer to such matrices
as n-dimensional matrices in this paper. We can similarly
define one-dimensional frequency vectors corresponding to
the marginal distributions of

� �
’s.

The joint frequency distributioncan be visualized as a set
of points in a multi-dimensional space, with each attribute
corresponding to an axis. For each combination of attributes
values that is present in the relation, there is a point in the
space whose coordinates are equal to the attribute values.
This is illustrated in Figure 1 for the two-dimensional case1 .
The numbers next to the points denote the joint frequencies
of the corresponding attribute-value pairs.
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Figure 1: Multi-dimensional Data Distribution

Note that the joint data distributionis multi-dimensional,
can be very large for a large database relation, and differs for
each combination of attributes (of which there can be many
in a database). Due to these complexities, it is impractical
to store the entire joint data distribution of the relation and
is considered expensive even to approximate it. In the next
section, we define an important but rare characteristic of
certain joint data distributions that makes them simpler to
approximate.

2.2 Attribute Value Independence

Definition 2.1 A set of attributes
� �

, 1  �  � have

1Although our formulation and techniques are presented for the gen-
eral, multi-dimensional case, for simplicity, all our examples are two-
dimensional.



mutually independent data distributions if

�
1  � � �  � � �

1  � � �  � � �
1  � � �  � � �

� 
 � � � � � � � � � � � � � � ��
� 
 � � � � � � � � � � � � � � �� � � 
 � � � � � � � � � � � � � � ��

� 
 � � � � � � � � � � � � � � ��
�

(1)

where
�

and
�

appear in the � th argument of � and � and� appear in the
�
th argument of � . In other words if the

tuples of a relation are grouped based on their values in
one of the attributes, the data distribution of the values in
the other attribute within each group is identical up to a
constant factor.

Let � be the number of tuples in relation
�

, � �
be the

1
� � � � � � � � � � � �

1 frequency vector of
� �

and � 1 � � � � �
be the joint frequency matrix of all

� �
, 1  �  � . Then,

Definition 2.1 implies that

� 1 � � � � � � 1
� � �

1

� � 1
� � � � � � � �2 (2)

These equations are illustrated in the following example.

Example 2.1 Let
�

1 and
�

2 contain three values each,
with the following joint and marginal frequency matrices:

� 12 �
�
� 50 20 10

30 12 6
15 6 3

�
	 � � 1 �

�
� 80

48
24

�
	 �

� 2 � 
 95 38 19 � �
One can easily verify that (1) holds. For instance,
� 


2
�
1

� � � 

2

�
3

� � 30
�
6 � � 


3
�
1

� � � 

3

�
3

� � 15
�
3.

Likewise, summing up all frequencies in any matrix yields� � 152, so (2) holds as well:

�
� 50 20 10

30 12 6
15 6 3

�
	 � 1

152
�

�
� 80

48
24

�
	 � 


95 38 19
� �

2.3 Query Result Size Estimation

In this paper, we mostly focus on queries containing predi-
cates of the form ( 1& � �& �

), where  �
is a selection on at-

tribute
� �

. The result size of such a query can be computed
from the joint data distributionof the participatingattributes
as the sum of the frequencies of the attribute-valuepairs that
satisfy the query predicate. Any approximation to the joint
frequency matrix would generate a corresponding approx-
imation to the query result size as well. One-dimensional
histograms are very common tools for single-attribute dis-
tributionapproximation and are central to this paper, so they
are introduced in the following section.

2here, � is overloaded to indicate both multiplication of multidimen-
sional matrices and multiplication of a scalar with such a matrix.

3 Histograms

In this section, we define one-dimensional histograms and
briefly describe a taxonomy presented in our earlier work
[16]. Extensions to multi-dimensional histograms are de-
fined later in the paper.

A histogram on an attribute
�

is constructed by using
a partitioning rule to partition its data distribution into �
(� 1) mutually disjoint subsets called buckets and approx-
imating the frequencies and values in each bucket in some
common fashion. In particular, the most effective approach
for values is the uniform spread assumption [16], under
which attribute values are assumed to be placed at equal in-
tervals between the lowest and highest values in the bucket.
Likewise, the most effective approach for frequencies is the
uniform frequency assumption, under which the frequencies
in a bucket are approximated by their average.

As examples, consider the well-known equi-width and
equi-depth histograms. They both group contiguous ranges
of attribute values into buckets but differ in the partitioning
rule they employ. In an equi-width histogram, all buckets
are assigned value ranges of equal length; in an equi-depth
histogram, all buckets are assigned the same total number
of tuples.

We have introduced several new classes of (one-
dimensional) histograms with significant differences in their
characteristics and accuracies. Our effort to understand all
possibilities has generated a taxonomy that allows us to
systematically deal with both the old and new histogram
classes [16]. This taxonomy is based on four orthogonal
characteristics that uniquely identify a histogram class and
are described below.

Sort Parameter: This is a parameter whose value for
each element in the data distributionis derived from the cor-
responding attribute value and frequencies. All histograms
require that the sort parameter values in each bucket form a
contiguous range that has no overlap with any other bucket.
Attribute value (V), frequency (F), and area (A) are the
proposed sort parameters.

Partition Class: This indicates any restrictions on the
number of elements in buckets. Two important classes are
serial – which place no restrictions, and end-biased – which
requires at most one non-singleton bucket. These classes
differ in their accuracy (highest for serial) and storage effi-
ciency (highest for end-biased).

Source Parameter: It captures the property of the data
distributionthat is the most critical in an estimation problem
and is used in conjunction with the next characteristic in
identifying a unique partitioning. Spread (S), frequency
(F), and area (A) are the most useful source parameters.

Partition Constraint: The partition constraint is a
mathematical constraint on the source parameter that
uniquely identifies a single histogram:
Equi-sum: In an equi-sum histogram, the sum of the source
values in each bucket is approximately the same.



V-Optimal: Define the variance of a histogram to be the
weighted sum of the variances of its source parameter in
each of the buckets, with the weights being the number
of attribute values grouped in the bucket. The v-optimal
histogram on an attribute is the histogram with the least
variance among all the histograms using the same number
of buckets.
MaxDiff: In a maxdiff histogram, there is a bucket boundary
between two source parameter values that are adjacent (in
sort parameter order) if the difference between these values
is one of the � �

1 largest differences.
Compressed: In a compressed histogram, the � highest
source values are stored separately in � singleton buckets;
the rest are partitioned as in an equi-sum histogram. We
have chosen � to be the number of source values that (a)
exceed the sum of all source values divided by the number
of buckets and (b) can be accommodated in a histogram
with � buckets.

By making different choices for each of these orthogo-
nal histogram characteristics, one obtains different classes
of histograms. Following [16], we will use p(s,u) to denote
a histogram class with partition constraint p, sort param-
eter s, and source parameter u. Under this notation, for
example, the equidepth and equiwidth histograms become
equisum(V,F) and equisum(V,S) histograms, respectively.

Using the above framework for histograms, we now turn
to the main theme of this paper, which is approximating
joint data distributions.

4 Attribute Value Independence Assumption
(AVI)

The attribute value independence assumption was intro-
duced in the context of the System-R optimizer [18]. Under
this assumption, all attributes are treated as if independent
of each other (Definition 2.1), regardless of the actual data
dependencies. The data distribution of each attribute is
approximated separately using any of the one-dimensional
histograms in the taxonomy presented above or any other
technique(as in this paper).
Usage: Let the predicate  be of the form ( 1& � �& �

),
where  �

is a selection on attribute
� �

. Let � �
be the his-

togram on
� �

and � be the relation cardinality. First, the
estimated result size � �

of applying  �
on the relation based

on � �
is calculated. Then, an estimate for the result size �

of applying  on the relation can be obtained through

� � � 1
� � � � � �
� � �

1

�
(3)

which is a straightforward consequence of formula (2).
Comments: An advantage of this approach is that one can
use good-quality one-dimensional histograms, which are
inexpensive to compute, store, and maintain. The main dis-
advantage is that the assumption is almost always wrong,
and therefore it results in approximate joint data distribu-

tions (and consequently query result sizes) that are very far
from the actual ones.

Example 4.1 Consider the joint frequency matrix on the
left:�
� 40 25 15

37 9 2
18 4 2

�
	

�
� 50 20 10

30 12 6
15 6 3

�
	

It is easy to verify that the marginal distributions of this
matrix are the same as those in Example 2.1. Hence, their
joint frequency matrix computed under the attribute value
independence assumption is the one given in that example
and repeated above (on the right) for clarity. The differences
between the two matrices are obvious.

Next, we consider more accurate techniques that attempt
to capture dependencies between the attributes.

5 Multi-Dimensional Histograms (MHIST)

A multi-dimensional histogram on a set of attributes is con-
structed by partitioning the joint data distribution into �
mutually disjoint buckets and approximating the frequency
and value sets in each bucket in a uniform manner as fol-
lows.

Values: The value domain is approximated by an ex-
tension of the uniform spread assumption (Section 3). Let
the smallest and largest

� �
values in bucket � be

� � � �
and� � � �

respectively. Then, we can visualize the bucket as
an n-dimensional rectangle with two extreme corners be-
ing

� � � �
1

� � � � � � � � �
and

� � � � 1
� � � � � � � � �

. Let� �
be the number of distinct values in attribute

� �
that are

present in � . Let the
�

’th approximate value in dimension �
(obtained by applying the uniform spread assumption along
that dimension) be denoted by 	 �� 
 � �

. The actual data points
in � are then approximated by all possible combinations� 	 �1


 �
1

� � � � � 	 �� 
 � � � �
, where 1  � �  � �

.
Frequencies: All histograms make the uniform fre-

quency assumption and approximate the frequencies in
a bucket by their average. Thus, for example, if � is
the sum of all frequencies in � , each approximate value� 	 �1


 �
1

� � � � � 	 �� 
 � � � �
is associated with an approximate

frequency equal to � � 
 �
1

� � � � � � �
.

Example 5.1 To illustrate the above approximations, con-
sider the actual and approximate values and frequencies in
a bucket shown in Figure 2. The average frequency of the
bucket is obtained by dividing the sum of the frequencies
(315) by the total number of approximate values inside the
bucket (4

�
5 � 20).

Buckets in multi-dimensional histograms need to keep
the following information: number of tuples and for each
dimension, the low and high values, as well as the number
of distinct values in that dimension.
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Figure 2: Approximations within a multi-dimensional
bucket

Next, we identify several classes of multi-dimensional
histograms based on different partitioning rules. The result-
ing histograms can be classified using the same parameters
as in the one-dimensional taxonomy. While the partition
class, source parameter, and partition constraint extend in
a straightforward manner to the multi-dimensional case,
multi-dimensional sort parameters introduce a serious “or-
dering” problem, which is described below.

Scalar sort parameters (i.e., F, A, or V
�
) are totally or-

dered, so in those cases a bucket simply corresponds to a
range of values and groups elements that are contiguous
in the order of the sort parameter. A multidimensional
sort parameter, e.g., combination of attribute values (V), is
more difficult to handle because it requires finding arbitrary
nonoverlapping regions in n-dimensional space, of which
there is a very large number. We solve this issue using two
separate techniques as follows.

Hilbert Numbering: One-dimensional histograms with�
as the sort parameter were shown in our earlier work to

be highly accurate mainly because they group physically
nearer values into the same bucket and thus achieve a good
approximation of the value domain. A well-known tech-
nique in spatial databases for capturing the proximity of
multi-dimensional values in a linear order is to use a space-
filling curve, such as the Hilbert curve [3, 7, 8]. We propose
using the Hilbert numbering of attribute value combinations
as a sort parameter (denoted by � ) to order the data and
thus once again reduce the problem to a single dimension.

This scheme (called HILBERT) is illustrated in Figure 3,
which shows a MaxDiff(H,F) partitioning of Figure 1 into
six buckets. Note that this technique may generate non-
rectangular regions, so the corresponding buckets (which
must be rectangular) may end up overlapping. By the very
nature of any linear ordering of multi-dimensional data, it is
often the case that two points that are adjacent to each other
in the n-dimensional space may be distant in the linear or-
dering (this problem is much worse for higher dimensions).
Hence, the resulting histograms may not be able to capture
proximity in the value domain accurately.

Rectangular Partitioning: In the second class of tech-
niques, the n-dimensional space is approximated directly by
using non-overlapping n-dimensional rectangular regions
computed via heuristics.
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Figure 3: MaxDiff(H,F) (Hilbert) histograms

In order to motivate our technique, we first describe a
generalization of the approach proposed in [12] for equi-
depth partitioning of a two-dimensional data distribution
� into � buckets. Our generalization (called PHASED in
this paper) which extends their algorithm to other partition
constraints, source parameters, and to higher dimensions is
described below (the � �

’s are nearly equal integers whose
product is approximately � .).
Step 1: The � -dimensional space is partitioned along one
of the dimensions, say

�
1, into � 1 equi-depth buckets.

Step � � � � 2 � � � : In step � , each of the regions � � � found
in Step � �

1 is partitioned along the attribute
� �

into � �
regions. The resulting partitions in step � constitute the
final buckets.

This algorithm has some drawbacks. First, it can gener-
ate a very limited set of histogram bucketizations and hence
may miss better quality histograms. Second, since the or-
der in which the dimensions are to be split is decided only
once at the beginning and arbitrarily, this technique could
result in poor partitionings. This is mainly because a good
one-dimensional split along the marginal data distribution
may still result in a very poor partitioning of the joint data
distribution, especially when the joint data distribution is
large.

Motivated by these limitations, we proposed a new tech-
nique (called MHIST) which at every step chooses and par-
titions the most “critical” attribute as described below. At
every step, this algorithm deals with a set � of partial
joint data distributions that are subsets of the entire joint
data distribution. Initially, � contains just the entire joint
data distribution. The following steps are repeated until
the number of partial distributions in � equals the number
of buckets available, at which point each of them forms a
bucket in the histogram.

Step 1: First, from the set � , we choose the distribution
� � that contains an attribute

� �
whose marginal distribu-

tion in � � is the most in need of partitioning. For the
V-Optimal histograms, this means a marginal distribution
that has the maximum variance of source parameter values;
for the MaxDiff histogram, one with the largest difference
in source values between adjacent values; and for the Equi-
Sum, Compressed histograms, one with the largest sum of
source values.



Step-2:Next, � � is split along
� �

into a small number (� ) of
buckets. The resulting � new partial joint data distributions
replace � � in set � .

Clearly, different values of � may result in different his-
tograms. The impact of � on histogram accuracy is studied
in the experiments section. We refer to the MHIST tech-
nique using � -way splits as MHIST-� .

The two schemes (PHASED with � 1 � 2
� � 2 � 3 and

MHIST-2) are graphically illustrated in Figure 4, which
shows a MaxDiff(V,F) partitioning of the space of Figure 1
into six buckets. The numbers on the dashed lines denote
the order in which the corresponding splitting took place.
Note that MHIST-2 avoids grouping highly different fre-
quencies (which is the goal of MaxDiff), while due to its
simplified bucketization scheme, PHASED uses up buck-
ets for grouping equal frequencies and fails to result in an
accurate MaxDiff histogram.
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Figure 4: Two-dimensional MaxDiff(V,F) histograms

By picking a dimension based on its criticality to the
partition constraint at each step (thus allowing the same di-
mension to be picked several times, for example), MHIST-2
often results in a desirable histogram. It is also clear that
this algorithm can generate far more types of partitionings
than the older approach. These comments are empirically
verified in our experiments in Section 7.
Usage: Let the selection predicate  be of the form
( 1& � � � & �

), where  �
is a selection on attribute

� �
.

Assume that an n-dimensional histogram exists on the set
of attributes � � � �

. In principle,  is directly applied to each
histogram bucket and the (partial) result sizes are added to
yield an estimate for the overall result size.
Comments: By trying to approximate the joint frequency
distribution directly, multidimensional histograms have the
potential of capturing attribute value dependencies with
high accuracy. In fact, we have shown that under certain
assumptions, the V-Optimal(F,F) histograms are optimal in
any dimensionality, thus generalizing our earlier result for
the one-dimensional case [6]. The main disadvantage of
multidimensional histograms is that they are often quite
expensive to construct. Also, for relation with several at-
tributes, there is an exponential number of joint data dis-
tributions that one might want to directly approximate, so
choosing among them is nontrivial.

6 Singular Value Decomposition (SVD)

6.1 Mathematical Background

The transpose of a matrix � is denoted by � � . A square
matrix with 0s in all its non-diagonal entries is called a
diagonal matrix. Let � be an � � �

matrix with � ��
. A singular value decomposition (SVD) of � is any

factorization of the form:� � � � � � �
(4)

where � is an � � �
matrix, � is an

� � �
diagonal

matrix, and
�

is an
� � �

matrix. The entries of � and
�

are all between
�

1 and 1. Several such factorizations are
possible. It has been shown that there exist matrices � and�

such that the diagonal elements of � are non-negative
and in descending order. Assume that all instances of SVD
in this paper have such a property. Let

� �
be the � th diagonal

entry in � . The quantities
� �

are called the singular values
of � , and the columns of � and

�
are called the left and

right singular vectors, respectively. SVD is illustrated in
the following example.

Example 6.1 Let � �
�

100 10
4 7 � . This matrix has the

following SVD:� �
0 	99 0 	05�
0 	05

�
0 	99 � �

100 	61 0
0 6 	56 � � �

0 	99
�

0 	10
0 	10

�
0 	99 � 	

For a two-dimensional matrix � , let
� 
 
 � �

be the hori-
zontal vector corresponding to the � th row of � and � 
 
 � �
be the vertical vector corresponding to the � th column of� . It follows from (4) that � can be written in terms of
several one-dimensional vectors [17]. That is,

� � �� �
1

� � � � 
 � � � � 
 � � � (5)

It follows that any two-dimensional matrix can be com-
puted from its singular vectors and singular values. This
observation motivates our usage of SVD in approximating
joint data distributions, as described next.

6.2 Technique

Consider a joint data distribution � on twoattributes
�

1 and�
2, with value-set sizes of � 1

� � 2 (� 1 � � 2), respectively.
Let � be the corresponding joint frequency matrix. Then,
� is approximated based on the following steps:

1. Compute the SVD of (a sample of) � � � � � �
using well-known algorithms [17] for this purpose.

2. For some small number
� � � �

, store accurately the�
highest singular values.



3. Construct one-dimensional histograms on the 2
�

row
and column vectors corresponding to these terms. In
principle, a different histogram from the taxonomy can
be used for each vector, but in practice, it makes sense
to use the same one for all of them.

The histograms constructed in step 3 can be plugged into
formula (5) in place of the row and column vectors to obtain
an approximation of � and consequently of the desired joint
data distribution.

Elaborating briefly on step 2 above, it is clear that for
high-cardinality attributes (high

�
), the matrix size will

also be very high, making the approximation of all singular
vectors a rather impractical solution. It turns out that when
the attributes are highly dependent or nearly independent,
the distribution of

� �
values tends to be highly skewed (a

few high and mostly very small values) [10]. As a result,
by storing histograms for only the first

�
terms of the SVD,

one can get a reasonably good approximation of the joint
frequency matrix. We refer to a specific instance of SVD-
based approximationusing

�
terms as the SVD-

�
technique.

Results from experiments showing the sufficiency of a small�
, e.g.,

�
=5, are presented in Section 7.

Usage: It can be easily shown that, one can use (5) to ex-
press the selectivity of a predicate  1& 2 as the sum of

�
terms: the � ’th term is

� � � � � �
, where

� �
and

� �
are the selec-

tivities of  1 and  2 computed from histograms on � � 
 � �
and

� � 
 � �
respectively, and

� �
is the � ’th singular value.

Comments: This technique requires only one-dimensional
histograms, which are quite inexpensive to compute and
store. Unlike the attribute independence assumption, this
technique makes a serious effort to accurately capture data
dependencies, so its estimates should be more accurate. Its
main disadvantage is that it can not be extended to higher di-
mensions (

�
2) [1]. Like the multi-dimensional histograms

case, systems employing SVD also require advance knowl-
edge of important combinations of attributes.

7 Experimental Evaluation

In order to study the accuracy of various techniques in
estimating the result sizes of multi-attribute predicates, we
conducted several experiments over a testbed containing
synthetic data and queries. Due to space limitations we our
experiments on real-life and TPC-D data appear elsewhere
[15].

7.1 Experiment Testbed

Techniques: The following techniques were studied: AVI
(Section 4), HILBERT, PHASED, MHIST-� with p=1 � �10
(Section 5), and SVD-

�
with

� � 1 � �10 (Section 6). The
histograms required in these techniques were taken from
the taxonomy. AVI and SVD-

�
require multiple one-

dimensional histograms to be built, which can in general
belong to different classes. For our experiments we assume

that all histograms are taken from any single class in the
taxonomy.

The sample size (� ) for the histogram construction was
2000, 10000, or equal to the number of tuples (� ) in the
relation. Each technique was given the same storage space
� , which ranged from 400 to 4000 bytes. All histograms in
a given technique divide this space equally amongst them.
The relative performance of various techniques was fairly
constant over different values of sample size and storage
space. Hence, we present the detailed results for the default
values (� � 2000, � � 800), chosen because they are small
enough to be practical and also lead to reasonably accurate
estimates for the good-quality techniques.
Data Distributions: Several synthetic joint data distribu-
tions were generated by choosing different value domains
and frequencies, as described below. The number of relation
tuples was fixed at 1� (million) for the two-dimensional
data and 5� for higher dimensions. The number of at-
tribute values (� ) in all � attributes was identical and varied
from 50 to 200, and was chosen such that the total number
of combinations does not exceed the number of tuples.

Frequency Sets: Several different types of dependencies
were modeled using the joint frequency matrices. Since the
observations remained the same in each case, we present
a single broad class of joint frequency matrices in this pa-
per. The motivation behind this distribution (called

� �
for n-dimensions) comes from the fact that when the at-
tributes have dependencies between them, there will often
be a few combinations of attribute values that occur much
more frequently in the relation than others. We model this
phenomenon by populating the joint frequency matrix from
a Zipf distribution [20], and varying the level of depen-
dency by means of the � parameter of the Zipf distribution.
For higher values of the � parameter, there are a few very
high frequencies implying strong dependence between the
attributes. For small values of � (close to 0), all frequen-
cies tend to be similar, implying that all attribute-value
combinations are equally likely to appear in the relation
(independence).

Value Sets: All attribute values were nonnegative inte-
gers, and spreads were generated according to several dis-
tributions given in [16]. In this paper we present the results
for cusp min distribution which consists of � �

2 increasing
spreads followed by � �

2 decreasing spreads.
The following notation is used to represent various

joint data distributions arising out of these combinations:
	 � � � � � � � 0 � � � 	 � � � � � � � � ��

� 
 � � � �
.

Queries and Error Formulas: All techniques were evalu-
ated for range predicates of the form


 �
1  � 1

�
& � �&
 � � 

� � �
, where � �

is a constant in � �
, the domain of

� �
. The

query set contains queries over all possible values in the
joint value domain. For each query, we find two forms of
error: error as a percentage of the result size (� 	 ) and er-
ror as a percentage of the input relation size (� � ). When
considering a set of queries together, we compute the av-



erages of the above errors over the query set (�̄ 	 and �̄ � ,
respectively). Since both error measures led to identical
conclusions about the relative performance of the studied
techniques, we only present results for the � 	 error.

We first present the results of experiments on two-
dimensional queries for all the techniques and then present
the results for higher dimensions.

7.2 Effectiveness of Histograms

The relative performance of various histograms was fairly
constant over a wide range of data and query sets. Hence,
we present results from the

� � � � � � � � � � � � � � � �� 2 

50

�
1

�
data distribution. Table 5 contains the errors (as a per-
centage of the result size) of the techniques using various
histograms. The horizontal line separates the consistently
good-quality histograms from the poor quality histograms.
There are two main conclusions to be drawn from this ta-
ble. First, the most accurate histograms in each technique
belong to the MaxDiff(V,A) or V-Optimal(V,A) classes3 .
This is because of the effectiveness of the three param-
eters: A (area) in capturing the skew in value and fre-
quency domains, MaxDiff and V-Optimal in grouping only
similar spreads/frequencies, and V in capturing the value
domain. Since the MaxDiff(V,A) histograms are less ex-
pensive than the V-Optimal(V,A) histograms [16], all the
techniques in the remaining experiments use the MaxD-
iff(V,A) histograms. Second, for most histograms, AVI
performs the poorest while the other techniques perform
significantly better. This observation is corroborated by the
remaining experiments in this paper.

7.3 Effect of Dependencies

In this section, we study the effectiveness of the studied
techniques in handling data dependencies, the main concern
of this paper. Dependence is increased by increasing the �
parameter of the

� 2 distribution.
Figures 7 and 8 depict the effects of

�
(number of SVD

terms retained) and � (number of partitions in a split) param-
eters on the SVD-

�
and MHIST-� techniques, respectively,

with dependency (� ) on the x-axis and error (�̄ 	 ) on the
y-axis. Finally, Figure 9 compares the accuracy of the best
SVD and MHIST techniques thus identified, with the other
techniques. The following conclusions can be drawn from
these figures.

SVD-
�

(Figure 7): Among the SVD-
�

algorithms, SVD-5
has the best performance. For

� � 10, although several
terms are captured, the storage space allocated for each of
them is smaller and the accuracy of approximating the most
important terms in the distribution is low.
MHIST-� (Figure 8): Among the MHIST-� algorithms,
MHIST-2 has the best performance. The reason stems from

3The order of performance is in fact almost identical to our earlier
results for single-attribute queries [16].

local-vs-global considerations. For the MaxDiff constraint,
a high value of � results in partitioning the attribute with
the largest difference between any neighboring source val-
ues at several points. While one of these partitions falls
exactly at the largest difference, the remaining ones may be
at points that exhibit much smaller differences than those
found in other attributes, leaving fewer buckets to handle
those. Clearly, this problem does not arise for � � 2 and is
small for � � 3.

Based on these observations, we have chosen MHIST-2
and SVD-5 as the best representatives of the MHIST, SVD
techniques and present experimental results only for them
in the rest of the paper.
All techniques (Figure 9): It is clear that despite using
high-quality one-dimensional histograms, the AVI tech-
nique results in very high errors. Among other techniques,
PHASED and SVD-5 have nearly similar performances
while MHIST-2 and HILBERT are noticeably better. Over-
all, MHIST-2 performs the best. Further analysis of each
case showed the following: first, the quality of partitions ob-
tained by MHIST-2 was significantly better than PHASED,
and second, HILBERT incurs errors because of overlapping
grouping of values and the unavoidable loss of proximity in
linear ordering.

Interestingly, all techniques are more effective at han-
dling low and high dependencies than intermediate levels
(� � 2). For high values of skew, there are few frequen-
cies that are very high and, therefore, captured accurately
by the MaxDiff(V,A) histograms, while the rest of the fre-
quencies are very low and grouping them into the remaining
buckets causes small errors. For low values of skew, since
frequencies are all nearly the same, any grouping of them
is unlikely to result in high errors. For � around 2, there
are several frequencies in the Zipf distribution that are dis-
similar and significantly high, and hence cause high errors
when grouped with each other.

7.4 Sensitivity Analysis

In this section we study the effect of storage space (� ) al-
located on the relative performance of various techniques.
Figure 10 depicts the performance curves for these tech-
niques on the cusp min.cusp min.

� 2(2,2) data distribution.
The errors (�̄ 	 ) are shown on the y-axis and the space (� )
on the x-axis.

It is clear from this figure that, all technique, except
AVI, benefit significantly from increases in space. The
effect of � on AVI is small because, the one-dimensional
histograms AVI capture the marginal distributions nearly
100% accurately even for small amounts of space and any
further increase in space does not affect their accuracy.
Since the other techniques capture the joint data distribution
more accurately as � increases, their errors decrease. At
very large amounts of space all these techniques will have
nearly 0 errors (most probably they will never become 0
because they are computed from a sample). The SVD



% Error (
�̄ �

)
Histogram AVI SVD-5 PHASED HILBERT MHIST-2

Uniformity (System-R) 89.3 87.2 89.3 89.3 89.3
Equiwidth 72.3 54.2 52.8 57.5 52.8
Equidepth 68.2 44.4 40.6 47.5 40.6
Compressed(V,F) 59.1 26.4 22.3 24.7 17.9
MaxDiff(V,F) 57.4 24.8 21.9 22.7 14.9
V-Optimal-Serial(V,F) 52.5 23.7 21.1 22.8 13.2
Compressed(V,A) 46.2 21.7 17.3 14.8 9.7
MaxDiff(V,A) 43.2 17.4 17.2 12.1 6.6
V-Optimal-Serial(V,A) 41.5 16.5 16.2 12.0 6.4

Time Taken (msec)
Technique Average Maximum

AVI 287 319
HILBERT 658 722
PHASED 679 745
MHIST-2 683 770
SVD-5 806 848

Figure 5: Effect of histograms on the accuracy of various techniques Figure 6: Construction costs
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Figure 7: Effect of
�

on SVD-
�

Figure 8: Effect of � on MHIST-� Figure 9: Effect of Dependence on all
techniques

errors do not fall as low even for � � 4000 because SVD
approximates only few of the terms in the SVD expansion.
Over all, in an intermediate range of � , the techniques
still retain their relative order of accuracy while converging
towards each other.

7.5 Effect of dimensionality (� ) on accuracy

In this section, we study the performance of various tech-
niques for higher-dimensional queries (� � 2). Figure 11
contains the storage space on the x-axis and errors (�̄ 	 )
on the y-axis for the MHIST-2 technique for various di-
mensions. Figure 12 contains the errors for � � 3 for
the MHIST-2, AVI and PHASED techniques. Note that,
as � increases, the errors due to MHIST-2 increase, but
by increasing storage space these errors can be effectively
reduced. The increase in errors is sharper between 2 and
3 than 3 and 4 because, at higher dimensionalities, even
with 5� tuples, the skew in the data distribution is limited
due to the large number of attribute value combinations.
Space has a similar effect on PHASED, but as in the earlier
experiments, PHASED performs worse than MHIST-2. In-
terestingly, space does not seem to have any effect on AVI
errors. This is because, the one-dimensional histograms in
AVI were 100% accurate in capturing the value domains
even at small storage spaces. Hence, the errors are all due
to the complete lack of dependency information in AVI for
any amount of space. The main conclusion is that one can
use MHIST-2 histograms for higher dimensions simply by
allocating more space.

7.6 Comparison of Construction Costs

Table 6 illustrates the difference in the construction costs
of various techniques. It contains actual timings (in mil-
liseconds) collected from running the corresponding algo-
rithms on a SUN-SPARC10, for various techniques using
800 bytes of space. The times listed are averages over
five runs of the computation program on a lightly loaded
machine and do not include the time taken to compute the
sample. A sample of 2000 tuples was used as the input.
AVI incurs the least time because it only needs to compute
two one-dimensional histograms. SVD-5 incurs the high-
est time because of the cost of SVD expansion (mainly)
and computing 10 histograms. HILBERT, PHASED, and
MHIST-2 are more expensive than AVI because of various
intermediate computations (Hilbert numbers for HILBERT
and several one-dimensional partitionings for PHASED,
MHIST-2).

In conclusion, compared to the cost of collecting the
sample from the large relation (required for all techniques)
which could be in the order of seconds, these costs (which
are all less than 1 second) are almost negligible and do not
affect the practicality of any of these techniques.

8 Conclusions

In this paper, we have proposed several techniques based
on multi-dimensional histograms and SVD as alternatives
to the attribute value independence assumption. We have
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Figure 10: Effect of space for � � 2 Figure 11: Effect of space and dimension
on MHIST-2

Figure 12: Effect of space for � � 3

conducted an extensive set of experiments to study the per-
formance of various techniques and arrived at the following
conclusions:

� The multi-dimensional MaxDiff(V,A) histograms
computed using the MHIST algorithm are the most
accurate among all techniques (including earlier ap-
proaches for multi-dimensional histograms).

� SVD- and HILBERT curve-based techniques are less
accurate than the multi-dimensional histogams com-
puted using MHIST-2. A positive characteristic of
these two techniques is that they use one-dimensional
histograms, which are already implemented in nearly
all commercial systems.

� Traditional techniques making the attribute value in-
dependence assumption (as in nearly all commercial
systems) incur very high errors in selectivity estima-
tion for predicates on multiple attributes.

Overall, we believe that the attribute value indepen-
dence assumption can be successfully abandoned in real-
life systems and be replaced by multi-dimensional his-
tograms computed using the MHIST technique. Based
on the performance-cost trade-offs and the applicability of
MHIST for arbitrary dimensions, we believe that it is the
most appropriate technique for this purpose.
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