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Abstract

The result size of a query that involves multiple
attributes from the same rel ation depends on these
attributes’ joint datadistribution, i.e., thefrequen-
cies of al combinations of attribute values. To
simplify the estimation of that size, most com-
mercial systems make the attributeval ue indepen-
denceassumption and maintai n statistics(typicaly
histograms) on individua attributesonly. In real-
ity, thisassumptionisa most alwayswrong and the
resulting estimations tend to be highly inaccurate.
In this paper, we propose two main aternativesto
effectively approximate (multi-dimensional) joint
data distributions. (a) Using a multi-dimensional
histogram, (b) Using the Singular Value Decom-
position (SVD) techniquefrom linear algebra. An
extensive set of experiments demonstrates the ad-
vantages and disadvantages of the two approaches
and the benefits of both compared to the indepen-
dence assumption.

1 Introduction

There are several components in a database management
system (DBMS) that require reasonably accurate estimates
of theresult sizes (or selectivities) of operators. Cost-based
query optimizers use them to obtain estimates of the costs
of subsequent operators and eventually of complete query
execution plans. Also, query profilers use them to pro-
vide quick feedback to users as a means to detect some
forms of semantic misconceptions before queries are ac-
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tually executed. Selectivity estimation typicaly relies on
some approximate knowledge of the database contents.

For a query involving a single attribute of arelation, its
result size depends on the data distribution of that attribute
in the database. Proposals to approximate single-attribute
data distributions include histogram-based techniques [9]
(the adoption of the uniform distribution assumption [18]
being aspecia case of them), sampling[11], and parametric
techniques[19]. Themain advantagesof histogramsarethat
they incur amost no run-timeoverhead, they do not require
the datato fit aprobability distributionor apolynomial and,
for most real-world databases, there exist histograms that
produce low-error estimates while occupying reasonably
small space(intheorder of afew hundred bytesinacatal og).
Hence, they are the most commonly used form of statistics
in practice (e.g., they are used in DB2, Informix, Ingres,
Microsoft, Oracle, Sybase), and have been studied quite
extensively intheliterature[4, 5, 6, 9, 13, 14, 16]. Our own
earlier work has resulted in a taxonomy that includes both
the old and severa new classes of histograms, some of the
latter being far more accurate than the former [16].

For a query involving two or more attributes of the same
relation, its result size depends on the joint data distribu-
tion of those attributes, i.e., the frequencies of all com-
binations of attribute values in the database. Due to the
multi-dimensional nature of thesedistributionsandthelarge
number of such attributeval ue combinations, direct approx-
imation of joint distributionscan be rather complex and ex-
pensive. In practice, most commercial DBMSs adopt the
attributeval ueindependenceassumption[2, 18]. Under this
assumption, the data distributionsof individual attributesin
arelation are independent of each other and the joint data
distribution can be derived from theindividual distributions
(which are approximated by one-dimensional histograms).

Unfortunately, real-life data rarely satisfies the attribute
value independence assumption. For instance, functiona
dependencies represent the exact opposite of the assump-
tion. Moreover, there are intermediate situations as well.
For example, it is naturd for the sal ary attribute of



the Enpl oyee relation to be ‘strongly’ dependent on the
age atribute (i.e., higher/lower saaries mostly going to
ol der/younger peopl€e). Making the attributeval ueindepen-
dence assumption in these cases may result in very inaccu-
rate approximationsof joint data distributionsand therefore
inaccurate query result size estimationswith devastating ef-
fects on aDBMS's performance [2]. We are aware of only
one proposal to repl ace thisassumption, which involved the
construction of multi-dimensional equi-depth histograms
[12]. But, in light of the new and far more accurate his-
togram classes, thisproposa seemslimited andtheheuristic
technique proposed for the partitioning of two-dimensiona
spaces is often ineffective.

Motivated by the above problems, we have investigated
several ways to approximate joint data distributionsin rel-
atively accurate fashion. This paper contains the results of
this effort and makes the following contributions:

1. All histograms in our earlier, one-dimensional, tax-
onomy [16] are generaized to multiple dimensions.
The newer classes of histograms that we have intro-
duced prove to be much more accurate in capturing
joint data distributions than the traditional equi-depth
histograms.

2. A novel techniqueisprovided for partitioningamulti-
dimensiona space into a given number of partitions
while satisfying various mathematical constraints.
Thistechnique is compared with a technique based on
Hilbert-numbering and a generaization of the tech-
nique of Muralikrishna and DeWitt [12] and shown
to result in significantly better multi-dimensional his-
tograms.

3. The Singular Value Decomposition (SVD) technique
from linear algebra[10] isintroduced as a mechanism
to approximate two-dimensiona joint data distribu-
tions by a small number of individua data distribu-
tions.

An extensive set of experiments demonstrates the advan-
tages and disadvantages of various approaches and their
benefits compared to the independence assumption.

2 Problem Formulation

We provide definitions in the context of a set of » red-
or integer-valued attributes X; (i = 1..n) in a relation
R. These definitions can be extended to non-numerical
attributes by first converting values in their domains into
floating point numbers.

2.1 DataDistributions

The value set V; of attribute X; isthe set of values of X;
that are present in R. Let V; = {v;i(k): 1<k < D;},
where v;(k) < v;(j) when k& < j. The spread s;(k) of
v;(k) is defined as s;(k) = vi(k + 1) — v;i(k), for 1 <
i < D;. (Wetake s;(D;) = 1) The frequency f;(k)

of v;(k) is the number of tuplesin R with X; = v;(k).
The area a;(k) of v;(k) is defined as a;(k) = f;(k) x
si(k). The data distribution of X; isthe set of pairs 7, =
{ (vi(1), f:(2)), (vi(2), £i(2)), - - ., (vi(Ds), fi(Di)) }.

The joint frequency f(k1, .., k) of the value combina-
tion < wvi(k1), .., vn(kn) > isthe number of tuplesin R
that contain v;(k;) in attribute X;, for al i. The joint
data distribution 73, of X1,.., X,, is the entire set of
(value combination, joint frequency) pairs. Often we refer
to the individual data distributionsof each of the attributes
as their marginal distributions. A natural way to repre-
sent joint data distributionsis using multi-dimensiona fre-
quency matrices (tensors). Thefrequency matrix F, _,, for
X;'sisa Dy x .. x D, matrix (tensor) whose [k, .., ky)
entry is equa to f(ka, .., k,). We refer to such matrices
as n-dimensional matrices in this paper. We can similarly
define one-dimensional frequency vectors corresponding to
the margina distributionsof X;'s.

Thejoint frequency distributioncan bevisuaized asaset
of pointsin a multi-dimensional space, with each attribute
corresponding to an axis. For each combination of attributes
values that is present in the relation, thereis a point in the
space whose coordinates are equal to the attribute values.
Thisisillustratedin Figure 1 for thetwo-dimensional case'.
The numbers next to the pointsdenote thejoint frequencies
of the corresponding attribute-value pairs.
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Figure 1. Multi-dimensional Data Distribution

Notethat thejoint datadistributionismulti-dimensional,
can bevery largefor alargedatabase rel ation, and differsfor
each combination of attributes (of which there can be many
in a database). Due to these complexities, it isimpractical
to store the entire joint data distribution of therelation and
is considered expensive even to approximateit. In the next
section, we define an important but rare characteristic of
certain joint data distributions that makes them simpler to
approximate.

2.2 Attribute Value Independence

Definition 2.1 A set of attributes X;, 1 < i < n have

LAlthough our formulation and techniques are presented for the gen-
eral, multi-dimensional case, for simplicity, al our examples are two-
dimensional.



mutually independent data distributionsif
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where k& and m appear in the ith argument of f and [ and
n appear in the jth argument of f. In other words if the
tuples of a relation are grouped based on their vaues in
one of the attributes, the data distribution of the values in
the other attribute within each group is identical up to a
constant factor.

Let 7' be the number of tuplesin relation R, F; bethe
1x...x D; x...x 1frequency vector of X; and F1
be the joint frequency matrix of all X;, 1 < 7 < n. Then,
Definition 2.1 implies that

1
g X Fix ... x Fp2 2

fl,..,n = Tn

These equations are illustrated in the following example.

Example2.1 Let X3 and X, contain three values each,
with the following joint and marginal frequency matrices:

50 20 10 80
Fp=1| 30 12 6 |,Fi=| 48 |,
15 6 3 24

Fo= (9 38 19).

One can easily verify that (1) holds. For instance,
f(21)/f(23) = 30/6 = f(3,1)/f(33) = 15/3,
Likewise, summing up all frequenciesin any matrix yields
T = 152, 0 (2) holds as well:

50 20 10 1 80
30 12 6 | = ;x| 48 | x(953819).

15 6 3 24

2.3 Query Result Size Estimation

In this paper, we mostly focus on queries containing predi-
cates of theform (P1&..& P,), where P; isasdlection on at-
tribute X;. Theresult size of such aquery can be computed
fromthejoint datadistributionof the parti cipating attributes
asthesum of thefrequencies of the attribute-val uepairsthat
satisfy the query predicate. Any approximationto the joint
frequency matrix would generate a corresponding approx-
imation to the query result size as well. One-dimensional
histograms are very common toolsfor single-attribute dis-
tributionapproximation and are central to thispaper, sothey
are introduced in the following section.

2here, x is overloaded to indicate both multiplication of multidimen-
sional matrices and multiplication of ascalar with such amatrix.

3 Histograms

In this section, we define one-dimensional histograms and
briefly describe a taxonomy presented in our earlier work
[16]. Extensions to multi-dimensiond histograms are de-
fined later in the paper.

A histogram on an attribute X is constructed by using
a partitioning rule to partition its data distribution into 3
(> 1) mutualy disgjoint subsets called buckets and approx-
imating the frequencies and valuesin each bucket in some
common fashion. In particular, the most effective approach
for values is the uniform spread assumption [16], under
which attributeva ues are assumed to be placed at equal in-
tervals between the lowest and highest valuesin the bucket.
Likewise, themost effective approach for frequenciesisthe
uniformfrequency assumption, under which thefreguencies
in abucket are approximated by their average.

As examples, consider the well-known equi-width and
equi-depth histograms. They both group contiguousranges
of attribute valuesinto buckets but differ in the partitioning
rule they employ. In an equi-width histogram, al buckets
are assigned value ranges of equal length; in an equi-depth
histogram, all buckets are assigned the same total number
of tuples.

We have introduced severad new classes of (one-
dimensional) histogramswith significant differencesintheir
characteristics and accuracies. Our effort to understand all
possibilities has generated a taxonomy that alows us to
systematically deal with both the old and new histogram
classes [16]. This taxonomy is based on four orthogona
characteristics that uniquely identify a histogram class and
are described bel ow.

Sort Parameter: Thisis a parameter whose value for
each e ement inthe data distributionisderived from the cor-
responding attribute value and frequencies. All histograms
require that the sort parameter valuesin each bucket form a
contiguousrange that has no overlap with any other bucket.
Attribute vadue (V), frequency (F), and area (A) are the
proposed sort parameters.

Partition Class: This indicates any restrictions on the
number of e ements in buckets. Two important classes are
serial —which place no restrictions, and end-biased —which
requires at most one non-singleton bucket. These classes
differ in their accuracy (highest for seria) and storage effi-
ciency (highest for end-biased).

Source Parameter: It captures the property of the data
distributionthat isthemost critical inan estimation problem
and is used in conjunction with the next characteristic in
identifying a unique partitioning. Spread (S), frequency
(F), and area (A) are the most useful source parameters.

Partition Constraint: The partition congtraint is a
mathematical constraint on the source parameter that
uniquely identifies a single histogram:

Equi-sum: In an equi-sum histogram, the sum of the source
valuesin each bucket is approximately the same.



V-Optimal: Define the variance of a histogram to be the
weighted sum of the variances of its source parameter in
each of the buckets, with the weights being the number
of attribute values grouped in the bucket. The v-optimal
histogram on an attribute is the histogram with the least
variance among al the histograms using the same number
of buckets.

MaxDiff: Inamaxdiff histogram, thereisabucket boundary
between two source parameter values that are adjacent (in
sort parameter order) if the difference between these values
isone of the 5 — 1 largest differences.

Compressed: In a compressed histogram, the & highest
source values are stored separately in h singleton buckets;
the rest are partitioned as in an equi-sum histogram. We
have chosen & to be the number of source vaues that (@)
exceed the sum of all source values divided by the number
of buckets and (b) can be accommodated in a histogram
with 3 buckets.

By making different choices for each of these orthogo-
nal histogram characteristics, one obtains different classes
of histograms. Following [16], we will use p(s,u) to denote
a histogram class with partition constraint p, sort param-
eter s, and source parameter u. Under this notation, for
example, the equidepth and equiwidth histograms become
equisum(V,F) and equisum(V,S) histograms, respectively.

Using the above framework for histograms, we now turn
to the main theme of this paper, which is approximating
joint data distributions.

4 AttributeValuelndependence Assumption
(AVI)

The attribute value independence assumption was intro-
duced in the context of the System-R optimizer [18]. Under
this assumption, all attributes are treated as if independent
of each other (Definition 2.1), regardless of the actua data
dependencies. The data distribution of each attribute is
approximated separately using any of the one-dimensional
histograms in the taxonomy presented above or any other
technique(asin this paper).

Usage: Let the predicate P be of the form (P1&..& P,,),
where P; isaselection on attribute X;. Let H; bethe his-
togram on X; and 7" be the relation cardinality. First, the
estimated result size s; of applying P; on therelation based
on H; iscaculated. Then, an estimate for the result size S
of applying P on the relation can be obtained through

81 X .. X 8y,

S= Tn-1 )

(©)
which is a straightforward conseguence of formula (2).

Comments. An advantage of thisapproach is that one can
use good-quality one-dimensional histograms, which are
inexpensiveto compute, store, and maintain. Themain dis-
advantage is that the assumption is almost aways wrong,
and therefore it results in approximate joint data distribu-

tions (and consequently query result sizes) that are very far
from the actua ones.

Example4.1 Consider the joint frequency matrix on the

| eft:
40 25 15 50 20 10
37 9 2 30 12 6
18 4 2 15 6 3

Itiseasy to verify that the marginal distributionsof this
matrix are the same as those in Example 2.1. Hence, their
joint frequency matrix computed under the attribute value
independence assumption is the one given in that example
and repeated above (ontheright) for clarity. Thedifferences
between the two matrices are obvious.

Next, we consider more accurate techniquesthat attempt
to capture dependencies between the attributes.

5 Multi-Dimensional Histograms (MHIST)

A multi-dimensional histogram on aset of attributesis con-
structed by partitioning the joint data distribution into 3
mutually digoint buckets and approximating the frequency
and value sets in each bucket in a uniform manner as fol-
lows.

Values. The value domain is approximated by an ex-
tension of the uniform spread assumption (Section 3). Let
thesmallest and largest X; valuesin bucket B bemin; and
mazx; respectively. Then, we can visualize the bucket as
an n-dimensional rectangle with two extreme corners be-
ing < ming,..,min, > and < mazy, .., mazr, >. L&
d; be the number of distinct values in attribute X; that are
presentin B. Let the k’th approximate valueindimension
(obtained by applying the uniform spread assumption along
that dimension) be denoted by v; (k). The actual data points
in B are then approximated by all possible combinations
< U{L(k‘l), . U;L(kn) >, where 1 < k; < d;.

Frequencies. All histograms make the uniform fre-
guency assumption and approximate the frequencies in
a bucket by their average. Thus, for example, if F' is
the sum of al frequencies in B, each approximate value
< vi(ky), .., v (kn) > is associated with an approximate
frequency equal to F'/(dy x .. X d,).

Example5.1 To illustrate the above approximations, con-
sider the actua and approximate values and frequenciesin
a bucket shown in Figure 2. The average frequency of the
bucket is obtained by dividing the sum of the frequencies
(315) by the total number of approximate valuesinsidethe
bucket (4 x 5= 20).

Buckets in multi-dimensional histograms need to keep
the following information: number of tuples and for each
dimension, the low and high values, as well as the number
of distinct valuesin that dimension.
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Figure 2: Approximations within a multi-dimensiona
bucket

Next, we identify several classes of multi-dimensional
histogramsbased on different partitioningrules. Theresult-
ing histograms can be classified using the same parameters
as in the one-dimensional taxonomy. While the partition
class, source parameter, and partition constraint extend in
a straightforward manner to the multi-dimensional case,
multi-dimensional sort parameters introduce a serious “or-
dering” problem, which is described below.

Scalar sort parameters (i.e, F, A, or V;) are totally or-
dered, so in those cases a bucket ssimply corresponds to a
range of values and groups elements that are contiguous
in the order of the sort parameter. A multidimensional
sort parameter, e.g., combination of attribute values (V), is
more difficult to handle because it requiresfinding arbitrary
nonoverlapping regions in n-dimensiona space, of which
thereis avery large number. We solve thisissue using two
separate techniques as follows.

Hilbert Numbering: One-dimensiona histogramswith
V' as the sort parameter were shown in our earlier work to
be highly accurate mainly because they group physically
nearer valuesinto the same bucket and thus achieve a good
approximation of the value domain. A well-known tech-
nique in spatial databases for capturing the proximity of
multi-dimensional valuesin alinear order isto use a space-
filling curve, such astheHilbert curve[3, 7, 8]. We propose
using the Hilbert numbering of attributeval ue combinations
as a sort parameter (denoted by H) to order the data and
thus once again reduce the problem to a single dimension.

Thisscheme (called HILBERT) isillustratedin Figure 3,
which shows a MaxDiff(H,F) partitioning of Figure 1 into
six buckets. Note that this technique may generate non-
rectangular regions, so the corresponding buckets (which
must be rectangular) may end up overlapping. By the very
nature of any linear ordering of multi-dimensional data, itis
often the case that two pointsthat are adjacent to each other
in the n-dimensional space may be distant in the linear or-
dering (thisproblem ismuch worse for higher dimensions).
Hence, the resulting histograms may not be able to capture
proximity in the value domain accurately.

Rectangular Partitioning: In the second class of tech-
niques, then-dimensional spaceisapproximated directly by
using non-overlapping n-dimensiona rectangular regions
computed via heuristics.

Figure 3: MaxDiff(H,F) (Hilbert) histograms

In order to motivate our technique, we first describe a
generalization of the approach proposed in [12] for equi-
depth partitioning of a two-dimensiona data distribution
T into 3 buckets. Our generalization (called PHASED in
this paper) which extends their algorithm to other partition
congtraints, source parameters, and to higher dimensionsis
described below (the «;’s are nearly equa integers whose
product is approximately 5.).

Step 1: The n-dimensiona space is partitioned along one
of thedimensions, say X, into «; equi-depth buckets.
Step ¢,i = 2..n: In step i, each of theregions 7’; found
in Step i — 1 is partitioned aong the attribute X; into «;
regions. The resulting partitions in step n congtitute the
final buckets.

This algorithm has some drawbacks. First, it can gener-
ateavery limited set of histogram bucketizationsand hence
may miss better quality histograms. Second, since the or-
der in which the dimensions are to be split is decided only
once at the beginning and arbitrarily, this technique could
result in poor partitionings. Thisis mainly because a good
one-dimensiona split along the margina data distribution
may till result in avery poor partitioning of the joint data
distribution, especially when the joint data distribution is
large.

Motivated by these limitations, we proposed anew tech-
nique (called MHIST) which at every step chooses and par-
titions the most “critical” attribute as described below. At
every step, this algorithm deals with a set P of partial
joint data distributions that are subsets of the entire joint
data distribution. Initialy, P contains just the entire joint
data distribution. The following steps are repeated until
the number of partial distributionsin P equals the number
of buckets available, at which point each of them forms a
bucket in the histogram.

Step 1: Firdt, from the set P, we choose the distribution
7’ that contains an attribute X; whose marginal distribu-
tion in 7’ is the most in need of partitioning. For the
V-Optimal histograms, this means a marginal distribution
that has the maximum variance of source parameter val ues;
for the MaxDiff histogram, one with the largest difference
in source val ues between adjacent values; and for the Equi-
Sum, Compressed histograms, one with the largest sum of
source values.



Step-2:Next, 77 issplitalong X; intoasmall number (p) of
buckets. The resulting p new partial joint data distributions
replace 7’ inset P.

Clearly, different values of p may result in different his-
tograms. The impact of p on histogram accuracy is studied
in the experiments section. We refer to the MHIST tech-
nique using p-way splitsas MHIST-p.

The two schemes (PHASED with o3 = 2, o, = 3 and
MHIST-2) are graphicaly illustrated in Figure 4, which
shows a MaxDiff(V,F) partitioning of the space of Figure 1
into six buckets. The numbers on the dashed lines denote
the order in which the corresponding splitting took place.
Note that MHIST-2 avoids grouping highly different fre-
guencies (which is the god of MaxDiff), while due to its
simplified bucketization scheme, PHASED uses up buck-
ets for grouping equal frequencies and failsto result in an
accurate MaxDiff histogram.
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Figure 4. Two-dimensional MaxDiff(V,F) histograms

By picking a dimension based on its criticality to the
partition constraint at each step (thus allowing the same di-
mension to be picked several times, for example), MHIST-2
often results in a desirable histogram. It is aso clear that
this algorithm can generate far more types of partitionings
than the older approach. These comments are empiricaly
verified in our experimentsin Section 7.

Usage: Let the sdection predicate P be of the form
(P1& ...&P,), where P; is a selection on attribute X;.
Assume that an n-dimensiona histogram exists on the set
of attributes { X; }. Inprinciple, P isdirectly appliedto each
histogram bucket and the (partial) result sizes are added to
yield an estimate for the overall result size.

Comments: By trying to approximate the joint frequency
distributiondirectly, multidimensional histograms have the
potential of capturing attribute value dependencies with
high accuracy. In fact, we have shown that under certain
assumptions, the V-Optimal (F,F) histograms are optimal in
any dimensionality, thus generalizing our earlier result for
the one-dimensional case [6]. The main disadvantage of
multidimensional histograms is that they are often quite
expensive to construct. Also, for relation with severa at-
tributes, there is an exponential number of joint data dis-
tributions that one might want to directly approximate, so
choosing among them is nontrivial.

6 Singular Value Decomposition (SVD)
6.1 Mathematical Background

The transpose of amatrix M isdenoted by /7. A square
matrix with Os in al its non-diagonal entries is called a
diagonal matrix. Let J bean M x N matrix with A/ >
N. A singular value decomposition (SVD) of J is any
factorization of the form:

J=UDVT, (4)

where U isan M x N matrix, D isan N x N diagonal
matrix,and V' isan N x N matrix. Theentriesof I/ and V'
are al between —1 and 1. Several such factorizations are
possible. It has been shown that there exist matrices U and
V' such that the diagonal elements of D are non-negative
and in descending order. Assumethat all instances of SVD
inthispaper have such aproperty. Let d; betheith diagonal
entry in D. The quantitiesd; are called the singular values
of .7, and the columns of I/ and V' are called the left and
right singular vectors, respectively. SVD isillustrated in
the following example.

Example6.1 LetJ = 102 1(7) > Thismatrix hasthe
following SVD:
—0.99 0.05 100.61 0 —0.99 -0.10
—-0.05 -0.99 0 6.56 0.10 —-0.99 /-

For a two-dimensional matrix M, let Rar(4) be the hori-
zontal vector corresponding to the ith row of M and Cys(7)
be the vertical vector corresponding to the ith column of
M. It follows from (4) that J can be written in terms of
severa one-dimensiona vectors[17]. That is,

N

J = dy Cy(k) Ry (k). (5)

k=1

It followsthat any two-dimensiona matrix can be com-
puted from its singular vectors and singular values. This
observation motivates our usage of SVD in approximating
joint data distributions, as described next.

6.2 Technique

Consider ajoint datadistribution7 ontwoattributes X'; and
Xy, withvalue-set sizesof D1, D, (D1 > D5), respectively.
Let J be the corresponding joint frequency matrix. Then,
T isapproximated based on the following steps:

1. Compute the SVD of (asampleof) J = U D VT
using well-known algorithms[17] for this purpose.

2. For some small number k <= N, store accurately the
k highest singular values.



3. Construct one-dimensiona histograms on the 2k row
and column vectors corresponding to these terms. In
principle, adifferent histogram fromthetaxonomy can
be used for each vector, but in practice, it makes sense
to use the same one for al of them.

The histograms constructed in step 3 can be plugged into
formula(5) in place of therow and column vectorsto obtain
an approximation of .J and consequently of thedesired joint
data distribution.

Elaborating briefly on step 2 above, it is clear that for

high-cardinality attributes (high V), the matrix size will
also be very high, making the approximation of al singular
vectors arather impractical solution. It turns out that when
the attributes are highly dependent or nearly independent,
the distribution of d; values tends to be highly skewed (a
few high and mostly very small values) [10]. As aresult,
by storing histogramsfor only thefirst & terms of the SVD,
one can get a reasonably good approximation of the joint
frequency matrix. We refer to a specific instance of SVD-
based approximationusing k termsasthe SV D-k technique.
Resultsfrom experiments showing the sufficiency of asmall
k, eg., k=5, are presented in Section 7.
Usage: It can be easily shown that, one can use (5) to ex-
press the selectivity of apredicate P1& P2 asthe sum of &
terms: thei'thtermisd;e;r;, where¢; and r; are the selec-
tivitiesof P; and P, computed from histograms on Cy (1)
and Ry (7) respectively, and d; is the i'th singular value.
Comments: Thistechnique requiresonly one-dimensional
histograms, which are quite inexpensive to compute and
store. Unlike the attribute independence assumption, this
technique makes a serious effort to accurately capture data
dependencies, so its estimates should be more accurate. Its
mai n disadvantageisthat it can not be extended to higher di-
mensions (> 2) [1]. Likethemulti-dimensional histograms
case, systems employing SVD a so require advance knowl-
edge of important combinations of attributes.

7 Experimental Evaluation

In order to study the accuracy of various techniques in
estimating the result sizes of multi-attribute predicates, we
conducted several experiments over a testbed containing
synthetic data and queries. Due to space limitationswe our
experiments on real-life and TPC-D data appear €l sewhere

[15].

7.1 Experiment Testbed

Techniques: The following techniques were studied: AVI
(Section 4), HILBERT, PHASED, MHIST-p with p=1..10
(Section 5), and SVD-k with k& = 1..10 (Section 6). The
histograms required in these techniques were taken from
the taxonomy. AVI and SVD-k require multiple one-
dimensiona histograms to be built, which can in general
belong to different classes. For our experiments we assume

that all histograms are taken from any single class in the
taxonomy.

The sample size (s) for the histogram construction was

2000, 10000, or equa to the number of tuples (7)) in the
relation. Each technique was given the same storage space
B, which ranged from 400 to 4000 bytes. All histogramsin
a given technique divide this space equally amongst them.
The relative performance of various techniques was fairly
constant over different values of sample size and storage
space. Hence, we present the detailed resultsfor the default
values (s = 2000, B = 800), chosen becausethey are small
enough to be practical and also lead to reasonably accurate
estimates for the good-quality techniques.
Data Digtributions: Severa synthetic joint data distribu-
tions were generated by choosing different value domains
and frequencies, asdescribed bel ow. Thenumber of relation
tuples was fixed at 1M (million) for the two-dimensiona
data and 5M for higher dimensions. The number of at-
tributevalues (D) inal n attributeswasidentica and varied
from 50 to 200, and was chosen such that the total number
of combinations does not exceed the number of tuples.

Frequency Sets. Severa different typesof dependencies
were modeled using thejoint frequency matrices. Sincethe
observations remained the same in each case, we present
asingle broad class of joint frequency matrices in this pa
per. The motivation behind this distribution (caled 72"
for n-dimensions) comes from the fact that when the at-
tributes have dependencies between them, there will often
be a few combinations of attribute values that occur much
more frequently in the relation than others. We model this
phenomenon by popul ating the joint frequency matrix from
a Zipf distribution [20], and varying the level of depen-
dency by means of the » parameter of the Zipf distribution.
For higher values of the =z parameter, there are a few very
high frequencies implying strong dependence between the
attributes. For small values of = (close to 0), al frequen-
cies tend to be similar, implying that al attribute-value
combinations are equaly likely to appear in the relation
(independence).

Vaue Sets: All attribute values were nonnegative inte-
gers, and spreads were generated according to severd dis-
tributionsgivenin [16]. In thispaper we present the results
for cusp_min distributionwhich consistsof /2 increasing
spreads followed by D /2 decreasing spreads.

The following notation is used to represent various
joint data distributions arising out of these combinations:
value_seto...value_set, . 7™ (D, z).

Queriesand Error Formulas: All techniqueswere evalu-
ated for range predicatesof theform (X1 < a1)&..& (X, <
a, ), where a; is a constant in D;, the domain of X;. The
guery set contains queries over all possible vaues in the
joint value domain. For each query, we find two forms of
error: error as a percentage of the result size (F's) and er-
ror as a percentage of the input relation size (E7). When
considering a set of queries together, we compute the av-



erages of the above errors over the query set (F's and Erp,
respectively). Since both error measures led to identical
conclusions about the relative performance of the studied
techniques, we only present resultsfor the s error.

We first present the results of experiments on two-
dimensional queriesfor al the techniques and then present
the resultsfor higher dimensions.

7.2 Effectivenessof Histograms

The relative performance of various histograms was fairly
constant over a wide range of data and query sets. Hence,
we present resultsfromthe cusp_min.cusp_min.Z2(50, 1)
data distribution. Table 5 contains the errors (as a per-
centage of the result size) of the techniques using various
histograms. The horizontal line separates the consistently
good-quality histograms from the poor quality histograms.
There are two main conclusions to be drawn from this ta-
ble. First, the most accurate histograms in each technique
belong to the MaxDiff(V,A) or V-Optimal(V,A) classes’.
This is because of the effectiveness of the three param-
eters. A (areq) in capturing the skew in vaue and fre-
guency domains, MaxDiff and V-Optimal in grouping only
similar spreads/frequencies, and V in capturing the value
domain. Since the MaxDiff(V,A) histograms are less ex-
pensive than the V-Optimal (V,A) histograms [16], al the
techniques in the remaining experiments use the MaxD-
iff(V,A) histograms. Second, for most histograms, AVI
performs the poorest while the other techniques perform
significantly better. Thisobservationis corroborated by the
remaining experimentsin this paper.

7.3 Effect of Dependencies

In this section, we study the effectiveness of the studied
techniquesinhandling datadependencies, themain concern
of this paper. Dependence isincreased by increasing the z
parameter of the Z2 distribution.

Figures 7 and 8 depict the effects of £ (number of SVD
termsretained) and p (number of partitionsin asplit) param-
eters on the SVD-k and MHIST-p techniques, respectively,
with dependency (=) on the x-axis and error (F's) on the
y-axis. Findly, Figure 9 compares the accuracy of the best
SVD and MHIST techniquesthusidentified, with the other
techniques. The following conclusions can be drawvn from
these figures.

SVD-k (Figure 7): Among the SVD-k agorithms, SVD-5
has the best performance. For ¥ = 10, athough severa
terms are captured, the storage space alocated for each of
themissmaller and the accuracy of approximating the most
important termsin the distributionis low.

MHIST-p (Figure 8): Among the MHIST-p agorithms,
MHIST-2 hasthe best performance. Thereason stemsfrom

3The order of performance is in fact almost identical to our earlier
results for single-attribute queries[16].

local-vs-global considerations. For the MaxDiff constraint,
a high value of p results in partitioning the attribute with
the largest difference between any neighboring source val-
ues at several points. While one of these partitions falls
exactly at thelargest difference, the remaining ones may be
at points that exhibit much smaller differences than those
found in other attributes, leaving fewer buckets to handle
those. Clearly, this problem does not arisefor p = 2 and is
small forp = 3.

Based on these observations, we have chosen MHIST-2

and SVD-5 as the best representatives of the MHIST, SVD
techniques and present experimenta results only for them
in the rest of the paper.
All techniques (Figure 9): It is clear that despite using
high-quality one-dimensional histograms, the AVI tech-
nique resultsin very high errors. Among other techniques,
PHASED and SVD-5 have nearly similar performances
while MHIST-2 and HILBERT are noticeably better. Over-
al, MHIST-2 performs the best. Further analysis of each
caseshowed thefollowing: first, thequality of partitionsob-
tained by MHIST-2 was significantly better than PHASED,
and second, HILBERT incurs errors because of overlapping
grouping of values and the unavoidabl el oss of proximity in
linear ordering.

Interestingly, all techniques are more effective at han-
dling low and high dependencies than intermediate levels
(z = 2). For high vaues of skew, there are few frequen-
cies that are very high and, therefore, captured accurately
by the MaxDiff(V,A) histograms, while the rest of the fre-
guenciesarevery low and grouping themintothe remaining
buckets causes small errors. For low values of skew, since
frequencies are al nearly the same, any grouping of them
is unlikely to result in high errors. For z around 2, there
are severd frequenciesin the Zipf distributionthat are dis-
similar and significantly high, and hence cause high errors
when grouped with each other.

74 Sensitivity Analysis

In this section we study the effect of storage space (B) al-
located on the relative performance of various techniques.
Figure 10 depicts the performance curves for these tech-
niques on the cusp_min.cusp_min.Z?(2,2) data distribution.
The errors (Es) are shown on the y-axis and the space (B)
on the x-axis.

It is clear from this figure that, al technique, except
AVI, benefit significantly from increases in space. The
effect of B on AVI issmall because, the one-dimensional
histograms AV capture the margina distributions nearly
100% accurately even for small amounts of space and any
further increase in space does not affect their accuracy.
Sincethe other techniques capture thejoint datadistribution
more accurately as B increases, their errors decrease. At
very large amounts of space all these techniques will have
nearly O errors (most probably they will never become 0
because they are computed from a sample). The SVD



% Error (F's)
Histogram AVI | SVD-5 | PHASED | HILBERT | MHIST-2
Uniformity (System-R) | 89.3 | 87.2 89.3 89.3 89.3 _ Time Taken (msec)
Equiwidth 723 | 542 52.8 57.5 52.8 Technique | Average | Maximum
Equidepth 682 | 444 406 475 406 AVI 287 319
Compressed(V,F) 501 | 264 223 24.7 17.9 HILBERT 658 722
MaxDiff(V,F) 574 | 248 21.9 227 14.9 PHASED 679 745
V-Optimal-Serial(V,F) | 525 | 237 211 2238 132 MHIST-2 683 770
Compressed(V,A) 462 | 217 17.3 14.8 9.7 SVD-5 806 848
M axDiff(V,A) 432 | 174 17.2 12.1 6.6
V-Optimal-Serial(VA) | 415 | 165 16.2 12.0 6.4

Figure5: Effect of histograms on the accuracy of various techniques
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Figure 7: Effect of £ on SVD-k

errors do not fall as low even for B = 4000 because SVD
approximates only few of the termsin the SVD expansion.
Over dl, in an intermediate range of B, the techniques
still retain their relative order of accuracy whileconverging
towards each other.

7.5 Effect of dimensionality (n) on accuracy

In this section, we study the performance of various tech-
niques for higher-dimensional queries (n > 2). Figure11
contains the storage space on the x-axis and errors (Fs)
on the y-axis for the MHIST-2 technique for various di-
mensions. Figure 12 contains the errors for n = 3 for
the MHIST-2, AVI and PHASED techniques. Note that,
as n increases, the errors due to MHIST-2 increase, but
by increasing storage space these errors can be effectively
reduced. The increase in errorsis sharper between 2 and
3 than 3 and 4 because, a higher dimensionalities, even
with 5M tuples, the skew in the data distributionislimited
due to the large number of attribute value combinations.
Space hasasimilar effect on PHASED, but asin the earlier
experiments, PHASED performs worsethan MHIST-2. In-
terestingly, space does not seem to have any effect on AVI
errors. Thisisbecause, the one-dimensional histogramsin
AVI were 100% accurate in capturing the value domains
even at small storage spaces. Hence, the errors are al due
to the complete lack of dependency informationin AVI for
any amount of space. The main conclusion isthat one can
use MHIST-2 histograms for higher dimensions simply by
allocating more space.

Dependence (z parameter)

Figure 8: Effect of p on MHIST-p

Dependence (z parameter)
Figure 9: Effect of Dependence on al
techniques
7.6 Comparison of Construction Costs

Table 6 illustrates the difference in the construction costs
of various techniques. It contains actua timings (in mil-
liseconds) collected from running the corresponding algo-
rithms on a SUN-SPARC10, for various techniques using
800 bytes of space. The times listed are averages over
five runs of the computation program on a lightly loaded
machine and do not include the time taken to compute the
sample. A sample of 2000 tuples was used as the input.
AVI incursthe least time because it only needs to compute
two one-dimensional histograms. SVD-5 incurs the high-
est time because of the cost of SVD expansion (mainly)
and computing 10 histograms. HILBERT, PHASED, and
MHIST-2 are more expensive than AV because of various
intermediate computations (Hilbert numbersfor HILBERT
and severa one-dimensiond partitionings for PHASED,
MHIST-2).

In conclusion, compared to the cost of collecting the
sample from the large relation (required for all techniques)
which could bein the order of seconds, these costs (which
are all lessthan 1 second) are amost negligibleand do not
affect the practicality of any of these techniques.

8 Conclusions

In this paper, we have proposed severa techniques based
on multi-dimensiona histograms and SVD as aternatives
to the attribute value independence assumption. We have
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on MHIST-2

conducted an extensive set of experimentsto study the per-
formance of varioustechniquesand arrived at the following
conclusions:

The multi-dimensionad MaxDiff(V,A) histograms
computed using the MHIST agorithm are the most
accurate among all techniques (including earlier ap-
proaches for multi-dimensiona histograms).

SVD- and HILBERT curve-based techniques are less
accurate than the multi-dimensional histogams com-
puted using MHIST-2. A positive characteristic of
these two techniques is that they use one-dimensional
histograms, which are already implemented in nearly
all commercial systems.

Traditional techniques making the attribute value in-
dependence assumption (as in nearly al commercia
systems) incur very high errors in selectivity estima
tion for predicates on multiple attributes.

Overdl, we believe that the attribute value indepen-
dence assumption can be successfully abandoned in real-

life

systems and be replaced by multi-dimensional his-

tograms computed using the MHIST technique. Based
on the performance-cost trade-offs and the applicability of

MH

IST for arbitrary dimensions, we believe that it is the

most appropriate technique for this purpose.
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